WO2021103345A1 - 一种光源系统及投影机 - Google Patents

一种光源系统及投影机 Download PDF

Info

Publication number
WO2021103345A1
WO2021103345A1 PCT/CN2020/079151 CN2020079151W WO2021103345A1 WO 2021103345 A1 WO2021103345 A1 WO 2021103345A1 CN 2020079151 W CN2020079151 W CN 2020079151W WO 2021103345 A1 WO2021103345 A1 WO 2021103345A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
wavelength conversion
conversion device
area
Prior art date
Application number
PCT/CN2020/079151
Other languages
English (en)
French (fr)
Inventor
钟波
肖适
尹蕾
Original Assignee
成都极米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都极米科技股份有限公司 filed Critical 成都极米科技股份有限公司
Priority to US17/600,136 priority Critical patent/US11675259B2/en
Priority to NZ780255A priority patent/NZ780255A/en
Priority to AU2020390594A priority patent/AU2020390594B2/en
Priority to JP2021576767A priority patent/JP7261910B2/ja
Priority to EP20893458.8A priority patent/EP4067993A4/en
Publication of WO2021103345A1 publication Critical patent/WO2021103345A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection

Definitions

  • This application relates to the field of projection technology, and specifically to a light source system and a projector.
  • the light source system of the existing projector multiple light sources are correspondingly provided for multiple wavelength conversion devices, so that one light source correspondingly excites one wavelength conversion device to generate excited light.
  • the light source system with this structure is economical.
  • the embodiments of the present application provide a light source system and a projector to improve the problem of poor economic efficiency due to a wavelength conversion device in the existing light source system that needs to be provided with a light source correspondingly.
  • an embodiment of the present application provides a light source system, including a first light source, a first wavelength conversion device, a second wavelength conversion device, an optical path conversion element, and a light combining unit;
  • the light path conversion element is used to irradiate the excitation light emitted by the first light source on the first wavelength conversion device and the second wavelength conversion device in turn;
  • the excitation light emitted by the first light source irradiated on the first wavelength conversion device can excite and generate the first excited light
  • Irradiating the second wavelength conversion device with the excitation light emitted by the first light source can excite and generate a second excited light
  • the light combining unit is used for combining the first excited light and the second excited light.
  • the light source system irradiates the excitation light emitted by the first light source to the first wavelength conversion device and the second wavelength conversion device in turn through the light path conversion element, that is, the first wavelength conversion device and the second wavelength conversion device share a first wavelength conversion device.
  • a light source can effectively reduce the volume of the entire system, and at the same time dissipate the heat dissipation pressure of the system, which can be used in high-power light source systems with low cost.
  • the light source system provided by the embodiment of the present application also has the following additional technical features:
  • the optical path conversion element is a vibrating element that rotates back and forth around a base axis, and the vibrating element has a first working position and a second working position;
  • the excitation light emitted by the first light source is reflected by the vibrating element and then irradiated on the first wavelength conversion device;
  • the excitation light emitted by the first light source is reflected by the vibrating element and then irradiated on the second wavelength conversion device.
  • the optical path conversion element is a vibrating element that rotates back and forth around the base axis, and the vibrating element can be vibrated to be located at the first working position and the second working position, so as to intermittently reflect the excitation light emitted by the first light source to the first
  • the excitation light emitted by the first light source does not always irradiate the same wavelength conversion device, thereby reducing the heat dissipation pressure of the first wavelength conversion device and the second wavelength conversion device.
  • the excitation light emitted by the first light source is reflected to the first wavelength conversion device and the second wavelength conversion device through the vibration of the vibrating element, and the implementation method is simple.
  • the excitation light reflected by the vibration element during the vibration of the vibration element will irradiate the first wavelength conversion device at different positions in the radial and circumferential directions.
  • the two wavelength conversion devices have different positions in the radial and circumferential directions to reduce the instantaneous temperature of the phosphors on the first wavelength conversion device and the second wavelength conversion device.
  • the first wavelength conversion device is a transmission type wavelength conversion device or a reflection type wavelength conversion device
  • the second wavelength conversion device is a transmission type wavelength conversion device or a reflection type wavelength conversion device.
  • the first wavelength conversion device and the second wavelength conversion device may be reflection type wavelength conversion devices or transmission type wavelength conversion devices. If the first wavelength conversion device is a reflective wavelength conversion device, the first excited light will be reflected by the first wavelength conversion device; if the first wavelength conversion device is a transmissive wavelength conversion device, the first excited light will be excited The light will pass through the first wavelength conversion device. Similarly, if the second wavelength conversion device is a reflective wavelength conversion device, the excited second excited light will be reflected by the second wavelength conversion device; if the second wavelength conversion device is a transmissive wavelength conversion device, the second excited light will be reflected by the second wavelength conversion device. The excited light will pass through the second wavelength conversion device.
  • the light source system further includes a second light source
  • the light combining unit is used for combining the first excited light and the second excited light with the excitation light emitted by the second light source.
  • the second light source is used to provide excitation light
  • the excitation light is used to combine the first excited light and the second excited light
  • the optical path conversion element is a rotating wheel that rotates around its own axis, and the rotating wheel has a first working position and a second working position;
  • the rotating wheel includes a first transmission area and a first reflection area arranged in a circumferential direction;
  • the light source obliquely irradiates the rotating wheel
  • the excitation light emitted by the first light source is irradiated on the first wavelength conversion device after passing through the transmission area;
  • the excitation light emitted by the first light source is reflected by the first reflection area and then irradiated on the second wavelength conversion device.
  • the light path conversion element is a rotating wheel that rotates around its own axis.
  • the rotating wheel can be rotated to be located at the first working position and the second working position, so that the excitation light emitted by the first light source is intermittently irradiated to the first working position.
  • the excitation light emitted by the first light source will not always irradiate the same wavelength conversion device, thereby reducing the heat dissipation pressure of the first wavelength conversion device and the second wavelength conversion device.
  • the excitation light emitted by the first light source is irradiated on the first transmission area, the excitation light will be irradiated on the first wavelength conversion device through the first transmission area; if the excitation light emitted by the second light source is irradiated on the first reflection area, excitation The light will be reflected from the first reflection area to the second wavelength conversion device.
  • the light source system further includes a reflective element
  • the rotating wheel further includes a second transmission area, and the first reflection area and the second transmission area are arranged along the radial direction of the rotating wheel;
  • the excitation light emitted by the first light source is reflected by the first reflective area, reflected by the reflective element, and transmitted by the second transmissive area, and then irradiated on the first reflective area.
  • Two wavelength conversion device Two wavelength conversion device.
  • the reflective element can reflect the excitation light reflected by the first reflection area to change the propagation path of the excitation light.
  • This structure allows the first wavelength conversion device and the second wavelength conversion device to be located on the rotating wheel. The same side makes the structure of the entire light source system more compact.
  • the rotating wheel also has a third working position
  • the rotating wheel further includes a second reflection area and a third reflection area.
  • the first transmission area, the first reflection area, and the second reflection area are arranged along the circumferential direction of the rotation wheel, and the second reflection area
  • the area and the third reflection area are distributed along the radial direction of the rotating wheel;
  • the excitation light emitted by the first light source is reflected by the second reflective area, reflected by the reflective element, and reflected by the third reflective area.
  • the excited light and the second excited light are combined.
  • the rotating wheel further includes a second reflecting area and a third reflecting area for reflecting the excitation light.
  • the excitation light emitted by the first light source will sequentially pass through the second reflection. Zone reflection, reflection element reflection, and third reflection zone are combined with the first excited light and the second excited light.
  • the light source system further includes a reflective element
  • the rotating wheel further includes a second reflecting area, and the first reflecting area and the second reflecting area are arranged along the radial direction of the rotating wheel;
  • the excitation light emitted by the first light source is reflected by the first reflection area, reflected by the reflection element, and reflected by the second reflection area, and then irradiated on the first reflection area.
  • Two wavelength conversion device Two wavelength conversion device.
  • both the reflective element and the second reflection area of the rotating wheel can reflect the excitation light.
  • the excitation light emitted by the first light source will be reflected by the first reflection area in turn.
  • the rotating wheel also has a third working position
  • the rotating wheel further includes a third reflection area and a second transmission area.
  • the first transmission area, the first reflection area and the third reflection area are arranged along the circumferential direction of the rotation wheel.
  • the third reflection area Area and the second transmission area are distributed along the radial direction of the rotating wheel;
  • the excitation light emitted by the first light source is reflected by the third reflection area, reflected by the reflection element, and transmitted by the second transmission area.
  • the excited light and the second excited light are combined.
  • the rotating wheel further includes a third reflection area that reflects the excitation light and a second transmission area that transmits the excitation light.
  • the first light source emits The excitation light will be sequentially reflected by the third reflection area, reflected by the reflection element, and transmitted through the second transmission area, and then combined with the first excited light and the second excited light.
  • the light combining unit includes a first light path turning system, a second light path turning system, a color filter color wheel, and a light rod;
  • the first excited light enters the light rod through the first light path reflex system and the color filter wheel in sequence;
  • the second excited light enters the light rod through the second light path turning system and the color filter wheel in sequence.
  • the first light path turning system and the second light path turning system both play the role of changing the light path to combine the first excited light excited by the first wavelength conversion device and the second wavelength conversion device.
  • the second excited light is guided to the color filter wheel and combined in the light rod.
  • an embodiment of the present application provides a projector including the light source system provided in the above-mentioned first aspect.
  • the first wavelength conversion device and the second wavelength conversion device in the light source system of the projector share a first light source, which can effectively reduce the volume of the entire system and has the advantage of low cost.
  • FIG. 1 is a schematic structural diagram of a light source system provided in Embodiment 1 of the application;
  • FIG. 2 is a schematic structural diagram of a light source system provided by Embodiment 2 of the application;
  • FIG. 3 is a schematic structural diagram of a light source system provided in Embodiment 3 of the application.
  • FIG. 4 is a schematic diagram of the structure of the rotating wheel shown in FIG. 3;
  • FIG. 5 is a schematic structural diagram of a light source system provided in Embodiment 4 of the application.
  • FIG. 6 is a schematic diagram of the structure of the rotating wheel shown in FIG. 5;
  • FIG. 7 is a schematic structural diagram of a light source system provided by Embodiment 5 of this application.
  • Fig. 8 is a schematic diagram of the structure of the rotating wheel shown in Fig. 7.
  • Icon 200-light source system; 10-first light source; 20-first wavelength conversion device; 30-second wavelength conversion device; 40-optical path conversion element; 41-vibration element; 42-rotating wheel; 421-first transmission Area; 422-first reflection area; 423-second transmission area; 424-second reflection area; 425-third reflection area; 50-light combining section; 51-first optical path turning system; 52-second optical path Reflex system; 53- color filter wheel; 54- light rod; 55- first plastic lens group; 56- first mirror; 57- second plastic lens group; 58- second mirror; 59- first splitter 61-Second beam splitter; 62-Third plastic lens group; 63-Third mirror; 64-Fourth plastic lens group; 65-Fourth mirror; 66-Fifth plastic lens group; 70-No. Two light sources; 80-sixth plastic lens group; 90-seventh plastic lens group; 100-eighth plastic lens group; 110-reflective element; A-base axis.
  • the indicated orientation or positional relationship is based on the orientation or positional relationship shown in the drawings, or is the orientation or positional relationship that is customarily placed when the application product is used, or is the original
  • the position or position relationship commonly understood by those skilled in the art, or the position or position relationship usually placed when the application product is used is only for the convenience of describing the application and simplifying the description, and does not indicate or imply that the device or element referred to must be It has a specific orientation, is constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the application.
  • the terms “first”, “second”, “third”, etc. are only used for distinguishing description, and cannot be understood as indicating or implying relative importance.
  • this embodiment provides a light source system 200, which includes a first light source 10, a first wavelength conversion device 20, a second wavelength conversion device 30, an optical path conversion element 40 and a light combining unit 50.
  • the optical path conversion element 40 is used to irradiate the excitation light emitted by the first light source 10 on the first wavelength conversion device 20 and the second wavelength conversion device 30 in turn.
  • the excitation light emitted by the first light source 10 irradiated on the first wavelength conversion device 20 can be excited to generate the first excited light; the excitation light emitted by the first light source 10 irradiated on the second wavelength conversion device 30 can be excited to generate the second excited light Light.
  • the light combining unit 50 is used for combining the first excited light and the second excited light.
  • the light source system 200 can make the excitation light emitted by the first light source 10 irradiate the first wavelength conversion device 20 and the second wavelength conversion device 30 in turn by rotating the light path conversion element 40, that is, the first wavelength conversion device 20 and the second wavelength conversion device 30.
  • the conversion device 30 shares a first light source 10, which can effectively reduce the volume of the entire system, and at the same time dissipate the heat dissipation pressure of the system, and can be used in a high-power light source system with low cost.
  • first wavelength conversion device 20 and the second wavelength conversion device 30 may be rotating or stationary. If the first wavelength conversion device 20 and the second wavelength conversion device 30 are rotating, the first wavelength conversion device 20 and the second wavelength conversion device 30 have good heat dissipation performance and increase their service life; if the first wavelength conversion device 20 and the second wavelength conversion device 30 are stationary, no noise is generated, so that the entire system has a good mute effect.
  • fan heating can be performed by heat dissipation devices such as a radiator and a fan.
  • the first wavelength conversion device 20 and the second wavelength conversion device 30 are both monochromatic fluorescent wheels.
  • the first wavelength conversion device 20 and the second wavelength conversion device 30 may also have other structures, for example, both are multicolor phosphor wheels.
  • the first wavelength conversion device 20 and the second wavelength conversion device 30 may not be fluorescent wheels, for example, both are fluorescent ceramics.
  • the function of the first light source 10 is to provide excitation light.
  • the first light source 10 is a blue laser light source, and the excitation light emitted by the first light source 10 is blue light.
  • the first light source 10 may also be a light source, such as an ultraviolet light source, an LED light source, and the like.
  • the color of the phosphor on the first wavelength conversion device 20 is different from the color of the phosphor on the second wavelength conversion device 30.
  • the color of the phosphor on the first wavelength conversion device 20 may be red, yellow, green, etc.; the color of the phosphor on the second wavelength conversion device 30 may be red, yellow, green, etc.
  • the phosphor on the first wavelength conversion device 20 is green, and the phosphor on the second wavelength conversion device 30 is yellow, that is, the first excited light is green light, and the second excited light is Yellow light.
  • the function of the light path conversion element 40 is to make the excitation light emitted by the first light source 10 irradiate the first wavelength conversion device 20 and the second wavelength conversion device 30 in turn to correspondingly excite the first excited light and the second excited light.
  • the light path conversion element 40 irradiates the excitation light emitted by the first light source 10 on the first wavelength conversion device 20 and the second wavelength conversion device 30 in turn by rotating.
  • the optical path conversion element 40 is a vibrating element 41 that rotates back and forth around the base axis A, and the vibrating element 41 has a first working position and a second working position.
  • the vibrating element 41 When the vibrating element 41 is in the first working position, the excitation light emitted by the first light source 10 is reflected by the vibrating element 41 and irradiated on the first wavelength conversion device 20; when the vibrating element 41 is in the second working position, the first light source 10 The emitted excitation light is reflected by the vibrating element 41 and irradiated on the second wavelength conversion device 30.
  • the vibrating element 41 can be vibrated to be located at the first working position and the second working position to intermittently reflect the excitation light emitted by the first light source 10 to the first wavelength conversion device 20 and the second wavelength conversion device 30.
  • the first light source The excitation light emitted by 10 does not always irradiate the same wavelength conversion device, thereby reducing the heat dissipation pressure of the first wavelength conversion device 20 and the second wavelength conversion device 30.
  • the excitation light emitted by the first light source 10 is reflected to the first wavelength conversion device 20 and the second wavelength conversion device 30 through the vibration of the vibrating element 41, which is simple to implement.
  • the excitation light reflected by the vibration element 41 will irradiate the first wavelength conversion device 20 in the radial and circumferential directions during the vibration process of the vibration element 41.
  • the function of the vibrating element 41 is to reflect excitation light, and the vibrating element 41 may be a mirror or a galvanometer coated with a reflective film.
  • the reciprocating rotation of the vibrating element 41 can be realized by a driving device.
  • the vibrating element 41 is connected to an external motor, and the reciprocating rotation of the vibrating element 41 is realized through the forward and reverse rotation of the motor.
  • the first working position of the vibrating element 41 can be the extreme position of the vibrating element 41 or the non-limiting position of the vibrating element 41; the second working position of the vibrating element 41 can be the extreme position of the vibrating element 41, It may also be a non-limiting position of the vibration element 41. If the first working position and the second working position are the extreme positions of the vibrating element 41, the vibrating element 41 rotating clockwise around the base axis A will eventually reach the first working position, and the vibrating element 41 rotating counterclockwise around the base axis A will eventually reach the first working position. 2. Working position.
  • first working position and the second working position are non-limiting positions, when the vibrating element 41 rotates clockwise around the base axis A to the first working position, the vibrating element 41 can continue to rotate clockwise, and the vibrating element 41 is counterclockwise around the base axis A When rotating to the second working position, the vibrating element 41 can continue to rotate counterclockwise.
  • the first wavelength conversion device 20 may be a reflection type wavelength conversion device or a transmission type wavelength conversion device; the second wavelength conversion device 30 may be a reflection type wavelength conversion device or a transmission type wavelength conversion device.
  • the first wavelength conversion device 20 and the second wavelength conversion device 30 are both transmissive wavelength conversion devices, that is to say, the first excited light excited after the excitation light is irradiated on the first wavelength conversion device 20 will be After passing through the first wavelength conversion device 20, the second excited light excited after the excitation light is irradiated on the second wavelength conversion device 30 will pass through the second wavelength conversion device 30.
  • the light combining unit 50 includes a first light path turning system 51, a second light path turning system 52, a color filter wheel 53 and a light rod 54.
  • the first excited light enters the light rod 54 through the first light path reflex system 51 and the color filter wheel 53 in sequence; the second excited light enters the light rod 54 through the second light path reflex system 52 and the filter color wheel 53 in sequence.
  • the first light path turning system 51 and the second light path turning system 52 both play the role of changing the light path to combine the first excited light excited by the first wavelength conversion device 20 and the second wavelength conversion device 30 excited
  • the second excited light is guided to the color filter wheel 53 and combined in the light rod 54.
  • the first optical path folding system 51 includes a first plastic lens group 55, a first mirror 56, a second plastic lens group 57, a second mirror 58, a first beam splitter 59 and a second beam splitter 61.
  • the first excited light passes through the first wavelength conversion device 20 and then sequentially passes through the first plastic lens group 55, the first mirror 56, the second plastic lens group 57, the second mirror 58, the first beam splitter 59, and the second
