WO2017136966A1 - 分层钻削高效麻花钻 - Google Patents
分层钻削高效麻花钻 Download PDFInfo
- Publication number
- WO2017136966A1 WO2017136966A1 PCT/CN2016/073767 CN2016073767W WO2017136966A1 WO 2017136966 A1 WO2017136966 A1 WO 2017136966A1 CN 2016073767 W CN2016073767 W CN 2016073767W WO 2017136966 A1 WO2017136966 A1 WO 2017136966A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cutting edge
- cutting
- twist drill
- efficiency
- bit body
- Prior art date
Links
- 238000005520 cutting process Methods 0.000 claims abstract description 120
- 238000005553 drilling Methods 0.000 claims abstract description 30
- 230000001154 acute effect Effects 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 5
- 238000004080 punching Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
- B23B51/02—Twist drills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
- B23B51/009—Stepped drills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
- B23B51/10—Bits for countersinking
- B23B51/108—Bits for countersinking having a centering drill
Definitions
- the utility model relates to a layered drilling high-efficiency twist drill.
- twist drill including straight shank, taper shank), see Figure 1 (for straight shank), if it is in the workplace of other metal cutting machine tools away from the drill press, using hand-held power tools for punching, the arm
- force and power tool power is greatly restricted in the efficiency of punching - difficult positioning, slow speed and low efficiency.
- the traditional twist drill is difficult to position when drilling, and the two in-line cutting edges are always cut at the same time, and the cutting metal amount is equal in the whole processing process, the cutting torque and power are large, and the drilling is laborious.
- the purpose of the utility model is to provide a tool capable of rapidly cutting and drilling, and prolonging the service life of the tool and improving work efficiency.
- the layered drilling high-efficiency twist drill comprises a bit body, the bit body comprises a handle portion and a working portion, the handle portion is connected with the working portion, and the front end of the working portion is a cutting portion, and the feature is Arranging a plurality of parallel, spaced-apart grooves symmetrically along a flank face of the cutting portion, the groove dividing the main cutting edge into a plurality of first cutting edges and a second cutting edge, the first cutting edge The line with the second cutting edge forms a stepped structure.
- the second cutting edge is parallel to the axis of the bit body, and the first cutting edge forms an angle of 90-140 degrees with the second cutting edge.
- an angle between the second cutting edge and the axis of the bit body forms an acute angle, so that the tail end of the second cutting edge is inclined downward.
- the line connecting the top ends of the first cutting edge forms an angle of 20-60 degrees.
- the line connecting the grooves is a spiral structure.
- the first cutting edges are parallel to each other, and the heights of the first cutting edges are equal.
- the first cutting edges are parallel to each other, and the height of the first cutting edge of the first section to the first cutting edge of the last section is in an additive state.
- the positioning is easy in the process of layered drilling, the cutting resistance is small, the cutting heat is less, the drilling efficiency is high, the service life is long, the drilling performance of the drill bit is greatly improved, and the processed circle is also improved.
- the hole has high precision and less burrs on the edge of the blade.
- Figure 1 is a schematic view of the existing twist drill structure: wherein the cutting edge is two inline cutting edges
- Figure 2 is a side view of Figure 1
- Figure 3 is a schematic view of the cutting of the cutting edge of the existing twist drill
- Figure 4 is a partial enlarged view of Figure 3
- Figure 5 is a schematic view of the utility model
- Figure 6 is a partial enlarged view of Figure 5
- Figure 7 is a side view of Figure 5
- Figure 8 is a partial enlarged view of Figure 5
- Figure 9 is a schematic view of the utility model when drilling
- Figure 10 is a partial enlarged view of Figure 9
- Figure 11 is a schematic view of the present invention
- Figure 12 is a side view of Figure 11
- Figure 13 is another schematic structural view of the cutting portion of the present invention.
- the existing traditional twist drill is difficult to position when drilling, and the two in-line cutting edges (ie, the main cutting edge 1) are always cut at the same time, and the cutting metal amount is equal in the whole processing process, and the cutting torque and power are large. Drilling is laborious.
- the layered drilling high-efficiency twist drill of the present invention comprises a drill body 2, which may be a conventional twist drill.
- the drill body 2 generally comprises a handle portion, a working portion, a front end of the working portion is a cutting portion, and a rear end is a guiding portion.
- the handle is connected to the guiding portion, and a plurality of parallel, spaced-apart grooves 4 are formed symmetrically along the flank 3 of the cutting portion, the groove 4 dividing the main cutting edge into a plurality of first cutting edges 5 and The second cutting edge 6, the line connecting the first cutting edge 5 and the second cutting edge 6 forms a stepped (also referred to as stepped) structure.
- the shape of the main cutting edge is a stepped structure, and at the same time, the cross section of the entire flank 3 is also a stepped structure.
- all the flank portions except the main cutting edge may have other shapes.
- the stepped structure of the flank is used to prevent the flank from touching the workpiece during the cutting process, the second is to increase the strength of the flank, and the third is to facilitate the processing during the manufacturing process.
- the second cutting edge 6 is parallel to the axis of the bit body, or the second cutting edge 6 forms an angle of 0-20 degrees with the axis of the bit body, so that the trailing end of the second cutting edge 6 is downward. Tilt, at the time of cutting, only the beginning of the second cutting edge (ie, the top of the first cutting edge) touches the workpiece, as shown in FIG.
- the second cutting edge 6 is parallel to the axial line of the bit body, and the first cutting edge 5 and the second cutting edge 6 form an angle a of 90-140 degrees, and the first cutting edges are parallel to each other, of course, In the present invention, it is preferable that the first cutting edges are parallel to each other in accordance with actual needs. Since it is necessary to dig the groove on the flank to form a stepped main cutting edge, the area of the flank 3 is slightly larger, so the line connecting the top end of the first cutting edge 5 (ie, two main cuttings) The angle b formed between the edges of the blade) is 20-60 degrees, as shown in FIG. Of course, the foremost end of the cutting portion of the present invention may also be provided in a shape as shown in FIG.
- the foremost end of the bit body 2 forms a guiding portion (ie, the first cutting edge and the second cutting edge at the foremost end of the bit body, the first cutting edge first contacts the workpiece), and the apex angle of the guiding portion
- the angle of 90-140 degrees, preferably 118 degrees, is the optimum angle setting.
- the angle of the guiding portion can be appropriately changed according to different processing materials, as shown in FIG.
- the cutting edge of the guiding portion is short, the drilling is relatively stable, and Since the main cutting edge is divided into the first cutting edge having a relatively small area, the first cutting edge disperses the cutting torque and power, so that it is less labor-saving when applying the force. It should be noted that the foremost first cutting edge that is in contact with the workpiece in the present invention may not be parallel to the subsequent first cutting edge.
- the groove may be an arc groove adapted to the curvature of the flank face, or the wire of the groove may be a spiral structure.
- the stepped cutting edge of the present invention can be applied to drilling tools such as taps, reaming drills, boring drills, and reamer. Even a stepped drill bit is provided, and a stepped drill bit can be combined with a different tool.
- the flank face between the grooves forms a stepped arc
- the diameter d of the arc between the opposite two second cutting edges gradually increases to form a stepped structure, for example, from the forefront.
- the diameter d1 between the second cutting edges is up to the diameter dn between the last second cutting edges, the diameter of which is a tendency to increase, and the added dimensions may be constant or varied.
- the number of steps, the length of the first and second cutting edges can be flexibly selected according to the size of the drilled hole and the area of the flank face, and is usually divided on the flank face of the same area.
- the stepped cutting edge should be as much as possible, and the smaller the diameter of the foremost second cutting edge, the better, but at the same time the diameter of the foremost second cutting edge is subject to the standard drill core thickness.
- the two in-line main cutting edges of the twist drill are designed as a plurality of stepped blades to decompose the resistance of the metal layer to be cut, as shown in Figs.
- the pilot hole is first drilled by the small-sized small drill tip (ie, the guiding portion) of the first section. Because of its small diameter, it is easy to position and drill small. hole. The small holes are then reamed step by step by subsequent stepwise stepwise steps until the final size of the twist drill is reached. This step-by-step drilling and reaming process reduces the cutting resistance and feeds lightly compared to a continuous cutting of a conventional twisted cutting edge.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Drilling Tools (AREA)
- Earth Drilling (AREA)
- Crushing And Pulverization Processes (AREA)
Abstract
一种分层钻削高效麻花钻,包括钻头本体(2),钻头本体(2)包括柄部、工作部分,柄部与工作部分连接,工作部分的前端为切削部分,沿着切削部分的后刀面(3)对称的设置数个平行、间隔分布的凹槽(4),凹槽(4)将主切削刃分割成数个第一切削刃(5)和第二切削刃(6),第一切削刃(5)与第二切削刃(6)的连线形成台阶式的结构。该麻花钻的钻头在钻孔时切削力减小,切削热减少,定位容易,加工效率提高,使得加工后的圆孔精度高,出刀边毛刺少。
Description
本实用新型涉及一种分层钻削高效麻花钻。
通常的麻花钻(包括直柄、锥柄),见图一(为直柄),如果是在远离钻床等其他金属切削机床的工作场所,使用手持电动工具进行打孔作业时,受人的手臂力、电动工具功率等限制,在打孔时的效率就受到很大的制约——打孔定位难、速度慢、效率低。
如图一所示,因这种常规结构的麻花钻,在钻孔时,是由两个对称分布的一字形切削刃同时完成相应尺寸的金属切削量的加工,使得其钻孔时所需的功率较大,同时其两个刃口上受到的反作用力也很大,刃口易受损。见其加工切削过程分析示意,如图二所示。
并且传统的麻花钻钻孔时不易定位,钻孔时始终为两个一字形刀刃同时切削,且整个加工过程中的切削金属量相等,切削扭矩及功率较大,钻孔费力。
实用新型内容
本实用新型目的是提供一种能够快速切削、进行钻孔的工具,同时延长工具的使用寿命,提高工作效率。实现上述目的的技术方案如下:
分层钻削高效麻花钻,包括钻头本体,钻头本体包括柄部、工作部分,柄部与工作部分连接,工作部分的前端为切削部分,其特征在
于:沿着切削部分的后刀面对称的设置数个平行、间隔分布的凹槽,所述凹槽将主切削刃分割成数个第一切削刃和第二切削刃,第一切削刃与第二切削刃的连线形成台阶式的结构。
优选的,第二切削刃平行于钻头本体的轴心线,第一切削刃与第二切削刃之间形成90-140度的夹角。
优选的,第二切削刃与钻头本体的轴心线之间形成一个锐角的夹角,使第二切削刃的尾端向下倾斜。
优选的,第一切削刃顶部端点的连线形成的夹角为20-60度。
优选的,所述凹槽的连线为螺旋状结构。
优选的,第一切削刃之间互相平行,第一切削刃的高度相等。
优选的,第一切削刃之间互相平行,第一节的第一切削刃到最后一节的第一切削刃的高度呈递加状态。
通过台阶式的切削,在分层钻削的工作过程中定位容易,切削阻力小,切削发热少,钻孔效率高,使用寿命长,大大提升了钻头的钻孔性能,还使得加工后的圆孔精度高、出刀边毛刺少。
图1为现有麻花钻结构示意图:其中切削刃为两个一字形刃口
图2为图1的侧视图
图3为现有麻花钻钻孔时刃口切削示意图
图4为图3的局部放大图
图5为本实用新型示意图
图6为图5局部放大图
图7为图5侧视图
图8为图5局部放大图
图9为本实用新型钻孔时示意图
图10为图9局部放大图
图11为本实用新型示意图
图12为图11侧视图
图13为本实用新型切削部分的另一结构示意图
下面结合附图对本实用新型做详细的说明。
首先先大概的描述下普通麻花钻在切削时的切削面积。如图1-4所示。
现有的传统的麻花钻钻孔时不易定位,钻孔时始终为两个一字形刀刃(即主切削刃1)同时切削,且整个加工过程中的切削金属量相等,切削扭矩及功率较大,钻孔费力。其中传统麻花钻钻孔时的单刃切削面积为:S1=S2=W×h;总切削面积为:S=2S1=2 S2=2×W×h。
下面再详细的描述本发明的结构。如图5-12所示。
本发明的分层钻削高效麻花钻,包括钻头本体2,钻头本体可以是普通的麻花钻,钻头本体2通常包括柄部,工作部分,工作部分的前端为切削部分,后端为导向部分,柄部与导向部分连接,沿着切削部分的后刀面3对称的设置数个平行、间隔分布的凹槽4,所述凹槽4将主切削刃分割成数个第一切削刃5和第二切削刃6,第一切削刃5与第二切削刃6的连线形成台阶式(也可以称之为阶梯式)的结构,
即本发明中主切削刃的形状为台阶式的结构,同时,整个后刀面3的截面也是呈台阶式结构,当然除了主切削刃外的所有后刀面部分,还可以是其他的形状,后刀面采用阶梯状结构是为了在切削过程中,后刀面不会触碰工件,二是增加后刀面的强度,三是制作过程中方便加工。第二切削刃6平行于钻头本体的轴心线,或者第二切削刃6与钻头本体的轴心线之间形成一个0-20度的夹角,使第二切削刃6的尾端向下倾斜,在切削时,仅仅只有第二切削刃的始端(即第一切削刃的顶部)碰触工件,如图13所示。
优选第二切削刃6平行于钻头本体的轴心线,第一切削刃5与第二切削刃6之间形成90-140度的夹角a,第一切削刃之间互相平行,当然也可以根据实际需要设置成不平行的结构,本实用新型中优选第一切削刃之间互相平行。由于需要在后刀面上挖置凹槽形成阶梯状的主切削刃,因此后刀面3的面积会设置的稍大些,因此第一切削刃5顶部端点的连线(即两条主切削刃之间形成的夹角)形成的夹角b为20-60度,如图8所示。当然本实用新型切削部分的最前端也可以设置成如图13所示的形状。
为了在钻孔时稳当,钻头本体2的最前端形成导引部分(即钻头本体最前端的第一切削刃和第二切削刃,第一切削刃最先接触工件),导引部分的顶角为90-140度的夹角,优选118度作为最佳角度设置,当然导引部分的夹角根据不同的加工材料可以做适宜的改变,如图6所示。
导引部分的切削刃由于较短,因此钻孔的时候会比较稳当,而且
由于主切削刃被分割成了面积相对较小的第一切削刃,第一切削刃将切削扭矩及功率进行了分散,因此在施力钻孔时会更省力。需要注意的是本实用新型中与工件最先接触的最前端的第一切削刃可以与后续的第一切削刃不平行。
本发明中所述凹槽可以是与后刀面弧度适配的弧形槽,或者凹槽的连线为螺旋状结构。本发明的阶梯式的切削刃可以应用在丝锥、扩孔钻、锪钻、铰刀等钻孔刀具中。甚至只设置一个阶梯状的钻头,而阶梯状的钻头可以与不同的刀具组合。
如图11所示,凹槽之间的后刀面形成台阶状的圆弧,相对的两个第二切削刃之间的圆弧直径d逐渐增大,形成台阶状结构,例如从最前端的第二切削刃之间的直径d1一直到最后第二切削刃之间的直径dn,其直径是一个递加的趋势,递加的尺寸可以是恒定的,也可以是变化的。
本发明中台阶的数量、第一、第二切削刃的长短可以根据钻孔的大小、后刀面的面积大小进行灵活的选择,通常情况下在同等面积的后刀面上,被分割的第一、第二切削刃的数量越多越好,这样的情况下,第一切削刃与加工件的接触面积会越小,钻孔的时候刀具承受的阻力越小,钻孔会越轻松。鉴于以上特点,台阶状的切削刃应尽可能的多些,最前端第二切削刃的直径越小越好,但同时最前端第二切削刃的直径会受制于钻头标准的钻芯厚度。
本发明中将麻花钻的两个一字型主切削刃设计成多个阶梯状的刀刃以分解所需切除金属层的阻力,如图9、10所示,被切削的大块
S分解成n个小块Si,小块Si的面积:Si=Wi×hi,Sn=Wn×hi,总切削面积:S=S1+…+Si+…+Sn。
当钻头开始接触到被加工件表面时,首先由第一节很小尺寸的小钻尖(即导引部分)钻出引导孔,因其直径尺寸很小,故而很容易定位、并钻出小孔。然后由后续逐级加大的阶梯刃对此小孔逐级进行扩孔,直至达到麻花钻的最终尺寸。这个逐级钻孔及扩孔的过程,相比常规麻花钻一字切削刃的一次连续切削,切削阻力得以减小,且进给轻快。
本发明技术方案带来的有益效果:
①在整个加工过程中,钻削力较小且均匀、合理;
②人工手持电动工具较平稳、可持久操作;
③保证了钻孔加工精度,避免设备及人身事故的发生;
④刀具各台阶刃口磨损均匀一致,延长了刀具使用寿命(约3~8倍);
⑤降低了刀具在使用中不必要的损害及工件的报废;
⑥降低了加工难度及成本、提高了加工效率;
⑦出刀边翻边毛刺少。
以上仅为本实用新型实施例的较佳实施例而已,并不用以限制本实用新型实施例,凡在本实用新型实施例的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本实用新型实施例的保护范围内。
Claims (7)
- 分层钻削高效麻花钻,包括钻头本体,钻头本体包括柄部、工作部分,柄部与工作部分连接,工作部分的前端为切削部分,其特征在于:沿着切削部分的后刀面对称的设置数个平行、间隔分布的凹槽,所述凹槽将主切削刃分割成数个第一切削刃和第二切削刃,第一切削刃与第二切削刃的连线形成台阶式的结构。
- 根据权利要求1所述的分层钻削高效麻花钻,其特征在于:第二切削刃平行于钻头本体的轴心线,第一切削刃与第二切削刃之间形成90-140度的夹角。
- 根据权利要求1所述的分层钻削高效麻花钻,其特征在于:第二切削刃与钻头本体的轴心线之间形成一个锐角的夹角,使第二切削刃的尾端向下倾斜。
- 根据权利要求1所述的分层钻削高效麻花钻,其特征在于:第一切削刃顶部端点的连线形成的夹角为20-60度。
- 根据权利要求1所述的分层钻削高效麻花钻,其特征在于:所述凹槽的连线为螺旋状结构。
- 根据权利要求1所述的分层钻削高效麻花钻,其特征在于:第一切削刃之间互相平行,第一切削刃的高度相等。
- 根据权利要求1所述的分层钻削高效麻花钻,其特征在于:第一切削刃之间互相平行,第一节的第一切削刃到最后一节的第一切削刃的高度呈递加状态。
Priority Applications (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK16889695.9T DK3305447T3 (da) | 2016-02-14 | 2016-02-14 | Trinstruktureret spiralbor |
ES16889695T ES2947506T3 (es) | 2016-02-14 | 2016-02-14 | Broca helicoidal con estructura escalonada |
PL16889695.9T PL3305447T3 (pl) | 2016-02-14 | 2016-02-14 | Wiertło kręte o konstrukcji schodkowej |
EP23163838.8A EP4227031A1 (en) | 2016-02-14 | 2016-02-14 | High efficiency step-structured twist drill |
PCT/CN2016/073767 WO2017136966A1 (zh) | 2016-02-14 | 2016-02-14 | 分层钻削高效麻花钻 |
EP16889695.9A EP3305447B1 (en) | 2016-02-14 | 2016-02-14 | Step-structured twist drill |
FIEP16889695.9T FI3305447T3 (fi) | 2016-02-14 | 2016-02-14 | Askelstrukturoitu poranterä |
US15/847,900 US20180133808A1 (en) | 2016-02-14 | 2017-12-19 | Efficient twist drill for layered drilling |
US16/699,089 US11007583B2 (en) | 2016-02-14 | 2019-11-28 | Twist drill |
US17/094,786 US11007584B2 (en) | 2016-02-14 | 2020-11-10 | Twist drill |
US17/321,373 US11554424B1 (en) | 2016-02-14 | 2021-05-14 | Twist drill |
US18/095,119 US11865627B1 (en) | 2016-02-14 | 2023-01-10 | Twist drill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/073767 WO2017136966A1 (zh) | 2016-02-14 | 2016-02-14 | 分层钻削高效麻花钻 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/847,900 Continuation-In-Part US20180133808A1 (en) | 2016-02-14 | 2017-12-19 | Efficient twist drill for layered drilling |
US15/847,900 Continuation US20180133808A1 (en) | 2016-02-14 | 2017-12-19 | Efficient twist drill for layered drilling |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017136966A1 true WO2017136966A1 (zh) | 2017-08-17 |
Family
ID=59563715
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/073767 WO2017136966A1 (zh) | 2016-02-14 | 2016-02-14 | 分层钻削高效麻花钻 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20180133808A1 (zh) |
EP (2) | EP3305447B1 (zh) |
DK (1) | DK3305447T3 (zh) |
ES (1) | ES2947506T3 (zh) |
FI (1) | FI3305447T3 (zh) |
PL (1) | PL3305447T3 (zh) |
WO (1) | WO2017136966A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3746247A4 (en) * | 2018-01-29 | 2022-03-16 | Milwaukee Electric Tool Corporation | DRILL BIT |
US11839921B2 (en) | 2021-06-11 | 2023-12-12 | Danyang Kaiyiyuan Tools Co., Ltd. | Spiral step twist drill bit |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11007583B2 (en) | 2016-02-14 | 2021-05-18 | Hongjia Wang | Twist drill |
CN110802259B (zh) * | 2019-11-28 | 2021-07-06 | 上海钰工机电有限公司 | 麻花钻 |
DE102019135404A1 (de) | 2019-12-20 | 2021-06-24 | Gühring KG | Spiralbohrer mit einer stufenstrukturierten Schneidspitze |
DE202021004067U1 (de) | 2021-08-16 | 2022-08-04 | Gühring KG | Spiralbohrer mit einer stufenstrukturierten Schneidspitze mit konvergenten Setzstufenabschnitten |
DE202021004071U1 (de) | 2021-08-16 | 2022-08-01 | Gühring KG | Spiralbohrer mit einer stufenstrukturierten Schneidspitze und Freistichen |
DE202021004070U1 (de) | 2021-08-16 | 2022-08-01 | Gühring KG | Spiralbohrer mit einer stufenstrukturierten Schneidspitze mit divergenten Setzstufenabschnitten |
DE102021121199A1 (de) | 2021-08-16 | 2023-02-16 | Gühring KG | Spiralbohrer mit einer stufenstrukturierten Schneidspitze und Freistichen |
DE202021004069U1 (de) | 2021-08-19 | 2022-08-22 | Gühring KG | Spiralbohrer mit einer stufenstrukturierten Schneidspitze und unterschiedlichen Schneidwinkeln |
DE102022110659A1 (de) * | 2022-05-02 | 2023-11-02 | Yuzheng Chen | Stufenbohrer |
CN117655377A (zh) * | 2022-08-24 | 2024-03-08 | 上海钰工工具有限公司 | 阶梯钻和利用阶梯钻对工件进行钻孔切削的方法 |
EP4327968A1 (en) | 2022-08-24 | 2024-02-28 | Tec-Spiral Enterprises Tools Co., Ltd. | Step drill and method for drilling a workpiece by using a step drill |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2193186A (en) | 1938-06-06 | 1940-03-12 | Herbert G Hard | Twist drill |
US5466100A (en) * | 1994-10-24 | 1995-11-14 | Alfa Manufacturing Industries, Inc. | Multi-stepped power drill bit having handle chuck adaptor |
GB2318072A (en) * | 1996-09-21 | 1998-04-15 | Plansee Tizit Gmbh | Masonry bit |
CN1375373A (zh) | 2001-03-21 | 2002-10-23 | 周安善 | 双铣刀刃高效通用麻花钻及其修磨方法 |
DE202008000368U1 (de) | 2008-01-09 | 2008-03-13 | RUKO GmbH Präzisionswerkzeuge | Mehrstufenbohrer mit Bohranschlag |
CN201223962Y (zh) | 2008-07-21 | 2009-04-22 | 哈尔滨汽轮机厂有限责任公司 | 阶梯分屑槽深孔钻 |
US20110116884A1 (en) | 2008-03-19 | 2011-05-19 | Shiqing Li | Helical bit tool |
CN102126039A (zh) * | 2011-01-22 | 2011-07-20 | 李仕清 | 复合定位切削的螺旋刀具 |
CN103084629A (zh) * | 2013-02-01 | 2013-05-08 | 周安善 | 主切削刃分段、刃口高度不对称的麻花钻 |
WO2013143348A1 (zh) | 2012-03-27 | 2013-10-03 | 北京迪蒙集智科技有限公司 | 钻高强度、高硬度合金材料精孔的麻花钻 |
CN203649486U (zh) * | 2013-12-23 | 2014-06-18 | 广东鸿泰科技股份有限公司 | 一种阶梯钻及包括该阶梯钻的孔位加工装置 |
US20140363244A1 (en) | 2013-06-06 | 2014-12-11 | Milwaukee Electric Tool Corporation | Step drill bit |
CN204953985U (zh) * | 2015-08-26 | 2016-01-13 | 浙江欣兴工具有限公司 | 麻花钻 |
CN205551557U (zh) * | 2016-02-14 | 2016-09-07 | 上海钰工机电有限公司 | 分层钻削高效麻花钻 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB123605A (en) * | 1918-03-05 | 1919-03-05 | Vickers Ltd | Improvements in or relating to Boring Tools. |
US4582458A (en) * | 1984-08-09 | 1986-04-15 | American Saw & Mfg. Company | Stepped drill construction |
JPS6316912A (ja) * | 1986-07-10 | 1988-01-23 | Gotou Matsue | 多段ドリル |
JPH0435812U (zh) | 1990-07-17 | 1992-03-25 | ||
DE9414659U1 (de) * | 1994-09-09 | 1994-11-17 | Dürr Präzisionswerkzeuge GmbH, 74613 Öhringen | Mehrstufenbohrer |
AUPN839396A0 (en) * | 1996-03-01 | 1996-03-28 | Burton, Victor Edward J. | Drill |
DE29904042U1 (de) * | 1999-03-05 | 1999-07-29 | Dähn & Klein GmbH, 67823 Obermoschel | Stufenbohrer |
US6652203B1 (en) | 2002-08-30 | 2003-11-25 | Credo Technology Corporation | Precision drill bits |
US6890133B2 (en) * | 2002-10-18 | 2005-05-10 | Irwin Industrial Tool Company | Stepped drill bit having split tip |
DE20303656U1 (de) | 2003-03-06 | 2003-05-08 | Quanz, Reiner, 42859 Remscheid | Stufenbohrer |
DE202004000723U1 (de) | 2003-03-13 | 2004-04-08 | Thommen Medical Ag | Pilotbohrer, Stufenbohrer und Bohrerset für die Dentalimplantologie |
EP1512476B1 (en) | 2003-09-08 | 2013-10-09 | Black & Decker Inc. | Self-centering drill bit with pilot tip |
US8029215B2 (en) | 2007-01-05 | 2011-10-04 | Greenlee Textron Inc. | Spiral drill bit and method of forming same |
KR100893287B1 (ko) | 2007-08-07 | 2009-04-17 | 오스템임플란트 주식회사 | 다단구조를 이용한 치과용 임플란트 드릴 |
CN202180238U (zh) * | 2011-06-09 | 2012-04-04 | 上海钰工机电有限公司 | 复合刃背定进给量阶梯钻 |
KR101205841B1 (ko) | 2011-09-22 | 2012-11-28 | 오스템임플란트 주식회사 | 치과용 드릴, 드릴셋트 및 치조골의 천공방법 |
CN203356678U (zh) * | 2013-02-01 | 2013-12-25 | 周安善 | 具有主切削刃分段、刃口高度不对称的麻花钻 |
CN203711939U (zh) | 2013-05-23 | 2014-07-16 | 常州市卡特精密工具有限公司 | 成型台阶钻 |
US10413383B2 (en) | 2015-06-23 | 2019-09-17 | The Research Foundation For The State University Of New York | Multi-diameter drill bit |
-
2016
- 2016-02-14 PL PL16889695.9T patent/PL3305447T3/pl unknown
- 2016-02-14 ES ES16889695T patent/ES2947506T3/es active Active
- 2016-02-14 EP EP16889695.9A patent/EP3305447B1/en not_active Revoked
- 2016-02-14 WO PCT/CN2016/073767 patent/WO2017136966A1/zh unknown
- 2016-02-14 EP EP23163838.8A patent/EP4227031A1/en active Pending
- 2016-02-14 FI FIEP16889695.9T patent/FI3305447T3/fi active
- 2016-02-14 DK DK16889695.9T patent/DK3305447T3/da active
-
2017
- 2017-12-19 US US15/847,900 patent/US20180133808A1/en not_active Abandoned
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2193186A (en) | 1938-06-06 | 1940-03-12 | Herbert G Hard | Twist drill |
US5466100A (en) * | 1994-10-24 | 1995-11-14 | Alfa Manufacturing Industries, Inc. | Multi-stepped power drill bit having handle chuck adaptor |
GB2318072A (en) * | 1996-09-21 | 1998-04-15 | Plansee Tizit Gmbh | Masonry bit |
CN1375373A (zh) | 2001-03-21 | 2002-10-23 | 周安善 | 双铣刀刃高效通用麻花钻及其修磨方法 |
DE202008000368U1 (de) | 2008-01-09 | 2008-03-13 | RUKO GmbH Präzisionswerkzeuge | Mehrstufenbohrer mit Bohranschlag |
US20110116884A1 (en) | 2008-03-19 | 2011-05-19 | Shiqing Li | Helical bit tool |
CN101977713B (zh) * | 2008-03-19 | 2012-09-05 | 李仕清 | 螺旋刀具 |
CN201223962Y (zh) | 2008-07-21 | 2009-04-22 | 哈尔滨汽轮机厂有限责任公司 | 阶梯分屑槽深孔钻 |
CN102126039A (zh) * | 2011-01-22 | 2011-07-20 | 李仕清 | 复合定位切削的螺旋刀具 |
WO2013143348A1 (zh) | 2012-03-27 | 2013-10-03 | 北京迪蒙集智科技有限公司 | 钻高强度、高硬度合金材料精孔的麻花钻 |
