WO2021103266A1 - 一种头戴式设备及其佩戴检测方法、装置、介质 - Google Patents

一种头戴式设备及其佩戴检测方法、装置、介质 Download PDF

Info

Publication number
WO2021103266A1
WO2021103266A1 PCT/CN2019/130292 CN2019130292W WO2021103266A1 WO 2021103266 A1 WO2021103266 A1 WO 2021103266A1 CN 2019130292 W CN2019130292 W CN 2019130292W WO 2021103266 A1 WO2021103266 A1 WO 2021103266A1
Authority
WO
WIPO (PCT)
Prior art keywords
head
mounted device
sensor
output signal
magnetic sensor
Prior art date
Application number
PCT/CN2019/130292
Other languages
English (en)
French (fr)
Inventor
李月婷
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Priority to US17/624,169 priority Critical patent/US11832047B2/en
Publication of WO2021103266A1 publication Critical patent/WO2021103266A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/162Interface to dedicated audio devices, e.g. audio drivers, interface to CODECs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1041Mechanical or electronic switches, or control elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/16Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/04Systems determining the presence of a target
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1058Manufacture or assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/033Headphones for stereophonic communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1016Earpieces of the intra-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/10Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups
    • H04R2201/107Monophonic and stereophonic headphones with microphone for two-way hands free communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2420/00Details of connection covered by H04R, not provided for in its groups
    • H04R2420/07Applications of wireless loudspeakers or wireless microphones

