WO2021103247A1 - 一种大光圈变形镜头 - Google Patents

一种大光圈变形镜头 Download PDF

Info

Publication number
WO2021103247A1
WO2021103247A1 PCT/CN2019/128519 CN2019128519W WO2021103247A1 WO 2021103247 A1 WO2021103247 A1 WO 2021103247A1 CN 2019128519 W CN2019128519 W CN 2019128519W WO 2021103247 A1 WO2021103247 A1 WO 2021103247A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
anamorphic
lenses
aperture
group
Prior art date
Application number
PCT/CN2019/128519
Other languages
English (en)
French (fr)
Inventor
李�杰
吴伟
李武林
Original Assignee
广东思锐光学股份有限公司
中山市亚中光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东思锐光学股份有限公司, 中山市亚中光电科技有限公司 filed Critical 广东思锐光学股份有限公司
Priority to EP19886053.8A priority Critical patent/EP3848741A4/en
Priority to US16/753,392 priority patent/US20220050271A1/en
Priority to KR1020207014527A priority patent/KR102377236B1/ko
Priority to JP2020526120A priority patent/JP2022521107A/ja
Priority to US16/889,678 priority patent/US10831002B1/en
Priority to US17/101,219 priority patent/US11249288B2/en
Publication of WO2021103247A1 publication Critical patent/WO2021103247A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143505Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged --+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/006Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element at least one element being a compound optical element, e.g. cemented elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/08Anamorphotic objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/06Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe involving anamorphosis

Definitions

  • This application relates to the field of lens technology, and in particular to a 35mm focal length half-frame large aperture anamorphic lens.
  • the conventional shooting ratio of mobile phones, tablets, cameras and other equipment on the market is 16:9, and the ratio of widescreen video with cinematic feeling is 2.4:1. Therefore, users need to crop the captured images through manual editing and digital cropping. However, the pixels of the picture will be sacrificed when cropping.
  • Some professional anamorphic cinema lens brands such as: Germany-Hawk (Hawk), England-Cooke (Cook), Germany-Alai (ARRI), the United States-Panavision (Panavision), France-Angen (Angenieux) and
  • the SLR in Hong Kong is usually for professional customers, and the price is generally tens of thousands of dollars or more, and the quality of the anamorphic lens itself is several thousand grams.
  • the technical problem to be solved by this application is to overcome the defect that the professional large-aperture anamorphic lens in the prior art has a relatively high quality and a higher price and is not suitable for use by ordinary users, so as to provide a large-aperture anamorphic lens.
  • a large-aperture anamorphic lens comprising an anamorphic group composed of cylindrical lenses and an imaging group composed of spherical lenses arranged in sequence from the object side to the image side.
  • the anamorphic group includes a first lens arranged in sequence from the object side to the image side.
  • the lens, the second lens and the third lens, the first lens and the second lens are cylindrical lenses with negative refractive power, and the third lens is a cylindrical lens with positive refractive power;
  • the imaging group is directed along the optical path In the direction of the image side, the fourth lens, ..., the Nth lens are arranged in sequence; wherein, N is a natural number greater than or equal to 10;
  • the power distribution of the lenses constituting the deformation group and the lenses constituting the imaging group satisfies the following relationship:
  • f represents the focal length of the lens in the X direction, where the subscript number of f represents the number of the twelve lenses constituting the anamorphic lens, that is, f 1 is the focal length of the first lens in the X direction, and f 1-N is the first lens to the first lens.
  • the combined focal length of the N lens in the X direction of the N lens in total.
  • the imaging group is provided with a fourth lens, a fifth lens, a sixth lens, a seventh lens, an eighth lens, a ninth lens, a tenth lens, an eleventh lens, and a fourth lens in sequence along the direction in which the optical path points to the image side. Twelve lenses.
  • the power distribution of the lenses constituting the deformation group and the lenses constituting the imaging group also satisfies the following relationship:
  • f represents the focal length of the lens in the X direction, where the subscript number of f represents the number of the twelve lenses constituting the anamorphic lens, that is, f 1 is the focal length of the first lens in the X direction, and f 1-12 are the first lens to the first lens.
  • the combined focal length of 12 lenses in the X direction of a total of 12 lenses.
  • the fourth lens, the seventh lens, the eighth lens, and the twelfth lens are all negative refractive power spherical lenses
  • the fifth lens, the sixth lens, and the The ninth lens, the tenth lens and the eleventh lens are all positive refractive power spherical lenses.
  • the second lens and the third lens are cemented together.
  • sixth lens and the seventh lens are cemented together.
  • the eighth lens and the ninth lens are cemented together.
  • the eleventh lens and the twelfth lens are cemented together.
  • the length of the anamorphic lens is less than 115 mm, and the large outer diameter of the anamorphic lens is less than 80 mm.
  • the focal length of the anamorphic lens in the Y direction is 35mm, and the aperture is 1.8.
  • the mass of the anamorphic lens is less than 700g.
  • the large-aperture anamorphic lens provided by this application includes an anamorphic group composed of cylindrical lenses and an imaging group composed of spherical lenses that are sequentially arranged from the object side to the image side, and the anamorphic group includes sequentially from the object side to the image side.
  • the first lens, the second lens and the third lens are provided, the first lens and the second lens are negative refractive power cylindrical lenses, and the third lens is a positive refractive power cylindrical lens.
  • the horizontally entering light is "compressed", while the vertical entering light remains unchanged, and then comprehensively rectifies the light through the rear imaging group, thereby reducing the horizontal shot of the lens.
  • the field angle increases, so that the width of the actual shooting picture becomes larger. No need for post-editing, and 2.4:1 widescreen video or photos can be obtained without sacrificing pixels.
  • the anamorphic lens of this solution will have optical characteristics such as elliptical out-of-focus flare and sci-fi line flare in addition to the anamorphic function.
  • the power distribution of the lenses constituting the anamorphic group and the lenses constituting the imaging group satisfies the following relationship: 300 ⁇ abs(f 1-3 /f 4-12 ); 30mm ⁇ f 4-12 ⁇ 40mm;1.20 ⁇ f 4-12 /f 1-12 ⁇ 1.50;-1.40 ⁇ f 2-3 /f 1 ⁇ -1.30;1.50 ⁇ f 4-7 /f 4-12 ⁇ 2.60 ;0.60 ⁇ f 8-12 /f 4-12 ⁇ 0.80;0.90 ⁇ f 10-12 /f 8-12 ⁇ 1.30;
  • f represents the focal length of the lens in the X direction
  • the number behind f represents the number of the twelve lenses that constitute the anamorphic lens, that is, f 1 is the focal length of the first lens in the X direction, and f 1-12 are the first lens to the twelfth lens.
  • a total of 12 lenses have combined focal lengths in the X direction, and the rest is the same.
  • Fig. 1 is an X-direction optical structure diagram of the first embodiment of this application
  • Fig. 2 is a Y-direction optical structure diagram of the first embodiment of this application.
  • FIG. 3 is an X-direction optical structure diagram of the second embodiment of this application.
  • FIG. 4 is a Y-direction optical structure diagram of the second embodiment of this application.
  • FIG. 5 is an X-direction optical structure diagram of the third embodiment of this application.
  • FIG. 6 is a Y-direction optical structure diagram of the third embodiment of this application.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above terms in this application can be understood under specific circumstances.
  • the anamorphic lens consists of twelve lenses arranged along the optical path from the object side to the image side, namely the first lens 1, the second lens 2 , Third lens 3, fourth lens 4, fifth lens 5, sixth lens 6, seventh lens 7, eighth lens 8, ninth lens 9, tenth lens 10, eleventh lens 11, and twelfth lens Lens 12.
  • the three lenses of the first lens 1, the second lens 2, and the third lens 3 are cylindrical lenses, the second lens 2 and the third lens 3 are cemented together, and the three cylindrical lenses constitute the anamorphic group 13.
  • the three cylindrical lenses constitute the anamorphic group 13.
  • the lens constitutes the imaging group.
  • the first lens 1 is a cylindrical lens with negative refractive power
  • the second lens 2 is a cylindrical lens with negative refractive power
  • the third lens 3 is a cylindrical lens with positive refractive power.
  • the fourth lens 4, the fifth lens 5, the sixth lens 6, the seventh lens 7, the eighth lens 8, the ninth lens 9, the tenth lens 10, the eleventh lens 11 and the twelfth lens 12 are spherical lens.
  • the fourth lens 4, the seventh lens 7, the eighth lens 8, and the twelfth lens 12 are all negative refractive power spherical lenses.
  • the fifth lens 5, the sixth lens 6, the ninth lens 9, the tenth lens 10, and the The eleven lenses 11 are all spherical lenses with positive refractive power.
  • the sixth lens 6 and the seventh lens 7 are cemented together, the eighth lens 8 and the ninth lens 9 are cemented together, and the eleventh lens 11 and the twelfth lens 12 are cemented together.
  • the cemented lenses are regarded as a whole.
  • the second lens 2 and the third lens 3 are cemented together
  • the sixth lens 6 and the seventh lens 7 are cemented together
  • the eighth lens 8 and the ninth lens are cemented together.
  • the lens 9 is cemented together
  • the eleventh lens 11 and the twelfth lens 12 are cemented together. Therefore, the anamorphic lens of this embodiment consists of 12 elements in 8 groups.
  • the bonding method is bonding.
  • the above-mentioned combination method is changed, such as lamination, integral molding, etc., and then the combined lens shape is adaptively changed. , Should also be included in the scope of protection of this application.
  • each lens or lens group satisfies the following mathematical relationship:
  • f represents the focal length of the lens in the X direction
  • the number behind f represents the number of the twelve lenses that constitute the anamorphic lens, that is, f 1 is the focal length of the first lens in the X direction, and f 1-12 are the first lens to the twelfth lens.
  • a total of 12 lenses have combined focal lengths in the X direction, and the rest is the same.
  • the first to third lenses are cylindrical lenses
  • the fourth to twelfth lenses are spherical lenses.
  • the angle of view of the 35mm focal length 1.8 aperture lens is: V (vertical) 25.42°, H (horizontal) 37.39°.
  • the angle of view of the 35mm focal length 1.8 aperture lens is: V (vertical) 25.42°, H (horizontal) 49.85°.
  • the actual wide format ratio is in the range of 2.35-2.40, so the distortion ratio is 1.33, that is, the horizontal field of view angle is increased by 33%, thus realizing 1.33X distortion shooting.
  • the length of the anamorphic lens itself is less than 115mm, the maximum outer diameter is less than 80mm, and the mass is less than 700g, which is much smaller than a photographic and camera interchangeable lens of the same specification, and at the same time much smaller than a professional movie anamorphic lens of the same specification on the market.
  • each lens is made of optical glass.
  • the lens of the present application can be designed to be compatible with the bayonet of cameras of various brands on the market according to actual use requirements, so as to realize personalized customization and universal coordination.
  • this embodiment provides a 35mm focal length half-frame large aperture anamorphic lens.
  • the difference from the first embodiment is that the original cemented lens of the eleventh lens 11 and the twelfth lens 12 is replaced It is a positive spherical lens.
  • this embodiment provides a 35mm focal length half-frame large aperture anamorphic lens.
  • the difference from the first embodiment is that the fourth lens 4 with negative refractive power is replaced with a spherical lens with positive refractive power. .
  • the cemented sixth lens 6 and the seventh lens 7 can be divided into two independent lenses.
  • the fourth lens 4 and the fifth lens 5 can be combined into one lens.
  • the cemented eighth lens 8 and the ninth lens 9 can be divided into two independent lenses.
  • the cemented eleventh lens 11 and the twelfth lens 12 can be combined into one lens.
  • the fifth lens 5 and the eleventh lens 10 are simply split into two or more lenses, as long as the refractive power of the split lens group is within the scope of the original solution Inner is an innovation with no substance.

Abstract

一种大光圈变形镜头,包括从物方到像方依次设置的由柱面透镜组成的变形组和由球面透镜组成的成像组,变形组包括从物方到像方依次设置的第一透镜(1)、第二透镜(2)和第三透镜(3),第一透镜(1)和第二透镜(2)为负光焦度柱面透镜,第三透镜(3)为正光焦度柱面透镜。利用构成变形组的柱面透镜的光学特性,将进入的水平光线进行"压缩",而垂直方向视场进入的光线保持不变,再经过后面成像组对光线进行综合矫正,水平视场角度增加了33%,从而实现1.33X变形拍摄。并且本方案的镜头体积更小,重量更轻,成本相对更低,更能满足大部分普通用户的使用需求。

Description

一种大光圈变形镜头 技术领域
本申请涉及镜头技术领域,具体涉及一种35mm焦距半画幅大光圈变形镜头。
背景技术
随着互联网技术的飞速发展,拍照和视频成为普通消费者生活必不可少的一部分。近几年随着5G等技术推动,Vlog等视频分享越来越多,使用手机、相机等工具拍摄短片、微电影人群越来越多。
然而目前市面上手机、平板电脑、相机等设备常规拍摄比例为16:9,而具有电影感的宽荧屏视频的比例为2.4:1。因此,用户需要通过人工剪辑、数码裁剪的方式,将拍摄的画面进行裁剪。但是裁剪时会牺牲画面的像素。
一些专业变形电影镜头品牌如:德国-霍克(Hawk)、英国-库克(Cooke)、德国-阿莱(ARRI)、美国-潘那维申(Panavision)、法国-安琴(Angenieux)和香港的SLR,通常面向专业级别的客户,价格一般都是几万美金甚至更贵、并且变形镜头本身质量都在数千克。
价格昂贵质量较大的专业变形镜头不适合普通用户使用。因此如何将大光圈变形镜头体积做小、重量做轻是目前需要解决的技术问题。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中专业大光圈变形镜头质量较大价格较高而不适合普通用户使用的缺陷,从而提供一种大光圈变形镜头。
为解决上述技术问题,本申请的技术方案如下:
一种大光圈变形镜头,包括从物方到像方依次设置的由柱面透镜组成的变形组和由球面透镜组成的成像组,所述变形组包括从物方到像方依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜和所述第二透镜为负光焦度柱面透镜,所述第三透镜为正光焦度柱面透镜;所述成像组沿光路指向像方的方向依次设置第四透镜、...、第N透镜;其中,N为大于或等于10的自然数;
构成所述变形组的透镜以及构成所述成像组的透镜的光焦度分配满足如下关系:
300<abs(f 1-3/f 4-N);
30mm<f 4-N<40mm;
1.20<f 4-N/f 1-N<1.50;
其中,f均表示镜头的X方向焦距,其中f的下标数字代表构成变形镜头的十二枚透镜的编号,即f 1为第一透镜X方向焦距,f 1-N为第一透镜~第N透镜合计N枚透镜的X方向组合焦距。
进一步地,所述成像组沿光路指向像方的方向依次设置第四透镜、第五透镜、第六透镜、第七透镜、第八透镜、第九透镜、第十透镜、第十一透镜和第十二透镜。
进一步地,构成所述变形组的透镜以及构成所述成像组的透镜的光焦度分配还满足如下关系:
-1.40<f 2-3/f 1<-1.25;
1.50<f 4-7/f 4-12<2.60;
0.60<f 8-12/f 4-12<0.80;
0.90<f 10-12/f 8-12<1.30;
其中,f均表示镜头的X方向焦距,其中f的下标数字代表构成变形镜头的十二枚透镜的编号,即f 1为第一透镜X方向焦距,f 1-12为第一透镜~第十二透镜合计12枚透镜的X方向组合焦距。
进一步地,所述第四透镜、所述第七透镜、所述第八透镜和所述第十二透镜均为负光焦度球面透镜,所述第五透镜、所述第六透镜、所述第九透镜、所述第十透镜和所述第十一透镜均为正光焦度球面透镜。
进一步地,所述第二透镜和所述第三透镜粘合在一起。
进一步地,所述第六透镜和所述第七透镜粘合一起。
进一步地,所述第八透镜和所述第九透镜粘合一起。
进一步地,所述第十一透镜和所述第十二透镜粘合一起。
进一步地,所述变形镜头的长度小于115mm,所述变形镜头的大外径小于80mm。
进一步地,所述变形镜头Y方向焦距为35mm,光圈为1.8。
进一步地,所述变形镜头的质量小于700g。
本申请技术方案,具有如下优点:
1.本申请提供的大光圈变形镜头,包括从物方到像方依次设置的由柱面透镜组成的变形组和由球面透镜组成的成像组,所述变形组包括从物方到像方依次设置的第一透镜、第二透镜和第三透镜,所述第一透镜和所述第二透镜为负光焦度柱面透镜,所述第三透镜为正光焦度柱面透镜。
利用构成变形组的柱面透镜的光学特性,将水平进入的光线进行“压缩”,而垂直方向进入的光线保持不变,再经过后面成像组对光线进行综合矫正,从而将镜头水平拍摄的视场角增加,使实际拍摄的画面宽度变大。无需进行后期剪辑,在不牺牲像素的前提下也能得到2.4:1的宽荧幕视频或照片。同时,因变形组由柱面透镜构成,因此本方案的变形镜头除了变形功能外还会有椭圆形焦外光斑和科幻线条耀斑等光学特性。
2.本申请提供的大光圈变形镜头,构成所述变形组的透镜以及构成所述成像组的透镜的光焦度分配满足如下关系:300<abs(f 1-3/f 4-12);30mm<f 4-12<40mm;1.20<f 4-12/f 1-12<1.50;-1.40<f 2-3/f 1<-1.30;1.50<f 4-7/f 4-12<2.60;0.60<f 8-12/f 4-12<0.80;0.90<f 10-12/f 8-12<1.30;
其中,f均表示镜头的X方向焦距,其中f后面数字代表构成变形镜头的十二枚透镜的编号,即f 1为第一透镜X方向焦距,f 1-12为第一透镜~第十二透镜合计12枚透镜的X方向组合焦距,其余同理。
将35mmF1.8的半画幅镜头水平拍摄市场角度增加33%的同时,垂直方向市场角度保持不变,从而得到小体积大光圈的35mm变形镜头。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的第一种实施方式X方向光学结构图;
图2为本申请的第一种实施方式Y方向光学结构图;
图3为本申请的第二种实施方式X方向光学结构图;
图4为本申请的第二种实施方式Y方向光学结构图;
图5为本申请的第三种实施方式X方向光学结构图;
图6为本申请的第三种实施方式Y方向光学结构图。
附图标记说明:
1、第一透镜;2、第二透镜;3、第三透镜;4、第四透镜;5、第五透镜;6、第六透镜;7、第七透镜;8、第八透镜;9、第九透镜;10、第十透镜;11、第十一透镜;12、第十二透镜;13变形组;14、成像组。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例一
如图1和图2所示的一种35mm焦距半画幅大光圈变形镜头,该变形镜头由十二片透镜沿光路从物方到像方排列构成,分别为第一透镜1、第二透镜2、第三透镜3、第四透镜4、第五透镜5、第六透镜6、第七透镜7、第八透镜8、第九透镜9、第十透镜10、第十一透镜11和第十二透镜12。
其中,第一透镜1、第二透镜2、第三透镜3这三枚透镜为柱面透镜,第二透镜2和第三透镜3粘合在一起,且三枚柱面透镜构成变形组13。第四透镜4、第五透镜5、第六透镜6、第七透镜7、第八透镜8、第九透镜9、第十透镜10、第十一透镜11和第十二透镜12这九枚球面透镜构成成像组。
其中,第一透镜1为负光焦度柱面透镜,第二透镜2为负柱面透镜、第三透镜3为正光焦度柱面透镜。
其中,第四透镜4、第五透镜5、第六透镜6、第七透镜7、第八透镜8、 第九透镜9、第十透镜10、第十一透镜11和第十二透镜12为球面透镜。第四透镜4、第七透镜7、第八透镜8、第十二透镜12均为负光焦度球面透镜,第五透镜5、第六透镜6、第九透镜9、第十透镜10、第十一透镜11均为正光焦度球面透镜。其中第六透镜6和第七透镜7粘合一起,第八透镜8和第九透镜9粘合一起,第十一透镜11和第十二透镜12粘合一起。
粘合在一起的透镜看做一个整体,本实施例中,第二透镜2和第三透镜3粘合在一起,第六透镜6和第七透镜7粘合一起,第八透镜8和第九透镜9粘合一起,第十一透镜11和第十二透镜12粘合一起。因此,本实施例的变形镜头由12片、8组构成。
对于第二透镜2和第三透镜3、第六透镜6和第七透镜7、第八透镜8和第九透镜9、第十一透镜11和第十二透镜12之间的结合方式不做具体限制,本实施例中,结合的方式为粘合。作为可替换的实施方式,基于本申请的构思,为了与本申请进行区别,而对上述结合方式进行改变后,如贴合、一体成型等结合方式,再对结合后的透镜形状进行适应性变更的,也应纳入本申请的保护范围中。
对于各个透镜的实际参数的具体数值,不做具体限制,本实施例中,各透镜或透镜组的光焦度均满足下列数学关系:
300<abs(f 1-3/f 4-12);
30mm<f 4-12<40mm;
1.20<f 4-12/f 1-12<1.50;
-1.40<f 2-3/f 1<-1.30;
1.50<f 4-7/f 4-12<2.60;
0.60<f 8-12/f 4-12<0.80;
0.90<f 10-12/f 8-12<1.30;
其中,f均表示镜头的X方向焦距,其中f后面数字代表构成变形镜头的十二枚透镜的编号,即f 1为第一透镜X方向焦距,f 1-12为第一透镜~第十二透镜合计12枚透镜的X方向组合焦距,其余同理。
下面列出符合上述数学关系的本实施例的各个透镜实际参数:
透镜 面型 半径(mm) 厚度(mm) 折射率 阿贝数 质量(g)
第一透镜 柱面 -198.20 2.50 1.653 57.43 44.20
  柱面 49.70 8.98      
第二透镜 柱面 245.30 14.00 1.718 23.80 72.20
第三透镜 柱面 36.26 15.71 1.916 31.10 46.60
  柱面 -190.26 7.50      
第四透镜 球面 -35.89 1.20 1.697 25.02 14.00
  球面 -62.48 0.30      
第五透镜 球面 110.14 4.66 1.804 46.59 9.20
  球面 -64.77 3.75      
第六透镜 球面 23.61 3.62 1.903 35.84 7.60
第七透镜 球面 71.94 7.46 1.620 30.80 11.20
  球面 13.06 4.37      
光栏   inf 6.41      
第八透镜 球面 -11.59 1.20 1.879 25.37 4.30
第九透镜 球面 137.18 6.41 1.785 47.79 12.50
  球面 -17.17 0.30      
第十透镜 球面 185.55 5.95 1.912 34.31 8.50
  球面 -35.19 0.24      
第十一透镜 球面 87.43 7.61 1.760 49.55 14.2
第十二透镜 球面 -30.20 1.20 1.913 33.44 8.40
  球面 -133.01 18.30      
其中,第一~三透镜为柱面透镜,第四~十二透镜为球面透镜。
在采用本实施例的变形镜头前,35mm焦距1.8光圈的镜头的视场角度为:V(竖直)25.42°,H(水平)37.39°。
采用本实施例的变形镜头后,35mm焦距1.8光圈的镜头的视场角度为:V(竖直)25.42°,H(水平)49.85°。
对比测试视场角度竖直方向视场角度不变,水平方向视场角度变形比为:49.85/37.39=1.333。
实际宽幅比例在2.35-2.40范围内,因此变形比为1.33,即水平视场角度 增加了33%,从而实现1.33X变形拍摄。
本实施例的变形镜头在制作时,变形镜头本身长度小于115mm,最大外径小于80mm,质量小于700g,远小于同类规格的摄影摄像交换镜头,同时远小于市面上同规格的专业电影变形镜头。
其中,对于各个透镜的制作材料,不做具体限制,本实施例中,各透镜均采用光学玻璃制成。
本申请的透镜可根据实际使用需求设计兼容匹配市面上各品牌相机的卡口,以实现个性化定制和配合通用。
实施例二
如图3和图4所示,本实施例提供一种35mm焦距半画幅大光圈变形镜头,与实施例一的区别在于,将原第十一透镜11和第十二透镜12的粘合透镜替换为一个正球面透镜。
实施例三
如图5和图6所示,本实施例提供一种35mm焦距半画幅大光圈变形镜头,与实施例一的区别在于,将原负光焦度的第四透镜4替换为正光焦度球面透镜。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。明显变化方案列举如下:
本实施例在实施例一的基础上,粘合的第六透镜6和第七透镜7可以分为两个独立的透镜。
本实施例在实施例二的基础上,第四透镜4和第五透镜5可以合并为一个透镜。
本实施例在实施例一的基础上,粘合的第八透镜8和第九透镜9可以分为两个独立的透镜。
本实施例在实施例一和实施例二的基础上,粘合的第十一透镜11和第十二透镜12可以合为一个透镜。
本实施例在实施例一和实施例二的基础上,第五透镜5和第十一透镜10进行简单拆分为两个或多个透镜,只要拆分后的镜片组光焦度在原方案范围内即属于没有实质的创新。
这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本申请创造的保护范围之中。

Claims (11)

  1. 一种大光圈变形镜头,其特征在于,包括从物方到像方依次设置的由柱面透镜组成的变形组和由球面透镜组成的成像组,所述变形组包括从物方到像方依次设置的第一透镜(1)、第二透镜(2)和第三透镜(3),所述第一透镜(1)和所述第二透镜(2)为负光焦度柱面透镜,所述第三透镜(3)为正光焦度柱面透镜;所述成像组沿光路指向像方的方向依次设置第四透镜(4)、...、第N透镜;其中,N为大于或等于10的自然数;
    构成所述变形组的透镜以及构成所述成像组的透镜的光焦度分配满足如下关系:
    300<abs(f 1-3/f 4-N);
    30mm<f 4-N<40mm;
    1.20<f 4-N/f 1-N<1.50;
    其中,f均表示镜头的X方向焦距,其中f的下标数字代表构成变形镜头的十二枚透镜的编号,即f 1为第一透镜(1)X方向焦距,f 1-N为第一透镜(1)~第N透镜合计N枚透镜的X方向组合焦距。
  2. 根据权利要求1所述的大光圈变形镜头,其特征在于,所述成像组沿光路指向像方的方向依次设置第四透镜(4)、第五透镜(5)、第六透镜(6)、第七透镜(7)、第八透镜(8)、第九透镜(9)、第十透镜(10)、第十一透镜(11)和第十二透镜(12)。
  3. 根据权利要求2所述的大光圈变形镜头,其特征在于,构成所述变形组的透镜以及构成所述成像组的透镜的光焦度分配还满足如下关系:
    -1.40<f 2-3/f 1<-1.25;
    1.50<f 4-7/f 4-12<2.60;
    0.60<f 8-12/f 4-12<0.80;
    0.90<f 10-12/f 8-12<1.30;
    其中,f均表示镜头的X方向焦距,其中f的下标数字代表构成变形镜头的十二枚透镜的编号,即f 1为第一透镜(1)X方向焦距,f 1-12为第一透镜(1)~第十二透镜(12)合计12枚透镜的X方向组合焦距。
  4. 根据权利要求3所述的大光圈变形镜头,其特征在于,所述第四透镜(4)、所述第七透镜(7)、所述第八透镜(8)和所述第十二透镜(12)均为负光焦度球面透镜,所述第五透镜(5)、所述第六透镜(6)、所述第九透镜(9)、所述第十透镜(10)和所述第十一透镜(11)均为正光焦度球面透镜。
  5. 根据权利要求3所述的大光圈变形镜头,其特征在于,所述第二透镜(2)和所述第三透镜(3)粘合在一起。
  6. 根据权利要求2-5中任意一项所述的大光圈变形镜头,其特征在于,所述第六透镜(6)和所述第七透镜(7)粘合一起。
  7. 根据权利要求2-5中任意一项所述的大光圈变形镜头,其特征在于,所述第八透镜(8)和所述第九透镜(9)粘合一起。
  8. 根据权利要求2-5中任意一项所述的大光圈变形镜头,其特征在于,所述第十一透镜(11)和所述第十二透镜(12)粘合一起。
  9. 根据权利要求2-5中任意一项所述的大光圈变形镜头,其特征在于,所述变形镜头的长度小于115mm,所述变形镜头的最大外径小于80mm。
  10. 根据权利要求2-5中任意一项所述的大光圈变形镜头,其特征在于,所述变形镜头Y方向焦距为35mm,光圈为1.8。
  11. 根据权利要求2-5中任意一项所述的大光圈变形镜头,其特征在于,所述变形镜头的质量小于700g。
PCT/CN2019/128519 2019-09-26 2019-12-26 一种大光圈变形镜头 WO2021103247A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19886053.8A EP3848741A4 (en) 2019-11-27 2019-12-26 LARGE Aperture ANAMORPHOTIC LENS
US16/753,392 US20220050271A1 (en) 2019-09-26 2019-12-26 Large aperture anamorphic lens
KR1020207014527A KR102377236B1 (ko) 2019-11-27 2019-12-26 대구경 왜상 렌즈
JP2020526120A JP2022521107A (ja) 2019-11-27 2019-12-26 大口径アナモルフィックレンズ
US16/889,678 US10831002B1 (en) 2019-11-27 2020-06-01 Large aperture anamorphic lens
US17/101,219 US11249288B2 (en) 2019-09-26 2020-11-23 Mobile terminal with a built-in anamorphic lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911186730.4A CN112965203A (zh) 2019-11-27 2019-11-27 一种大光圈变形镜头
CN201911186730.4 2019-11-27

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/108977 Continuation-In-Part WO2021056523A1 (zh) 2019-09-26 2019-09-29 一种变形镜头
US16/753,399 Continuation-In-Part US20210405334A1 (en) 2019-09-26 2019-09-29 Anamorphic lens

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US16/753,392 A-371-Of-International US20220050271A1 (en) 2019-09-26 2019-12-26 Large aperture anamorphic lens
US16/889,678 Continuation US10831002B1 (en) 2019-11-27 2020-06-01 Large aperture anamorphic lens
PCT/CN2020/120801 Continuation-In-Part WO2022032855A1 (zh) 2019-09-26 2020-10-14 一种具有内置变形镜头的移动终端

Publications (1)

Publication Number Publication Date
WO2021103247A1 true WO2021103247A1 (zh) 2021-06-03

Family

ID=76129071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128519 WO2021103247A1 (zh) 2019-09-26 2019-12-26 一种大光圈变形镜头

Country Status (5)

Country Link
EP (1) EP3848741A4 (zh)
JP (1) JP2022521107A (zh)
KR (1) KR102377236B1 (zh)
CN (1) CN112965203A (zh)
WO (1) WO2021103247A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114019657B (zh) * 2021-11-17 2023-08-15 广东至乐光学科技有限公司 一种全画幅大光圈变形镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332923B2 (ja) * 1999-02-01 2009-09-16 株式会社ニコン ズームレンズ
CN104007541A (zh) * 2014-05-04 2014-08-27 南京邮电大学 一种变形投影镜头
CN105467566A (zh) * 2016-01-07 2016-04-06 东莞市宇瞳光学科技股份有限公司 一种大孔径广角变焦镜头
CN107479173A (zh) * 2017-09-29 2017-12-15 南京中高知识产权股份有限公司 一种远程无线监控的机器人
CN107907976A (zh) * 2017-11-29 2018-04-13 苏州莱能士光电科技股份有限公司 一种高像素光学系统
CN207516627U (zh) * 2017-11-08 2018-06-19 湖南戴斯光电有限公司 一种机器人非对称视觉镜头

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682691A (ja) * 1992-08-31 1994-03-25 Canon Inc アナモフィックコンバーター
DE10060072A1 (de) 2000-12-01 2002-06-06 Jos Schneider Optische Werke G Anamorphot für die digitale Projektion
WO2014034040A1 (ja) * 2012-08-29 2014-03-06 富士フイルム株式会社 撮像レンズおよび撮像装置
JP6016537B2 (ja) * 2012-09-05 2016-10-26 キヤノン株式会社 光学系及びそれを有する撮像装置
KR20140125680A (ko) * 2013-04-19 2014-10-29 삼성전자주식회사 광각 렌즈 및 이를 구비한 촬상장치
CN105652439B (zh) * 2016-03-25 2017-12-22 北京理工大学 一种组合放大倍率的成像物镜系统设计方法
US10139604B2 (en) * 2017-04-04 2018-11-27 Raytheon Company Compact anamorphic objective lens assembly
US10539764B2 (en) 2017-07-05 2020-01-21 Panavision International, L.P. Anamorphic photography and squeeze ratios for digital imagers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4332923B2 (ja) * 1999-02-01 2009-09-16 株式会社ニコン ズームレンズ
CN104007541A (zh) * 2014-05-04 2014-08-27 南京邮电大学 一种变形投影镜头
CN105467566A (zh) * 2016-01-07 2016-04-06 东莞市宇瞳光学科技股份有限公司 一种大孔径广角变焦镜头
CN107479173A (zh) * 2017-09-29 2017-12-15 南京中高知识产权股份有限公司 一种远程无线监控的机器人
CN207516627U (zh) * 2017-11-08 2018-06-19 湖南戴斯光电有限公司 一种机器人非对称视觉镜头
CN107907976A (zh) * 2017-11-29 2018-04-13 苏州莱能士光电科技股份有限公司 一种高像素光学系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3848741A4 *

Also Published As

Publication number Publication date
JP2022521107A (ja) 2022-04-06
KR20210068317A (ko) 2021-06-09
EP3848741A4 (en) 2022-07-27
EP3848741A1 (en) 2021-07-14
CN112965203A (zh) 2021-06-15
KR102377236B1 (ko) 2022-03-23

Similar Documents

Publication Publication Date Title
US10838171B1 (en) Anamorphic lens
CN210835410U (zh) 一种大光圈变形镜头
WO2022006926A1 (zh) 一种超广角大光圈变形镜头
CN214225565U (zh) 一种全画幅变形镜头
CN210690928U (zh) 一种变形镜头
WO2022048650A1 (zh) 一种摄像镜头及无人机
CN212276079U (zh) 一种超广角大光圈变形镜头
US10831002B1 (en) Large aperture anamorphic lens
WO2020133619A1 (zh) 一种用于移动终端的外接镜头
WO2022037158A1 (zh) 一种高画素的5p超广角镜头
CN212905664U (zh) 一种变形镜头
WO2021103247A1 (zh) 一种大光圈变形镜头
CN112505902B (zh) 广角镜头及成像设备
US10969568B1 (en) Anamorphic lens
CN219143183U (zh) 一种全画幅超长焦大倍率变形镜头
US20220196995A1 (en) Full-frame anamorphic lens
WO2022032729A1 (zh) 一种具有内置变形镜头的移动终端
US20220050271A1 (en) Large aperture anamorphic lens
US10983313B1 (en) Anamorphic lens
WO2022006925A1 (zh) 一种变形镜头
EP3936918A1 (en) A super wide-angle large aperture anamorphic lens
CN114019657B (zh) 一种全画幅大光圈变形镜头
EP3936919A1 (en) An anamorphic lens
WO2022032855A1 (zh) 一种具有内置变形镜头的移动终端
CN220232092U (zh) 一种焦距75mm的微距等倍全画幅电影镜头

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020526120

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019886053

Country of ref document: EP

Effective date: 20200527

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE