WO2022006926A1 - 一种超广角大光圈变形镜头 - Google Patents

一种超广角大光圈变形镜头 Download PDF

Info

Publication number
WO2022006926A1
WO2022006926A1 PCT/CN2020/101864 CN2020101864W WO2022006926A1 WO 2022006926 A1 WO2022006926 A1 WO 2022006926A1 CN 2020101864 W CN2020101864 W CN 2020101864W WO 2022006926 A1 WO2022006926 A1 WO 2022006926A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
anamorphic
wide
group
aperture
Prior art date
Application number
PCT/CN2020/101864
Other languages
English (en)
French (fr)
Inventor
李�杰
吴伟
麦玉
Original Assignee
广东思锐光学股份有限公司
中山市亚中光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东思锐光学股份有限公司, 中山市亚中光电科技有限公司 filed Critical 广东思锐光学股份有限公司
Priority to KR1020207024804A priority Critical patent/KR102347600B1/ko
Priority to JP2020545713A priority patent/JP2022543504A/ja
Priority to US17/003,953 priority patent/US10969568B1/en
Priority to EP20193117.7A priority patent/EP3936918A1/en
Priority to US17/101,219 priority patent/US11249288B2/en
Publication of WO2022006926A1 publication Critical patent/WO2022006926A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration

Definitions

  • the present application relates to the technical field of lenses, in particular to a half-frame large-aperture anamorphic lens with a focal length of 24 mm.
  • the conventional shooting ratio of mobile phones, tablet computers, cameras and other devices on the market is 16:9, while the ratio of film-like wide-screen video is 2.4:1.
  • good micro-film or video shooting requires anamorphic lenses of different focal lengths to cooperate with each other, among which ultra-wide-angle anamorphic lenses are indispensable in shooting.
  • Some professional anamorphic cine lens brands such as: Germany-Hawk, UK-Cooke, Germany-ARRI, US-Panavison, France-Angenieux and Hong Kong's SLR, the ultra-wide-angle anamorphic lenses of these brands are usually aimed at professional-level customers. They are not only expensive, but also cannot be carried at any time due to their size and weight.
  • the technical problem to be solved by the present application is to overcome the defects in the prior art that the professional ultra-wide-angle large-aperture anamorphic lens has high quality and high price and is not suitable for ordinary users, thereby providing a lightweight ultra-wide-angle large-aperture anamorphic lens.
  • An ultra-wide-angle large-aperture anamorphic lens comprising a cylindrical lens group and a spherical lens group arranged in sequence from the object side to the image side;
  • the cylindrical lens group comprises a first lens, a second lens arranged in sequence from the object side to the image side a lens, a third lens and a fourth lens, the first lens and the second lens are cylindrical lenses with negative refractive power, and the third lens and the fourth lens are cylindrical lenses with positive refractive power;
  • the The generatrix of the fourth lens is perpendicular to the generatrix of the third lens;
  • the spherical lens group is provided with a fifth lens, a sixth lens, . . . a natural number greater than or equal to 10;
  • the power distribution of the lenses constituting the cylindrical lens group and the spherical lens group satisfies the following relationship:
  • the X direction is the curvature direction of the first lens
  • the Y direction is another direction that is 90 degrees from the curvature direction of the first lens
  • the subscript number of f represents the number of each lens constituting the anamorphic lens
  • f (MN ) Y represents the combined optical focal length of the total (N-M+1) lenses from the Mth lens to the Nth lens in the Y direction
  • f (MN) X represents the total of (N-M+1) lenses from the Mth lens to the Nth lens
  • M is a natural number greater than or equal to 1 and less than N.
  • the spherical lens group is provided with a fifth lens, a sixth lens, a seventh lens, an eighth lens, a ninth lens, a tenth lens, an eleventh lens, and a twelfth lens in order along the direction of the optical path pointing to the image side. and the thirteenth lens.
  • the first lens is used as the front fixed group of the anamorphic lens
  • the second lens to the sixth lens are used as the inner focus group of the anamorphic lens
  • the seventh lens to the thirteenth lens are used as the anamorphic lens
  • the rear fixed group wherein, the optical power distribution of the front fixed group, the inner focus group and the rear fixed group satisfies the following relationship:
  • the X direction is the curvature direction of the first lens
  • the Y direction is another direction that is 90 degrees from the curvature direction of the first lens
  • the subscript number of f represents the number of each lens constituting the anamorphic lens
  • f (MN ) Y represents the combined optical focal length of the total (N-M+1) lenses from the Mth lens to the Nth lens in the Y direction
  • f (MN) X represents the total of (N-M+1) lenses from the Mth lens to the Nth lens
  • M is a natural number greater than or equal to 1 and less than N.
  • the fifth lens, the ninth lens and the tenth lens are all spherical lenses with negative refractive power
  • the lens, the twelfth lens and the thirteenth lens are all spherical lenses with positive refractive power.
  • the generatrix of the fourth lens and the generatrix of the third lens are perpendicular to each other.
  • the second lens and the third lens are cemented together.
  • the eighth lens and the ninth lens are cemented together.
  • the tenth lens and the eleventh lens are cemented together.
  • the length of the anamorphic lens is less than 130mm, and the front end can be matched with a universal filter with a diameter of 67mm.
  • the focal length of the anamorphic lens in the Y direction is 24.4 mm
  • the focal length in the X direction is 18.3 mm
  • the aperture is 2.8.
  • the mass of the anamorphic lens is less than 750g.
  • the ultra-wide-angle large-aperture anamorphic lens uses the overall design method to correct the overall aberration of four cylindrical lenses and nine spherical lenses, thereby increasing the field of view of the horizontal shooting of the lens and making the actual shooting.
  • the width of the screen becomes larger. Get 2.4:1 widescreen video or photos without sacrificing pixels without the need for post-editing.
  • the solution is a front deformation design, in addition to the deformation function, the anamorphic lens of this solution also has optical characteristics such as elliptical out-of-focus flares and sci-fi line flares.
  • the ultra-wide-angle large-aperture anamorphic lens provided by the application uniquely adopts the X-direction and Y-direction cylindrical lenses for comprehensive design, wherein the busbars of the first lens, the second lens and the third lens are parallel to each other, and the fourth lens is The busbar is perpendicular to the busbars of the previous three cylindrical lenses; due to the non-rotationally symmetrical optical properties of the cylindrical lens, the addition of the Y-direction cylindrical lens is beneficial to the correction of the astigmatic aberration of the anamorphic lens.
  • the ultra-wide-angle large-aperture anamorphic lens provided by this application adopts an internal focus design, and the first lens of the thirteen lenses arranged in sequence from the object side to the image side is used as the front fixed group, and the second lens to the sixth lens are used as the front fixed group.
  • the inner focus group and the seventh lens to the thirteenth lens are used as the structure of the rear fixed group. By moving the inner focus group inside the lens, the lens can focus on different object distances.
  • the ultra-wide-angle large-aperture anamorphic lens provided by this application adopts a compact design integrating a cylindrical lens and a spherical lens, and achieves a lightweight design while achieving a large aperture of F2.8; the length of the lens is less than 130mm, and the front end of the lens can match the external A universal filter with a diameter of 67mm, the lens quality is less than 750g.
  • Fig. 1 is the X-direction definition sectional schematic diagram of this application
  • FIG. 2 is a schematic cross-sectional view of the definition in the Y direction of the present application.
  • FIG. 3 is an X-direction optical structure diagram of the first embodiment of the application.
  • FIG. 5 is an X-direction optical structure diagram of the second embodiment of the present application.
  • FIG. 6 is a Y-direction optical structure diagram of the second embodiment of the application.
  • FIG. 7 is an X-direction optical structure diagram of a third embodiment of the present application.
  • FIG. 8 is a Y-direction optical structure diagram of a third embodiment of the present application.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • the anamorphic lens consists of thirteen lenses arranged along the optical path from the object side to the image side, namely the first lens 1, the second lens 2.
  • the second lens 12 and the thirteenth lens 13 are thirteen lenses arranged along the optical path from the object side to the image side, namely the first lens 1, the second lens 2.
  • the second lens 12 and the thirteenth lens 13 the thirteenth lens 13 .
  • the first lens 1 , the second lens 2 , the third lens 3 and the fourth lens 4 are cylindrical lenses, and the second lens 2 and the third lens 3 are cemented together.
  • the fifth lens 5, the sixth lens 6, the seventh lens 7, the eighth lens 8, the ninth lens 9, the tenth lens 10, the eleventh lens 11, the twelfth lens 12 and the thirteenth lens 13 are all spherical lens.
  • the first lens 1 and the second lens 2 are negative cylindrical lenses
  • the third lens 3 and the fourth lens 4 are cylindrical lenses with positive refractive power
  • the generatrix of the fourth lens is perpendicular to the generatrix of the third lens.
  • the fifth lens 5, the ninth lens 9, and the tenth lens 10 are spherical lenses with negative refractive power.
  • the thirteenth lens 13 is a spherical lens with positive refractive power.
  • the eighth lens 8 and the ninth lens 9 are cemented together, and the tenth lens 10 and the eleventh lens 11 are cemented together.
  • the anamorphic lens of this embodiment consists of 13 elements in 10 groups.
  • the combination between the second lens 2 and the third lens 3, the eighth lens 8 and the ninth lens 9, and the tenth lens 10 and the eleventh lens 11 is not specifically limited.
  • the combination is as follows bonding.
  • the shape of the combined lens is then adapted. should also be included in the protection scope of this application.
  • each lens or lens group satisfies the following mathematical relationship:
  • the X direction is defined as the curvature direction of the first lens (as shown in Figure 1)
  • the Y direction is defined as another direction at 90 degrees to the curvature direction of the first lens (as shown in Figure 2).
  • f (MN) Y represents the combined optics of the Mth lens to the Nth lens totaling (N-M+1) lenses in the Y direction
  • f (MN) X represents the combined optical focal length of the total (N-M+1) lenses from the Mth lens to the Nth lens in the X direction
  • M is a natural number greater than or equal to 1 and less than N.
  • the first to fourth lenses are cylindrical lenses
  • the generatrix of the fourth lens is perpendicular to the generatrix of the third lens
  • the fifth to thirteenth lenses are spherical lenses.
  • the angle of view of the lens with 24mm focal length and 2.8 aperture is: V (vertical) 36.10°, H (horizontal) 51.62°.
  • the angle of view of the lens with 24mm focal length and 2.8 aperture is: V (vertical) 36.10°, H (horizontal) 68.75°.
  • the actual wide aspect ratio is in the range of 2.35-2.40, so the anamorphic ratio is 1.33, that is, the horizontal field of view is increased by 33%, enabling 1.33X anamorphic shooting.
  • the length of the anamorphic lens itself is less than 130mm, matching the general specification filter with an outer diameter of 67mm, and the mass is less than 750g, and the volume and quality are much smaller than the professional film anamorphic lens of the same specification on the market.
  • each lens is made of optical glass.
  • the ultra-wide-angle anamorphic lens of the present application can be designed to be compatible with the mounts of various brands of cameras on the market according to the actual use requirements, so as to achieve personalized customization and universal coordination.
  • this embodiment provides a 24mm focal length half-frame ultra-wide-angle large-aperture anamorphic lens.
  • the difference from the first embodiment is that the cemented lenses of the original eighth lens 8 and ninth lens 9 are replaced is a positive spherical lens and a negative spherical lens.
  • this embodiment provides a 24mm focal length half-frame ultra-wide-angle large-aperture anamorphic lens.
  • the difference from the first embodiment is that the original thirteenth lens 13 is replaced with a positive spherical lens and a negative A spherical lens is a positive cemented lens that is cemented into one.
  • Embodiments On the basis of Embodiment 1, Embodiment 2 and Embodiment 3, if only a single positive lens or negative lens is simply split, as long as the power distribution of the split lens group is within the scope of the original scheme, it belongs to none. Substantial innovation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种超广角大光圈变形镜头,包括从物方到像方依次设置的柱面透镜组和球面透镜组;柱面透镜组包括依次设置的第一透镜(1)、第二透镜(2)、第三透镜(3)和第四透镜(4),第一透镜(1)和第二透镜(2)为负光焦度柱面透镜,第三透镜(3)和第四透镜(4)为正光焦度柱面透镜;球面透镜组沿光路指向像方的方向依次设置第五透镜(5)、第六透镜(6)、...、第十三透镜(13)。变形镜头将四枚柱面透镜和九枚球面透镜进行整体像差矫正,从而将镜头水平拍摄的视场角增加,使实际拍摄的画面宽度变大,在不牺牲像素的前提下也能得到2.4:1的宽荧幕视频或照片;同时,因变形镜头为前置变形设计,除了变形功能外还会有椭圆形焦外光斑和科幻线条耀斑等光学特性。

Description

一种超广角大光圈变形镜头 技术领域
本申请涉及镜头技术领域,具体涉及一种焦距24mm的半画幅大光圈变形镜头。
背景技术
随着互联网技术的飞速发展,拍照和视频成为普通消费者生活必不可少的一部分。近几年随着5G等技术推动,Vlog等视频分享越来越多,使用手机、相机等工具拍摄短片、微电影人群越来越多。
然而目前市面上手机、平板电脑、相机等设备常规拍摄比例为16:9,而具有电影感的宽荧屏视频的比例为2.4:1。同时好的微电影或视频拍摄需要不同焦段变形镜头互相配合,其中超广角变形镜头在拍摄中必不可少。
一些专业变形电影镜头品牌如:德国-霍克(Hawk)、英国-库克(Cooke)、德国-阿莱(ARRI)、美国-潘那维申(Panavison)、法国-安琴(Angenieux)和香港的SLR,这些品牌的超广角变形镜头通常面向专业级别的客户,不仅价格昂贵还因其体积、重量原因无法随时携带。
价格昂贵、质量较大的专业变形镜头不适合普通用户使用。因此如何将视频拍摄中非常重要的超广角大光圈变形镜头体积做小、重量做轻是目前需要解决的技术问题。
发明内容
因此,本申请要解决的技术问题在于克服现有技术中专业超广角大光圈变形镜头质量较大价格较高而不适合普通用户使用的缺陷,从而提供一种轻便超 广角大光圈变形镜头。
为解决上述技术问题,本申请的技术方案如下:
一种超广角大光圈变形镜头,包括从物方到像方依次设置的柱面透镜组和球面透镜组;所述柱面透镜组包括从物方到像方依次设置的第一透镜、第二透镜、第三透镜和第四透镜,所述第一透镜和所述第二透镜为负光焦度柱面透镜,所述第三透镜和第四透镜为正光焦度柱面透镜;其中,所述第四透镜的母线和所述第三透镜的母线垂直;所述球面透镜组沿光路指向像方的方向依次设置第五透镜、第六透镜、...、第N透镜;其中,N为大于或等于10的自然数;
构成所述柱面透镜组和所述球面透镜组的透镜的光焦度分配满足如下关系:
23.6mm<f (1-N)Y<24.4mm;
17.6mm<f (1-N)X<19.2mm;
1.20<f (1-N)Y/f (1-N)X<1.40;
3.50<f 4Y/f (2-3)X<4.20;
规定X方向为第一透镜的曲率方向,Y方向为与第一透镜的曲率方向成90度的另一方向;其中,f的下标数字代表构成变形镜头的各枚透镜的编号,f (M-N)Y表示第M透镜至第N透镜合计(N-M+1)枚透镜在Y方向的组合光学焦距,f (M-N)X表示第M透镜至第N透镜合计(N-M+1)枚透镜在X方向的组合光学焦距;M为大于或等于1且小于N的自然数。
进一步地,所述球面透镜组沿光路指向像方的方向依次设置第五透镜、第六透镜、第七透镜、第八透镜、第九透镜、第十透镜、第十一透镜、第十二透镜和第十三透镜。
进一步地,所述第一透镜作为变形镜头的前固定组,所述第二透镜至所述第六透镜作为变形镜头的内对焦组,所述第七透镜至所述第十三透镜作为变形镜头的后固定组;其中,所述前固定组、所述内对焦组和所述后固定组的光焦度分配满足如下关系:
-3.10<f 1X/f (1-13)X<-2.70;
-2.10<f (2-6)Y/f (1-13)Y<-1.60;
-10.20<f (2-6)X/f (1-13)X<-9.20;
2.40<f (7-13)X/f (1-13)X<2.80;
规定X方向为第一透镜的曲率方向,Y方向为与第一透镜的曲率方向成90度的另一方向;其中,f的下标数字代表构成变形镜头的各枚透镜的编号,f (M-N)Y表示第M透镜至第N透镜合计(N-M+1)枚透镜在Y方向的组合光学焦距,f (M-N)X表示第M透镜至第N透镜合计(N-M+1)枚透镜在X方向的组合光学焦距;M为大于或等于1且小于N的自然数。
进一步地,所述第五透镜、所述第九透镜和所述第十透镜均为负光焦度球面透镜,所述第六透镜、第七透镜、所述第八透镜、所述第十一透镜、所述第十二透镜和所述第十三透镜均为正光焦度球面透镜。
进一步地,所述第四透镜的母线同所述第三透镜的母线互相垂直。
进一步地,所述第二透镜和所述第三透镜粘合一起。
进一步地,所述第八透镜和所述第九透镜粘合一起。
进一步地,所述第十透镜和所述第十一透镜粘合一起。
进一步地,所述变形镜头的长度小于130mm,且前端可匹配口径67mm的通用滤镜。
进一步地,所述变形镜头Y方向焦距为24.4mm,X方向焦距为18.3mm,光圈为2.8。
进一步地,所述变形镜头的质量小于750g。
本申请技术方案,具有如下优点:
1.本申请提供的超广角大光圈变形镜头,使用整体设计的方法,将四枚柱面透镜和九枚球面透镜进行整体像差矫正,从而将镜头水平拍摄的视场角增加,使实际拍摄的画面宽度变大。无需进行后期剪辑,在不牺牲像素的前提下也能得到2.4:1的宽荧幕视频或照片。同时因方案为前置变形设计,本方案的变形 镜头除了变形功能外还会有椭圆形焦外光斑和科幻线条耀斑等光学特性。
2.本申请提供的超广角大光圈变形镜头,光学结构独特采用X方向和Y方向柱面透镜进行综合设计,其中第一透镜、第二透镜和第三透镜的母线互相平行,第四透镜的母线同前面三个柱面透镜母线互相垂直;由于柱面镜片的非旋转对称的光学属性,因此增加Y方向柱面镜片有利于变形镜头的像散像差的矫正。
3.本申请提供的超广角大光圈变形镜头,采用内对焦设计,将从物方到像方依次设置的十三枚透镜中的第一透镜作为前固定组、第二透镜至第六透镜作为内对焦组、第七透镜至第十三透镜作为后固定组的构成结构,通过内对焦组在镜头内部运动,可以实现镜头对不同物距对焦。
4.本申请提供的超广角大光圈变形镜头,采用柱面透镜和球面透镜一体化的紧凑设计,在实现大光圈F2.8同时实现轻量化设计;其中镜头长度小于130mm,镜头前端可以匹配外径67mm的通用滤镜,镜头质量小于750g。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请的X方向定义剖面示意图;
图2为本申请的Y方向定义剖面示意图;
图3为本申请的第一种实施方式X方向光学结构图;
图4为本申请的第一种实施方式Y方向光学结构图;
图5为本申请的第二种实施方式X方向光学结构图;
图6为本申请的第二种实施方式Y方向光学结构图;
图7为本申请的第三种实施方式X方向光学结构图;
图8为本申请的第三种实施方式Y方向光学结构图。
附图标记说明:
1、第一透镜;2、第二透镜;3、第三透镜;4、第四透镜;5、第五透镜;6、第六透镜;7、第七透镜;8、第八透镜;9、第九透镜;10、第十透镜;11、第十一透镜;12、第十二透镜;13、第十三透镜;14、前固定组;15、内对焦组;16、后固定组。
具体实施方式
下面将结合附图对本申请的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
此外,下面所描述的本申请不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
实施例一
如图3-4所示的一种24mm焦距半画幅超广角大光圈变形镜头,该变形镜头由十三枚透镜沿光路从物方到像方排列构成,分别为第一透镜1、第二透镜2、第三透镜3、第四透镜4、第五透镜5、第六透镜6、第七透镜7、第八透镜8、第九透镜9、第十透镜10、第十一透镜11、第十二透镜12和第十三透镜13。
其中,第一透镜1、第二透镜2、第三透镜3和第四透镜4为柱面透镜,第二透镜2和第三透镜3粘合在一起。第五透镜5、第六透镜6、第七透镜7、第八透镜8、第九透镜9、第十透镜10、第十一透镜11、第十二透镜12和第十三透镜13均为球面透镜。
其中,第一透镜1和第二透镜2为负柱面透镜、第三透镜3和第四透镜4为正光焦度柱面透镜,且第四透镜母线同第三透镜母线垂直。第五透镜5、第九透镜9、第十透镜10均为负光焦度球面透镜,第六透镜6、第七透镜7、第八透镜8、第十一透镜11、第十二透镜12、第十三透镜13均为正光焦度球面透镜。其中第八透镜8和第九透镜9粘合一起,第十透镜10和第十一透镜11粘合一起。
粘合在一起的透镜看做一个整体,因此,本实施例的变形镜头由13片10组构成。
对于第二透镜2和第三透镜3、第八透镜8和第九透镜9、第十透镜10和第十一透镜11之间的结合方式不做具体限制,本实施例中,结合的方式为粘合。作为可替换的实施方式,基于本申请的构思,为了与本申请进行区别,而对上述结合方式进行改变后,如贴合、一体成型等结合方式,再对结合后的透镜形状进行适应性变更的,也应纳入本申请的保护范围中。
对于各个透镜的实际参数的具体数值,不做具体限制,本实施例中,各透镜或透镜组的光焦度均满足下列数学关系:
23.6mm<f (1-N)Y<24.4mm;
17.6mm<f (1-N)X<19.2mm;
1.20<f (1-N)Y/f (1-N)X<1.40;
3.50<f 4Y/f (2-3)X<4.20;
-3.10<f 1X/f (1-13)X<-2.70;
-2.10<f (2-6)Y/f (1-13)Y<-1.60;
-10.20<f (2-6)X/f (1-13)X<-9.20;
2.40<f (7-13)X/f (1-13)X<2.80。
由于柱面镜片的非旋转对称属性,规定X方向为第一透镜的曲率方向(如图1所示),Y方向为与第一透镜的曲率方向成90度的另一方向(如图2所示);其中,f的下标数字代表构成变形镜头的各枚透镜的编号,f (M-N)Y表示第M透镜至第N透镜合计(N-M+1)枚透镜在Y方向的组合光学焦距,f (M-N)X表示第M透镜至第N透镜合计(N-M+1)枚透镜在X方向的组合光学焦距;M为大于或等于1且小于N的自然数。
下面列出符合上述数学关系的本实施例的各个透镜实际参数:
透镜 面型 半径(mm)X 半径(mm)Y 厚度(mm) 折射率 阿贝数 质量(g)
第一透镜 柱面 Inf Inf 3.220 1.63 60.2 约46.5
  柱面 32.720 Inf 12.100      
第二透镜 柱面 138.252 Inf 12.440 1.75 27.2 约66.3
第三透镜 柱面 25.305 Inf 13.220 1.90 35.3 约67.6
  柱面 -118.900 Inf 1.000      
第四透镜 柱面 Inf 292.284 3.620 1.49 70.4 约7.2
  柱面 inf -161.890 1.920      
第五透镜 球面 -113.652 -113.652 1.520 1.90 35.2 约13.6
  球面 28.240 28.240 3.550      
第六透镜 球面 -327.020 -327.020 16.000 1.66 33.8 约32.4
  球面 -67.080 -67.080 0.400      
第七透镜 球面 67.362 67.362 13.100 1.80 46.6 约34.7
  球面 -67.362 -67.362 2.200      
第八透镜 球面 18.485 18.485 5.120 1.83 42.7 约4.8
第九透镜 球面 -69.140 -69.140 1.520 1.64 36.0 约2.3
  球面 16.435 16.435 5.500      
光栏 球面 -Inf -Inf 7.700      
第十透镜 球面 -11.962 -11.962 1.530 1.92 20.9 约4.6
第十一透镜 球面 35.138 35.138 6.700 1.49 70.4 约3.4
  球面 -16.018 -16.018 0.280      
第十二透镜 球面 218.583 218.583 5.750 1.90 31.3 约10.2
  球面 -35.606 -35.606 0.230      
第十三透镜 球面 54.890 54.890 4.900 1.90 35.4 约13.1
  球面 -181.985 -181.985 18.000      
其中,第一~四透镜为柱面透镜,且第四透镜母线同第三透镜母线垂直,第五~十三透镜为球面透镜。
在采用本实施例的变形镜头前,24mm焦距2.8光圈的镜头的视场角度为:V(竖直)36.10°,H(水平)51.62°。
采用本实施例的变形镜头后,24mm焦距2.8光圈的镜头的视场角度为:V(竖直)36.10°,H(水平)68.75°。
对比测试视场角度竖直方向视场角度不变,水平方向视场角度变形比为:68.75/51.62=1.332。
实际宽幅比例在2.35-2.40范围内,因此变形比为1.33,即水平视场角度增加了33%,从而实现1.33X变形拍摄。
本实施例的变形镜头在制作时,变形镜头本身长度小于130mm,匹配外径67mm的通用规格滤镜,质量小于750g,体积和质量均远小于市面上同规格的专业电影变形镜头。
其中,对于各个透镜的制作材料,不做具体限制,本实施例中,各透镜均采用光学玻璃制成。
本申请的超广角变形镜头可根据实际使用需求设计兼容匹配市面上各品牌相机的卡口,以实现个性化定制和配合通用。
实施例二
如图5和图6所示,本实施例提供一种24mm焦距半画幅超广角大光圈变形镜头,与实施例一的区别在于,将原第八透镜8和第九透镜9的粘合透镜替换为一个正球面透镜和一个负球面透镜。
实施例三
如图7和图8所示,本实施例提供一种24mm焦距半画幅超广角大光圈变形镜头,与实施例一的区别在于,将原第十三透镜13替换为一个正球面透镜和一个负球面透镜粘合为一体的正胶合透镜。
其他施例在实施例一、实施例二和实例三的基础上,如果只是将单个正透 镜或者负透镜进行简单拆分,只要拆分后的镜片组光焦度分配在原方案范围内即属于没有实质的创新。
这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (11)

  1. 一种超广角大光圈变形镜头,其特征在于,包括从物方到像方依次设置的柱面透镜组和球面透镜组;所述柱面透镜组包括从物方到像方依次设置的第一透镜(1)、第二透镜(2)、第三透镜(3)和第四透镜(4),所述第一透镜(1)和所述第二透镜(2)为负光焦度柱面透镜,所述第三透镜(3)和第四透镜(4)为正光焦度柱面透镜;所述球面透镜组沿光路指向像方的方向依次设置第五透镜(5)、第六透镜(6)、...、第N透镜;其中,N为大于或等于10的自然数;
    构成所述柱面透镜组和所述球面透镜组的透镜的光焦度分配满足如下关系:
    23.6mm<f (1-N)Y<24.4mm;
    17.6mm<f (1-N)X<19.2mm;
    1.20<f (1-N)Y/f (1-N)X<1.40;
    3.50<f 4Y/f (2-3)X<4.20;
    规定X方向为第一透镜(1)的曲率方向,Y方向为与第一透镜(1)的曲率方向成90度的另一方向;其中,f的下标数字代表构成变形镜头的各枚透镜的编号,f (M-N)Y表示第M透镜至第N透镜合计(N-M+1)枚透镜在Y方向的组合光学焦距,f (M-N)X表示第M透镜至第N透镜合计(N-M+1)枚透镜在X方向的组合光学焦距;M为大于或等于1且小于N的自然数。
  2. 根据权利要求1所述的超广角大光圈变形镜头,其特征在于,所述球面透镜组沿光路指向像方的方向依次设置第五透镜(5)、第六透镜(6)、第七透镜(7)、第八透镜(8)、第九透镜(9)、第十透镜(10)、第十一透镜(11)、第十二透镜(12)和第十三透镜(13)。
  3. 根据权利要求2所述的超广角大光圈变形镜头,其特征在于,所述第一透镜(1)作为变形镜头的前固定组(14),所述第二透镜(2)至所述第六透镜(6)作为变形镜头的内对焦组(15),所述第七透镜(7)至所述第十三透镜(13)作为变 形镜头的后固定组(16);其中,所述前固定组(14)、所述内对焦组(15)和所述后固定组(16)的光焦度分配满足如下关系:
    -3.10<f 1X/f (1-13)X<-2.70;
    -2.10<f (2-6)Y/f (1-13)Y<-1.60;
    -10.20<f (2-6)X/f (1-13)X<-9.20;
    2.40<f (7-13)X/f (1-13)X<2.80;
    规定X方向为第一透镜(1)的曲率方向,Y方向为与第一透镜(1)的曲率方向成90度的另一方向;其中,f的下标数字代表构成变形镜头的各枚透镜的编号,f (M-N)Y表示第M透镜至第N透镜合计(N-M+1)枚透镜在Y方向的组合光学焦距,f (M-N)X表示第M透镜至第N透镜合计(N-M+1)枚透镜在X方向的组合光学焦距;M为大于或等于1且小于N的自然数。
  4. 根据权利要求3所述的超广角大光圈变形镜头,其特征在于,所述第五透镜(5)、所述第九透镜(9)和所述第十透镜(10)均为负光焦度球面透镜,所述第六透镜(6)、第七透镜(7)、所述第八透镜(8)、所述第十一透镜(11)、所述第十二透镜(12)和所述第十三透镜(13)均为正光焦度球面透镜。
  5. 根据权利要求1所述的超广角大光圈变形镜头,其特征在于,所述第四透镜(4)的母线和所述第三透镜(3)的母线垂直。
  6. 根据权利要求1-5中任意一项所述的超广角大光圈变形镜头,其特征在于,所述第二透镜(2)和所述第三透镜(3)粘合一起。
  7. 根据权利要求1-5中任意一项所述的超广角大光圈变形镜头,其特征在于,所述第八透镜(8)和所述第九透镜(9)粘合一起。
  8. 根据权利要求1-5中任意一项所述的超广角大光圈变形镜头,其特征在于,所述第十透镜(10)和所述第十一透镜(11)粘合一起。
  9. 根据权利要求1-5中任意一项所述的超广角大光圈变形镜头,其特征在于,所述变形镜头的长度小于130mm,且前端可匹配口径67mm的通用滤镜。
  10. 根据权利要求1-5中任意一项所述的超广角大光圈变形镜头,其特征在 于,所述变形镜头Y方向焦距为24.4mm,X方向焦距为18.3mm,光圈为2.8。
  11. 根据权利要求1-5中任意一项所述的超广角大光圈变形镜头,其特征在于,所述变形镜头的质量小于750g。
PCT/CN2020/101864 2019-09-26 2020-07-14 一种超广角大光圈变形镜头 WO2022006926A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207024804A KR102347600B1 (ko) 2020-07-09 2020-07-14 초광각 대구경 아나모픽 렌즈
JP2020545713A JP2022543504A (ja) 2020-07-09 2020-07-14 超広角大口径アナモフィックレンズ
US17/003,953 US10969568B1 (en) 2019-09-26 2020-08-26 Anamorphic lens
EP20193117.7A EP3936918A1 (en) 2020-07-09 2020-08-27 A super wide-angle large aperture anamorphic lens
US17/101,219 US11249288B2 (en) 2019-09-26 2020-11-23 Mobile terminal with a built-in anamorphic lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010659844.2A CN114019650A (zh) 2020-07-09 2020-07-09 一种超广角大光圈变形镜头
CN202010659844.2 2020-07-09

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US16/753,399 Continuation-In-Part US20210405334A1 (en) 2019-09-26 2019-09-29 Anamorphic lens
PCT/CN2019/108977 Continuation-In-Part WO2021056523A1 (zh) 2019-09-26 2019-09-29 一种变形镜头

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/003,953 Continuation US10969568B1 (en) 2019-09-26 2020-08-26 Anamorphic lens

Publications (1)

Publication Number Publication Date
WO2022006926A1 true WO2022006926A1 (zh) 2022-01-13

Family

ID=79553563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101864 WO2022006926A1 (zh) 2019-09-26 2020-07-14 一种超广角大光圈变形镜头

Country Status (2)

Country Link
CN (1) CN114019650A (zh)
WO (1) WO2022006926A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114647068A (zh) * 2022-03-24 2022-06-21 杭州海康威视数字技术股份有限公司 光学系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114994876B (zh) * 2022-05-27 2023-09-26 莆田学院 一种宽光谱日夜两用的监控鱼眼镜头
CN115236833B (zh) * 2022-07-18 2023-11-14 广东思锐光学股份有限公司 一种全画幅中长焦大倍率变形镜头
CN116774415B (zh) * 2023-08-18 2023-10-31 福建福特科光电股份有限公司 一种低呼吸效应大光圈摄影镜头

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900868A (zh) * 2009-05-27 2010-12-01 柯尼卡美能达精密光学株式会社 超广角变形镜头
CN103439859A (zh) * 2013-07-22 2013-12-11 秦皇岛视听机械研究所 基于二向异性鱼眼镜头的环幕放映/投影系统单元
CN104007541A (zh) * 2014-05-04 2014-08-27 南京邮电大学 一种变形投影镜头
US20160170186A1 (en) * 2013-04-04 2016-06-16 Cooke Optics Ltd. Anamorphic objective lens
CN110716290A (zh) * 2019-09-26 2020-01-21 广东思锐光学股份有限公司 一种变形镜头
CN210835410U (zh) * 2019-11-27 2020-06-23 广东思锐光学股份有限公司 一种大光圈变形镜头
CN212276079U (zh) * 2020-07-09 2021-01-01 中山市亚中光电科技有限公司 一种超广角大光圈变形镜头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900868A (zh) * 2009-05-27 2010-12-01 柯尼卡美能达精密光学株式会社 超广角变形镜头
US20160170186A1 (en) * 2013-04-04 2016-06-16 Cooke Optics Ltd. Anamorphic objective lens
CN103439859A (zh) * 2013-07-22 2013-12-11 秦皇岛视听机械研究所 基于二向异性鱼眼镜头的环幕放映/投影系统单元
CN104007541A (zh) * 2014-05-04 2014-08-27 南京邮电大学 一种变形投影镜头
CN110716290A (zh) * 2019-09-26 2020-01-21 广东思锐光学股份有限公司 一种变形镜头
CN210835410U (zh) * 2019-11-27 2020-06-23 广东思锐光学股份有限公司 一种大光圈变形镜头
CN212276079U (zh) * 2020-07-09 2021-01-01 中山市亚中光电科技有限公司 一种超广角大光圈变形镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114647068A (zh) * 2022-03-24 2022-06-21 杭州海康威视数字技术股份有限公司 光学系统
CN114647068B (zh) * 2022-03-24 2023-08-04 杭州海康威视数字技术股份有限公司 光学系统

Also Published As

Publication number Publication date
CN114019650A (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
WO2022006926A1 (zh) 一种超广角大光圈变形镜头
KR102001901B1 (ko) 대구경 초광각 초고화질 줌 렌즈
US10838171B1 (en) Anamorphic lens
CN210835410U (zh) 一种大光圈变形镜头
CN214225565U (zh) 一种全画幅变形镜头
CN212276079U (zh) 一种超广角大光圈变形镜头
CN110618524B (zh) 定焦镜头及成像系统
CN210690928U (zh) 一种变形镜头
EP3699665A1 (en) External lens for mobile terminal
US10831002B1 (en) Large aperture anamorphic lens
US10969568B1 (en) Anamorphic lens
CN219143183U (zh) 一种全画幅超长焦大倍率变形镜头
WO2021103247A1 (zh) 一种大光圈变形镜头
WO2022032729A1 (zh) 一种具有内置变形镜头的移动终端
WO2022006925A1 (zh) 一种变形镜头
TWI617832B (zh) 影像擷取透鏡系統、取像裝置及電子裝置
US20220050271A1 (en) Large aperture anamorphic lens
US20220196995A1 (en) Full-frame anamorphic lens
EP3936918A1 (en) A super wide-angle large aperture anamorphic lens
US20210096339A1 (en) Anamorphic lens
CN218886282U (zh) 一种全画幅超广角大倍率变形镜头
CN215340509U (zh) 超短焦投影镜头以及超短焦投影仪
EP3936919A1 (en) An anamorphic lens
WO2022032855A1 (zh) 一种具有内置变形镜头的移动终端
CN118131437A (zh) 一种全画幅超长焦大倍率变形镜头

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020545713

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944465

Country of ref document: EP

Kind code of ref document: A1