Definitions

  • This application relates to the field of head-mounted devices, and in particular to a head-mounted device and a wearing detection method, device, and medium thereof.
  • true wireless stereo (TWS) headphones are widely used because they can transmit audio signals without a wire harness.
  • TWS true wireless stereo
  • the user connects to the main ear through the mobile phone, and then transfers the audio signal to the slave ear through the main ear, the user can enjoy the true wireless structure, completely abandoning the troubles of the wired headset, and its usage is more diverse, and it can be used by one person. Can also be shared and used.
  • the components in the TWS earphones are powered by batteries. Considering the overall miniaturization, the volume of the battery will not be too large and the power supply will be limited. Therefore, in order to achieve low power consumption, the prior art adopts detection as the wearing state Then start the corresponding device to work, otherwise, these devices are in shutdown or sleep.
  • an infrared (IR) sensor, an acceleration sensor, or a combination of the two is usually used to detect whether the user has worn the headset.
  • the detection method of the IR sensor is to set a small hole on the headphone stem of the main ear to show the light of the transmitter. If it is blocked, the receiver can receive the reflected light. Therefore, Whether the receiver is in the wearing state is determined by whether the receiver can receive light.
  • Acceleration sensor is a sensor that can measure acceleration. According to the different sensitive components of the sensor, common acceleration sensors include capacitive, inductive, strain, piezoresistive, piezoelectric, etc. For the detection method using the acceleration sensor, based on the acceleration sensor in the acceleration process, through the measurement of the inertial force received by the mass, the acceleration value is obtained by using Newton's second law to determine whether it is in the wearing state.
  • the purpose of this application is to provide a wear detection method applied to a head-mounted device, which is used to improve the accuracy of judgment and improve the user experience.
  • the present application provides a wearing detection method applied to a head-mounted device, the head-mounted device including a GMR magnetic sensor and an IR sensor, and the method includes:
  • the head-mounted device If it is, it is determined that the head-mounted device is in a wearing state.
  • the acquiring the signal collected by the GMR magnetic sensor to calculate the reference quantity that characterizes the position of the head-mounted device includes:
  • the corresponding acceleration is calculated according to the three-axis data as the reference quantity.
  • the judging whether the reference quantity and the output signal simultaneously meet a preset requirement includes:
  • the IR sensor is turned on again to enter the step of acquiring the output signal of the IR sensor.
  • the headset is a wireless Bluetooth headset, and there are two IR sensors, which are respectively arranged on the headset head and the headset shaft.
  • the wireless Bluetooth headset is a TWS headset
  • the IR sensors are two, which are respectively arranged on the headset head and the headset shaft of the main ear in the TWS headset.
  • the judging whether the output signal is within a threshold range includes:
  • the head-mounted device includes a GMR magnetic sensor and an IR sensor, and the device includes:
  • An acquisition module configured to acquire the signal collected by the GMR magnetic sensor to calculate a reference quantity that characterizes the position of the head-mounted device, and to acquire the output signal of the IR sensor;
  • a judging module for judging whether the reference quantity and the output signal meet preset requirements at the same time
  • the determining module is used to determine if the head-mounted device is in a wearing state.
  • this application provides a wearing detection device applied to a head-mounted device, including a memory for storing computer programs;
  • the processor is configured to implement the steps of the wearing detection method applied to the head-mounted device when the computer program is executed.
  • the present application provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, it is applied to a head-mounted device as described above.
  • the steps of the wearing detection method are described above.
  • the present application provides a head-mounted device, the head-mounted device is a wireless Bluetooth headset, the wireless Bluetooth headset includes the headset body, and also includes a GMR magnetic sensor and an IR sensor, the GMR magnetic sensor Both the IR sensor and the IR sensor are connected to the MCU in the headset body, and the MCU is used to obtain the signal collected by the GMR magnetic sensor to calculate a reference quantity that characterizes the position of the wireless Bluetooth headset, and to obtain the IR sensor And determine whether the reference quantity and the output signal meet the preset requirements at the same time, and if so, determine that the wireless Bluetooth headset is in a wearing state.
  • the wireless Bluetooth headset includes the headset body, and also includes a GMR magnetic sensor and an IR sensor, the GMR magnetic sensor Both the IR sensor and the IR sensor are connected to the MCU in the headset body, and the MCU is used to obtain the signal collected by the GMR magnetic sensor to calculate a reference quantity that characterizes the position of the wireless Bluetooth headset, and to obtain the IR sensor And determine whether the reference quantity and
  • the head-mounted device provided by the present application is a wireless Bluetooth headset.
  • the headset includes a GMR magnetic sensor and an IR sensor.
  • the GMR magnetic sensor outputs the collected signal so that the MCU can calculate and characterize the location of the wireless Bluetooth headset.
  • the reference quantity of the position, the IR sensor outputs the collected signal so that the MCU can judge the output signal. Only when the reference quantity and the output signal meet the preset requirements at the same time, it is determined that the wireless Bluetooth headset is in the wearing state.
  • the GMR magnetic sensor is added, which has high detection accuracy and is not susceptible to external interference factors.
  • the GMR magnetic sensor and the IR sensor can cooperate with each other. Further improve the accuracy of detection, thereby improving the user experience.
  • the wearing detection method, device, and medium applied to the head-mounted device provided by this application correspond to the above-mentioned head-mounted device, and the effect is the same as the above.
  • FIG. 1 is a flowchart of a wearing detection method applied to a head-mounted device according to an embodiment of the application
  • FIG. 2 is a flowchart of another wearing detection method applied to a head-mounted device according to an embodiment of the application
  • FIG. 3 is a schematic structural diagram of the main ear of a TWS headset provided by an embodiment of the application;
  • FIG. 4 is a structural diagram of a tap event detection device applied to a head-mounted device according to an embodiment of the application;
  • FIG. 5 is a structural diagram of a wearing detection device applied to a head-mounted device according to another embodiment of the application.
  • Fig. 6 is a structural diagram of a TWS headset provided by an embodiment of the application.
  • the core of this application is to provide a head-mounted device and its wearing detection method, device, and medium.
  • the head-mounted device mentioned in this application may be a TWS headset, a single wireless Bluetooth headset, a neck-worn Bluetooth headset, a headset Bluetooth headset, augmented reality (AR) glasses, etc.
  • the head-mounted device also includes a giant magnetoresistance (GMR) magnetic sensor and an IR sensor.
  • GMR giant magnetoresistance
  • FIG. 1 is a flowchart of a wearing detection method applied to a head-mounted device according to an embodiment of the application. The method includes:
  • S10 Obtain the signal collected by the GMR magnetic sensor to calculate a reference quantity representing the position of the GMR magnetic sensor, and obtain the output signal of the IR sensor.
  • GMR magnetic sensor is a high-tech product integrating magnetic film, semiconductor integration and nanotechnology.
  • the giant magnetoresistance effect comes from the different spin states of current-carrying electrons and the different effects of the magnetic field, which results in the change of resistance value; the giant magnetoresistance sensor composes four giant magnetoresistances into a Wheatstone bridge structure, which can reduce The influence of the external environment on the stability of the sensor output increases the sensitivity of the sensor.
  • giant magnetoresistance sensors are commonly used to increase the storage capacity of hard disks in computers, mobile phones, portable music players, and video cameras. This application takes advantage of its stability and applies it to head-mounted devices.
  • the "current input terminal” is connected to a regulated voltage of 5v-20v, and the "output terminal” outputs a voltage signal under the action of an external magnetic field.
  • the MCU can obtain a reference quantity that characterizes the position of the head-mounted device.
  • the reference quantity can be any form of expression. For example, if the position of the head-mounted device is measured by acceleration, then the acceleration is the reference quantity here. It should be noted that acceleration is only a specific implementation method, and does not mean that there is only this one form. In addition to acceleration as a reference quantity, it can also be displacement, which is not limited in this embodiment.
  • the transmitter of the IR sensor emits infrared light through the small hole. If it is not blocked, its receiver cannot receive the reflected light. If it is blocked, the receiver can receive the reflected light.
  • the output signal of the IR sensor can be a voltage signal or a digital signal corresponding to the voltage signal. For example, when connected to the MCU, the analog signal is converted into a digital signal for the MCU to recognize.
  • the opening time of the GMR magnetic sensor and the IR sensor there is no limitation on the opening time of the GMR magnetic sensor and the IR sensor. It can be turned on at the same time after the head-mounted device is turned on, or turned on after a certain trigger event, or it can be Turn on the GMR magnetic sensor first, and when certain requirements are met, turn on the IR sensor to save power consumption. In addition, before turning on the IR sensor, you need to set the sampling frequency of the IR sensor.
  • the preset requirements in this embodiment include both the requirements for the reference quantity and the requirements for the output signal. Only when both parameters meet the requirements, it is considered that the preset requirements are met at the same time. In this way, the problem of low accuracy caused by wearing event detection through a single IR sensor can be effectively reduced.
  • the user holds the head-mounted device in his hand and plays with it, it happens to block the small hole on the device body. At this time, the output signal of the IR sensor meets the requirement of being blocked.
  • the reference quantity of the corresponding characterization position is not fixed, and does not meet the fixed requirements. Therefore, it will not be determined that the reference quantity and the output signal meet the preset requirements at the same time, so it will not be determined as The headset is in the wearing state.
  • the preset requirements need to be determined according to actual conditions, and can be the change of the reference quantity and the output signal over a period of time, or the requirements of the reference quantity and the corresponding value of the output signal.
  • the MCU after the MCU determines that the user is wearing a headset, it can control the corresponding device to perform corresponding functions according to the preset control logic. For example, when the headset is a TWS headset, control the Bluetooth module to perform Wear it to establish a communication connection with a mobile terminal.
  • This embodiment does not limit the control logic after the wearing event is detected.
  • This embodiment provides a wear detection method applied to a head-mounted device.
  • the head-mounted device includes a GMR magnetic sensor and an IR sensor.
  • the GMR magnetic sensor outputs the collected signal so that the MCU can calculate the characteristic of the headset of the head-mounted device.
  • the IR sensor outputs the collected signal so that the MCU can judge the output signal. Only when the reference value and the output signal meet the preset requirements at the same time, it is determined that the head-mounted device is in the wearing state.
  • the GMR magnetic sensor is added, which has high detection accuracy and is not susceptible to external interference factors.
  • the GMR magnetic sensor and the IR sensor can cooperate with each other. Further improve the accuracy of detection, thereby improving the user experience.
  • acquiring the signal collected by the GMR magnetic sensor to calculate the reference quantity that characterizes the position of the head-mounted device includes:
  • the three-axis data of the GMR magnetic sensor are all involved in the calculation.
  • the three-axis data can accurately reflect the location of the head-mounted device. However, considering the accuracy of the device itself and the actual use of the user, it does not directly Compare the three-axis data, but calculate the corresponding acceleration through the three-axis data as a reference for comparison, so as to improve the accuracy of detection.
  • S11 includes:
  • S110 Determine whether the acceleration at the current moment has changed compared with the acceleration at the last collection moment, and if not, proceed to S111.
  • S111 Determine whether the output signal is within the threshold range, and if so, go to S12.
  • FIG. 2 is a flowchart of another wearing detection method applied to a head-mounted device according to an embodiment of the application.
  • whether the position of the GMR magnetic sensor has changed is determined by whether the acceleration has changed.
  • the position is considered to be fixed, and then it is determined whether the output signal of the IR sensor is within the threshold range.
  • the threshold range can be obtained through multiple experiments. In a specific implementation, the threshold range can be [0x0e, 0x0f].
  • step S110 determines whether the position of the GMR magnetic sensor is not fixed, and there is no need to judge the output signal of the IR sensor. Therefore, return to S10.
  • the judgment result of S111 is No, it indicates that the output signal is no longer within the threshold range, so just return to S10.
  • the turn-on time of the IR sensor is not limited, but in order to reduce power consumption, in this embodiment, the GMR magnetic sensor is turned on first, so that the GMR magnetic sensor collects the signal, and the MCU calculates the acceleration based on the signal. The acceleration at the current moment does not change compared with the acceleration at the last collection moment, and then the IR sensor is turned on again to enter the step of acquiring the output signal of the IR sensor. If the acceleration at the current moment changes compared to the acceleration at the last acquisition moment, the IR sensor can be kept off.
  • the GMR magnetic sensor Since the GMR magnetic sensor has the characteristics of low power consumption, even if the GMR magnetic sensor is turned on, the overall power consumption of the head-mounted device will be lower. On the other hand, after the IR sensor is turned off, the calculation amount of the MCU will be reduced accordingly, saving resources.
  • the number of IR sensors is not limited, but considering that the reliability of a single IR sensor is low, and the body parts of each user are also different, in this embodiment, the headset is a wireless Bluetooth Headphones, and two IR sensors are set up on the headphone head and the headphone pole respectively.
  • the wireless Bluetooth headset in this embodiment may be a single headset or a TWS headset.
  • the TWS headset MCU, communication module, speaker, microphone, etc.
  • it also includes GMR magnetic sensors and IR sensor.
  • the GMR magnetic sensor is usually arranged inside the housing to prevent mis-touching and causing displacement.
  • the housing has small holes for the IR sensor to emit infrared light and receive infrared light. It is understandable that the specific location of the IR sensor can be determined according to the actual situation of the TWS headset.
  • the working principle of the TWS headset is to connect the main ear to the mobile terminal to obtain audio signals, and then the main ear sends the audio signals to the slave ears, and the slave ears realize the playback of two headphones. Therefore, under normal circumstances, the GMR magnetic sensor
  • the IR sensor is set on the main ear, or the main ear and the slave ear are set at the same time. If the IR sensors are all set on the main ear, they can be set on the headphone head and the headphone shaft respectively.
  • FIG. 3 is a schematic structural diagram of the main ear of a TWS headset provided by an embodiment of the application.
  • the main ear includes a headphone head 1 and a headphone shaft 2.
  • An IR sensor 3 is provided on the headphone head 1, and an IR sensor 3 is provided on the headphone shaft 2.
  • the headphone head 1 is also provided with a GMR magnetic sensor 4 and a speaker 5 and so on.
  • an IR sensor can also be installed in the slave ear.
  • judging whether the output signal is within the threshold range includes:
  • n consecutive cycles of judgment are required. If the output signal of each of the two sensors n consecutive times is within the threshold range, it is finally determined that the output signal of the IR sensor is within the threshold range, and then it is determined that the TWS headset is in the wearing state.
  • the initialization process includes: setting the sampling frequency of the IR sensor (for example, 50Hz), setting the IR threshold range ([0x0e, 0x0f]), and setting the collection interval (for example, 100ms) )Wait. If the user holds the TWS headset in his hand, the position of the GMR magnetic sensor in the TWS headset is not fixed, so the acceleration corresponding to the collected three-axis data is changed, so keep the IR sensor off.
  • setting the sampling frequency of the IR sensor for example, 50Hz
  • setting the IR threshold range [0x0e, 0x0f]
  • the collection interval for example, 100ms
  • the MCU turns on the two IR sensors and performs signal collection according to the sampling frequency of the set IR sensor. , The MCU judges that the output signals of the two IR sensors are within the IR threshold range for 5 consecutive times, so it is determined that the TWS headset is in the wearing state, so as to perform other operations according to the preset control logic.
  • the wearing detection method applied to the head-mounted device is described in detail, and the present application also provides an embodiment corresponding to the wearing detection device applied to the head-mounted device. It should be noted that this application describes the embodiments of the device part from two perspectives, one is based on the perspective of functional modules, and the other is based on the perspective of hardware.
  • FIG. 4 is a structural diagram of an apparatus for detecting a tap event applied to a head-mounted device according to an embodiment of the application. As shown in Figure 4, the device includes:
  • the acquiring module 10 is used to acquire the signal collected by the GMR magnetic sensor to calculate the reference quantity that characterizes the position of the head-mounted device, and to acquire the output signal of the IR sensor;
  • the judging module 11 is used to judge whether the reference quantity and the output signal meet the preset requirements at the same time;
  • the determining module 12 is used to determine if the head-mounted device is in a wearing state.
  • This embodiment provides a wearing detection device applied to a head-mounted device.
  • the head-mounted device includes a GMR magnetic sensor and an IR sensor.
  • the GMR magnetic sensor outputs the collected signal so that the MCU can calculate and characterize the headset position of the head-mounted device.
  • the IR sensor outputs the collected signal so that the MCU can judge the output signal. Only when the reference value and the output signal meet the preset requirements at the same time, it is determined that the head-mounted device is in the wearing state.
  • the GMR magnetic sensor is added, which has high detection accuracy and is not susceptible to external interference factors.
  • the GMR magnetic sensor and the IR sensor can cooperate with each other. Further improve the accuracy of detection, thereby improving the user experience.
  • this embodiment provides a wearing detection device applied to a head-mounted device, including a memory 20 for storing computer programs;
  • the processor 21 is configured to implement the steps of the wearing detection method applied to the head-mounted device provided in the above-mentioned embodiment when the computer program is executed.
  • FIG. 5 is a structural diagram of a wearing detection device applied to a head-mounted device according to another embodiment of the application.
  • the processor 21 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and so on.
  • the processor 21 may adopt at least one hardware form among DSP (Digital Signal Processing), FPGA (Field-Programmable Gate Array), and PLA (Programmable Logic Array, Programmable Logic Array). achieve.
  • the processor 21 may also include a main processor and a coprocessor.
  • the main processor is a processor used to process data in the awake state, also called a CPU (Central Processing Unit, central processing unit); the coprocessor is A low-power processor used to process data in the standby state.
  • CPU Central Processing Unit
  • the coprocessor is A low-power processor used to process data in the standby state.
  • the processor 21 may be integrated with a GPU (Graphics Processing Unit, image processor), and the GPU is responsible for rendering and drawing content that needs to be displayed on the display screen.
  • the processor 21 may also include an AI (Artificial Intelligence) processor, which is used to process computing operations related to machine learning.
  • AI Artificial Intelligence
  • the memory 20 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 20 may also include high-speed random access memory and non-volatile memory, such as one or more magnetic disk storage devices and flash memory storage devices.
  • the memory 20 is used to store at least the following computer program 201. After the computer program is loaded and executed by the processor 21, it can implement the wear detection method disclosed in any of the foregoing embodiments and applied to a head-mounted device. Related steps.
  • the resources stored in the memory 20 may also include the operating system 202 and data 203, etc., and the storage mode may be short-term storage or permanent storage.
  • the operating system 202 may include Windows, Unix, Linux, and so on.
  • the data 203 may include, but is not limited to, signals collected by a GMR magnetic sensor, signals output by an IR sensor, and the like.
  • the wearing detection device applied to the head-mounted device may further include a display screen 22, an input/output interface 23, a communication interface 24, a power supply 25, and a communication bus 26.
  • FIG. 5 does not constitute a limitation corresponding to the wearing detection device for the head-mounted device, and may include more or less components than shown in the figure.
  • the wearing detection device applied to the head-mounted device controls the GMR magnetic sensor to output the collected signal when the processor executes the computer program stored in the memory so that the MCU can calculate the reference characterizing the position of the head-mounted device Control the IR sensor to output the collected signal so that the MCU can judge the output signal. Only when the reference quantity and the output signal meet the preset requirements at the same time, it is determined that the head-mounted device is in the wearing state. It can be seen that, on the one hand, the GMR magnetic sensor is added, which has high detection accuracy and is not easily affected by external interference factors. On the other hand, the combination of GMR magnetic sensor and IR sensor can further improve the accuracy of detection. , Thereby improving the user experience.
  • the present application also has a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program When executed by a processor, it implements the wear detection method applied to a head-mounted device as provided in any of the above-mentioned embodiments. A step of.
  • the method in the foregoing embodiment is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium Execute all or part of the steps of the method described in each embodiment of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • the computer-readable storage medium provided in this embodiment stores a computer program.
  • the GMR magnetic sensor outputs the collected signal so that the MCU can calculate a reference quantity that characterizes the position of the head-mounted device, and the IR sensor collects The signal output is so that the MCU can judge the output signal. Only when the reference quantity and the output signal meet the preset requirements at the same time, it is determined that the head-mounted device is in the wearing state.
  • the GMR magnetic sensor is added, which has high detection accuracy and is not susceptible to external interference factors.
  • the GMR magnetic sensor and the IR sensor can cooperate with each other. Further improve the accuracy of detection, thereby improving the user experience.
  • this application also provides a head-mounted device, the head-mounted device is a wireless bluetooth headset, the wireless bluetooth headset includes a headset body, and also includes a GMR magnetic sensor and an IR sensor, and both the GMR magnetic sensor and the IR sensor are connected to the headset body
  • the MCU is used to obtain the signal collected by the GMR magnetic sensor to calculate the reference quantity that characterizes the position of the wireless Bluetooth headset, and obtain the output signal of the IR sensor, and determine whether the reference quantity and the output signal meet the preset Requirement, if yes, confirm that the wireless Bluetooth headset is in the wearing state.
  • Fig. 6 is a structural diagram of a TWS headset provided by an embodiment of the application.
  • the earphone body may include MCU 30, charging (Charger) device 31, microphone 32, NorFlash device 33, LED 34, speaker 5, and so on.
  • MCU30 communicates with GMR magnetic sensor 4 and IR sensor 3 through the I2C communication protocol for wearing detection.
  • MCU30 controls Charger device 31 and LED34 through GPIO to collect and report power information and display the breathing light when the headset is in different states.
  • the NorFlash device 33 is controlled to store information through the SPI communication protocol, and the storage function of the TWS headset is increased.
  • the MCU 30 controls the microphone 32 and the speaker 5 through GPIO for audio playback and audio collection.
  • the head-mounted device provided in this embodiment is a wireless Bluetooth headset.
  • the headset includes a GMR magnetic sensor and an IR sensor.
  • the GMR magnetic sensor outputs the collected signal so that the MCU can calculate a reference quantity that characterizes the position of the wireless Bluetooth headset.
  • the sensor outputs the collected signal so that the MCU can judge the output signal. Only when the reference quantity and the output signal meet the preset requirements at the same time, it is determined that the wireless Bluetooth headset is in the wearing state.
  • the GMR magnetic sensor is added, which has high detection accuracy and is not susceptible to external interference factors.
  • the GMR magnetic sensor and the IR sensor can cooperate with each other. Further improve the accuracy of detection, thereby improving the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

本申请公开了一种头戴式设备及其佩戴检测方法、装置、介质,其中该头戴式设备包括GMR磁传感器和IR传感器,GMR磁传感器将采集的信号输出以便MCU计算出表征头戴式设备所处位置的参考量,IR传感器将采集的信号输出以便MCU对输出信号进行判断,只有在参考量和输出信号同时满足预设的要求时,才确定头戴式设备处于佩戴状态。由此可见,应用于该技术方案,一方面,加入了GMR磁传感器,其检测精度高,且不易受外界干扰因素的影响,另一方面,通过GMR磁传感器和IR传感器相配合的方式,能够进一步提高检测的准确性,从而提高用户的体验感。

Description

一种头戴式设备及其佩戴检测方法、装置、介质
本申请要求于2019年11月29日提交中国专利局、申请号为201911204647.5、发明名称为“一种头戴式设备及其佩戴检测方法、装置、介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及头戴式设备领域,特别是涉及一种头戴式设备及其佩戴检测方法、装置、介质。
背景技术
作为常用的头戴式设备,真无线立体声(TWS)耳机由于不需要线束就可以实现音频信号的传输,因此,受到广泛应用。当用户通过手机连接主耳,再通过主耳将音频信号转到从耳中,使用户享受到真无线结构,完全抛弃了有线耳机的烦恼,其使用方式更多样,既可单人使用,也可分享使用。
TWS耳机中的器件是通过电池供电,考虑到整体的小型化,电池的体积不会太大,供电量是有限的,因此,为了实现低功耗的目的,现有技术中通过检测为佩戴状态后再启动相应的器件工作,否则,这些器件处于关闭或休眠。当前,对于检测耳机是否为佩戴状态,通常是采用红外(IR)传感器、加速度传感器或者两者结合的方式检测用户是否已经佩戴耳机。
对于TWS耳机来说,IR传感器的检测方式为在主耳的耳机杆上设置一个小孔,用于透出发射器的光,如果有遮挡,则接收器可以接收到反射回来的光,因此,通过接收器是否接收能够接收到光而确定是否为佩戴状态。加速度传感器是一种能够测量加速度的传感器,根据传感器敏感元件的不同,常见的加速度传感器包括电容式、电感式、应变式、压阻式、压电式等。对于采用加速度传感器的检测方式,基于加速度传感器在加速过程中,通过对质量块所受惯性力的测量,利用牛顿第二定律获得加速度值以确定是否为佩戴状态。
现有技术中只在主耳的耳机杆上设置一个IR传感器,但是由于用户有时 候拿在手里把玩,也会形成遮挡,出现与佩戴于耳朵上相同的状态,从而导致误判的问题。而利用加速度传感器测量加速度的方式往往因为灵敏度不够或者稳定性不足而出现佩戴状态判断失误的状况。
发明内容
本申请的目的是提供一种应用于头戴式设备的佩戴检测方法,用于提高判断的准确性,提高用户的体验感。
为解决上述技术问题,本申请提供一种应用于头戴式设备的佩戴检测方法,所述头戴式设备包括GMR磁传感器和IR传感器,该方法包括:
获取所述GMR磁传感器采集的信号以计算出表征头戴式设备所处位置的参考量,以及获取所述IR传感器的输出信号;
判断所述参考量和所述输出信号是否同时满足预设的要求;
如果是,则确定所述头戴式设备处于佩戴状态。
优选地,所述获取所述GMR磁传感器采集的信号以计算出表征头戴式设备所处位置的参考量包括:
获取所述GMR磁传感器的三轴数据;
根据所述三轴数据计算出对应的加速度以作为所述参考量。
优选地,所述判断所述参考量和所述输出信号是否同时满足预设的要求包括:
判断当前时刻的加速度与上一采集时刻的加速度相比是否发生变化;
如果未发生变化,则判断所述输出信号是否在阈值范围内;
如果在所述阈值范围内,则确定所述参考量和所述输出信号同时满足预设的要求。
优选地,如果当前时刻的加速度与上一采集时刻的加速度相比未发生变化,则再开启所述IR传感器以进入所述获取所述IR传感器的输出信号的步骤。
优选地,所述头戴式设备为无线蓝牙耳机,所述IR传感器为两个,分别设置在耳机头和耳机杆。
进一步,所述无线蓝牙耳机为TWS耳机,所述IR传感器为两个,分别设置在TWS耳机中主耳的耳机头和耳机杆。
优选地,所述判断所述输出信号是否在阈值范围内包括:
判断两个所述IR传感器各自的输出信号是否连续n次均在所述阈值范围内,如果是,则确定所述输出信号在所述阈值范围内,否则,确定所述输出信号不在所述阈值范围内;其中,n为大于1的正整数。
所述头戴式设备包括GMR磁传感器和IR传感器,该装置包括:
获取模块,用于获取所述GMR磁传感器采集的信号以计算出表征头戴式设备所处位置的参考量,以及获取所述IR传感器的输出信号;
判断模块,用于判断所述参考量和所述输出信号是否同时满足预设的要求;
确定模块,用于如果是,则确定所述头戴式设备处于佩戴状态。
为解决上述技术问题,本申请提供一种应用于头戴式设备的佩戴检测装置,包括存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如所述的应用于头戴式设备的佩戴检测方法的步骤。
为解决上述技术问题,本申请提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如所述的应用于头戴式设备的佩戴检测方法的步骤。
为解决上述技术问题,本申请提供一种头戴式设备,所述头戴式设备为无线蓝牙耳机,所述无线蓝牙耳机包括耳机本体,还包括GMR磁传感器和IR传感器,所述GMR磁传感器和所述IR传感器均与所述耳机本体中的MCU连接,所述MCU用于获取所述GMR磁传感器采集的信号以计算出表征无线蓝牙耳机所处位置的参考量,以及获取所述IR传感器的输出信号,并判断所述参考量和所述输出信号是否同时满足预设的要求,如果是,则确定所述无线蓝牙耳机处于佩戴状态。
本申请所提供的头戴式设备,该头戴式设备为无线蓝牙耳机,该耳机包括GMR磁传感器和IR传感器,其中,GMR磁传感器将采集的信号输出以便MCU计算出表征无线蓝牙耳机所处位置的参考量,IR传感器将采集的信号输出以便MCU对输出信号进行判断,只有在参考量和输出信号同时满足预设的要求时,才确定无线蓝牙耳机处于佩戴状态。由此可见,应用于该技术方案,一方面,加入了GMR磁传感器,其检测精度高,且不易受外界干 扰因素的影响,另一方面,通过GMR磁传感器和IR传感器相配合的方式,能够进一步提高检测的准确性,从而提高用户的体验感。
此外,本申请所提供的应用于头戴式设备的佩戴检测方法、装置、介质与上述头戴式设备相对应,效果同上。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一部分附图,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为本申请实施例提供的一种应用于头戴式设备的佩戴检测方法的流程图;
图2为本申请实施例提供的另一种应用于头戴式设备的佩戴检测方法的流程图;
图3为本申请实施例提供的一种TWS耳机的主耳的结构示意图;
图4为本申请实施例提供的一种应用于头戴式设备的敲击事件的检测装置的结构图;
图5为本申请另一实施例提供的应用于头戴式设备的佩戴检测装置的结构图;
图6为本申请实施例提供的一种TWS耳机的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的核心是提供一种头戴式设备及其佩戴检测方法、装置、介质。需要说明的是,本申请中提到的头戴式设备可以是TWS耳机、单只的无线蓝牙耳机、颈戴蓝牙耳机、头戴蓝牙耳机、增强现实(AR)眼镜等。头戴式设备除了设备本体(例如,用于数据处理的MCU)之外,还包括巨磁阻(GMR) 磁传感器和IR传感器。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
图1为本申请实施例提供的一种应用于头戴式设备的佩戴检测方法的流程图。该方法包括:
S10:获取GMR磁传感器采集的信号以计算出表征GMR磁传感器所处位置的参考量,以及获取IR传感器的输出信号。
GMR磁传感器是一个集磁性薄膜,半导体集成及纳米技术为一体的高新技术产品。巨磁电阻效应来自于载流电子的不同自旋状态与磁场的作用不同,因而导致的电阻值的变化;巨磁电阻传感器将四个巨磁电阻构成惠斯登电桥结构,该结构可以减少外界环境对传感器输出稳定性的影响,增加传感器灵敏度。目前,巨磁电阻传感器常用在提高计算机、手机、便携式音乐播放器和摄像机等的硬盘存储容量上。本申请利用其稳定性的特点,将其应用在头戴式设备中。工作时“电流输入端”接5v~20v的稳压电压,“输出端”在外磁场作用下即输出电压信号。
当用户佩戴好头戴式设备后,GMR磁传感器的相对位置就固定了,所以其三轴数据也会保持不变,那么MCU就可以得到一个表征头戴式设备所处位置的参考量,该参考量可以是任意一种表现形式,例如,通过加速度来衡量头戴式设备所处位置,那么加速度就是此处的参考量。需要说明的是,加速度只是一种具体实现方式,并不代表只有这一种形式,除了加速度作为参考量之外,还可以是位移等,本实施例不作限定。
IR传感器的发射器通过小孔向外发射红外光,如果没有遮挡,则其接收器无法接受到反射回来的光,如果有遮挡,则接收器可以接收到反射回来的光。IR传感器的输出信号可以是电压信号,也可以是与电压信号对应的数字信号,例如,与MCU连接时,将模拟信号转换为数字信号,供MCU识别。
需要说明的是,本实施例中,对于GMR磁传感器和IR传感器的开启时刻并不作限定,可以是在头戴式设备开机后,同时开启,或者是在某一触发事件后开启,也可以是先开启GMR磁传感器,当满足一定要求时,再开启IR传感器以节约功耗。另外,在开启IR传感器之前,还需要设置IR传感器 的采样频率。
可以理解的是,不同的头戴式设备的结构不同,那么GMR磁传感器和IR传感器的设置位置也不同,需要根据实际结构确定,本实施例不作限定。
S11:判断参考量和输出信号是否同时满足预设的要求,如果是,则进入S12。
可以理解的是,本实施例中预设的要求既包括了对参考量的要求,又包含了输出信号的要求,只有在两个参数都满足要求时,才认为是同时满足预设的要求,以此能够有效降低通过单个IR传感器进行佩戴事件检测所带来的准确性低的问题。在一种应用场景中,如果用户将头戴式设备拿在手里把玩,正好对设备本体上的小孔产生了遮挡,此时IR传感器的输出信号满足被遮挡的要求,但是,由于头戴式设备并没有固定,因此,对应的表征所处位置的参考量也没有固定,不满足固定的要求,因此,不会确定为参考量和输出信号同时满足预设的要求,故不会确定为头戴式设备处于佩戴状态。
可以理解的是,预设的要求需要根据实际情况确定,可以是参考量和输出信号在一段时间内的变化情况,还可以参考量和输出信号对应的数值的要求。
S12:确定头戴式设备处于佩戴状态。
在具体实施中,当MCU判断出用户佩戴头戴式设备耳机后,可以根据预先设置的控制逻辑控制相应的器件执行相应的功能,例如,当头戴式设备为TWS耳机时,控制蓝牙模块进行佩戴以与移动终端建立通信连接。本实施例对于检测出佩戴事件后的控制逻辑不作限定。
本实施例提供的应用于头戴式设备的佩戴检测方法,该头戴式设备包括GMR磁传感器和IR传感器,其中,GMR磁传感器将采集的信号输出以便MCU计算出表征头戴式设备耳机所处位置的参考量,IR传感器将采集的信号输出以便MCU对输出信号进行判断,只有在参考量和输出信号同时满足预设的要求时,才确定头戴式设备处于佩戴状态。由此可见,应用于该技术方案,一方面,加入了GMR磁传感器,其检测精度高,且不易受外界干扰因素的影响,另一方面,通过GMR磁传感器和IR传感器相配合的方式,能够进一步提高检测的准确性,从而提高用户的体验感。
在上述实施例的基础上,作为优选地实施方式,获取GMR磁传感器采集的信号以计算出表征头戴式设备所处位置的参考量包括:
获取GMR磁传感器的三轴数据。
根据三轴数据计算出对应的加速度以作为参考量。
本实施例中,通过GMR磁传感器的三轴数据都参与到运算中,三轴数据可以准确反映头戴式设备所处位置,但是考虑到器件本身的精度和用户的实际使用情况,并没有直接对比三轴数据,而是通过三轴数据计算出对应的加速度作为参考量进行对比,以此提高检测的准确性。
进一步的,S11包括:
S110:判断当前时刻的加速度与上一采集时刻的加速度相比是否发生变化,如果否,则进入S111。
S111:判断输出信号是否在阈值范围内,如果是,则进入S12。
图2为本申请实施例提供的另一种应用于头戴式设备的佩戴检测方法的流程图。如图2所示,本实施例中,通过加速度是否发生变化来确定GMR磁传感器的位置是否发生变化,在未发生变化时,认为其位置固定,再去判断IR传感器的输出信号是否在阈值范围内。可以理解的是,阈值范围可以通过多次试验而得到,在一种具体实施方式中,阈值范围可以为[0x0e,0x0f]。
可以理解的是,如果步骤S110的判断结果为是,则表明GMR磁传感器的位置并未固定,也不需要再进行IR传感器的输出信号的判断,因此,返回S10即可。同样的,S111的判断结果为否时,则表明输出信号不再阈值范围内,因此,返回S10即可。
在上述实施例中,并不限定IR传感器的开启时间,但是为了降低功耗,本实施例中,先开启GMR磁传感器,以便GMR磁传感器采集信号,MCU再依据该信号进行加速度的计算,如果当前时刻的加速度与上一采集时刻的加速度相比未发生变化,则再开启IR传感器以进入获取IR传感器的输出信号的步骤。如果当前时刻的加速度与上一采集时刻的加速度相比发生变化,则可以保持IR传感器关闭。
由于GMR磁传感器具有低功耗的特点,所以即使GMR磁传感器开启, 头戴式设备的整体功耗也会较低。另一方面,IR传感器关闭后,MCU的计算量也会相应降低,节约资源。
在上述实施例的基础上,IR传感器的个数不作限定,但是考虑到单个IR传感器的可靠性较低,并且每个用户的身体部位也不同,本实施例中,头戴式设备为无线蓝牙耳机,且设置两个IR传感器,分别设置在耳机头和耳机杆上。
可以理解的是,本实施例中的无线蓝牙耳机可以是单只耳机,也可以是TWS耳机。以TWS耳机为例,其可以包括一个主耳和一个从耳,从器件上划分,除了包括TWS耳机已有的器件(MCU、通信模块、扬声器、麦克风等)外,还包括GMR磁传感器和IR传感器。需要说明的是,GMR磁传感器通常是设置在外壳的内部,防止误触碰而导致移位,外壳具有小孔,用于IR传感器向外发射红外光和接收红外光。可以理解的是,IR传感器的具体设置位置可以根据TWS耳机的实际情况确定。另外,由于TWS耳机的工作原理是主耳与移动终端连接,获取音频信号,再由主耳将音频信号发送至从耳,从耳实现两支耳机的播放,因此,通常情况下,GMR磁传感器和IR传感器是设置在主耳上,或者主耳和从耳同时设置。如果IR传感器都设置在主耳上,则可以分别设置在耳机头和耳机杆。
图3为本申请实施例提供的一种TWS耳机的主耳的结构示意图。如图3所示,主耳包括耳机头1和耳机杆2,耳机头1上设置有一个IR传感器3,耳机杆2上设置有一个IR传感器3。耳机头1上还设置有GMR磁传感器4扬声器5等。
当IR传感器为两个时,需要两个IR传感器的输出信号均在阈值范围内才认为是输出信号在阈值范围内。需要说明的是,还可以在从耳设置IR传感器。
进一步的,为了防止某一次IR传感器的输出信号有误,作为优选地实施方式,判断输出信号是否在阈值范围内包括:
判断两个IR传感器各自的输出信号是否连续n次均在阈值范围内,如果是,则确定输出信号在阈值范围内,否则,确定输出信号不在阈值范围内。
可以理解的是,以上实施例中,只要IR传感器的输出信号有一次在阈值范围内即可,故无法排除用户偶然遮挡而造成误判的问题,本实施例中,需要连续n次循环判断,如果两个传感器各自连续n次的输出信号在阈值范围内,则才最终确定IR传感器的输出信号在阈值范围内,才确定TWS耳机处于佩戴状态。在具体实施中,n的取值可以根据实际情况确定,其中一种优选的实施方式是n=5。
上文中对于应用于头戴式设备的佩戴检测方法对应的实施例进行了详细描述,为了让本领域技术人员进一步理解该方法的应用场景的实现过程,本文还给出具体应用场景实施例加以说明,具体以头戴式设备为TWS耳机为例。
当用户取出TWS耳机后,开机使得系统进行初始化,初始化的过程包括:设置IR传感器的采样频率(例如,50Hz)、设置IR阈值范围([0x0e,0x0f])、设置采集的间隔(例如,100ms)等。如果用户将TWS耳机拿在手里,TWS耳机中的GMR磁传感器的位置不固定,故其采集的三轴数据对应的加速度是变化的,所以保持IR传感器关闭。当用户佩戴上TWS耳机后,GMR磁传感器的位置固定,故其采集的三轴数据对应的加速度不再变化,所以MCU开启两个IR传感器,根据设置IR传感器的采样频率进行信号采集,此时,MCU判断两个IR传感器的输出信号均连续5次在IR阈值范围内,故确定TWS耳机处于佩戴状态,以便根据预设的控制逻辑进行其它操作。
在上述实施例中,对于应用于头戴式设备的佩戴检测方法进行了详细描述,本申请还提供应用于头戴式设备的佩戴检测装置对应的实施例。需要说明的是,本申请从两个角度对装置部分的实施例进行描述,一种是基于功能模块的角度,另一种是基于硬件的角度。
基于功能模块的角度,本实施例提供一种与该方法对应的应用于头戴式设备的佩戴检测装置。同样的,头戴式设备包括GMR磁传感器和IR传感器。图4为本申请实施例提供的一种应用于头戴式设备的敲击事件的检测装置的结构图。如图4所示,该装置包括:
获取模块10,用于获取GMR磁传感器采集的信号以计算出表征头戴式设备所处位置的参考量,以及获取IR传感器的输出信号;
判断模块11,用于判断参考量和输出信号是否同时满足预设的要求;
确定模块12,用于如果是,则确定头戴式设备处于佩戴状态。
由于装置部分的实施例与方法部分的实施例相互对应,因此装置部分的实施例请参见方法部分的实施例的描述,这里暂不赘述。
本实施例提供的应用于头戴式设备的佩戴检测装置,该头戴式设备包括GMR磁传感器和IR传感器,其中,GMR磁传感器将采集的信号输出以便MCU计算出表征头戴式设备耳机所处位置的参考量,IR传感器将采集的信号输出以便MCU对输出信号进行判断,只有在参考量和输出信号同时满足预设的要求时,才确定头戴式设备处于佩戴状态。由此可见,应用于该技术方案,一方面,加入了GMR磁传感器,其检测精度高,且不易受外界干扰因素的影响,另一方面,通过GMR磁传感器和IR传感器相配合的方式,能够进一步提高检测的准确性,从而提高用户的体验感。
基于硬件的角度,本实施例提供一种应用于头戴式设备的佩戴检测装置,包括存储器20,用于存储计算机程序;
处理器21,用于执行计算机程序时实现上述实施例提供的应用于头戴式设备的佩戴检测方法的步骤。
图5为本申请另一实施例提供的应用于头戴式设备的佩戴检测装置的结构图。其中,处理器21可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器21可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)中的至少一种硬件形式来实现。处理器21也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器21可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器21还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器20可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器20还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。本实施例中,存储器20至少用于存储以下计算机程序201,其中,该计算机程序被处理器21加载并执行之后,能够实现前述任一实施例公开的应用于头戴式设备的佩戴检测方法的相关步骤。另外,存储器20所存储的资源还可以包括操作系统202和数据203等,存储方式可以是短暂存储或者永久存储。其中,操作系统202可以包括Windows、Unix、Linux等。数据203可以包括但不限于GMR磁传感器采集的信号、IR传感器输出的信号等。
在一些实施例中,应用于头戴式设备的佩戴检测装置还可包括有显示屏22、输入输出接口23、通信接口24、电源25以及通信总线26。
本领域技术人员可以理解,图5中示出的结构并不构成对应用于头戴式设备的佩戴检测装置的限定,可以包括比图示更多或更少的组件。
本实施例提供的应用于头戴式设备的佩戴检测装置,在处理器执行存储器存储的计算机程序时,控制GMR磁传感器将采集的信号输出以便MCU计算出表征头戴式设备所处位置的参考量,控制IR传感器将采集的信号输出以便MCU对输出信号进行判断,只有在参考量和输出信号同时满足预设的要求时,才确定头戴式设备处于佩戴状态。由此可见,一方面,加入了GMR磁传感器,其检测精度高,且不易受外界干扰因素的影响,另一方面,通过GMR磁传感器和IR传感器相配合的方式,能够进一步提高检测的准确性,从而提高用户的体验感。
此外,本申请还一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上述任一实施例提供的应用于头戴式设备的佩戴检测方法的步骤。
可以理解的是,如果上述实施例中的方法以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,执行本申请各个实施例所述方法的全部或 部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例提供的计算机可读存储介质,存储有计算机程序,该程序被运行时,GMR磁传感器将采集的信号输出以便MCU计算出表征头戴式设备所处位置的参考量,IR传感器将采集的信号输出以便MCU对输出信号进行判断,只有在参考量和输出信号同时满足预设的要求时,才确定头戴式设备处于佩戴状态。由此可见,应用于该技术方案,一方面,加入了GMR磁传感器,其检测精度高,且不易受外界干扰因素的影响,另一方面,通过GMR磁传感器和IR传感器相配合的方式,能够进一步提高检测的准确性,从而提高用户的体验感。
最后,本申请还提供一种头戴式设备,该头戴式设备为无线蓝牙耳机,该无线蓝牙耳机包括耳机本体,还包括GMR磁传感器和IR传感器,GMR磁传感器和IR传感器均与耳机本体中的MCU连接,MCU用于获取GMR磁传感器采集的信号以计算出表征无线蓝牙耳机所处位置的参考量,以及获取IR传感器的输出信号,并判断参考量和输出信号是否同时满足预设的要求,如果是,则确定无线蓝牙耳机处于佩戴状态。
为了清楚说明无线蓝牙耳机的具体结构,本实施例以TWS耳机为例说明。图6为本申请实施例提供的一种TWS耳机的结构图。可以理解的是,耳机本体可以包括MCU30、充电(Charger)器件31、麦克风32、NorFlash器件33、LED34、扬声器5等。MCU30通过I2C通信协议与GMR磁传感器4、和IR传感器3通信以进行佩戴检测,MCU30通过GPIO控制Charger器件31和LED34,分别进行电量信息采集上报和耳机处于不同状态下的呼吸灯显示情况,MCU30通过SPI通信协议控制NorFlash器件33进行信息存储,增加TWS耳机的存储功能。MCU30通过GPIO控制麦克风32和扬声器5进行音频播放和音频采集。
本实施例提供的头戴式设备为无线蓝牙耳机,该耳机包括GMR磁传感器和IR传感器,其中,GMR磁传感器将采集的信号输出以便MCU计算出表征无线蓝牙耳机所处位置的参考量,IR传感器将采集的信号输出以便MCU 对输出信号进行判断,只有在参考量和输出信号同时满足预设的要求时,才确定无线蓝牙耳机处于佩戴状态。由此可见,应用于该技术方案,一方面,加入了GMR磁传感器,其检测精度高,且不易受外界干扰因素的影响,另一方面,通过GMR磁传感器和IR传感器相配合的方式,能够进一步提高检测的准确性,从而提高用户的体验感。
以上对本申请所提供的头戴式设备及其佩戴检测方法、装置、介质进行了详细介绍。说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (11)

  1. 一种应用于头戴式设备的佩戴检测方法,其特征在于,所述头戴式设备包括GMR磁传感器和IR传感器,该方法包括:
    获取所述GMR磁传感器采集的信号以计算出表征头戴式设备所处位置的参考量,以及获取所述IR传感器的输出信号;
    判断所述参考量和所述输出信号是否同时满足预设的要求;
    如果是,则确定所述头戴式设备处于佩戴状态。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述GMR磁传感器采集的信号以计算出表征头戴式设备所处位置的参考量包括:
    获取所述GMR磁传感器的三轴数据;
    根据所述三轴数据计算出对应的加速度以作为所述参考量。
  3. 根据权利要求2所述的方法,其特征在于,所述判断所述参考量和所述输出信号是否同时满足预设的要求包括:
    判断当前时刻的加速度与上一采集时刻的加速度相比是否发生变化;
    如果未发生变化,则判断所述输出信号是否在阈值范围内;
    如果在所述阈值范围内,则确定所述参考量和所述输出信号同时满足预设的要求。
  4. 根据权利要求3所述的方法,其特征在于,如果当前时刻的加速度与上一采集时刻的加速度相比未发生变化,则再开启所述IR传感器以进入所述获取所述IR传感器的输出信号的步骤。
  5. 根据权利要求1-4任意一项所述的方法,其特征在于,所述头戴式设备为无线蓝牙耳机,所述IR传感器为两个,分别设置在无线蓝牙耳机中的耳机头和耳机杆。
  6. 根据权利要求5所述的方法,其特征在于,所述无线蓝牙耳机为TWS耳机,所述IR传感器为两个,分别设置在TWS耳机中主耳的耳机头和耳机杆。
  7. 根据权利要求6所述的方法,其特征在于,所述判断所述输出信号是否在阈值范围内包括:
    判断两个所述IR传感器各自的输出信号是否连续n次均在所述阈值范围内,如果是,则确定所述输出信号在所述阈值范围内,否则,确定所述输出 信号不在所述阈值范围内;其中,n为大于1的正整数。
  8. 一种应用于头戴式设备的佩戴检测装置,其特征在于,所述头戴式设备包括GMR磁传感器和IR传感器,该装置包括:
    获取模块,用于获取所述GMR磁传感器采集的信号以计算出表征头戴式设备所处位置的参考量,以及获取所述IR传感器的输出信号;
    判断模块,用于判断所述参考量和所述输出信号是否同时满足预设的要求;
    确定模块,用于如果是,则确定所述头戴式设备处于佩戴状态。
  9. 一种应用于头戴式设备的佩戴检测装置,其特征在于,包括存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至7任一项所述的应用于头戴式设备的佩戴检测方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的应用于头戴式设备的佩戴检测方法的步骤。
  11. 一种头戴式设备,所述头戴式设备为无线蓝牙耳机,所述无线蓝牙耳机包括耳机本体,其特征在于,还包括GMR磁传感器和IR传感器,所述GMR磁传感器和所述IR传感器均与所述耳机本体中的MCU连接,所述MCU用于获取所述GMR磁传感器采集的信号以计算出表征无线蓝牙耳机所处位置的参考量,以及获取所述IR传感器的输出信号,并判断所述参考量和所述输出信号是否同时满足预设的要求,如果是,则确定所述无线蓝牙耳机处于佩戴状态。
PCT/CN2019/130292 2019-11-29 2019-12-31 一种头戴式设备及其佩戴检测方法、装置、介质 WO2021103266A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/624,169 US11832047B2 (en) 2019-11-29 2019-12-31 Head-mounted device, wearing detection method and apparatus therefor, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911204647.5 2019-11-29
CN201911204647.5A CN110888620A (zh) 2019-11-29 2019-11-29 一种头戴式设备及其佩戴检测方法、装置、介质

Publications (1)

Publication Number Publication Date
WO2021103266A1 true WO2021103266A1 (zh) 2021-06-03

Family

ID=69749570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130292 WO2021103266A1 (zh) 2019-11-29 2019-12-31 一种头戴式设备及其佩戴检测方法、装置、介质

Country Status (3)

Country Link
US (1) US11832047B2 (zh)
CN (1) CN110888620A (zh)
WO (1) WO2021103266A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766548B (zh) * 2020-05-29 2023-03-24 维沃移动通信有限公司 信息提示方法、装置、电子设备及可读存储介质
CN111643887B (zh) * 2020-06-08 2023-07-14 歌尔科技有限公司 头戴设备及其数据处理方法、计算机可读存储介质
CN111885446B (zh) * 2020-07-08 2022-09-27 深迪半导体(绍兴)有限公司 耳机、电子设备及耳机入耳检测方法
CN112449297B (zh) * 2020-10-19 2022-04-29 安克创新科技股份有限公司 一种耳机佩戴状态的检测方法
CN113342301A (zh) * 2021-05-18 2021-09-03 安克创新科技股份有限公司 一种音频播放方法及穿戴设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105848029A (zh) * 2016-03-31 2016-08-10 乐视控股(北京)有限公司 耳机及其控制方法及装置
US20170195772A1 (en) * 2016-01-05 2017-07-06 Samsung Electronics Co., Ltd. Audio output apparatus and method for operating audio output apparatus
CN109168102A (zh) * 2018-11-22 2019-01-08 歌尔科技有限公司 一种耳机佩戴状态检测方法、装置及耳机
CN110213685A (zh) * 2019-05-11 2019-09-06 出门问问信息科技有限公司 耳机状态检测装置、耳机状态检测方法及耳机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016018432A (ja) * 2014-07-09 2016-02-01 ローム株式会社 ユーザインタフェイス装置
CN104699239B (zh) * 2014-12-29 2018-06-05 北京智谷睿拓技术服务有限公司 基于可穿戴设备的交互方法及交互装置、可穿戴设备
US20160278647A1 (en) 2015-03-26 2016-09-29 Intel Corporation Misalignment detection of a wearable device
CN105758452B (zh) * 2016-02-04 2018-05-15 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和装置
CN106291121B (zh) 2016-07-29 2023-10-13 歌尔股份有限公司 一种可穿戴设备的佩戴状态检测方法和可穿戴设备
CN106355828A (zh) * 2016-08-26 2017-01-25 深圳市沃特沃德股份有限公司 检测穿戴设备脱落的方法和装置
KR102534724B1 (ko) * 2016-11-10 2023-05-22 삼성전자주식회사 전자 장치 및 그의 동작 방법
CN107577410A (zh) * 2017-09-01 2018-01-12 歌尔科技有限公司 穿戴设备显示屏的点亮方法及装置
CN108712697B (zh) * 2018-05-29 2020-02-14 歌尔科技有限公司 无线耳机及其工作模式确定方法、装置、设备、存储介质
CN108966087B (zh) * 2018-07-26 2020-11-24 歌尔科技有限公司 一种无线耳机的佩戴情况检测方法、装置及无线耳机
CN110150781A (zh) * 2018-11-29 2019-08-23 深圳来啊体育文化科技有限公司 一种头盔佩戴监测装置、在线监控头盔及安全监测系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170195772A1 (en) * 2016-01-05 2017-07-06 Samsung Electronics Co., Ltd. Audio output apparatus and method for operating audio output apparatus
CN105848029A (zh) * 2016-03-31 2016-08-10 乐视控股(北京)有限公司 耳机及其控制方法及装置
CN109168102A (zh) * 2018-11-22 2019-01-08 歌尔科技有限公司 一种耳机佩戴状态检测方法、装置及耳机
CN110213685A (zh) * 2019-05-11 2019-09-06 出门问问信息科技有限公司 耳机状态检测装置、耳机状态检测方法及耳机

Also Published As

Publication number Publication date
CN110888620A (zh) 2020-03-17
US11832047B2 (en) 2023-11-28
US20220353601A1 (en) 2022-11-03

Similar Documents

Publication Publication Date Title
WO2021103266A1 (zh) 一种头戴式设备及其佩戴检测方法、装置、介质
US10154332B2 (en) Power management for wireless earpieces utilizing sensor measurements
WO2017067410A1 (zh) 耳机控制电路及方法、耳机以及音频输出装置及方法
CN102316394B (zh) 蓝牙设备和利用该蓝牙设备的音频播放方法
CN108810788B (zh) 一种无线耳机的佩戴情况检测方法、装置及无线耳机
WO2020108059A1 (zh) 一种耳机及其佩戴检测装置
KR102275040B1 (ko) 전자 장치 및 전자 장치의 전류소모 제어방법
JP2015519633A (ja) 端末制御方法および装置、ならびに端末
EP3202127B1 (en) Electronics interface for device headset jack
CN111768600A (zh) 一种低头检测方法、装置及无线耳机
WO2020228307A1 (zh) 一种跌倒检测方法、装置及可穿戴式设备
CN109327758A (zh) 一种无线播放设备及其播放控制方法和装置
CN107182011B (zh) 音频播放方法及系统、移动终端、WiFi耳机
WO2021196989A1 (zh) 睡眠状态的判断方法、系统、穿戴设备及存储介质
CN208369803U (zh) 一种耳机
CN110916675A (zh) 一种头戴式设备及其跌倒检测方法、装置
CN209572134U (zh) 一种蓝牙耳机
CN208798168U (zh) 一种耳机
CN110987154B (zh) 一种敲击事件的检测方法、装置、介质及头戴式设备
WO2023029143A1 (zh) 一种耳机的连接设备切换方法、系统及相关组件
CN110209543A (zh) 一种耳机插座的检测方法及终端
US11962985B2 (en) Interrupt based pairing for wireless audio devices
US11467697B2 (en) Electronic device and method for distinguishing between different input operations
CN114003149A (zh) 一种电子设备控制方法、装置、电子设备及存储介质
TWI628962B (zh) 音頻播放系統及其應用之耳機、自動控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953773

Country of ref document: EP

Kind code of ref document: A1