  • the beam splitter 61 and the color filter wheel 53 enter the light rod 54.
  • the function of the first plastic lens group 55 is to reshape the first excited light after passing through the first wavelength conversion device 20; the function of the second plastic lens group 57 is to reshape the first light after being reflected by the first mirror 56 The first excited light is shaped; the function of the first beam splitter 59 is to reflect the first excited light reflected by the second reflector 58; the function of the second beam splitter 61 is to reflect the first beam after the first beam splitter 59 The first excited light is transmitted.
  • the second optical path folding system 52 includes a third plastic lens group 62, a third mirror 63, a fourth plastic lens group 64 and a fourth mirror 65.
  • the second excited light passes through the second wavelength conversion device 30 and then sequentially passes through the third plastic lens group 62, the third mirror 63, the fourth plastic lens group 64, the fourth mirror 65, the second beam splitter 61, and the color filter.
  • the wheel 53 enters the light rod 54.
  • the function of the third plastic lens group 62 is to shape the second excited light after passing through the second wavelength conversion device 30; the function of the fourth plastic lens group 64 is to reshape the second excited light after being reflected by the third mirror 63 The second excited light is shaped; the function of the second beam splitter 61 is to reflect the first excited light reflected by the fourth mirror 65.
  • the light source system 200 further includes a second light source 70.
  • the light combining unit 50 is used for combining the first excited light and the second excited light with the excitation light emitted by the second light source 70.
  • the second light source 70 is a blue laser light source, and the excitation light emitted by the second light source 70 is blue light.
  • the light combining unit 50 further includes a fifth plastic lens group 66, and the second light source 70 sequentially passes through the fifth plastic lens group 66, the first beam splitter 59, the second beam splitter 61, and the color filter wheel 53 into the light rod 54.
  • the function of the fifth plastic lens group 66 is to shape the excitation light emitted by the second light source 70; the function of the first beam splitter 59 is to transmit the excitation light after being shaped by the fifth plastic lens group 66; The function of the sheet 61 is to transmit the excitation light transmitted through the first beam splitter 59.
  • the color filter wheel 53 is an optical path conversion element 40, and its function is to filter light to obtain bright colors.
  • the first excited light green light
  • the second excited light yellow light
  • the filter color wheel 53 to obtain red light
  • the second light source 70 emits
  • the excitation light blue light
  • the first excited light excited by the first wavelength conversion device 20, the second excited light excited by the second wavelength conversion device 30, and the excitation light emitted by the second light source 70 will eventually enter the light rod 54 to obtain RGB
  • the function of the light rod 54 is to homogenize the light beam.
  • the light source system 200 further includes a sixth plastic lens group 80, a seventh plastic lens group 90, and an eighth plastic lens group 100.
  • the sixth plastic lens group 80 is disposed between the first light source 10 and the vibrating element 41.
  • the excitation light emitted by the first light source 10 is shaped by the sixth shaping lens group 80 and then irradiated on the vibrating element 41.
  • the seventh shaping lens group 90 is provided between the vibrating element 41 and the first wavelength conversion device 20.
  • the vibrating element 41 is located at the first working position, the excitation light reflected by the vibrating element 41 is shaped by the seventh shaping lens group 90 and then irradiated on the first wavelength conversion device 20.
  • the eighth plastic lens group 100 is disposed between the vibrating element 41 and the second wavelength conversion device 30.
  • the excitation light reflected by the vibrating element 41 is shaped by the eighth plastic lens group 100 and irradiated on the second wavelength conversion device 30.
  • the light path conversion element 40 can also irradiate the excitation light emitted by the first light source 10 to the first wavelength conversion device 20 and the second wavelength conversion device 30 in other ways than rotating.
  • the optical path conversion element 40 includes a first reflector and a second reflector.
  • the first reflector is a fixed element, and the second reflector can move back and forth between the first position and the second position. At one position, the excitation light emitted by the first light source 10 is reflected by the first reflector to the first wavelength conversion device 20.
  • the second reflector is located at the second position, the excitation light emitted by the first light source 10 passes through the first The reflector reflects and the second reflector reflects to the second wavelength conversion device 30.
  • this embodiment provides a light source system 200.
  • the first wavelength conversion device 20 and the second wavelength conversion device 30 are both reflective wavelength conversion devices, and a light combining unit
  • the specific structures of the first light path turning system 51 and the second light path turning system 52 of 50 are different from those of the first embodiment described above.
  • the first wavelength conversion device 20 is a reflective wavelength conversion device, that is, the first excited light excited after the excitation light is irradiated on the first wavelength conversion device 20 will be reflected by the first wavelength conversion device 20;
  • the second wavelength conversion device 30 is The reflection type wavelength conversion device, that is, the second excited light excited after the excitation light is irradiated on the second wavelength conversion device 30 will be reflected by the second wavelength conversion device 30.
  • the first optical path reflex system 51 includes a first plastic lens group 55, a first reflector 56, a second reflector 58, a first beam splitter 59, and a second plastic lens group 57.
  • the first excited light is reflected by the first wavelength conversion device 20 and then sequentially passes through the first plastic lens group 55, the first reflector 56, the second reflector 58, the first beam splitter 59, the second plastic lens group 57, and the color filter.
  • the wheel 53 enters the light rod 54.
  • the excitation light reflected by the vibrating element 41 is shaped by the first shaping lens group 55 and then irradiated on the first wavelength conversion device 20.
  • the first shaping lens group 55 can not only shape the excitation light reflected by the vibrating element 41, but also shape the first excited light reflected by the first wavelength conversion device 20.
  • the first reflector 56 and the second reflector 58 reflect the first excited light; the first beam splitter 59 transmits the first excited light; the second plastic lens group 57 transmits the first beam splitter The first excited light of the sheet 59 plays a role of shaping.
  • the second optical path reflex system 52 includes a third plastic lens group 62 and a second beam splitter 61.
  • the second excited light passes through the second wavelength conversion device 30 and then enters the light rod 54 through the third plastic lens group 62, the second beam splitter 61, the first beam splitter 59, the second plastic lens group 57, and the color filter wheel 53 in sequence.
  • the excitation light reflected by the vibrating element 41 is shaped by the second shaping lens group 57 and then irradiated on the second wavelength conversion device 30.
  • the second shaping lens group 57 can not only shape the excitation light reflected by the vibrating element 41, but also shape the second excited light reflected by the second wavelength conversion device 30.
  • the second beam splitter 61 reflects the second excited light; the first beam splitter 59 reflects the second excited light; the second plastic lens reflects the first excited light reflected by the first beam splitter 59 Light plays a role in shaping.
  • a second light source 70 is also provided in the light source system 200.
  • the light combining unit 50 is used for combining the first excited light and the second excited light with the excitation light emitted by the second light source 70.
  • the second light source 70 is a blue laser light source, and the excitation light emitted by the second light source 70 is blue light.
  • the light combining unit 50 also includes a fourth plastic lens group 64.
  • the second light source 70 sequentially passes through the fourth plastic lens group 64, the second beam splitter 61, the first beam splitter 59, the second plastic lens group 57, and the color filter wheel 53.
  • Light stick 54 is also included in the fourth plastic lens group 64.
  • the fourth plastic lens group 64 plays a role in shaping the excitation light emitted by the second light source 70; the second beam splitter 61 plays a role in transmitting the excitation light after being shaped by the fourth plastic lens group 64; the first beam splitter 59 The excitation light transmitted by the first beam splitter 59 is reflected; the second plastic lens group 57 is used for shaping the excitation light reflected by the first beam splitter 59.
  • the light source system 200 further includes a fifth shaping lens group 66, and the fifth lens group is disposed between the first light source 10 and the vibrating element 41.
  • the excitation light emitted by the first light source 10 is shaped by the fifth shaping lens group 66 and then irradiated on the vibrating element 41.
  • the first wavelength conversion device 20 and the second wavelength conversion device 30 are both reflective wavelength conversion devices; in the foregoing embodiment 1, the first wavelength conversion device 20 and the second wavelength conversion device 30 Both are transmissive wavelength conversion devices; in other embodiments, one of the first wavelength conversion device 20 and the second wavelength conversion device 30 may be a reflective wavelength conversion device, and the other may be a transmissive wavelength conversion device.
  • a light source system 200 provided by this embodiment differs from the above-mentioned Embodiment 1 in that the structure of the light path conversion element 40 is different, and the first light path bending system 51 and the second light path bending system 51 of the light combining section 50 are different.
  • the specific structure of the light path turning system 52 is different, and there is only the first light source 10.
  • the optical path conversion element 40 is a rotating wheel 42 that rotates around its own axis, and the rotating wheel 42 has a first working position and a second working position.
  • the rotating wheel 42 includes a first transmission area 421 and a first reflection area 422 arranged in a circumferential direction.
  • the light source irradiates the rotating wheel 42 obliquely.
  • the excitation light emitted by the first light source 10 passes through the transmission area and then irradiated on the first wavelength conversion device 20; when the rotating wheel 42 is in the second working position, The excitation light emitted by the first light source 10 is reflected by the first reflection region 422 and then irradiated on the second wavelength conversion device 30.
  • the light path conversion element 40 is a rotating wheel 42 that rotates around its own axis.
  • the rotating wheel 42 can rotate to be located at the first and second working positions, so that the excitation light emitted by the first light source 10 is intermittently irradiated to the On the transmission area 421 and the first reflection area 422, the excitation light emitted by the first light source 10 will not always irradiate the same wavelength conversion device, thereby reducing the heat dissipation pressure of the first wavelength conversion device 20 and the second wavelength conversion device 30 .
  • the excitation light emitted by the first light source 10 is irradiated on the first transmission area 421, the excitation light will be irradiated on the first wavelength conversion device 20 through the first transmission area 421; if the excitation light emitted by the second light source 70 is irradiated on the first transmission area 421, On the reflection area 422, the excitation light will be reflected by the first reflection area 422 to the second wavelength conversion device 30.
  • the first transmission area 421 and the first reflection area 422 of the rotating wheel 42 are both fan-shaped, the first transmission area 421 and the first reflection area 422 are both two, and the two first transmission areas
  • the area 421 is center-symmetric about the center axis of the rotating wheel 42, and the two first reflection regions 422 are center-symmetric about the center axis of the rotating wheel 42.
  • the excitation light emitted by the first light source 10 may be directly irradiated on the second wavelength conversion device 30 after being reflected by the first reflection region 422, or may be indirectly irradiated on the second wavelength conversion device 30 .
  • the excitation light emitted by the first light source 10 may be indirectly irradiated on the second wavelength conversion device 30 after being reflected by the first reflection region 422, which will be described in detail below with reference to FIG. 3.
  • the light source system 200 further includes a reflective element 110.
  • the excitation light emitted by the first light source 10 is reflected by the first reflection area 422 and reflected by the reflection element 110 in turn, and then irradiated on the second wavelength conversion device 30.
  • the reflecting element 110 may be a reflecting mirror.
  • the light combining unit 50 includes a first light path folding system 51, a second light path folding system 52, a color filter wheel 53 and a light rod 54.
  • the first excited light enters the light rod 54 through the first light path reflex system 51 and the color filter wheel 53 in sequence; the second excited light enters the light rod 54 through the second light path reflex system 52 and the filter color wheel 53 in sequence.
  • the first light path turning system 51 and the second light path turning system 52 both play the role of changing the light path to combine the first excited light excited by the first wavelength conversion device 20 and the second wavelength conversion device 30 excited
  • the second excited light is guided to the color filter wheel 53 and combined in the light rod 54.
  • the first wavelength conversion device 20 and the second wavelength conversion device 30 are both transmissive wavelength conversion devices.
  • the first optical path folding system 51 includes a first plastic lens group 55 and a first mirror 56.
  • the first excited light passes through the first wavelength conversion device 20 and then enters the light rod 54 through the first plastic lens group 55, the first reflector 56, and the color filter wheel 53 in sequence.
  • the first shaping lens group 55 has a shaping effect on the first excited light after passing through the first wavelength conversion device 20; the first reflecting mirror 56 has a shaping effect on the first excited light after being shaped by the first shaping lens group 55 Play a reflective role.
  • the second optical path turning system 52 includes a second plastic lens group 57, a first beam splitter 59 and a second beam splitter 61.
  • the second excited light passes through the second wavelength conversion device 30 and then enters the light rod 54 through the second plastic lens group 57, the first beam splitter 59, the second beam splitter 61, and the color filter wheel 53 in sequence.
  • the second shaping lens group 57 has a shaping effect on the second excited light after passing through the second wavelength conversion device 30;
  • the first beam splitter 59 has a shaping effect on the second excited light after being shaped by the second shaping lens group 57 Play a transmission role;
  • the second beam splitter 61 plays a role in transmitting the second excited light that passes through the first beam splitter 59.
  • a third plastic lens group 62 is provided between the first light source 10 and the rotating wheel 42.
  • the excitation light emitted by the first light source 10 is shaped by the third shaping lens group 62 and then irradiated on the rotating wheel 42.
  • this embodiment provides a light source system 200.
  • the rotating wheel 42 further includes a second transmission area 423, a first reflection area 422 and a second reflection area 423.
  • the transmission areas 423 are arranged along the radial direction of the rotating wheel 42.
  • the excitation light emitted by the first light source 10 is reflected by the first reflection area 422, reflected by the reflection element 110, and transmitted by the second transmission area 423 before being irradiated on the second
  • the wavelength conversion device 30 is on.
  • the reflective element 110 can reflect the excitation light reflected by the first reflection region 422 to change the propagation path of the excitation light.
  • This structure enables the first wavelength conversion device 20 and the second wavelength conversion device 30 to be located on the rotation wheel 42 The same side makes the structure of the entire light source system 200 more compact.
  • the rotating wheel 42 also has a third working position, that is, the rotating wheel 42 can rotate to be located at the third working position.
  • the rotating wheel 42 further includes a second reflection area 424 and a third reflection area 425.
  • the first transmission area 421, the first reflection area 422, and the second reflection area 424 are arranged along the circumference of the rotation wheel 42.
  • the first transmission area 421, the first reflection area 422, and the second reflection area 424 are arranged along the circumference of the rotation wheel 42.
  • the second reflection area 424 and the third reflection area 425 are distributed along the radial direction of the rotating wheel 42.
  • the excitation light emitted by the first light source 10 is sequentially reflected by the second reflective area 424, reflected by the reflective element 110, and reflected by the third reflective area 425.
  • the light is combined with the second excited light.
  • the excitation light (blue light), the first excited light (green light), and the second excited light (yellow light) emitted by the first light source 10 are finally combined under the action of the light combining unit 50.
  • the first transmission area 421, the second transmission area 423, the first reflection area 422, the second reflection area 424, and the third reflection area 425 are all fan-shaped, and the first reflection area 422 is located in the second transmission area 423.
  • the second reflection area 424 is located inside the third reflection area 425.
  • Symmetrical there are two first reflecting areas 422, and the two first reflecting areas 422 are symmetrical about the center axis of the rotating wheel 42; there are two second reflecting areas 424, and the two second reflecting areas 424 are about the center of the rotating wheel 42.
  • the axis is symmetrical; there are two third reflection areas 425, and the two third reflection areas 425 are symmetric about the center axis of the rotating wheel 42.
  • the structure of the first light path turning system 51 and the second light path turning system 52 of the light combining unit 50 is the same as that of the foregoing embodiment 3, and will not be repeated here.
  • the light combining part 50 further includes a second reflector 58 and a third reflector 63.
  • the excitation light is reflected by the third reflector 425 of the rotating wheel 42 and then sequentially passes through the second reflector 58 and the third reflector 63.
  • the first beam splitter 59, the second beam splitter 61, and the color filter wheel 53 enter the light rod 54.
  • the second reflector 58 reflects the excitation light reflected by the third reflection area 425; the third reflector 63 reflects the excitation light reflected by the second reflector 58; the first beam splitter 59 plays a role in reflecting the excitation light reflected by the second reflector 58; the second beam splitter 61 plays a role in transmitting the excitation light reflected by the first beam splitter 59.
  • this embodiment provides a light source system 200.
  • the difference from Embodiment 3 above is that the way in which the excitation light is reflected to the second wavelength conversion device 30 through the reflective element 110 is different.
  • the rotating wheel 42 further includes a second reflecting area 424, and the first reflecting area 422 and the second reflecting area 424 are arranged along the radial direction of the rotating wheel 42.
  • the excitation light emitted by the first light source 10 is sequentially reflected by the first reflection area 422, reflected by the reflection element 110, and reflected by the second reflection area 424, and then irradiated at the second wavelength.
  • Switching device 30 on.
  • the second wavelength conversion device 30 is a reflective wavelength conversion device.
  • the rotating wheel 42 also has a third working position, that is, the rotating wheel 42 can rotate to be located at the third working position.
  • the rotating wheel 42 also includes a third reflection area 425 and a second transmission area 423.
  • the first transmission area 421, the first reflection area 422, and the third reflection area 425 are arranged along the circumference of the rotation wheel 42.
  • the first transmission area 421, the first reflection area 422, and the third reflection area 425 are arranged along the circumference of the rotation wheel 42.
  • the three reflection areas 425 and the second transmission area 423 are distributed along the radial direction of the rotating wheel 42.
  • the excitation light emitted by the first light source 10 is sequentially reflected by the third reflection area 425, reflected by the reflection element 110, and transmitted by the second transmission area 423.
  • the excited light and the second excited light are combined.
  • the first transmission area 421, the second transmission area 423, the first reflection area 422, the second reflection area 424, and the third reflection area 425 are all fan-shaped, and the first reflection area 422 is located at the edge of the second reflection area 424.
  • the third reflection area 425 is located inside the second transmission area 423.
  • Symmetrical there are two first reflecting areas 422, and the two first reflecting areas 422 are symmetrical about the center axis of the rotating wheel 42; there are two second reflecting areas 424, and the two second reflecting areas 424 are about the center of the rotating wheel 42.
  • the axis is symmetrical; there are two third reflection areas 425, and the two third reflection areas 425 are symmetric about the center axis of the rotating wheel 42.
  • the structure of the first light path turning system 51 of the photosynthetic system is the same as that of the foregoing embodiment 3, and will not be repeated here.
  • the second optical path folding system 52 includes a second shaping lens group 57, a second reflecting mirror 58, a first beam splitter 59 and a second beam splitter 61. After being reflected by the second wavelength conversion device 30, the second excited light passes through the second plastic lens group 57, the second reflector 58, the first beam splitter 59, the second beam splitter 61, and the color filter wheel 53 into the light rod 54 in sequence.
  • the second shaping lens group 57 has a shaping effect on the second excited light after being reflected by the second wavelength conversion device 30; the second mirror 58 is shaping the second excited light after being shaped by the second shaping lens group 57 Play a reflective role, the first beam splitter 59 plays a role in reflecting the second excited light reflected by the second mirror 58; the second beam splitter 61 plays a role in the second excited light reflected by the first beam splitter 59 To the transmission effect.
  • the excitation light passes through the second transmission area 423 of the rotating wheel 42 and then enters the light rod 54 through the first beam splitter 59, the second beam splitter 61, and the color filter wheel 53 in sequence.
  • the first beam splitter 59 plays a role in transmitting the excitation light after passing through the second transmission region 423; the second beam splitter 61 plays a role in transmitting the excitation light passing through the first beam splitter 59.
  • This embodiment provides a projector, including the light source system 200 in any of the foregoing embodiments.
  • Other structures of the projector except for the light source system 200 can be referred to related technologies, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源系统(200),包括第一光源(10)、第一波长转换装置(20)、第二波长转换装置(30)、光路转换元件(40)和合光部(50)。光路转换元件(40)用于将第一光源(10)发出的激发光轮流照射于第一波长转换装置(20)和第二波长转换装置(30)上,并对应激发产生第一被激发光和第二被激发光。合光部(50)用于将第一被激发光与第二被激发光合束。第一波长转换装置(20)和第二波长转换装置(30)共用第一光源(10),因而体积小,易散热,成本低。一种投影机,包括光源系统(200)。

Description

一种光源系统及投影机 技术领域
本申请涉及投影技术领域,具体而言,涉及一种光源系统及投影机。
背景技术
现有的投影机的光源系统中,针对多个波长转换装置对应设置多个光源,以使一个光源对应激发一个波长转换装置产生被激发光,这种结构的光源系统经济性差。
发明内容
本申请实施例提供一种光源系统及投影机,以改善现有的光源系统中一个波长转换装置需要对应设置一个光源导致经济性差的问题。
第一方面,本申请实施例提供一种光源系统,包括第一光源、第一波长转换装置、第二波长转换装置、光路转换元件和合光部;
所述光路转换元件用于将所述第一光源发出的激发光轮流照射于所述第一波长转换装置和第二波长转换装置上;
所述第一光源发出的激发光照射于所述第一波长转换装置上能够激发产生第一被激发光;
所述第一光源发出的激发光照射于所述第二波长转换装置上能够激发产生第二被激发光;
合光部用于将所述第一被激发光与所述第二被激发光合束。
上述技术方案中,光源系统通过光路转换元件将第一光源发出的激发光轮流照射于第一波长转换装置和第二波长转换装置上,即第一波长转换装置和第二波长转换装置共用一个第一光源,可有效减小整 个系统的体积,同时反散系统散热压力,可用于高功率光源系统中,具有成本低。
另外,本申请实施例提供的光源系统还具有如下附加的技术特征:
在本申请的一些实施例中,所述光路转换元件为绕基轴线往返转动的振动元件,所述振动元件具有第一工作位置和第二工作位置;
当所述振动元件位于第一工作位置时,所述第一光源发出的激发光经过所述振动元件反射后照射于所述第一波长转换装置上;
当所述振动元件位于第二工作位置时,所述第一光源发出的激发光经过所述振动元件反射后照射于所述第二波长转换装置上。
上述技术方案中,光路转换元件为绕基轴线往返转动的振动元件,振动元件振动能够使其位于第一工作位置和第二工作位置,以将第一光源发出的激发光间歇地反射至第一波长转换装置、第二波长转换装置上,第一光源发出的激发光不会一直照射在同一个波长转换装置上,从而降低了第一波长转换装置和第二波长转换装置的散热压力。通过振动元件振动的方式来将第一光源发出的激发光光反射至第一波长转换装置和第二波长转换装置上,实现方式简单。此外,第一波长转换装置和第二波长转换装置在转动时,振动元件在振动过程中,经振动元件反射后的激发光将照射在第一波长转换装置径向和周向的不同位置、第二波长转换装置径向和周向的不同位置,以降低第一波长转换装置和第二波长转换装置上的荧光粉的瞬时温度。
在本申请的一些实施例中,所述第一波长转换装置为透射式波长转换装置或反射式波长转换装置;
所述第二波长转换装置为透射式波长转换装置或反射式波长转换装置。
第一波长转换装置和第二波长转换装置可以是反射式波长转换装置,也可以是透射式波长转换装置。若第一波长转换装置为反射式波长转换装置,激发出的第一被激发光将被第一波长转换装置反射;若第一波长转换装置为透射式波长转换装置,激发出的第一被激发光将透过第一波长转换装置。同样,若第二波长转换装置为反射式波长转换装置,激发出的第二被激发光将被第二波长转换装置反射;若第二波长转换装置为透射式波长转换装置,激发出的第二被激发光将透过第二波长转换装置。
在本申请的一些实施例中,所述光源系统还包括第二光源;
所述合光部用于将所述第一被激发光和第二被激发光与所述第二光源发出的激发光合束。
上述技术方案中,第二光源用于提供激发光,激发光用于与第一被激发光和第二被激发光进行合束。
在本申请的一些实施例中,所述光路转换元件为绕自身轴线转动的旋转轮,所述旋转轮具有第一工作位置和第二工作位置;
所述旋转轮包括周向排布的第一透射区和第一反射区;
所述光源斜照射于所述旋转轮;
当所述旋转轮位于第一工作位置时,所述第一光源发出的激发光透过所述透射区后照射于所述第一波长转换装置上;
当所述旋转轮位于第二工作位置时,所述第一光源发出的激发光经过所述第一反射区反射后照射于所述第二波长转换装置上。
上述技术方案中,光路转换元件为绕自身轴线转动的旋转轮,通过旋转轮转动能够使其位于第一工作位置和第二工作位置,以使第一光源发出的激发光间歇地照射于到第一透射区、第一反射区上,第一光源发出的激发光不会一直照射在同一个波长转换装置上,从而降低了第一波长转换装置和第二波长转换装置的散热压力。若第一光源发 出的激发光照射在第一透射区上,激发光将通过第一透射区照射于第一波长转换装置上;若第二光源发出的激发光照射在第一反射区上,激发光将由第一反射区反射至第二波长转换装置上。
在本申请的一些实施例中,光源系统还包括反射元件;
所述旋转轮还包括第二透射区,所述第一反射区与所述第二透射区沿所述旋转轮的径向排布;
当所述旋转轮位于第二工作位置时,所述第一光源发出的激发光依次经过所述第一反射区反射、所述反射元件反射、所述第二透射区透射后照射于所述第二波长转换装置上。
上述技术方案中,反射元件可对经过第一反射区反射后的激发光进行反射,以改变激发光的传播路径,这种结构可使第一波长转换装置与第二波长转换装置位于旋转轮的同一侧,使整个光源系统的结构更加紧凑。
在本申请的一些实施例中,所述旋转轮还具有第三工作位置;
所述旋转轮还包括第二反射区和第三反射区,所述第一透射区、第一反射区和所述第二反射区沿所述旋转轮的周向排布,所述第二反射区与第三反射区沿所述旋转轮的径向分布;
当所述旋转轮位于第三工作位置时,所述第一光源发出的激发光依次经过所述第二反射区反射、所述反射元件反射、所述第三反射区反射后与所述第一被激发光和所述第二被激发光合束。
上述技术方案中,旋转轮还包括用于对激发光进行反射的第二反射区和第三反射区,旋转轮转动至第三工作位置时,第一光源发出的激发光将依次经过第二反射区反射、反射元件反射、第三反射区反射后与第一被激发光和第二被激发光合束。
在本申请的一些实施例中,光源系统还包括反射元件;
所述旋转轮还包括第二反射区,所述第一反射区与所述第二反射区沿所述旋转轮的径向排布;
当所述旋转轮位于第二工作位置时,所述第一光源发出的激发光依次经过所述第一反射区反射、所述反射元件反射、所述第二反射区反射后照射于所述第二波长转换装置上。
上述技术方案中,反射元件和旋转轮的第二反射区均可对激发光起到反射作用,旋转轮转动至第二工作位置时,第一光源发出的激发光将依次经过第一反射区反射、反射元件反射、第二反射区反射后照射于第二波长转换装置上。
在本申请的一些实施例中,所述旋转轮还具有第三工作位置;
所述旋转轮还包括第三反射区和第二透射区,所述第一透射区、第一反射区和所述第三反射区沿所述旋转轮的周向排布,所述第三反射区与所述第二透射区沿所述旋转轮的径向分布;
当所述旋转轮位于第三工作位置时,所述第一光源发出的激发光依次经过所述第三反射区反射、所述反射元件反射、所述第二透射区透射后与所述第一被激发光和所述第二被激发光合束。
上述技术方案中,旋转轮还包括对激发光起到反射作用的第三反射区和对激发光起到透射作用的第二透射区,旋转轮转动至第三工作位置时,第一光源发出的激发光将依次经过第三反射区反射、反射元件反射、第二透射区透射后与所述第一被激发光和所述第二被激发光合束。
在本申请的一些实施例中,所述合光部包括第一光路折转系统、第二光路折转系统、滤色色轮和光棒;
所述第一被激发光依次经过所述第一光路折转系统、滤色色轮进入所述光棒;
所述第二被激发光依次经过所述第二光路折转系统、滤色色轮进入所述光棒。
上述技术方案中,第一光路折转系统和第二光路折转系统均起到改变光路的作用,以将由第一波长转换装置激发出的第一被激发光和由第二波长转换装置激发出的第二被激发光导入至滤色色轮并在光棒中合束。
第二方面,本申请实施例提供一种投影机,包括上述第一方面提供的光源系统。
上述技术方案中,投影机中的光源系统中的第一波长转换装置和第二波长转换装置共用一个第一光源,可有效减小整个系统的体积,具有成本低的优点。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例1提供的光源系统的结构示意图;
图2为本申请实施例2提供的光源系统的结构示意图;
图3为本申请实施例3提供的光源系统的结构示意图;
图4为图3所示的旋转轮的结构示意图;
图5为本申请实施例4提供的光源系统的结构示意图;
图6为图5所示的旋转轮的结构示意图;
图7为本申请实施例5提供的光源系统的结构示意图;
图8为图7所示的旋转轮的结构示意图。
图标:200-光源系统;10-第一光源;20-第一波长转换装置;30-第二波长转换装置;40-光路转换元件;41-振动元件;42-旋转轮;421-第一透射区;422-第一反射区;423-第二透射区;424-第二反射区;425-第三反射区;50-合光部;51-第一光路折转系统;52-第二光路折转系统;53-滤色色轮;54-光棒;55-第一整形镜片组;56-第一反射镜;57-第二整形镜片组;58-第二反射镜;59-第一分光片;61-第二分光片;62-第三整形镜片组;63-第三反射镜;64-第四整形镜片组;65-第四反射镜;66-第五整形镜片组;70-第二光源;80-第六整形镜片组;90-第七整形镜片组;100-第八整形镜片组;110-反射元件;A-基轴线。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请实施例的描述中,需要说明的是,指示方位或位置关系为基于附图所示的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,或者是本领域技术人员惯常理解的方位或位置关系,或者是该申请产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
实施例1
如图1所示,本实施例提供一种光源系统200,其包括第一光源10、第一波长转换装置20、第二波长转换装置30、光路转换元件40和合光部50。
光路转换元件40用于将第一光源10发出的激发光轮流照射于第一波长转换装置20和第二波长转换装置30上。
第一光源10发出的激发光照射于第一波长转换装置20上能够激发产生第一被激发光;第一光源10发出的激发光照射于第二波长转换装置30上能够激发产生第二被激发光。
合光部50用于将第一被激发光与第二被激发光合束。
这种光源系统200通过光路转换元件40转动能够使第一光源10发出的激发光轮流照射于第一波长转换装置20和第二波长转换装置30上,即第一波长转换装置20和第二波长转换装置30共用一个第一光源10,可有效减小整个系统的体积,同时反散系统散热压力,可用于高功率光源系统中,具有成本低。
需要说明的是,第一波长转换装置20和第二波长转换装置30可是转动的,也可以是静止的。若第一波长转换装置20和第二波长转换装置30是转动的,第一波长转换装置20和第二波长转换装置 30具有很好的散热性能,提高了其使用寿命;若第一波长转换装置20和第二波长转换装置30是静止的,无噪音产生,使得整个系统具有很好的静音效果。当然,在第一波长转换装置20和第二波长转换装置30是静止的情况下,可通过散热器、风扇等散热设备进行扇热。
示例性的,第一波长转换装置20和第二波长转换装置30均为单色荧光轮。在其他实施例中,第一波长转换装置20和第二波长转换装置30也可为其他结构,比如两者为多色荧光轮。当然,第一波长转换装置20和第二波长转换装置30也可不是荧光轮,比如,两者为荧光陶瓷。
第一光源10的作用是提供激发光,本实施例中,第一光源10为蓝激光光源,第一光源10发出的激发光即为蓝光。在其他实施例中,第一光源10也可以也可以是光源,比如紫外光源、LED灯光源等。
第一波长转换装置20上的荧光粉的颜色与第二波长转换装置30上的荧光粉的颜色不同。第一波长转换装置20上的荧光粉的颜色可以是红、黄、绿等;第二波长转换装置30上的荧光粉的颜色可以是红、黄、绿等。本实施例中,第一波长转换装置20上的荧光粉为绿色,第二波长转换装置30上的荧光粉为黄色,也就是说,第一被激发光为绿色光,第二被激发光为黄色光。
光路转换元件40的作用是使第一光源10发出的激发光轮流照射于第一波长转换装置20和第二波长转换装置30上,以对应激发出第一被激发光和第二被激发光。
可选地,光路转换元件40通过转动的方式将第一光源10发出的激发光轮流照射于第一波长转换装置20和第二波长转换装置30上。
本实施例中,光路转换元件40为绕基轴线A往返转动的振动元件41,振动元件41具有第一工作位置和第二工作位置。当振动元件 41位于第一工作位置时,第一光源10发出的激发光经过振动元件41反射后照射于第一波长转换装置20上;当振动元件41位于第二工作位置时,第一光源10发出的激发光经过振动元件41反射后照射于第二波长转换装置30上。
振动元件41振动能够使其位于第一工作位置和第二工作位置,以将第一光源10发出的激发光间歇地反射至第一波长转换装置20、第二波长转换装置30上,第一光源10发出的激发光不会一直照射在同一个波长转换装置上,从而降低了第一波长转换装置20和第二波长转换装置30的散热压力。通过振动元件41振动的方式来将第一光源10发出的激发光光反射至第一波长转换装置20和第二波长转换装置30上,实现方式简单。此外,第一波长转换装置20和第二波长转换装置30在转动时,振动元件41在振动过程中,经振动元件41反射后的激发光将照射在第一波长转换装置20径向和周向的不同位置、第二波长转换装置30径向和周向的不同位置,以降低第一波长转换装置20和第二波长转换装置30上的荧光粉的瞬时温度。
振动元件41的作用是反射激发光,振动元件41可以是反射镜或镀有反射膜的振镜。当然,振动元件41的往返转动可通过驱动装置来实现,比如,振动元件41外接电机,通过电机的正反转来实现振动元件41的往返转动。
需要说明的是,振动元件41的第一工作位置可以是振动元件41的极限位置,也可以是振动元件41的非极限位置;振动元件41的第二工作位置可以是振动元件41的极限位置,也可以是振动元件41的非极限位置。若第一工作位置和第二工作位置为振动元件41的极限位置,振动元件41绕基轴线A顺时针转动最终将达到第一工作位置,振动元件41绕基轴线A逆时针转动最终将达到第二工作位置。若第一工作位置和第二工作位置为非极限位置,振动元件41绕基轴 线A顺时针转动至第一工作位置时,振动元件41可继续顺时针转动,振动元件41绕基轴线A逆时针转动至第二工作位置时,振动元件41可继续逆时针转动。
第一波长转换装置20可以是反射式波长转换装置,也可以是透射式波长转换装置;第二波长转换装置30可以是反射式波长转换装置,也可以是透射式波长转换装置。
本实施例中,第一波长转换装置20和第二波长转换装置30均为透射式波长转换装置,也就是说,激发光照射于第一波长转换装置20后激发出的第一被激发光将透过第一波长转换装置20,激发光照射于第二波长转换装置30后激发出的第二被激发光将透过第二波长转换装置30。
进一步地,合光部50包括第一光路折转系统51、第二光路折转系统52、滤色色轮53和光棒54。第一被激发光依次经过第一光路折转系统51、滤色色轮53进入光棒54;第二被激发光依次经过第二光路折转系统52、滤色色轮53进入光棒54。
第一光路折转系统51和第二光路折转系统52均起到改变光路的作用,以将由第一波长转换装置20激发出的第一被激发光和由第二波长转换装置30激发出的第二被激发光导入至滤色色轮53并在光棒54中合束。
示例性的,第一光路折转系统51包括第一整形镜片组55、第一反射镜56、第二整形镜片组57、第二反射镜58、第一分光片59和第二分光片61。第一被激发光透过第一波长转换装置20后依次经过第一整形镜片组55、第一反射镜56、第二整形镜片组57、第二反射镜58、第一分光片59、第二分光片61、滤色色轮53进入光棒54。
其中,第一整形镜片组55的作用是对透过第一波长转换装置20后的第一被激发光进行整形;第二整形镜片组57的作用是对经过第 一反射镜56反射后的第一被激发光进行整形;第一分光片59的作用是对经过第二反射镜58反射后的第一被激发光进行反射;第二分光片61的作用是对经过第一分光片59反射后的第一被激发光进行透射。
第二光路折转系统52包括第三整形镜片组62、第三反射镜63、第四整形镜片组64和第四反射镜65。第二被激发光透过第二波长转换装置30后依次经过第三整形镜片组62、第三反射镜63、第四整形镜片组64、第四反射镜65、第二分光片61、滤色色轮53进入光棒54。
其中,第三整形镜片组62的作用是对透过第二波长转换装置30后的第二被激发光进行整形;第四整形镜片组64的作用是对经过第三反射镜63反射后的第二被激发光进行整形;第二分光片61的作用是对经过第四反射镜65反射后的第一被激发光进行反射。
可选地,光源系统200还包括第二光源70。合光部50用于将第一被激发光和第二被激发光与第二光源70发出的激发光合束。
本实施例中,第二光源70为蓝激光光源,第二光源70发出的激发光为蓝光。
合光部50还包括第五整形镜片组66,第二光源70依次经过第五整形镜片组66、第一分光片59、第二分光片61、滤色色轮53进入光棒54。
其中,第五整形镜片组66的作用是对第二光源70发出的激发光进行整形;第一分光片59的作用是对经过第五整形镜片组66整形后的激发光进行透射;第二分光片61的作用是对经过第一分光片59透射后的激发光进行透射。
滤色色轮53为光路转换元件40,其作用是对光线进行过滤,以得到鲜艳的颜色。第一被激发光(绿色光)经过滤色色轮53过滤后, 得到更绿的光;第二被激发光(黄色光)经过滤色色轮53过滤后,得到红色光;第二光源70发出的激发光(蓝光)直接透过滤色色轮53。
由第一波长转换装置20激发出的第一被激发光、第二波长转换装置30激发出的第二被激发光和第二光源70发出的激发光最终都将进入光棒54,以得到RGB三基色,光棒54的作用是对光束进行均光。
此外,本实施例中,光源系统200还包括第六整形镜片组80、第七整形镜片组90和第八整形镜片组100。
第六整形镜片组80设于第一光源10与振动元件41之间。第一光源10发出的激发光经过第六整形镜片组80整形后照射于振动元件41上。
第七整形镜片组90设于振动元件41与第一波长转换装置20之间。振动元件41位于第一工作位置时,经过振动元件41反射后的激发光经过第七整形镜片组90整形后照射于第一波长转换装置20上。
第八整形镜片组100设于振动元件41与第二波长转换装置30之间。振动元件41位于第二工作位置时,经过振动元件41反射后的激发光经过第八整形镜片组100整形后照射于第二波长转换装置30上。
需要说明的是,光路转换元件40也可通过除转动的方式以外其他方式将第一光源10发出的激发光轮流照射于第一波长转换装置20和第二波长转换装置30上。比如,光路转换元件40包括第一反射件和第二反射件,第一反射件为固定元件,第二反射件可在第一位置与第二位置之间往返移动,当第二反射件位于第一位置时,第一光源10发出的激发光由第一反射件反射至第一波长转换装置20上,当第 二反射件位于第二位置时,第一光源10发出的激发光依次经过第一反射件反射、第二反射件反射至第二波长转换装置30上。
实施例2
如图2所示,本实施例提供一种光源系统200,与上述实施例1的区别在于,第一波长转换装置20和第二波长转换装置30均为反射式波长转换装置,以及合光部50的第一光路折转系统51和第二光路折转系统52的具体结构与上述实施例1有所不同。
第一波长转换装置20为反射式波长转换装置,即激发光照射于第一波长转换装置20后激发出的第一被激发光将被第一波长转换装置20反射;第二波长转换装置30为反射式波长转换装置,即激发光照射于第二波长转换装置30后激发出的第二被激发光将被第二波长转换装置30反射。
本实施例中,第一光路折转系统51包括第一整形镜片组55、第一反射镜56、第二反射镜58、第一分光片59和第二整形镜片组57。第一被激发光经第一波长转换装置20反射后依次经过第一整形镜片组55、第一反射镜56、第二反射镜58、第一分光片59、第二整形镜片组57、滤色色轮53进入光棒54。
本实施例中,振动元件41位于第一工作位置时,经振动元件41反射后的激发光经过第一整形镜片组55整形后照射于第一波长转换装置20上。也就是说,第一整形镜片组55既可对经振动元件41反射后的激发光进行整形,又可对经第一波长转换装置20反射后的第一被激发光进行整形。
第一反射镜56和第二反射镜58对第一被激发光起到反射作用;第一分光片59对第一被激发光起到透射作用;第二整形镜片组57对透过第一分光片59的第一被激发光起到整形的作用。
本实施例中,第二光路折转系统52包括第三整形镜片组62和第二分光片61。第二被激发光经第二波长转换装置30后依次经过第三整形镜片组62、第二分光片61、第一分光片59、第二整形镜片组57、滤色色轮53进入光棒54。
本实施例中,振动元件41位于第二工作位置时,经振动元件41反射后的激发光经过第二整形镜片组57整形后照射于第二波长转换装置30上。也就是说,第二整形镜片组57既可对经振动元件41反射后的激发光进行整形,又可对经第二波长转换装置30反射后的第二被激发光进行整形。
第二分光片61对第二被激发光起到反射作用;第一分光片59对第二被激发光起到反射作用;第二整形镜片对经第一分光片59反射后的第一被激发光起到整形的作用。
本实施例中,光源系统200中也设有第二光源70。合光部50用于将第一被激发光和第二被激发光与第二光源70发出的激发光合束。其中,第二光源70为蓝激光光源,第二光源70发出的激发光为蓝光。
合光部50还包括第四整形镜片组64,第二光源70依次经过第四整形镜片组64、第二分光片61、第一分光片59、第二整形镜片组57、滤色色轮53进入光棒54。
其中,第四整形镜片组64对第二光源70发出的激发光起到整形作用;第二分光片61对经过第四整形镜片组64整形后的激发光起到透射作用;第一分光片59对经过第一分光片59透射后的激发光起到反射作用;第二整形镜片组57对经第一分光片59反射后的激发光起到整形的作用。
本实施例中,光源系统200还包括第五整形镜片组66,第五镜片组设于第一光源10与振动元件41之间。第一光源10发出的激发光经过第五整形镜片组66整形后照射于振动元件41上。
需要说明的是,本实施例中,第一波长转换装置20和第二波长转换装置30均为反射式波长转换装置;上述实施例1中,第一波长转换装置20和第二波长转换装置30均为透射式波长转换装置;在其他实施例中,也可以是第一波长转换装置20和第二波长转换装置30中一者为反射式波长转换装置,另一者为透射式波长转换装置。
实施例3
如图3所示,本实施例提供的一种光源系统200,与上述实施例1的区别在于,光路转换元件40的结构不同,以及合光部50的第一光路折转系统51和第二光路折转系统52的具体结构不同,且只有第一光源10。
本实施例中,光路转换元件40为绕自身轴线转动的旋转轮42,旋转轮42具有第一工作位置和第二工作位置。
如图4所示,旋转轮42包括周向排布的第一透射区421和第一反射区422。光源斜照射于旋转轮42。
继续参照图3,当旋转轮42位于第一工作位置时,第一光源10发出的激发光透过透射区后照射于第一波长转换装置20上;当旋转轮42位于第二工作位置时,第一光源10发出的激发光经过第一反射区422反射后照射于第二波长转换装置30上。
光路转换元件40为绕自身轴线转动的旋转轮42,通过旋转轮42转动能够使其位于第一工作位置和第二工作位置,以使第一光源10发出的激发光间歇地照射于到第一透射区421、第一反射区422上,第一光源10发出的激发光不会一直照射在同一个波长转换装置上,从而降低了第一波长转换装置20和第二波长转换装置30的散热压 力。若第一光源10发出的激发光照射在第一透射区421上,激发光将通过第一透射区421照射于第一波长转换装置20上;若第二光源70发出的激发光照射在第一反射区422上,激发光将由第一反射区422反射至第二波长转换装置30上。
本实施例中,继续参照图4,旋转轮42的第一透射区421和第一反射区422均为扇形,第一透射区421与第一反射区422均为两个,两个第一透射区421关于旋转轮42的中心轴中心对称,两个第一反射区422关于旋转轮42的中心轴中心对称。
需要说明的是,第一光源10发出的激发光光经过第一反射区422反射后可以是直接地照射于第二波长转换装置30上,也可以是间接地照射于第二波长转换装置30上。
本实施例中,第一光源10发出的激发光光经过第一反射区422反射后可以是间接地照射于第二波长转换装置30上,以下结合图3进行详细阐述。
如图3所示,光源系统200还包括反射元件110。
当旋转轮42位于第二工作位置时,第一光源10发出的激发光依次经过第一反射区422反射、反射元件110反射后照射于第二波长转换装置30上。
其中,反射元件110可以是反射镜。
本实施例中,合光部50包括第一光路折转系统51、第二光路折转系统52、滤色色轮53和光棒54。第一被激发光依次经过第一光路折转系统51、滤色色轮53进入光棒54;第二被激发光依次经过第二光路折转系统52、滤色色轮53进入光棒54。
第一光路折转系统51和第二光路折转系统52均起到改变光路的作用,以将由第一波长转换装置20激发出的第一被激发光和由第二 波长转换装置30激发出的第二被激发光导入至滤色色轮53并在光棒54中合束。
本实施例中,第一波长转换装置20和第二波长转换装置30均为透射式波长转换装置。
示例性地,第一光路折转系统51包括第一整形镜片组55和第一反射镜56。第一被激发光透过第一波长转换装置20后依次经过第一整形镜片组55、第一反射镜56、滤色色轮53进入光棒54。
其中,第一整形镜片组55对透过第一波长转换装置20后的第一被激发光起到整形作用;第一反射镜56对经第一整形镜片组55整形后的第一被激发光起到反射作用。
第二光路折转系统52包括第二整形镜片组57、第一分光片59和第二分光片61。第二被激发光透过第二波长转换装置30后依次经过第二整形镜片组57、第一分光片59、第二分光片61、滤色色轮53进入光棒54。
其中,第二整形镜片组57对透过第二波长转换装置30后的第二被激发光起到整形作用;第一分光片59对经过第二整形镜片组57整形后的第二被激发光起到透射作用;第二分光片61对透过第一分光片59的第二被激发光起到透射作用。
本实施例中,第一光源10与旋转轮42之间设有第三整形镜片组62。第一光源10发出的激发光经过第三整形镜片组62整形后照射于旋转轮42上。
实施例4
如图5所示,本实施例提供一种光源系统200,与上述实施例3的区别在于,如图6所示,旋转轮42还包括第二透射区423,第一反射区422与第二透射区423沿旋转轮42的径向排布。
如图5所示,当旋转轮42位于第二工作位置时,第一光源10发出的激发光依次经过第一反射区422反射、反射元件110反射、第二透射区423透射后照射于第二波长转换装置30上。
反射元件110可对经过第一反射区422反射后的激发光进行反射,以改变激发光的传播路径,这种结构可使第一波长转换装置20与第二波长转换装置30位于旋转轮42的同一侧,使整个光源系统200的结构更加紧凑。
本实施例中,旋转轮42还具有第三工作位置,即旋转轮42转动能够使其位于第三工作位置。继续参照图6,旋转轮42还包括第二反射区424和第三反射区425,第一透射区421、第一反射区422和第二反射区424沿旋转轮42的周向排布,第二反射区424与第三反射区425沿旋转轮42的径向分布。
继续参照图5,当旋转轮42位于第三工作位置时,第一光源10发出的激发光依次经过第二反射区424反射、反射元件110反射、第三反射区425反射后与第一被激发光和第二被激发光合束。也就是说,第一光源10发出的激发光(蓝光)、第一被激发光(绿光)和第二被激发光(黄光)最终在合光部50的作用下合束。
本实施例中,第一透射区421、第二透射区423、第一反射区422、第二反射区424和第三反射区425均为扇形,第一反射区422位于第二透射区423的内侧,第二反射区424位于第三反射区425的内侧。第一透射区421为两个,两个第一透射区421关于旋转轮42的中心轴中心对称;第二透射区423为两个,两个第二透射区423关于旋转轮42的中心轴中心对称;第一反射区422为两个,两个第一反射区422关于旋转轮42的中心轴中心对称;第二反射区424为两个,两个第二反射区424关于旋转轮42的中心轴中心对称;第三反射区425为两个,两个第三反射区425关于旋转轮42的中心轴中心对称。
合光部50的第一光路折转系统51和第二光路折转系统52与上述实施例3的结构相同,在此不再赘述。
本实施例中,合光部50还包括第二反射镜58和第三反射镜63,激发光经过旋转轮42的第三反射区425反射后依次经过第二反射镜58、第三反射镜63、第一分光片59、第二分光片61、滤色色轮53进入光棒54。
其中,第二反射镜58对经第三反射区425反射后的激发光起到反射作用;第三反射镜63对经第二反射镜58反射后的激发光起到反射作用;第一分光片59对经过第二反射镜58反射后的激发光起到反射作用;第二分光片61对经过第一分光片59反射后的激发光起到透射作用。
实施例5
如图7所示,本实施例提供一种光源系统200,与上述实施例3的区别在于,通过反射元件110将激发光反射至第二波长转换装置30的方式不同。
本实施例中,如图8所示,旋转轮42还包括第二反射区424,第一反射区422与第二反射区424沿旋转轮42的径向排布。
继续参照图7,当旋转轮42位于第二工作位置时,第一光源10发出的激发光依次经过第一反射区422反射、反射元件110反射、第二反射区424反射后照射于第二波长转换装置30上。
本实施例中,第二波长转换装置30为反射式波长转换装置。
进一步地,旋转轮42还具有第三工作位置,即旋转轮42转动能够使其位于第三工作位置。继续参照图8,旋转轮42还包括第三反射区425和第二透射区423,第一透射区421、第一反射区422和第三反射区425沿旋转轮42的周向排布,第三反射区425与第二透射区423沿旋转轮42的径向分布。
继续参照图7所示,当旋转轮42位于第三工作位置时,第一光源10发出的激发光依次经过第三反射区425反射、反射元件110反射、第二透射区423透射后与第一被激发光和第二被激发光合束。
本实施例中,第一透射区421、第二透射区423、第一反射区422、第二反射区424和第三反射区425均为扇形,第一反射区422位于第二反射区424的内侧,第三反射区425位于第二透射区423的内侧。第一透射区421为两个,两个第一透射区421关于旋转轮42的中心轴中心对称;第二透射区423为两个,两个第二透射区423关于旋转轮42的中心轴中心对称;第一反射区422为两个,两个第一反射区422关于旋转轮42的中心轴中心对称;第二反射区424为两个,两个第二反射区424关于旋转轮42的中心轴中心对称;第三反射区425为两个,两个第三反射区425关于旋转轮42的中心轴中心对称。
光合系统的第一光路折转系统51与上述实施例3的结构相同,在此不再赘述。
第二光路折转系统52包括第二整形镜片组57、第二反射镜58、第一分光片59和第二分光片61。第二被激发光经过第二波长转换装置30反射后依次经过第二整形镜片组57、第二反射镜58、第一分光片59、第二分光片61、滤色色轮53进入光棒54。
其中,第二整形镜片组57对经过第二波长转换装置30反射后的第二被激发光起到整形作用;第二反射镜58对经过第二整形镜片组57整形后的第二被激发光起到反射作用,第一分光片59对经过第二反射镜58反射后的第二被激发光起到反射作用;第二分光片61对经过第一分光片59反射的第二被激发光起到透射作用。
本实施例中,激发光透过旋转轮42的第二透射区423后依次经过第一分光片59、第二分光片61、滤色色轮53进入光棒54。
其中,第一分光片59对透过第二透射区423后的激发光起到透射作用;第二分光片61对透过第一分光片59的激发光起到透射作用。
实施例6
本实施例提供一种投影机,包括上述任意实施例中的光源系统200。投影机中除了光源系统200以外的其他结构可参见相关技术,在此不再赘述。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种光源系统,其特征在于,包括:
    第一光源;
    能够被所述第一光源发出的激发光激发产生第一被激发光的第一波长转换装置;
    能够被所述第一光源发出的激发光激发产生第二被激发光的第二波长转换装置;
    光路转换元件,用于将所述第一光源发出的激发光轮流照射于所述第一波长转换装置和所述第二波长转换装置上;以及
    合光部,用于将所述第一被激发光与所述第二被激发光合束。
  2. 根据权利要求1所述的光源系统,其特征在于,所述光路转换元件为绕基轴线往返转动的振动元件,所述振动元件具有第一工作位置和第二工作位置;
    当所述振动元件位于第一工作位置时,所述第一光源发出的激发光经过所述振动元件反射后照射于所述第一波长转换装置上;
    当所述振动元件位于第二工作位置时,所述第一光源发出的激发光经过所述振动元件反射后照射于所述第二波长转换装置上。
  3. 根据权利要求2所述的光源系统,其特征在于,所述第一波长转换装置为透射式被激发光轮或反射式被激发光轮;
    所述第二波长转换装置为透射式被激发光轮或反射式被激发光轮。
  4. 根据权利要求2所述的光源系统,其特征在于,所述光源系统还包括第二光源;
    所述合光部用于将所述第一被激发光和第二被激发光与所述第二光源发出的激发光合束。
  5. 根据权利要求1所述的光源系统,其特征在于,所述光路转换元件为绕自身轴线转动的旋转轮,所述旋转轮具有第一工作位置和第二工作位置;
    所述旋转轮包括周向排布的第一透射区和第一反射区;
    所述光源斜照射于所述旋转轮;
    当所述旋转轮位于第一工作位置时,所述第一光源发出的激发光透过所述透射区后照射于所述第一波长转换装置上;
    当所述旋转轮位于第二工作位置时,所述第一光源发出的激发光经过所述第一反射区反射后照射于所述第二波长转换装置上。
  6. 根据权利要求5所述的光源系统,其特征在于,光源系统还包括反射元件;
    所述旋转轮还包括第二透射区,所述第一反射区与所述第二透射区沿所述旋转轮的径向排布;
    当所述旋转轮位于第二工作位置时,所述第一光源发出的激发光依次经过所述第一反射区反射、所述反射元件反射、所述第二透射区透射后照射于所述第二波长转换装置上。
  7. 根据权利要求6所述的光源系统,其特征在于,所述旋转轮还具有第三工作位置;
    所述旋转轮还包括第二反射区和第三反射区,所述第一透射区、第一反射区和所述第二反射区沿所述旋转轮的周向排布,所述第二反射区与第三反射区沿所述旋转轮的径向分布;
    当所述旋转轮位于第三工作位置时,所述第一光源发出的激发光依次经过所述第二反射区反射、所述反射元件反射、所述第三反射区反射后与所述第一被激发光和所述第二被激发光合束。
  8. 根据权利要求5所述的光源系统,其特征在于,光源系统还包括反射元件;
    所述旋转轮还包括第二反射区,所述第一反射区与所述第二反射区沿所述旋转轮的径向排布;
    当所述旋转轮位于第二工作位置时,所述第一光源发出的激发光依次经过所述第一反射区反射、所述反射元件反射、所述第二反射区反射后照射于所述第二波长转换装置上。
  9. 根据权利要求8所述的光源系统,其特征在于,所述旋转轮还具有第三工作位置;
    所述旋转轮还包括第三反射区和第二透射区,所述第一透射区、第一反射区和所述第三反射区沿所述旋转轮的周向排布,所述第三反射区与所述第二透射区沿所述旋转轮的径向分布;
    当所述旋转轮位于第三工作位置时,所述第一光源发出的激发光依次经过所述第三反射区反射、所述反射元件反射、所述第二透射区透射后与所述第一被激发光和所述第二被激发光合束。
  10. 一种投影机,其特征在于,包括根据权利要求1-9任一项所述的光源系统。
PCT/CN2020/079151 2019-11-25 2020-03-13 一种光源系统及投影机 WO2021103345A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/600,136 US11675259B2 (en) 2019-11-25 2020-03-13 Light source system and corresponding projector system
NZ780255A NZ780255A (en) 2019-11-25 2020-03-13 Light source system and projector
AU2020390594A AU2020390594B2 (en) 2019-11-25 2020-03-13 Light source system and projector
JP2021576767A JP7261910B2 (ja) 2019-11-25 2020-03-13 光源システム及びプロジェクター
EP20893458.8A EP4067993A4 (en) 2019-11-25 2020-03-13 LIGHT SOURCE AND PROJECTOR SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911171108.6A CN110716380B (zh) 2019-11-25 2019-11-25 一种光源系统及投影机
CN201911171108.6 2019-11-25

Publications (1)

Publication Number Publication Date
WO2021103345A1 true WO2021103345A1 (zh) 2021-06-03

Family

ID=69215541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079151 WO2021103345A1 (zh) 2019-11-25 2020-03-13 一种光源系统及投影机

Country Status (7)

Country Link
US (1) US11675259B2 (zh)
EP (1) EP4067993A4 (zh)
JP (1) JP7261910B2 (zh)
CN (1) CN110716380B (zh)
AU (1) AU2020390594B2 (zh)
NZ (1) NZ780255A (zh)
WO (1) WO2021103345A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110716380B (zh) * 2019-11-25 2021-05-18 成都极米科技股份有限公司 一种光源系统及投影机
CN114200754A (zh) * 2020-09-17 2022-03-18 深圳光峰科技股份有限公司 光源装置及激光投影系统
CN114613253B (zh) * 2020-12-09 2024-01-23 极米科技股份有限公司 一种光学系统及显示设备
CN116540398B (zh) * 2022-01-25 2024-07-09 宜宾市极米光电有限公司 一种波长转换装置及光源装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101248389A (zh) * 2005-08-26 2008-08-20 松下电器产业株式会社 照明装置、显示装置、投影型显示装置、照明方法、图像显示方法、以及图像投影方法
CN204389864U (zh) * 2015-01-20 2015-06-10 深圳市绎立锐光科技开发有限公司 光源系统和投影系统
CN105222047A (zh) * 2014-06-13 2016-01-06 中强光电股份有限公司 照明装置
CN105988268A (zh) * 2015-01-27 2016-10-05 深圳市绎立锐光科技开发有限公司 投影成像系统
CN207396956U (zh) * 2017-08-04 2018-05-22 深圳市光峰光电技术有限公司 光源系统及投影装置
CN109388003A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 光源系统及投影装置
CN110471245A (zh) * 2018-05-10 2019-11-19 深圳光峰科技股份有限公司 光源系统、投影设备及照明设备
CN110716380A (zh) * 2019-11-25 2020-01-21 成都极米科技股份有限公司 一种光源系统及投影机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8733942B2 (en) * 2010-08-09 2014-05-27 Delta Electronics, Inc. Illumination system and projector using the same
JP5987368B2 (ja) * 2011-07-05 2016-09-07 株式会社リコー 照明装置および投射装置
US9467667B2 (en) * 2011-09-09 2016-10-11 Appotroincs Corporation Limited Method and apparatus of white balance adjustment
JP2013101317A (ja) 2011-10-20 2013-05-23 Panasonic Corp 照明装置およびそれを用いた投写型画像表示装置
CN103713454B (zh) 2012-09-28 2016-12-07 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
WO2014073136A1 (ja) * 2012-11-07 2014-05-15 パナソニック株式会社 光源および画像投写装置
JP5637274B2 (ja) * 2012-12-26 2014-12-10 株式会社リコー 光源装置及びこれを用いたプロジェクタ
JP2015022249A (ja) * 2013-07-23 2015-02-02 株式会社リコー 光路分岐光学系及びこの光路分岐光学系を用いた照明光源装置及びこの照明光源装置を用いた画像表示装置及びこの画像表示装置を用いた投射装置
CN204759006U (zh) * 2015-06-08 2015-11-11 深圳市绎立锐光科技开发有限公司 投影系统、光源系统以及光源组件
CN205608228U (zh) * 2016-01-05 2016-09-28 深圳市光峰光电技术有限公司 一种光源装置
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置
CN109143744B (zh) * 2017-06-15 2021-06-29 深圳光峰科技股份有限公司 光源系统及应用所述光源系统的投影系统
CN107315311B (zh) * 2017-08-11 2019-09-20 青岛海信电器股份有限公司 光源模组和激光投影机
CN108535944B (zh) * 2018-04-16 2021-04-13 成都九天光学技术有限公司 激光光源及其控制方法
CN109960099B (zh) * 2019-04-30 2024-03-15 成都极米科技股份有限公司 一种非共轴的投影光源系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101248389A (zh) * 2005-08-26 2008-08-20 松下电器产业株式会社 照明装置、显示装置、投影型显示装置、照明方法、图像显示方法、以及图像投影方法
CN105222047A (zh) * 2014-06-13 2016-01-06 中强光电股份有限公司 照明装置
CN204389864U (zh) * 2015-01-20 2015-06-10 深圳市绎立锐光科技开发有限公司 光源系统和投影系统
CN105988268A (zh) * 2015-01-27 2016-10-05 深圳市绎立锐光科技开发有限公司 投影成像系统
CN207396956U (zh) * 2017-08-04 2018-05-22 深圳市光峰光电技术有限公司 光源系统及投影装置
CN109388003A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 光源系统及投影装置
CN110471245A (zh) * 2018-05-10 2019-11-19 深圳光峰科技股份有限公司 光源系统、投影设备及照明设备
CN110716380A (zh) * 2019-11-25 2020-01-21 成都极米科技股份有限公司 一种光源系统及投影机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4067993A4 *

Also Published As

Publication number Publication date
JP2022523450A (ja) 2022-04-22
AU2020390594B2 (en) 2023-02-02
EP4067993A4 (en) 2023-12-20
EP4067993A1 (en) 2022-10-05
AU2020390594A1 (en) 2021-10-14
US20220163877A1 (en) 2022-05-26
CN110716380B (zh) 2021-05-18
NZ780255A (en) 2024-07-05
JP7261910B2 (ja) 2023-04-20
CN110716380A (zh) 2020-01-21
US11675259B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2021103345A1 (zh) 一种光源系统及投影机
JP2019532320A (ja) 光源システム及び投影機器
JP6371439B1 (ja) 光源装置および投射型表示装置
WO2019029085A1 (zh) 激光投影机
JP2012013898A (ja) 光源装置および投射型表示装置
JP6796751B2 (ja) 光源装置、及び投写型映像表示装置
CN108663881B (zh) 一种投影光源及其投影系统
CN109991803B (zh) 色轮组件、光源装置及投影系统
JP6406736B2 (ja) プロジェクタおよび画像表示方法
CN103186019B (zh) 光源装置及投影仪
JP2013073063A (ja) 蛍光体ホイール、光源装置及びプロジェクター
US11493838B2 (en) Optical device
JP2020204652A (ja) 光源装置および投射型表示装置
AU2020363580B2 (en) Fluorescent wheel, light source module, and projector
CN109564377B (zh) 投影仪
WO2020135299A1 (zh) 波长转换装置、发光装置及投影装置
JP2016145881A (ja) 波長変換素子、照明装置およびプロジェクター
WO2020135300A1 (zh) 光源系统及投影装置
CN113126408A (zh) 波长转换装置、光源装置及投影系统
JP6149991B2 (ja) 光源装置及び画像投影装置
JP2016142900A (ja) 照明装置およびプロジェクター
CN211293583U (zh) 激光光源系统
JP7338409B2 (ja) 光源装置、画像投射装置及び光源光学系
JP2017142539A (ja) 光源装置及び画像投影装置
JP2016166925A (ja) 照明装置及び投射表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021576767

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020390594

Country of ref document: AU

Date of ref document: 20200313

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020893458

Country of ref document: EP

Effective date: 20220627