WO2021103063A1 - 一种像素电极结构及液晶显示面板 - Google Patents

一种像素电极结构及液晶显示面板 Download PDF

Info

Publication number
WO2021103063A1
WO2021103063A1 PCT/CN2019/122850 CN2019122850W WO2021103063A1 WO 2021103063 A1 WO2021103063 A1 WO 2021103063A1 CN 2019122850 W CN2019122850 W CN 2019122850W WO 2021103063 A1 WO2021103063 A1 WO 2021103063A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
branch
pixel electrode
liquid crystal
pixel
Prior art date
Application number
PCT/CN2019/122850
Other languages
English (en)
French (fr)
Inventor
张银峰
林永伦
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US16/627,776 priority Critical patent/US20210405462A1/en
Publication of WO2021103063A1 publication Critical patent/WO2021103063A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/123Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/40Arrangements for improving the aperture ratio

Definitions

  • This application relates to the field of display technology, and in particular to a pixel electrode structure and a liquid crystal display panel.
  • the aperture ratio and transmittance of the panel are the main restricting factors for high resolution and low color shift.
  • An existing pixel design for effectively increasing the aperture ratio has been proposed, but the transmittance has not increased significantly with the substantial increase in the aperture ratio.
  • the pixel electrode 800 shown in FIG. 1 includes a first pixel electrode 81 and a second pixel electrode 82, and the second pixel electrode 82 surrounds the first pixel electrode 81.
  • This pixel electrode structure design effectively improves the aperture ratio, but there are a large number of dark lines at the junction of the first pixel electrode 81 and the second pixel electrode 82, which inhibits the increase in transmittance.
  • the present application provides a pixel electrode structure and a liquid crystal display panel to alleviate the technical problem of dark lines at the junction of the existing pixel electrode structure.
  • An embodiment of the present application provides a pixel electrode structure, which includes a first pixel electrode and a second pixel electrode.
  • the first pixel electrode includes a plurality of first branch electrodes
  • the second pixel electrode includes a plurality of second branch electrodes
  • each of the first branch electrodes is corresponding to one of the second branch electrodes.
  • the length of the first branch electrode is different from that of another adjacent first branch electrode.
  • the first branch electrode and the second branch electrode are arranged in parallel.
  • the ends of the first branch electrode and the second branch electrode are triangular.
  • the ends of the first branch electrode and the second branch electrode are rectangular.
  • the first pixel electrode is divided into four quadrant regions.
  • the second pixel electrode is divided into four regions, and the four regions are arranged corresponding to the four quadrant regions of the first pixel electrode.
  • the first pixel electrode further includes a first main electrode, and the first branch electrode is connected to the first main electrode.
  • the second pixel electrode further includes a second main electrode, and the second branch electrode is connected to the second main electrode.
  • an opening is provided on one side of the second main electrode.
  • An embodiment of the present application also provides a liquid crystal display panel, which includes a first substrate, a second substrate, a common electrode structure, a pixel electrode structure, and a plurality of liquid crystal molecules.
  • the second substrate is disposed opposite to the first substrate.
  • the common electrode structure is disposed on the side of the first substrate facing the second substrate.
  • the pixel electrode structure is disposed on a side of the second substrate facing the first substrate.
  • the plurality of liquid crystal molecules are filled between the common electrode structure and the pixel electrode structure.
  • the pixel electrode structure includes a first pixel electrode and a second pixel electrode.
  • the first pixel electrode includes a plurality of first branch electrodes
  • the second pixel electrode includes a plurality of second branch electrodes
  • each of the first branch electrodes is corresponding to one of the second branch electrodes.
  • the length of the first branch electrode is different from that of another adjacent first branch electrode.
  • the first branch electrode and the second branch electrode are arranged in parallel.
  • the ends of the first branch electrode and the second branch electrode are triangular.
  • the ends of the first branch electrode and the second branch electrode are rectangular.
  • the first pixel electrode is divided into four quadrant regions.
  • the second pixel electrode is divided into four regions, and the four regions are arranged corresponding to the four quadrant regions of the first pixel electrode.
  • the first pixel electrode further includes a first main electrode, and the first branch electrode is connected to the first main electrode.
  • the second pixel electrode further includes a second main electrode, and the second branch electrode is connected to the second main electrode.
  • an opening is provided on one side of the second main electrode.
  • a gap between the end of each first branch electrode and the end of the corresponding second branch electrode, and the gap is close to another adjacent one.
  • the interval staggered setting.
  • a cross electric field is formed at the junction of the first pixel electrode and the second pixel electrode, covering the junction of the first pixel electrode and the second pixel electrode, effectively controlling the lodging of liquid crystal molecules at the junction, and reducing the formation of the junction. Obscure lines to improve penetration.
  • FIG. 1 is a schematic top view of a pixel electrode structure in the prior art.
  • FIG. 2 is a schematic diagram of a first top view structure of a pixel electrode structure provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a comparison of the length of the first branch electrode according to an embodiment of the application.
  • FIG. 4 is a schematic diagram of the spacing between the first branch electrode and the second branch electrode provided by an embodiment of the application.
  • FIG. 5 is a comparative schematic diagram of the end structure of the branch electrode provided by the embodiment of the application.
  • FIG. 6 is a schematic diagram of the second top view structure of the pixel electrode structure provided by an embodiment of the application.
  • FIG. 7 is a comparison diagram of the spacing between the branch electrodes provided by the embodiments of the application.
  • FIG. 8 is a schematic top view of a third structure of the pixel electrode structure provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a side view of a liquid crystal display panel provided by an embodiment of the application.
  • a pixel electrode structure 100 which includes a first pixel electrode 1 and a second pixel electrode 2.
  • the first pixel electrode 1 includes a plurality of first branch electrodes 11
  • the second pixel electrode 2 includes a plurality of second branch electrodes 22.
  • Each of the first branch electrodes 11 and one of the second branch electrodes 22 are arranged correspondingly.
  • the length of the first branch electrode is different from that of another adjacent first branch electrode.
  • FIG. 3 it is an enlarged view of two adjacent first branch electrodes of the pixel electrode 100 in FIG. 2.
  • the length L1 of the first branch electrode is greater than that of the adjacent first branch electrode.
  • the length of the other first branch electrode is L2.
  • each of the first branch electrodes 11 and one of the second branch electrodes 22 are arranged correspondingly, the lengths of the second branch electrodes and the adjacent second branch electrodes are also different.
  • each first branch electrode 11 there is a gap 30 between the end of each first branch electrode 11 and the end of the corresponding second branch electrode 22.
  • the two adjacent first branch electrodes in FIG. An enlarged view of the electrode and the corresponding adjacent two second branch electrodes. It can be seen from FIG. 4 that there is a gap 30 between the end of the first branch electrode 11 and the end of the corresponding second branch electrode 22, and the end of another adjacent first branch electrode 11 is connected to the adjacent end of the second branch electrode.
  • the other end of the second branch electrode 22 also has a gap 30.
  • the length of the first branch electrode 11 is different from that of another adjacent first branch electrode 11
  • the length of the second branch electrode 22 is different from that of another adjacent second branch electrode 22
  • the length is also different. Therefore, the spacing 30 between the end of the first branch electrode 11 and the end of the second branch electrode 22 in FIG. 4 is staggered.
  • first branch electrodes 11 in the entire pixel electrode structure are alternately arranged in length due to different lengths. Furthermore, the interval between the end of the first branch electrode and the end of the corresponding second branch electrode is staggered in the entire pixel electrode structure.
  • the staggered arrangement of the intervals makes a cross electric field formed at the junction of the first pixel electrode and the second pixel electrode, and the cross electric field covers the junction of the first pixel electrode and the second pixel electrode, effectively controlling the lodging of liquid crystal molecules at the junction. , Reduce the dark lines formed at the junction and improve the penetration rate.
  • the first pixel electrode 1 further includes a first main electrode 10, and the first branch electrode 11 is connected to the first main electrode 10.
  • the second pixel electrode 2 further includes a second main electrode 20, and the second branch electrode 22 is connected to the second main electrode 20.
  • the first main electrode 10 divides the first pixel electrode 1 into four quadrant regions.
  • the first branch electrode 11 is symmetrical with respect to the first main electrode 10 up and down, forming a "m"-shaped pixel electrode structure. That is, the first branch electrodes 11 in different quadrants extend in different directions along the first main electrode 10.
  • the second main electrode 20 divides the second pixel electrode 2 into four regions, and the four regions are arranged corresponding to the four quadrant regions of the first pixel electrode 1.
  • an opening is provided on one side of the second main electrode.
  • the second main electrode as a whole presents a “mouth”-like structure with an upper opening, and the first pixel electrode 1 And the second branch electrode 22 surrounded.
  • the second branch electrode 22 extends in different directions along the second main electrode 20.
  • the ends of the first branch electrode and the second branch electrode in this application refer to the ends away from the corresponding main electrode.
  • the first branch electrode and the second branch electrode are arranged in parallel.
  • the opening above the second main electrode 20 is used to connect the first pixel electrode 1 to the outside.
  • the pixel electrode structure 100 further includes a first connection electrode 12 and a second connection electrode 21.
  • the first connection electrode 12 is connected to the first main electrode 10 and the first drain 66 through an opening above the second main electrode 20.
  • the second connecting electrode 27 connects the second main electrode 20 and the second drain 67.
  • first pixel electrode 1 and the second pixel electrode 2 respectively have two different thin film transistors (Thin Film Transistors). Transistor, TFT) control.
  • the material of the first pixel electrode and the second pixel electrode is a transparent conductive material such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the ends of the first branch electrode 11 and the second branch electrode 22 are triangular.
  • the end refers to the end of the first branch electrode 11 and the end of the second branch electrode 22.
  • the difference from the foregoing embodiment is that the ends of the first branch electrode and the second branch electrode are rectangular.
  • the difference between the rectangular and triangular ends is that a small part of the ends of the first branch electrode and the second branch electrode is taken from a top view, and it is in the shape of a triangle 131 and a rectangle 132 as shown in FIG. 5.
  • the pixel electrode structure 101 shown in FIG. 6 includes a first pixel electrode 1'and a second pixel electrode 2'.
  • the first pixel electrode 1' includes a first main electrode 10 and a plurality of first branch electrodes 11', and the first branch electrodes 11' extend along the first main electrode 10 in different directions.
  • the second pixel electrode 2' includes a second main electrode 20 and a plurality of second branch electrodes 22', and the second branch electrodes 22' extend along the second main electrode 20 in different directions.
  • each of the first branch electrodes 11' and one of the second branch electrodes 22' are arranged correspondingly. Wherein, there is an interval 30' between the end of each first branch electrode 11' and the end of the corresponding second branch electrode 22', and the interval 30' is staggered with another adjacent interval 30' Set up.
  • the difference from the foregoing embodiment is that the length difference between the first branch electrode and another adjacent first branch electrode is increased. Furthermore, the distance between the end of the first branch electrode and the end of the corresponding second electrode and the distance between the adjacent branch electrodes are increased.
  • FIG. 7 it is a schematic diagram of the comparison between the interval between the branch electrodes in this embodiment and the interval between the branch electrodes in FIG. 6 of the above-mentioned embodiment. It can be seen from FIG. 7 that the interval H1 between adjacent intervals 30' staggered in the above embodiment is smaller than the interval H2 between adjacent intervals 30" staggered in this embodiment.
  • the pixel electrode structure 102 of this embodiment is shown in FIG. 8 and includes a first pixel electrode 1" and the second pixel electrode 2". There is a space 30" between the end of each first branch electrode 11" and the end of the corresponding second branch electrode 22", and the space 30" and the adjacent other space 30" are alternately arranged
  • FIG. 8 shows that the pixel electrode structure 102 of this embodiment is shown in FIG. 8 and includes a first pixel electrode 1" and the second pixel electrode 2".
  • the space 30" and the adjacent other space 30" are alternately arranged
  • the distance between the interleaved adjacent spaces 30" increases, that is, the area where the ends of the first branch electrodes 11" and the ends of the adjacent second branch electrodes 22" overlap each other is increased.
  • the cross electric field formed at the junction of the first pixel electrode 1" and the second pixel electrode 2" covers a wider range.
  • a liquid crystal display panel 1000 is further provided. As shown in FIG. 9, the liquid crystal display panel 1000 includes a first substrate 300, a second substrate 200, a common electrode structure 400, a pixel electrode structure 100, and multiple 500 liquid crystal molecules.
  • the second substrate 200 is disposed opposite to the first substrate 300.
  • the common electrode structure 400 is disposed on the side of the first substrate 300 facing the second substrate 200.
  • the pixel electrode structure 100 is disposed on the side of the second substrate 200 facing the first substrate 300.
  • the plurality of liquid crystal molecules 500 are filled between the common electrode structure 400 and the pixel electrode structure 100.
  • the pixel electrode structure includes a first pixel electrode and a second pixel electrode.
  • the first pixel electrode includes a plurality of first branch electrodes
  • the second pixel electrode includes a plurality of second branch electrodes
  • each of the first branch electrodes is corresponding to one of the second branch electrodes.
  • the length of the first branch electrode is different from that of another adjacent first branch electrode.
  • first branch electrode and the second branch electrode are arranged in parallel.
  • the ends of the first branch electrode and the second branch electrode are triangular.
  • the ends of the first branch electrode and the second branch electrode are rectangular.
  • the first pixel electrode is divided into four quadrant regions.
  • the second pixel electrode is divided into four regions, and the four regions are arranged corresponding to the four quadrant regions of the first pixel electrode.
  • the first pixel electrode further includes a first main electrode, and the first branch electrode is connected to the first main electrode.
  • the second pixel electrode further includes a second main electrode, and the second branch electrode is connected to the second main electrode.
  • an opening is provided on one side of the second main electrode.
  • the present application provides a pixel electrode structure and a liquid crystal display panel.
  • the pixel electrode structure includes a first pixel electrode and a second pixel electrode. Each of the first branch electrodes and one of the second branch electrodes are correspondingly arranged. There is an interval between the end of each first branch electrode and the end of the corresponding second branch electrode, and the interval is alternately arranged with another adjacent interval. As a result, a cross electric field is formed at the junction of the first pixel electrode and the second pixel electrode, covering the junction of the first pixel electrode and the second pixel electrode, effectively controlling the lodging of liquid crystal molecules at the junction, and reducing the darkness formed at the junction. Pattern to improve the penetration rate.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

一种像素电极结构(100) 以及液晶显示面板(1000)。像素电极结构(100)中每一第一分支电极(11)和一个第二分支电极(22)对应设置。其中,每一第一分支电极(11)末端与对应的第二分支电极(22)末端之间具有一间隔(30),间隔(30)与相邻的另一间隔(30)交错设置,以减小第一像素电极(1)和第二像素电极(2)交界处的暗纹。

Description

一种像素电极结构及液晶显示面板
本申请要求于2019年11月26日提交中国专利局、申请号为201911175624.6、发明名称为“一种像素电极结构及液晶显示面板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种像素电极结构以及液晶显示面板。
背景技术
随着高规显示器的逐步推广,各大面板厂商争相布局高解析低色偏等关键显示技术。而面板的开口率和穿透率是高解析低色偏的主要制约因素。现有一种有效提升开口率的像素设计已经被提出,但穿透率并未随着开口率的大幅提升而显著增加。如图1所示的像素电极800,包括第一像素电极81和第二像素电极82,第二像素电极82围绕第一像素电极81。此种像素电极结构设计,有效提升了开口率,但在第一像素电极81与第二像素电极82的交界处存在大量暗纹,抑制了穿透率的提升。
因此,现有像素电极结构交界处存在暗纹的问题需要解决。
技术问题
本申请提供一种像素电极结构及液晶显示面板,以缓解现有像素电极结构交界处存在暗纹的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种像素电极结构,其包括第一像素电极以及第二像素电极。其中,所述第一像素电极包括多个第一分支电极,所述第二像素电极包括多个第二分支电极,每一所述第一分支电极和一个所述第二分支电极对应设置。其中,每一所述第一分支电极末端与对应的所述第二分支电极末端之间具有一间隔,所述间隔和相邻的另一所述间隔交错设置。
在本申请实施例提供的像素电极结构中,所述第一分支电极与相邻的另一所述第一分支电极的长度不同。
在本申请实施例提供的像素电极结构中,所述第一分支电极与所述第二分支电极平行设置。
在本申请实施例提供的像素电极结构中,所述第一分支电极和所述第二分支电极的所述末端呈三角形。
在本申请实施例提供的像素电极结构中,所述第一分支电极和所述第二分支电极的所述末端呈矩形。
在本申请实施例提供的像素电极结构中,所述第一像素电极区分为四个象限区。
在本申请实施例提供的像素电极结构中,所述第二像素电极区分为四个区域且所述四个区域与所述第一像素电极的四个象限区对应设置。
在本申请实施例提供的像素电极结构中,所述第一像素电极还包括第一主干电极,所述第一分支电极连接所述第一主干电极。
在本申请实施例提供的像素电极结构中,所述第二像素电极还包括第二主干电极,所述第二分支电极连接所述第二主干电极。
在本申请实施例提供的像素电极结构中,所述第二主干电极的一侧设置有开口。
本申请实施例还提供一种液晶显示面板,其包括第一基板、第二基板、公共电极结构、像素电极结构以及多个液晶分子。所述第二基板与所述第一基板相对设置。所述公共电极结构设置于所述第一基板面向所述第二基板的一侧。所述像素电极结构设置于所述第二基板面向所述第一基板的一侧。所述多个液晶分子填充于所述公共电极结构与所述像素电极结构之间。其中,所述像素电极结构包括第一像素电极以及第二像素电极。其中,所述第一像素电极包括多个第一分支电极,所述第二像素电极包括多个第二分支电极,每一所述第一分支电极和一个所述第二分支电极对应设置。其中,每一所述第一分支电极末端与对应的所述第二分支电极末端之间具有一间隔,所述间隔和相邻的另一所述间隔交错设置。
在本申请实施例提供的液晶显示面板中,所述第一分支电极与相邻的另一所述第一分支电极的长度不同。
在本申请实施例提供的液晶显示面板中,所述第一分支电极与所述第二分支电极平行设置。
在本申请实施例提供的液晶显示面板中,所述第一分支电极和所述第二分支电极的所述末端呈三角形。
在本申请实施例提供的液晶显示面板中,所述第一分支电极和所述第二分支电极的所述末端呈矩形。
在本申请实施例提供的液晶显示面板中,所述第一像素电极区分为四个象限区。
在本申请实施例提供的液晶显示面板中,所述第二像素电极区分为四个区域且所述四个区域与所述第一像素电极的四个象限区对应设置。
在本申请实施例提供的液晶显示面板中,所述第一像素电极还包括第一主干电极,所述第一分支电极连接所述第一主干电极。
在本申请实施例提供的液晶显示面板中,所述第二像素电极还包括第二主干电极,所述第二分支电极连接所述第二主干电极。
在本申请实施例提供的液晶显示面板中,所述第二主干电极的一侧设置有开口。
有益效果
本申请提供的一种像素电极结构以及液晶显示面板中,每一所述第一分支电极末端与对应的所述第二分支电极末端之间具有一间隔,所述间隔和相邻的另一所述间隔交错设置。从而使所述第一像素电极和所述第二像素电极的交界处形成交叉电场,覆盖第一像素电极和第二像素电极的交界处,有效控制交界处液晶分子的倒伏,减少交界处形成的暗纹,以提高穿透率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术像素电极结构上视示意图。
图2为本申请实施例提供的像素电极结构的第一种上视结构示意图。
图3为本申请实施例提供第一分支电极长度对比示意图。
图4为本申请实施例提供的第一分支电极和第二分支电极之间具有的间隔示意图。
图5为本申请实施例提供的分支电极末端结构的对比示意图。
图6为本申请实施例提供的像素电极结构的第二种上视结构示意图。
图7为本申请实施例提供的分支电极之间具有的间隔的间距对比图。
图8为本申请实施例提供的像素电极结构的第三种上视结构示意图。
图9为本申请实施例提供的液晶显示面板侧视结构示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
在一种实施例中,如图2所示,提供一种像素电极结构100,包括第一像素电极1以及第二像素电极2。其中,所述第一像素电极1包括多个第一分支电极11,所述第二像素电极2包括多个第二分支电极22。每一所述第一分支电极11和一个所述第二分支电极22对应设置。其中,每一所述第一分支电极11末端与对应的所述第二分支电极22末端之间具有一间隔30,所述间隔30和相邻的另一所述间隔30交错设置。
具体的,所述第一分支电极与相邻的另一所述第一分支电极的长度不同。如图3所示,为图2中像素电极100的相邻的两个所述第一分支电极的放大图,从图3中可以看出,所述第一分支电极的长度L1大于相邻的另一所述第一分支电极的长度L2。
进一步的,因每一所述第一分支电极11和一个所述第二分支电极22对应设置,所以所述第二分支电极与相邻的另一所述第二分支电极的长度也不同。
具体的,因每一所述第一分支电极11末端与对应的所述第二分支电极22末端之间具有一间隔30。仍以相邻的两个所述第一分支电极和对应的相邻的两个第二分支电极为例说明,如图4所示,为图2中相邻的的两个所述第一分支电极和对应的相邻的两个第二分支电极的放大图。从图4中可以看出,所述第一分支电极11末端与对应的所述第二分支电极22末端之间具有一间隔30,相邻的另一所述第一分支电极11末端与相邻的另一第二分支电极22末端也具有一间隔30。
进一步的,因所述第一分支电极11与相邻的另一所述第一分支电极11的长度不同,且所述第二分支电极22与相邻的另一所述第二分支电极22的长度也不同。所以使得图4中的第一分支电极11末端和第二分支电极22末端具有的间隔30呈交错设置。
进一步的,整个像素电极结构内的所述第一分支电极11因长度不同而呈现长短交错设置。进而使第一分支电极末端和对应的第二分支电极末端之间具有的间隔,在整个像素电极结构内呈交错设置。
进一步的,所述间隔的交错设置,使得第一像素电极和第二像素电极的交界处形成交叉电场,交叉电场覆盖第一像素电极和第二像素电极交界处,有效控制交界处液晶分子的倒伏,减少交界处形成的暗纹,提高穿透率。
具体的,如图2所示,所述第一像素电极1还包括第一主干电极10,所述第一分支电极11连接所述第一主干电极10。所述第二像素电极2还包括第二主干电极20,所述第二分支电极22连接所述第二主干电极20。
进一步的,所述第一主干电极10把第一像素电极1分为四个象限区。所述第一分支电极11关于所述第一主干电极10上下左右对称,形成“米”字型的像素电极结构。也即不同象限区的第一分支电极11沿着第一主干电极10朝着不同的方向延伸。
进一步的,所述第二主干电极20把第二像素电极2分成四个区域,且所述四个区域与所述第一像素电极1的四个象限区对应设置。
具体的,如图2所示,所述第二主干电极的一侧设置有开口,具体的,所述第二主干电极整体呈现上方开口的类似“口”字型结构,把第一像素电极1和第二分支电极22包围起来。
进一步的,所述第二像素电极2的四个不同区域内,所述第二分支电极22沿着第二主干电极20朝着不同的方向延伸。
具体的,本申请中所述第一分支电极和所述第二分支电极的末端是指远离对应主干电极的一端。
进一步的,在所述第一像素电极1的同一象限区和对应的所述第二像素电极2的分区域内,所述第一分支电极与所述第二分支电极平行设置。
在一种实施例中,所述第二主干电极20上方的开口用于所述第一像素电极1对外连接。
具体的,如图2所示,所述像素电极结构100还包括第一连接电极12和第二连接电极21。所述第一连接电极12通过所述第二主干电极20上方的开口连接所述第一主干电极10和第一漏极66。所述第二连接电极27连接所述第二主干电极20和第二漏极67。
进一步的,所述第一像素电极1和所述第二像素电极2分别有两个不同的薄膜极晶体管(Thin Film Transistor,TFT)控制。
在一种实施例中,所述第一像素电极和所述第二像素电极的材料为氧化铟锡(Indium Tin Oxide,ITO)等透明导电材料。
在一种实施例中,如图2所示,所述第一分支电极11和所述第二分支电极22的所述末端呈三角形。所述末端是指所述第一分支电极11的末端和所述第二分支电极22的末端。
在一种实施例中,与上述实施例不同的是,所述第一分支电极和所述第二分支电极的所述末端呈矩形。所述末端呈矩形和三角形的区别为,取所述第一分支电极和所述第二分支电极末端一小部分,从俯视角度看,呈如图5所示的三角形131和矩形132形状。
具体的,如图6所示的像素电极结构101,包括第一像素电极1’和第二像素电极2’。
具体的,所述第一像素电极1’包括第一主干电极10和多个第一分支电极11’,所述第一分支电极11’沿着所述第一主干电极10朝不同的方向延伸。
具体的,所述第二像素电极2’包括第二主干电极20和多个第二分支电极22’,所述第二分支电极22’沿着所述第二主干电极20朝不同的方向延伸。
进一步的,每一所述第一分支电极11’和一个所述第二分支电极22’对应设置。其中,每一所述第一分支电极11’末端与对应的所述第二分支电极22’末端之间具有一间隔30’,所述间隔30’和相邻的另一所述间隔30’交错设置。
在一种实施例中,与上述实施例不同的是,所述第一分支电极和相邻的另一所述第一分支电极的长度差异增大。进而使所述第一分支电极末端和对应的所述第二电极末端之间具有的间隔,与相邻分支电极之间具有的间隔距离变大。
具体的,如图7所示,为本实施例中分支电极之间具有的间隔和上述实施例图6中分支电极之间具有的间隔的对比示意图。从图7中可以看出,上述实施例中交错设置的相邻所述间隔30’的间距H1小于本实施例中交错设置的相邻所述间隔30”的间距H2。
具体的,本实施例的像素电极结构102如图8所示,包括第一像素电极1”和所述第二像素电极2”。其中每一所述第一分支电极11”末端与对应的所述第二分支电极22”末端之间具有一间隔30”,所述间隔30”和相邻的另一所述间隔30”交错设置。其他说明请参照上述实施例,在此不再赘述。
进一步的,交错设置的相邻所述间隔30”的间距增大,也即是所述第一分支电极11”末端和相邻的所述第二分支电极22”末端交错重叠的区域增大,使所述第一像素电极1”和所述第二像素电极2”交界处形成的交叉电场覆盖范围更广。
在另一种实施例中,所述第一分支电极和所述第二分支电极末端为三角形时,同样可以采用上述实施例的方案,其他说明请参照上述实施例,在此不再赘述。
在一种实施例中,还提供一种液晶显示面板1000,如图9所示,所示液晶显示面板1000包括第一基板300、第二基板200、公共电极结构400、像素电极结构100以及多个液晶分子500。所述第二基板200与所述第一基板300相对设置。所述公共电极结构400设置于所述第一基板300面向所述第二基板200的一侧。所述像素电极结构100设于所述第二基板200面向所述第一基板300的一侧。所述多个液晶分子500填充于所述公共电极结构400与所述像素电极结构100之间的。其中,所述像素电极结构包括第一像素电极以及第二像素电极。其中,所述第一像素电极包括多个第一分支电极,所述第二像素电极包括多个第二分支电极,每一所述第一分支电极和一个所述第二分支电极对应设置。其中,每一所述第一分支电极末端与对应的所述第二分支电极末端之间具有一间隔,所述间隔和相邻的另一所述间隔交错设置。
具体的,所述第一分支电极与相邻的另一所述第一分支电极的长度不同。
具体的,所述第一分支电极与所述第二分支电极平行设置。
具体的,所述第一分支电极和所述第二分支电极的所述末端呈三角形。
具体的,所述第一分支电极和所述第二分支电极的所述末端呈矩形。
具体的,所述第一像素电极区分为四个象限区。
具体的,所述第二像素电极区分为四个区域且所述四个区域与所述第一像素电极的四个象限区对应设置。
具体的,所述第一像素电极还包括第一主干电极,所述第一分支电极连接所述第一主干电极。
具体的,所述第二像素电极还包括第二主干电极,所述第二分支电极连接所述第二主干电极。
具体的,所述第二主干电极的一侧设置有开口。
根据上述实施例可知:
本申请提供一种像素电极结构以及液晶显示面板,所述像素电极结构包括第一像素电极以及第二像素电极。每一所述第一分支电极和一个所述第二分支电极对应设置。每一所述第一分支电极末端与对应的所述第二分支电极末端之间具有一间隔,所述间隔和相邻的另一所述间隔交错设置。从而使所述第一像素电极和所述第二像素电极的交界处形成交叉电场,覆盖第一像素电极和第二像素电极交界处,有效控制交界处液晶分子的倒伏,减少交界处形成的暗纹,以提高穿透率。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种像素电极结构,其包括第一像素电极以及第二像素电极;其中,所述第一像素电极包括多个第一分支电极,所述第二像素电极包括多个第二分支电极,每一所述第一分支电极和一个所述第二分支电极对应设置;其中,每一所述第一分支电极末端与对应的所述第二分支电极末端之间具有一间隔,所述间隔与相邻的另一所述间隔交错设置。
  2. 根据权利要求1所述的像素电极结构,其中,所述第一分支电极与相邻的另一所述第一分支电极的长度不同。
  3. 根据权利要求1所述的像素电极结构,其中,所述第一分支电极和所述第二分支电极平行设置。
  4. 根据权利要求1所述的像素电极结构,其中,所述第一分支电极和所述第二分支电极的所述末端呈三角形。
  5. 根据权利要求1所述的像素电极结构,其中,所述第一分支电极和所述第二分支电极的所述末端呈矩形。
  6. 根据权利要求1所述的像素电极结构,其中,所述第一像素电极区分为四个象限区。
  7. 根据权利要求6所述的像素电极结构,其中,所述所述第二像素电极区分为四个区域且所述四个区域与所述第一像素电极的四个象限区对应设置。
  8. 根据权利要求1所述的像素电极结构,其中,所述第一像素电极还包括第一主干电极,所述第一分支电极连接所述第一主干电极。
  9. 根据权利要求1所述的像素电极结构,其中,所述第二像素电极还包括第二主干电极,所述第二分支电极连接所述第二主干电极。
  10. 根据权利要求9所述的像素电极结构,其中,所述第二主干电极的一侧设置有开口。
  11. 一种液晶显示面板,其包括:
    第一基板;
    与所述第一基板相对设置的第二基板;
    设置于所述第一基板面向所述第二基板一侧的公共电极结构;
    设置于所述第二基板面向所述第一基板一侧的像素电极结构;以及
    填充于所述公共电极结构与所述像素电极结构之间的多个液晶分子;
    其中,所述像素电极结构包括第一像素电极以及第二像素电极;其中,所述第一像素电极包括多个第一分支电极,所述第二像素电极包括多个第二分支电极,每一所述第一分支电极和一个所述第二分支电极对应设置;其中,每一所述第一分支电极末端与对应的所述第二分支电极末端之间具有一间隔,所述间隔与相邻的另一所述间隔交错设置。
  12. 根据权利要求11所述的液晶显示面板,其中,所述第一分支电极与相邻的另一所述第一分支电极的长度不同。
  13. 根据权利要求11所述的液晶显示面板,其中,所述第一分支电极和所述第二分支电极平行设置。
  14. 根据权利要求11所述的像素电极结构,其中,所述第一分支电极和所述第二分支电极的所述末端呈三角形。
  15. 根据权利要求11所述的液晶显示面板,其中,所述第一分支电极和所述第二分支电极的所述末端呈矩形。
  16. 根据权利要求11所述的液晶显示面板,其中,所述第一像素电极区分为四个象限区。
  17. 根据权利要求16所述的液晶显示面板,其中,所述所述第二像素电极区分为四个区域且所述四个区域与所述第一像素电极的四个象限区对应设置。
  18. 根据权利要求11所述的液晶显示面板,其中,所述第一像素电极还包括第一主干电极,所述第一分支电极连接所述第一主干电极。
  19. 根据权利要求11所述的液晶显示面板,其中,所述第二像素电极还包括第二主干电极,所述第二分支电极连接所述第二主干电极。
  20. 根据权利要求19所述的液晶显示面板,其中,所述第二主干电极的一侧设置有开口。
PCT/CN2019/122850 2019-11-26 2019-12-04 一种像素电极结构及液晶显示面板 WO2021103063A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/627,776 US20210405462A1 (en) 2019-11-26 2019-12-04 Pixel electrode structure and liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911175624.6 2019-11-26
CN201911175624.6A CN110928067B (zh) 2019-11-26 2019-11-26 一种像素电极结构及液晶显示面板

Publications (1)

Publication Number Publication Date
WO2021103063A1 true WO2021103063A1 (zh) 2021-06-03

Family

ID=69851237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122850 WO2021103063A1 (zh) 2019-11-26 2019-12-04 一种像素电极结构及液晶显示面板

Country Status (3)

Country Link
US (1) US20210405462A1 (zh)
CN (1) CN110928067B (zh)
WO (1) WO2021103063A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111308806B (zh) * 2020-04-01 2021-11-02 Tcl华星光电技术有限公司 一种液晶显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150268518A1 (en) * 2014-03-21 2015-09-24 Samsung Display Co., Ltd. Liquid crystal display
CN106292084A (zh) * 2016-08-26 2017-01-04 深圳市华星光电技术有限公司 像素结构及其制作方法
CN106444178A (zh) * 2016-11-10 2017-02-22 深圳市华星光电技术有限公司 一种液晶显示面板及装置
CN107402480A (zh) * 2016-05-18 2017-11-28 三星显示有限公司 液晶显示器
CN110007533A (zh) * 2019-04-10 2019-07-12 惠科股份有限公司 像素电极及液晶显示面板
CN110297368A (zh) * 2018-03-22 2019-10-01 三星显示有限公司 显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150268518A1 (en) * 2014-03-21 2015-09-24 Samsung Display Co., Ltd. Liquid crystal display
CN107402480A (zh) * 2016-05-18 2017-11-28 三星显示有限公司 液晶显示器
CN106292084A (zh) * 2016-08-26 2017-01-04 深圳市华星光电技术有限公司 像素结构及其制作方法
CN106444178A (zh) * 2016-11-10 2017-02-22 深圳市华星光电技术有限公司 一种液晶显示面板及装置
CN110297368A (zh) * 2018-03-22 2019-10-01 三星显示有限公司 显示装置
CN110007533A (zh) * 2019-04-10 2019-07-12 惠科股份有限公司 像素电极及液晶显示面板

Also Published As

Publication number Publication date
CN110928067A (zh) 2020-03-27
CN110928067B (zh) 2023-11-28
US20210405462A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
US11199750B2 (en) Display panel having black matrix comprising extension portions
US11694646B2 (en) Display panel having opening in first electrode and display device thereof
US11088177B2 (en) Array substrate and manufacturing method thereof
US20210328199A1 (en) Display panel and display device
US7423716B2 (en) Liquid crystal display device with mound-like insulating film formed on video line covered by a common electrode with edges of the mound positioned on light shield electrode
KR102652674B1 (ko) 초고 해상도 액정 표시장치
US11703734B2 (en) Display panel
WO2020073568A1 (zh) 一种像素电极结构及显示装置
KR102043578B1 (ko) 어레이 기판, 액정 디스플레이 패널 및 액정 디스플레이 장치
WO2021184506A1 (zh) 液晶显示面板
WO2021087650A1 (zh) 阵列基板、显示装置
WO2020258504A1 (zh) 一种阵列基板及显示面板
TW201905565A (zh) 陣列基板與顯示面板
WO2021082213A1 (zh) 液晶显示面板及液晶显示装置
WO2021196284A1 (zh) 液晶显示面板
WO2022257511A1 (zh) 阵列基板、显示面板和显示装置
US20210028263A1 (en) Display panel
WO2021103063A1 (zh) 一种像素电极结构及液晶显示面板
TWI643009B (zh) 畫素結構以及包含此畫素結構的顯示面板
WO2022199004A1 (zh) 一种像素结构、阵列基板、显示面板以及显示设备
WO2020103269A1 (zh) 一种液晶显示面板
WO2020042358A1 (zh) 触控阵列基板以及显示装置
WO2020073421A1 (zh) 阵列基板及触控显示面板
US11506943B2 (en) Display panel, display module, and display device
WO2022165942A1 (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953974

Country of ref document: EP

Kind code of ref document: A1