CN103084629A (zh) * | 2013-02-01 | 2013-05-08 | 周安善 | 主切削刃分段、刃口高度不对称的麻花钻 |
US20140363244A1 (en) | 2013-06-06 | 2014-12-11 | Milwaukee Electric Tool Corporation | Step drill bit |
CN203649486U (zh) * | 2013-12-23 | 2014-06-18 | 广东鸿泰科技股份有限公司 | 一种阶梯钻及包括该阶梯钻的孔位加工装置 |
CN204953985U (zh) * | 2015-08-26 | 2016-01-13 | 浙江欣兴工具有限公司 | 麻花钻 |
CN205551557U (zh) * | 2016-02-14 | 2016-09-07 | 上海钰工机电有限公司 | 分层钻削高效麻花钻 |
Non-Patent Citations (1)
Title |
---|
MARCUS ABBOUD; RAFAEL ARCESIO DELGADO‐RUIZ; ALLAN KUCINE; SIHANA RUGOVA; JULIAN BALANTA; JOSE LUIS CALVO‐GUIRADO: "Multistepped Drill Design for Single‐Stage Implant Site Preparation: Experimental Study in Type 2 Bone", CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, vol. 17, 29 September 2014 (2014-09-29), CA , pages e472 - e485, XP072269589, ISSN: 1523-0899, DOI: 10.1111/cid.12273 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3746247A4 (en) * | 2018-01-29 | 2022-03-16 | Milwaukee Electric Tool Corporation | DRILL BIT |
US11839921B2 (en) | 2021-06-11 | 2023-12-12 | Danyang Kaiyiyuan Tools Co., Ltd. | Spiral step twist drill bit |
Also Published As
Publication number | Publication date |
---|---|
PL3305447T3 (pl) | 2023-07-31 |
EP3305447A4 (en) | 2019-02-13 |
ES2947506T3 (es) | 2023-08-10 |
DK3305447T3 (da) | 2023-07-03 |
US20180133808A1 (en) | 2018-05-17 |
EP4227031A1 (en) | 2023-08-16 |
EP3305447A1 (en) | 2018-04-11 |
EP3305447B1 (en) | 2023-03-29 |
FI3305447T3 (fi) | 2023-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017136966A1 (zh) | 分层钻削高效麻花钻 | |
CN205551557U (zh) | 分层钻削高效麻花钻 | |
CN205967542U (zh) | 一种锪钻一体刀具 | |
CN205629543U (zh) | 加工钛合金和碳纤维叠层用铰刀 | |
CN214720850U (zh) | 一种螺旋式阶梯钻尖麻花钻 | |
CN214392488U (zh) | 一种用于复合材料钻孔用环形刀具 | |
WO2021103394A1 (zh) | 一种宝塔钻 | |
GB2449789A (en) | Improved Spade Type Bit | |
CN207414440U (zh) | 一种硬质合金钻铰一体刀 | |
CN203459722U (zh) | 螺旋尖钻头 | |
CN207013763U (zh) | 一种用于加工钛合金和碳纤维叠层的扩孔钻 | |
CN213560090U (zh) | 一种阶梯钻尖麻花钻 | |
CN201320625Y (zh) | 螺旋钻铰刀 | |
CN106925819A (zh) | 一种用于加工钛合金和碳纤维叠层的扩孔钻 | |
CN204770958U (zh) | 一种锥度铰刀 | |
CN107598278A (zh) | 一种用于通孔的直柄左旋右切铰刀 | |
CN203765095U (zh) | 一种pcd铰刀 | |
CN203401119U (zh) | 高强度高耐用钻头 | |
CN105252089A (zh) | 一种高硬度模具钢精密刀具 | |
CN106513791A (zh) | 加工不锈钢用麻花钻 | |
CN206747670U (zh) | 一种成型铣刀 | |
CN205342026U (zh) | 一种加工孔的麻花钻 | |
CN219425747U (zh) | 一种易于切割的宝塔钻 | |
CN209077939U (zh) | 螺旋复合刀 | |
CN221336749U (zh) | 一种新型钻铣正反倒角组合刀具 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16889695 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |