WO2021103004A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2021103004A1
WO2021103004A1 PCT/CN2019/122190 CN2019122190W WO2021103004A1 WO 2021103004 A1 WO2021103004 A1 WO 2021103004A1 CN 2019122190 W CN2019122190 W CN 2019122190W WO 2021103004 A1 WO2021103004 A1 WO 2021103004A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation mode
dci
downlink data
information
modulation
Prior art date
Application number
PCT/CN2019/122190
Other languages
English (en)
French (fr)
Inventor
罗之虎
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227021280A priority Critical patent/KR20220104028A/ko
Priority to CN201980102592.9A priority patent/CN114747188A/zh
Priority to JP2022531499A priority patent/JP2023503656A/ja
Priority to EP19954707.6A priority patent/EP4054139A4/en
Priority to PCT/CN2019/122190 priority patent/WO2021103004A1/zh
Publication of WO2021103004A1 publication Critical patent/WO2021103004A1/zh
Priority to US17/827,007 priority patent/US20220287065A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0004Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0012Modulated-carrier systems arrangements for identifying the type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a data transmission method and device.
  • the Internet of Things is the "Internet of Things Connected”. It expands the user end of the Internet to any item and item for information exchange and communication. Such a communication method is also called machine type communications (MTC), and the communication node is called an MTC terminal.
  • MTC machine type communications
  • Typical IoT applications include smart grids, smart agriculture, smart transportation, smart homes, and environmental detection. Since the Internet of Things needs to be applied in a variety of scenarios, such as from outdoor to indoor, from above ground to underground, many special requirements are put forward for the design of Internet of Things. In IoT, the bandwidth used to transmit data between nodes is small, so it can also be called narrowband internet of things (NB-IoT).
  • NB-IoT narrowband internet of things
  • the modulation mode supported by NB-IoT downlink is quadrature phase shift keying (quadrature phase shift keying, QPSK), and the modulation mode supported by uplink is binary phase shift keying (BPSK) and QPSK.
  • QPSK quadrature phase shift keying
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • BPSK binary phase shift keying
  • NB-IoT R17 considers the introduction of high-level modulations, such as 16 quadrature amplitude modulation (16QAM) and 64QAM, to increase the data transmission rate and support higher-speed IoT services. How the downlink control information supports the scheduling of high-order modulation is a problem to be solved urgently.
  • the purpose of the embodiments of the present application is to provide a data transmission method and device to support high-level modulation scheduling.
  • an embodiment of the present application provides a data transmission method, including: a terminal device receives downlink control information DCI from a network device, where the DCI is used to schedule downlink data and indicates a modulation mode of the downlink data;
  • the modulation mode of the downlink data is the first modulation mode or quadrature phase shift keying QPSK, and the modulation order corresponding to the first modulation mode is greater than 2; the terminal device receives the downlink data according to the modulation mode.
  • the network device indicates the modulation mode of the downlink data through the DCI, and the terminal device can receive the downlink data according to the modulation mode indicated by the DCI, so as to realize the scheduling of high-order modulation through the DCI.
  • the DCI includes repetition count indication information, where the repetition count indication information is used to determine the repetition count N Rep of the downlink data; when N Rep is less than or equal to R0, the downlink data
  • the modulation mode of is the first modulation mode; when N Rep is greater than the R0, the modulation mode of the downlink data is QPSK, where R0 is a positive integer greater than or equal to 1.
  • the repetition number indication information includes 4 bits.
  • the DCI includes DCI repetition count indication information, where the DCI repetition count indication information is used to determine the DCI repetition count; when the DCI repetition count is less than or equal to R1,
  • the modulation mode of the downlink data is the first modulation mode; when the number of repetitions of the DCI is greater than the R1, the modulation mode of the downlink data is QPSK, where R1 is a positive integer greater than or equal to 1.
  • the DCI repetition count indication information includes 2 bits.
  • the DCI includes coding and modulation strategy MCS indication information, where the MCS indication information is used to determine the MCS index of the downlink data; when the MCS index is greater than or equal to M0, the downlink The modulation mode of the data is the first modulation mode; when the MCS index is less than M0, the modulation mode of the downlink data is the QPSK, where M0 is a positive integer greater than or equal to zero.
  • the MCS indication information includes 4 bits or 5 bits or 6 bits.
  • the DCI includes first information, and the first information is used to determine whether the modulation mode of the downlink data is the first modulation mode or the QPSK; When the value is the first value, the modulation mode of the downlink data is the first modulation mode; when the value of the first information is the second value, the modulation mode of the downlink data is the QPSK.
  • the modulation mode of the downlink data is the first modulation mode, and the first RNTI is used by the network Device configuration; when the CRC of the downlink control channel carrying the DCI is scrambled by C-RNTI, the modulation mode of the downlink data is QPSK.
  • the number of bits used to determine the number of repetitions of the downlink data in the DCI is 0, 1, 2, or 3. .
  • the number of bits used to determine the number of DCI repetitions in the DCI is 0 or 1.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI further includes a coded modulation strategy MCS field, and the number of bits included in the MCS field is 1 or 2 or 3. Or 4.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode.
  • the power ratio of a signal when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode. The power ratio of a signal.
  • the second information includes M bits, and M is an integer greater than zero.
  • M is less than or equal to 3.
  • the first modulation mode is 8PSK, 16QAM, 64QAM, or 256QAM.
  • the format of the DCI is format N1.
  • the DCI includes second information, and the second information is used to determine a power ratio between the downlink data and the first signal.
  • a data transmission method including: a network device determines a modulation mode of downlink data, and sends downlink control information DCI to the terminal device, where the DCI is used to schedule the downlink data and instruct the downlink The modulation method of the data; the modulation method of the downlink data is the first modulation method or quadrature phase shift keying QPSK, and the modulation order corresponding to the first modulation method is greater than 2; the network device is in accordance with the modulation method Sending the downlink data to the terminal device.
  • the network device indicates the modulation mode of the downlink data through the DCI, and the terminal device can receive the downlink data according to the modulation mode indicated by the DCI, so as to realize the scheduling of high-order modulation through the DCI.
  • the DCI includes repetition count indication information, where the repetition count indication information is used to determine the number of repetitions of the downlink data, NRep; when NRep is less than or equal to R0, the modulation of the downlink data The mode is the first modulation mode; when NRep is greater than the R0, the modulation mode of the downlink data is QPSK, where R0 is a positive integer greater than or equal to 1.
  • the repetition number indication information includes 4 bits.
  • the DCI includes DCI repetition count indication information, where the DCI repetition count indication information is used to determine the DCI repetition count; when the DCI repetition count is less than or equal to R1,
  • the modulation mode of the downlink data is the first modulation mode; when the number of repetitions of the DCI is greater than the R1, the modulation mode of the downlink data is QPSK, where R1 is a positive integer greater than or equal to 1.
  • the DCI repetition count indication information includes 2 bits.
  • the DCI includes coding and modulation strategy MCS indication information, where the MCS indication information is used to determine the MCS index of the downlink data; when the MCS index is greater than or equal to M0, the downlink The modulation mode of the data is the first modulation mode; when the MCS index is less than M0, the modulation mode of the downlink data is the QPSK, where M0 is an integer greater than or equal to zero.
  • the MCS indication information includes 4 bits or 5 bits or 6 bits.
  • the DCI includes first information, and the first information is used to determine whether the modulation mode of the downlink data is the first modulation mode or the QPSK; When the value is the first value, the modulation mode of the downlink data is the first modulation mode; when the value of the first information is the second value, the modulation mode of the downlink data is the QPSK.
  • the modulation mode of the downlink data is the first modulation mode, and the first RNTI is used by the network Device configuration; when the CRC of the downlink control channel carrying the DCI is scrambled by C-RNTI, the modulation mode of the downlink data is QPSK.
  • the number of bits used to determine the number of repetitions of the downlink data in the DCI is 0, 1, 2, or 3. .
  • the number of bits used to determine the number of DCI repetitions in the DCI is 0 or 1.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI further includes a coded modulation strategy MCS field, and the number of bits included in the MCS field is 1 or 2 or 3. Or 4.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode.
  • the power ratio of a signal when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode. The power ratio of a signal.
  • the second information includes M bits, and M is an integer greater than zero.
  • M is less than or equal to 3.
  • the first modulation mode is 8PSK, 16QAM, 64QAM, or 256QAM.
  • the format of the DCI is format N1.
  • the DCI includes second information, and the second information is used to determine a power ratio between the downlink data and the first signal.
  • the present application provides a method, including: a terminal device receives downlink control information DCI from a network device, the DCI is used to schedule uplink data and indicates the modulation mode of the uplink data; the modulation of the uplink data
  • the method is the first modulation method or quadrature phase shift keying QPSK or BPSK, and the modulation order corresponding to the first modulation method is greater than 2.
  • the terminal device sends the uplink to the network device according to the modulation method. data.
  • the network device indicates the modulation mode of the uplink data through the DCI, and the terminal device can receive the uplink data according to the modulation mode indicated by the DCI, so as to realize the scheduling of high-level modulation through the DCI.
  • the DCI includes repetition count indication information, where the repetition count indication information is used to determine the repetition count N Rep of the uplink data; when N Rep is less than or equal to R0, the uplink data
  • the modulation mode of is the first modulation mode; when NRep is greater than the R0, the modulation mode of the uplink data is QPSK or BPSK, where R0 is a positive integer greater than or equal to 1.
  • the number of repetition indication information includes 3 bits.
  • the DCI includes DCI repetition count indication information, where the DCI repetition count indication information is used to determine the DCI repetition count; when the DCI repetition count is less than or equal to R1,
  • the modulation mode of the uplink data is the first modulation mode; when the number of repetitions of the DCI is greater than the R1, the modulation mode of the uplink data is QPSK or BPSK, where R1 is a positive integer greater than or equal to 1.
  • the DCI repetition count indication information includes 2 bits.
  • the DCI includes subcarrier indication information, where the subcarrier indication information is used to determine the number of subcarriers of the uplink data; when the number of subcarriers is greater than or equal to S0, the The modulation mode of the uplink data is the first modulation mode; when the number of subcarriers is less than S0, the modulation mode of the uplink data is QPSK or BPSK, where S0 is a positive integer greater than or equal to 1.
  • the subcarrier indication information includes 6 bits.
  • the DCI includes coding and modulation strategy MCS indication information, where the MCS indication information is used to determine the MCS index of the uplink data; when the MCS index is greater than or equal to M0, the uplink The modulation mode of the data is the first modulation mode; when the MCS index is less than M0, the modulation mode of the uplink data is QPSK or BPSK, where R1 is a positive integer greater than or equal to 1.
  • the MCS indication information includes 4 bits or 5 bits or 6 bits.
  • the DCI includes first information, and the first information is used to determine a modulation mode of the uplink data; when the value of the first information is a first value, the uplink The modulation mode of the data is the first modulation mode; when the value of the first information is the second value, the modulation mode of the uplink data is QPSK or BPSK.
  • the modulation mode of the uplink data is the first modulation mode, and the first RNTI is used by the network Device Configuration;
  • the modulation mode of the uplink data is QPSK or BPSK.
  • the number of bits used to indicate the number of repetitions of the uplink data in the DCI is 0, 1, 2, or 3. .
  • the number of bits used to determine the number of DCI repetitions in the DCI is 0 or 1.
  • the number of bits used to determine the number of subcarriers of the uplink data in the DCI is 0 or 1 or 2 or 3 or 4 or 5.
  • the DCI when the modulation mode of the uplink data is the first modulation mode, the DCI further includes a coded modulation strategy MCS field, and the number of bits included in the MCS field is 1 or 2 or 3. Or 4.
  • the number of bits used to indicate the redundancy version of the uplink data in the DCI is 0 or 1.
  • the first modulation mode is 8PSK, 16QAM, 64QAM, or 256QAM.
  • the format of the DCI is format NO.
  • the value of the first information is set to 0 or 1.
  • the present application provides a method including: a network device determines a modulation mode of uplink data, and sends downlink control information DCI to the terminal device, where the DCI is used to schedule the uplink data and instruct the uplink The modulation mode of the data; the modulation mode of the uplink data is the first modulation mode or quadrature phase shift keying QPSK or BPSK, and the modulation order corresponding to the first modulation mode is greater than 2; the network equipment follows the modulation mode Receiving uplink data from the terminal device.
  • the network device indicates the modulation mode of the uplink data through the DCI, and the terminal device can receive the uplink data according to the modulation mode indicated by the DCI, so as to realize the scheduling of high-level modulation through the DCI.
  • the DCI includes repetition count indication information, where the repetition count indication information is used to determine the repetition count N Rep of the uplink data; when N Rep is less than or equal to R0, the uplink data
  • the modulation mode of is the first modulation mode; when N Rep is greater than the R0, the modulation mode of the uplink data is QPSK or BPSK, where R0 is a positive integer greater than or equal to 1.
  • the number of repetition indication information includes 3 bits.
  • the DCI includes DCI repetition count indication information, where the DCI repetition count indication information is used to determine the DCI repetition count; when the DCI repetition count is less than or equal to R1,
  • the modulation mode of the uplink data is the first modulation mode; when the number of repetitions of the DCI is greater than the R1, the modulation mode of the uplink data is QPSK or BPSK, where R1 is a positive integer greater than or equal to 1.
  • the DCI repetition count indication information includes 2 bits.
  • the DCI includes subcarrier indication information, where the subcarrier indication information is used to determine the number of subcarriers of the uplink data; when the number of subcarriers is greater than or equal to S0, the The modulation mode of the uplink data is the first modulation mode; when the number of subcarriers is less than S0, the modulation mode of the uplink data is QPSK or BPSK, where S01 is a positive integer greater than or equal to 1.
  • the subcarrier indication information includes 6 bits.
  • the DCI includes coding and modulation strategy MCS indication information, where the MCS indication information is used to determine the MCS index of the uplink data; when the MCS index is greater than or equal to M0, the uplink The modulation mode of the data is the first modulation mode; when the MCS index is less than M0, the modulation mode of the uplink data is QPSK or BPSK, where R1 is a positive integer greater than or equal to 1.
  • the MCS indication information includes 4 bits or 5 bits or 6 bits.
  • the DCI includes first information, and the first information is used to determine a modulation mode of the uplink data; when the value of the first information is a first value, the uplink The modulation mode of the data is the first modulation mode; when the value of the first information is the second value, the modulation mode of the uplink data is QPSK or BPSK.
  • the modulation mode of the uplink data is the first modulation mode, and the first RNTI is used by the network Device Configuration;
  • the modulation mode of the uplink data is QPSK or BPSK.
  • the number of bits used to indicate the number of repetitions of the uplink data in the DCI is 0, 1, 2, or 3. .
  • the number of bits used to determine the number of DCI repetitions in the DCI is 0 or 1.
  • the number of bits used to determine the number of subcarriers of the uplink data in the DCI is 0, 1, 2, or 3, or 4 or 5.
  • the DCI when the modulation mode of the uplink data is the first modulation mode, the DCI further includes a coded modulation strategy MCS field, and the number of bits included in the MCS field is 1 or 2 or 3. Or 4.
  • the number of bits used to indicate the redundancy version of the uplink data in the DCI is 0 or 1.
  • the first modulation mode is 8PSK, 16QAM, 64QAM, or 256QAM.
  • the format of the DCI is format NO.
  • the value of the first information is set to 0 or 1.
  • the present application also provides a communication device having any method provided in the first aspect or the third aspect.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes: a processor configured to support the communication device to perform corresponding functions of the terminal device in the method shown above.
  • the communication device may further include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, and the communication interface is used to support communication between the communication device and equipment such as network equipment.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform the corresponding functions in the foregoing method examples.
  • a processing unit and a communication unit can perform the corresponding functions in the foregoing method examples.
  • the present application also provides a communication device that has any method provided in the second aspect or the fourth aspect.
  • the communication device can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or units corresponding to the above-mentioned functions.
  • the communication device includes a processor configured to support the communication device to perform the corresponding function of the network device in the method shown above.
  • the communication device may further include a memory, and the storage may be coupled with the processor, which stores program instructions and data necessary for the communication device.
  • the communication device further includes a communication interface, and the communication interface is used to support communication between the communication device and a terminal device and other devices.
  • the communication device includes corresponding functional units, which are respectively used to implement the steps in the above method.
  • the function can be realized by hardware, or the corresponding software can be executed by hardware.
  • the hardware or software includes one or more units corresponding to the above-mentioned functions.
  • the structure of the communication device includes a processing unit and a communication unit, and these units can perform the corresponding functions in the foregoing method examples.
  • a processing unit and a communication unit can perform the corresponding functions in the foregoing method examples.
  • the present application provides a communication device.
  • the communication device includes a processor.
  • the processor executes a computer program or instruction in a memory, the method is as described in any one of the first to fourth aspects. Be executed.
  • the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store computer programs or instructions; the processor is used to execute the computer programs or instructions stored in the memory. So that the communication device executes the corresponding method as shown in any one of the first aspect to the fourth aspect.
  • the present application provides a communication device that includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive signals or send signals; and the memory is used to store computer programs or instructions;
  • the processor is configured to call the computer program or instruction from the memory to execute the method according to any one of the first aspect to the fourth aspect.
  • the present application provides a communication device, the communication device includes a processor and an interface circuit, the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code instructions In order to perform the corresponding method as shown in any one of the first aspect to the fourth aspect.
  • the present application provides a computer-readable storage medium for storing a computer program or instruction.
  • the computer reads and executes the computer program or instruction, the first aspect to The method described in any aspect of the fourth aspect is implemented.
  • the present application provides a computer program product including instructions.
  • the computer reads and executes the computer program product, the method described in any one of the first to fourth aspects is realized.
  • the present application provides a chip including a processor, the processor is coupled with a memory, and is configured to execute a computer program or instruction stored in the memory.
  • the processor executes the computer program or instruction At this time, the method described in any one of the first aspect to the fourth aspect is realized.
  • the present application provides a system including the terminal device provided in the fifth aspect and the network device provided in the sixth aspect.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a data transmission method provided by an embodiment of the application
  • FIG. 3 is a schematic flowchart of a data transmission method provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the embodiments of this application can be applied to wireless communication systems, and are especially suitable for mobile communication systems supporting NB-IoT or eMTC, such as: new radio (NR) system, long term evolution (LTE) system, advanced Other communication systems such as advanced long term evolution (LTE-A) systems, evolved long term evolution (eLTE) systems, future communication systems, etc., are not restricted here.
  • NR new radio
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • eLTE evolved long term evolution
  • future communication systems etc.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the method of the embodiment of the present application.
  • the network device and the terminal device 1 ⁇ terminal device 5 form a communication system.
  • the network device can send information to one or more of the terminal device 1 ⁇ terminal device 5.
  • the terminal device 4 to the terminal device 5 also constitute a communication system.
  • the terminal device may be a device with a wireless transceiver function or a chip that can be installed in any device, and may also be referred to as user equipment (UE), access terminal, user unit, or user station. , Mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • Mobile station mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal equipment in the embodiments of this application may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal, an augmented reality (AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in the smart city (smart city), wireless terminals in the smart home (smart home), etc.
  • the network equipment can be an evolved base station (evolutional node B, eNB) in the LTE system, a global system of mobile communication (GSM) system or a code division multiple access (CDMA) system.
  • eNB evolved base station
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • the base transceiver station (BTS) may also be a base station (nodeB, NB) in a wideband code division multiple access (WCDMA) system.
  • WCDMA wideband code division multiple access
  • FIG. 2 it is a schematic flowchart of a data transmission method provided by an embodiment of this application. Referring to Figure 2, the method includes:
  • Step 201 The network device determines the modulation mode of the downlink data, and sends the downlink control information to the terminal device.
  • the downlink control channel (DCI) is used to schedule the downlink data and indicate the modulation mode of the downlink data; the modulation mode of the downlink data is the first modulation mode or QPSK .
  • the modulation order corresponding to the first modulation mode is greater than 2.
  • the first modulation method may be 8PSK, 16QAM, 64QAM, 256QAM, or the like.
  • the network device specifically determines the modulation mode of the downlink data is not limited in the embodiment of the present application.
  • the network device may also send configuration information to the terminal device, where the configuration information indicates that the first modulation mode is activated.
  • the terminal device can determine that the downlink data scheduled by the network device may be modulated by the first modulation method.
  • Step 202 The network device sends the downlink data to the terminal device according to the modulation mode.
  • Step 203 The terminal device receives the downlink control information from the network device.
  • Step 204 The terminal device receives the downlink data according to the modulation mode indicated by the downlink control information.
  • the network device indicates the modulation mode of the downlink data through the DCI, so that the terminal device can receive the downlink data according to the modulation mode indicated by the DCI.
  • the following respectively describes how to implement the modulation mode for indicating downlink data through DCI.
  • the format of the DCI is format N1
  • the modulation mode of the downlink data can be implicitly indicated through different fields in the DCI, which will be described separately below.
  • the content included in the DCI can refer to Table 1.
  • the format N0/format N1 distinguishes the identification field, which is used to indicate the format of the DCI; the format N0 is used for uplink scheduling; and the format N1 is used for downlink scheduling.
  • the terminal device recognizes whether the format of the DCI is the format N0 or the format N1 by distinguishing the identification field of the format N0/format N1, and can then determine whether the DCI is used for uplink scheduling or downlink scheduling.
  • the format N0/format N1 distinguishing identifier field may also be referred to as a DCI format marker field.
  • the NPDCCH order indication field is used to indicate whether the current DCI scheduling is triggered by the NPDCCH order for random access procedures.
  • the scheduling delay field is used to determine the start time of the downlink data and/or signaling transmission scheduled by the DCI.
  • the resource allocation field is used to determine the allocation of downlink data and/or signaling resources scheduled by DCI, such as the allocation of time domain resources.
  • the modulation and coding strategy field is used to determine the MCS index of the downlink data and/or signaling scheduled by the DCI. According to the MCS field and the resource allocation field, the transport block size (TBS) of the data can also be determined.
  • TBS transport block size
  • the repetition count field is used to determine the repetition count of the downlink data scheduled by DCI.
  • the new data indication field is used to indicate whether the currently scheduled transmission is a new transmission or a retransmission.
  • the HARQ-ACK resource field is used to indicate the time-frequency resource location for transmission of acknowledgement (acknowledge, ACK)/negative acknowledgement (NACK) feedback information.
  • the DCI repeat count field is used to determine the repeat count of DCI.
  • the modulation mode of the downlink data is determined by the indication information of the number of repetitions.
  • the DCI includes repetition count indication information, and the repetition count indication information may be used to determine the repetition count N Rep of the downlink data.
  • the repetition count indication information can be carried by the repetition count field in the DCI.
  • the embodiment of the present application does not limit the number of bits included in the repetition number indication information.
  • the repetition number indication information may include 4 bits.
  • the modulation mode of the downlink data scheduled by DCI may be the first modulation mode; when N Rep is greater than the R0, the modulation mode of the downlink data scheduled by DCI is QPSK, where R0 It is a positive integer greater than or equal to 1.
  • the modulation mode of the downlink data scheduled by DCI may be the first modulation mode; when N Rep is greater than or equal to the R0, the modulation mode of the downlink data scheduled by DCI is QPSK, Where R0 is a positive integer greater than or equal to 1.
  • R0 is an agreed value or a value configured by a network device.
  • R0 is 1 or 2 or 4 or 8 or 16 or 32 or 64 or 128 or 192 or 256 or 384 or 512 or 768 or 1024 or 1536 or 2048.
  • the deployment mode of the carrier where the downlink data received by the terminal device is located is different, and R0 is the same or different.
  • the value of R0 is the first value; the deployment mode of the carrier where the downlink data received by the terminal device is located is independent deployment or guardband deployment ,
  • the value of R0 is the second value; wherein the first value may be less than or equal to the second value.
  • the modulation method of the downlink data is determined by the indication information of the number of DCI repetitions.
  • the DCI includes DCI repetition count indication information, where the DCI repetition count indication information is used to determine the DCI repetition count.
  • the DCI repetition count indication information may be carried by the DCI repetition count field in the DCI.
  • the embodiment of the present application does not limit the number of bits included in the DCI repetition count indication information.
  • the DCI repetition count indication information may include 2 bits.
  • the modulation mode of the downlink data scheduled by DCI is the first modulation mode; when the number of repetitions of DCI is greater than the R1, the modulation mode of the downlink data scheduled by DCI QPSK, where R1 is a positive integer greater than or equal to 1.
  • the modulation mode of the downlink data scheduled by DCI is the first modulation mode; when the number of repetitions of DCI is greater than or equal to the R1, the downlink data scheduled by DCI is The modulation method is QPSK, where R1 is a positive integer greater than or equal to 1.
  • R1 is an agreed value or a value configured by a network device.
  • R1 is 1 or 2 or 4 or R max /8 or R max /4 or R max /2 or R max , where R max is the maximum number of repetitions in the search space of the downlink control channel. This R max can be determined by the network Device Configuration.
  • the deployment mode of the carrier where the downlink data received by the terminal device is located is different, and R1 is the same or different.
  • the value of R1 is the first value; the deployment mode of the carrier where the downlink data received by the terminal device is located is independent deployment or guardband deployment When the value of R1 is the second value; wherein the first value may be less than or equal to the second value.
  • the modulation method of the downlink data is determined through MCS indication information.
  • the DCI includes MCS indication information, where the MCS indication information is used to determine the MCS index of the downlink data.
  • the MCS indication information can be carried by the MCS field in the DCI.
  • the embodiment of the present application does not limit the number of bits included in the MCS indication information.
  • the MCS indication information may include 4 bits or 5 bits or 6 bits.
  • the modulation mode of the downlink data scheduled by DCI is the first modulation mode; when the MCS index is less than M0, the modulation mode of the downlink data scheduled by DCI is QPSK, where M0 is An integer greater than or equal to 0.
  • the modulation mode of the downlink data scheduled by DCI is the first modulation mode; when the MCS index is less than or equal to M0, the modulation mode of the downlink data scheduled by DCI is QPSK, where M0 is an integer greater than or equal to zero.
  • M0 is an agreed value or a value configured by a network device.
  • M0 is 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15.
  • the deployment mode of the carrier where the downlink data received by the terminal device is located is different, and the M0 is the same or different.
  • the value of M0 is the first value; the deployment mode of the carrier where the downlink data received by the terminal device is located is independent deployment or guardband deployment ,
  • the value of M0 is the second value; wherein the first value may be less than or equal to the second value.
  • a radio network tempory identity is used to indicate the modulation method of the downlink data.
  • the cyclic redundancy check (CRC) of the downlink control channel carrying the DCI is scrambled by the RNTI. For this reason, in this implementation manner, the corresponding relationship between RNTI and modulation mode can be established.
  • CRC cyclic redundancy check
  • the modulation mode of the downlink data is the first modulation mode; the CRC of the downlink control channel carrying the DCI passes the cell radio
  • the modulation mode of the downlink data is QPSK.
  • the first RNTI may be configured by the network equipment, or may be determined in other ways.
  • the first RNTI may be an RNTI dedicated to the first modulation method.
  • the first RNTI is different from the C-RNTI, and the specific form of the first RNTI is not limited in this application, and will not be repeated here.
  • any one of the first to fourth possible implementation manners is only an example, and multiple fields in the DCI may also be used to jointly indicate the modulation manner of the downlink data. How to indicate the specific manner will not be repeated here.
  • TBS index 0 2 0 1 2 1 2 2 2 3 2 3 4 2 4 5 2 5 6 2 6 7 2 7 8 2 8 9 2 9 10 2 10 11 2 11 12 2 12 13 2 13
  • the modulation mode of the downlink data scheduled by DCI is QPSK
  • the correspondence between the MCS index and the TBS index indicated by the MCS field can be maintained as shown in Table 2. The shown remains unchanged.
  • the correspondence relationship between the MCS index and the TBS index indicated by the MCS domain may be as shown in Table 3.
  • the DCI may further include second information, and the second information is used to determine the power ratio of the downlink data scheduled by the DCI to the first signal.
  • the first signal may be a narrowband reference signal (narrowband reference signal, NRS), or a cell reference signal (cell-specific reference signal, CRS), or a demodulation reference signal (demodulation reference signal, DMRS), or a narrowband secondary synchronization signal Signal (narrowband secondary synchronization signal, NSSS), or narrowband primary synchronization signal (NPSS), or secondary synchronization signal (secondary synchronization signal, SSS), or primary synchronization signal (primary synchronization signal, PSS).
  • NRS narrowband reference signal
  • CRS cell-specific reference signal
  • DMRS demodulation reference signal
  • NSSS narrowband secondary synchronization signal
  • NPSS narrowband primary synchronization signal
  • SSS secondary synchronization signal
  • PSS primary synchronization signal
  • the power ratio may be the ratio of energy per resource element (EPRE), that is, the second information is used to determine the ratio of the EPRE of the downlink data scheduled by the DCI to the EPRE of the first signal .
  • EPRE energy per resource element
  • the DCI may include the second information in any case.
  • the DCI when the modulation mode of the downlink data scheduled by the DCI is the first modulation mode, the DCI includes the second information; correspondingly, when the modulation mode of the downlink data scheduled by the DCI is QPSK, the DCI does not include the second information. information.
  • the power ratio is indicated by the second information, which can realize the power control of the downlink data and improve the transmission robustness.
  • the second information when the DCI includes the second information, the second information may include M bits, and M is an integer greater than zero.
  • M can be less than or equal to 3.
  • M is 0 or 1 or 2 or 3.
  • the power ratio of the downlink data and the first signal indicated by the second information may be as shown in Table 4.
  • Implementation mode 1 Keep the number of bits included in the other indicator fields in the DCI unchanged, and extend the DCI of the existing format N1, that is, add M bits to the existing format N1, and these M bits are used to carry the second information.
  • Implementation manner 2 Reduce the number of bits in one or more indication fields in the DCI, and use part or all of the extra bits as bits included in the second information. In this manner, compared with the number of bits included in the DCI of the format N1 in the prior art, the number of bits included in the DCI may remain unchanged, or at least one bit may be increased.
  • the number of bits in one or more of the following indication fields in DCI can be reduced:
  • MCS field repetition times field
  • DCI repetition times field DCI repetition times field
  • the MCS field is reduced by L1 bits
  • the repetition number field is reduced by L2 bits
  • the DCI repetition number field is reduced by L3 bits
  • the number of bits included in the second information is M, then M ⁇ L1+L2+L3.
  • L1, L2, and L3 are all integers greater than or equal to zero.
  • the MCS field can be reduced by 1 to 3 bits, that is, the number of bits included in the MCS field can be 1 or 2 or 3.
  • the MCS indication information is carried by the MCS field, the number of bits included in the MCS indication information is 1 or 2 or 3.
  • the repetition number field can be reduced by 1 to 4 bits, that is, the number of bits included in the repetition number field can be 0 or 1 or 2 or 3.
  • the repetition count indication information is carried by the repetition count field, the number of bits included in the repetition count indication information is 0 or 1, 2 or 3.
  • the number of bits included in the number of repetition indication information is 0 should be understood as the DCI does not include the number of repetition indication information, or the DCI does not include the number of repetition fields.
  • the number of repetitions of the downlink data scheduled by the DCI is 1 or other agreed values. .
  • the DCI repetition number field can be reduced by 1 to 2 bits, that is, the number of bits included in the DCI repetition number field can be 0 or 1.
  • the DCI repetition count indication information is carried by the DCI repetition count field, the number of bits included in the DCI repetition count indication information is 0 or 1.
  • the number of bits included in the number of repetition indication information is 0 should be understood as the DCI does not include the DCI repetition number indication information, or the DCI does not include the DCI repetition number field, at this time the repetition number of the DCI is 1 or other agreed values.
  • the MCS field may include 4 bits
  • the repetition number field It may include 4 bits
  • the DCI repetition number field may include 2 bits.
  • different fields in the DCI implicitly indicate the modulation mode of the downlink data, which can save the DCI signaling overhead.
  • the DCI includes MCS indication information, where the MCS indication information is used to determine the MCS index of the downlink data.
  • the MCS indication information can be carried by the MCS field in the DCI.
  • the embodiment of the present application does not limit the number of bits included in the MCS indication information.
  • the MCS indication information may include 4 bits or 5 bits or 6 bits.
  • the modulation mode of the downlink data scheduled by DCI is the first modulation mode; when the MCS index is less than M0, the modulation mode of the downlink data scheduled by DCI is QPSK, where M0 is An integer greater than or equal to 0.
  • the modulation mode of the downlink data scheduled by DCI is the first modulation mode; when the MCS index is less than or equal to M0, the modulation mode of the downlink data scheduled by DCI is QPSK, where M0 is an integer greater than or equal to zero.
  • M0 is an agreed value or a value configured by a network device.
  • M0 is 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15.
  • the deployment mode of the carrier where the downlink data received by the terminal device is located is different, and the M0 is the same or different.
  • the value of M0 is the first value; the deployment mode of the carrier where the downlink data received by the terminal device is located is independent deployment or guardband deployment ,
  • the value of M0 is the second value; wherein the first value may be less than or equal to the second value.
  • the DCI may further include second information, and the second information is used to determine the power ratio of the downlink data scheduled by the DCI to the first signal of the reference signal.
  • the DCI may include the second information in any case.
  • the DCI when the modulation mode of the downlink data scheduled by the DCI is the first modulation mode, the DCI includes the second information; correspondingly, when the modulation mode of the downlink data scheduled by the DCI is QPSK, the DCI does not include the second information. information.
  • the number of bits included in the MCS field in the embodiment of the present application may be 4, 5, or 6.
  • the correspondence between the MCS index and the TBS index indicated by the MCS field may be as shown in Table 5a or Table 5b.
  • the deployment mode of the carrier where the downlink data received by the terminal device is located is independent deployment or guardband deployment
  • the correspondence between the MCS index and the TBS index indicated by the MCS domain can be shown in Table 5a
  • the downlink data received by the terminal device When the deployment mode of the carrier is in-band deployment, the correspondence between the MCS index and the TBS index indicated by the MCS domain may be as shown in Table 5b.
  • TBS index 0 2 0 1 2 2 2 2 4 3 2 6 4 2 8 5 2 10 6 2 12 7 2 13 9 4 12 10 4 13 11 4 14 12 4 15 13 4 16 14 4 17 15 4 18
  • TBS index 0 2 0 1 2 2 2 2 4 3 2 6 4 2 8 5 2 10 6 4 8 7 4 9 9 4 10 10 4 11 11 4 12 12 4 13 13 4 14 14 4 15 15 4 16
  • the correspondence between the MCS index and the TBS index indicated by the MCS field may be as shown in Table 6.
  • TBS index 0 2 0 1 2 1 2 2 2 3 2 3 4 2 4 5 2 5 6 2 6 7 2 7 8 2 8 9 2 9 10 2 10 11 2 11 12 2 12 13 2 13 17 4 12 18 4 13 19 4 14 20 4 15
  • the DCI may also include first information, and the first information may indicate the modulation mode of the downlink data scheduled by the DCI.
  • first information may indicate the modulation mode of the downlink data scheduled by the DCI.
  • the MCS field in the DCI indicates the modulation mode of the downlink data, which can save the DCI signaling overhead while avoiding tailoring other fields and affecting the flexibility of the base station scheduling. Therefore, the base station in this embodiment implements flexible scheduling.
  • the DCI includes first information, and the first information is used to determine whether the modulation mode of the downlink data scheduled by the DCI is the first modulation mode or the QPSK.
  • the modulation mode of the downlink data scheduled by the DCI is the first modulation mode
  • the modulation mode of the downlink data scheduled by the DCI is the QPSK.
  • the first value and the second value are not the same, and the specific implementation of the first value and the second value is not limited in the embodiment of the present application.
  • the first information includes at least one bit, and the specific number of bits included can be determined according to actual conditions.
  • the first information includes 1 bit, and when the value of the first information is 1, it means that the modulation mode of the downlink data scheduled by DCI is the first modulation mode; the value of the first information is 0 When, it means that the modulation mode of the downlink data scheduled by the DCI is the QPSK. Or, when the value of the first information is 0, it indicates that the modulation mode of the downlink data scheduled by DCI is the first modulation mode; when the value of the first information is 1, it indicates the modulation of the downlink data scheduled by DCI The way is the QPSK.
  • the first information includes other numbers of bits, reference may be made to the above description, which will not be repeated here.
  • the DCI when the modulation mode of the downlink data scheduled by the DCI is the first modulation mode, the DCI may further include second information, and the second information includes M bits.
  • Implementation mode 1 Keep the number of bits included in the other indicator fields in the DCI unchanged, and extend the DCI of the existing format N1, that is, add M bits to the existing format N1, and these M bits are used to carry the second information.
  • Implementation manner 2 Reduce the number of bits in the MCS field and the number of repetition fields in the DCI, and use the extra bits as the bits included in the second information.
  • the number of bits in the MCS field can be reduced by 1 to 3
  • the number of bits in the repetition number field can be reduced by 1 to 2.
  • the first information, the MCS field, the number of repetition fields, and the second indication information included in the DCI may be as shown in Table 7.
  • the MCS field includes 3 bits, which is 1 bit less than the prior art; the repetition number field includes 2 bits, which is 2 bits less than the prior art.
  • the MCS field includes 3 bits, which is 1 bit less than the prior art; the repetition number field includes 2 bits, which is 2 bits less than the prior art.
  • the modulation mode of the downlink data scheduled by the DCI is QPSK
  • the correspondence between the MCS index and the TBS index indicated by the MCS domain can be referred to Table 2.
  • the modulation mode of the downlink data scheduled by the DCI is the first modulation mode
  • the correspondence relationship between the MCS index and the TBS index indicated by the MCS domain can be referred to Table 3.
  • the number of bits in the next one or more indication fields in the MCS field, the repetition number field, and the DCI repetition number field in the DCI can be reduced.
  • the MCS field when the number of bits included in the MCS field is reduced, the MCS field can be reduced by 1 to 3 bits, that is, the number of bits included in the MCS field can be 1 or 2 or 3.
  • the repetition number field can be reduced by 1 to 4 bits, that is, the number of bits included in the repetition number field can be 0 or 1 or 2 or 3.
  • the DCI repetition number field When the number of bits included in the DCI repetition number field is reduced, the DCI repetition number field can be reduced by 1 to 2 bits, that is, the number of bits included in the DCI repetition number field can be 0 or 1.
  • the MCS field may include 4 bits
  • the repetition number field It may include 4 bits
  • the DCI repetition number field may include 2 bits.
  • the embodiment of the present application performs tailoring through some fields in the DCI, which can save the DCI signaling overhead.
  • FIG. 3 it is a schematic flowchart of a data transmission method provided by an embodiment of this application. Referring to Figure 3, the method includes:
  • Step 301 The network device determines the modulation mode of the uplink data, and sends DCI to the terminal device.
  • DCI is used to schedule the uplink data and indicate the modulation mode of the uplink data; the modulation mode of the uplink data is the first modulation mode or QPSK or BPSK.
  • the modulation order corresponding to the first modulation mode is greater than 2.
  • the first modulation method may be 8PSK, 16QAM, 64QAM, 256QAM, or the like.
  • the network device specifically determines the modulation mode of the uplink data is not limited in the embodiment of the present application.
  • the network device may also send configuration information to the terminal device, where the configuration information indicates that the first modulation mode is activated.
  • the terminal device can determine that the uplink data scheduled by the network device may be modulated by the first modulation method.
  • Step 302 The terminal device receives the DCI from the network device.
  • Step 303 The terminal device sends the uplink data to the network device according to the modulation mode indicated by the DCI.
  • Step 304 The network device receives the uplink data from the terminal device according to the modulation method.
  • the network device indicates the modulation mode of the uplink data through the DCI, so that the terminal device can send the uplink data according to the modulation mode indicated by the DCI.
  • the following describes how to implement the modulation mode for indicating uplink data through DCI.
  • the format of the DCI is format N0, and the modulation mode of the uplink data can be implicitly indicated through different fields in the DCI, which will be described separately below.
  • the content included in the DCI can refer to Table 8.
  • DCI repeat count field 2 What's included in DCI Number of bits included Distinguish the identification field of format N0 or format N1 1
  • Subcarrier indicator field 6 Resource allocation domain 3 Scheduling delay domain 2
  • MCS domain 4 Redundancy Version (RV) field 1
  • Repetition field 3 New data indicator field 1 DCI repeat count field 2
  • the format N0/format N1 distinguishes the identification field, which is used to indicate the format of the DCI; the format N0 is used for uplink scheduling; and the format N1 is used for downlink scheduling.
  • the subcarrier indication field is used to indicate a set of contiguous subcarriers.
  • the scheduling delay field is used to determine the start time of the transmission of uplink data and/or signaling scheduled by DCI.
  • the resource allocation field is used to determine the allocation of uplink data and/or signaling resources scheduled by the DCI, such as the allocation of time domain resources.
  • the modulation and coding strategy field is used to determine the MCS index of uplink data and/or signaling scheduled by DCI. According to the MCS field and the resource allocation field, the transport block size (TBS) of the uplink data can also be determined.
  • TBS transport block size
  • the number of repetitions field is used to determine the number of repetitions of uplink data scheduled by DCI.
  • the new data indication field is used to indicate whether the currently scheduled transmission is a new transmission or a retransmission.
  • the redundancy version field is used to determine the redundancy version used in uplink data and/or signaling transmission.
  • the DCI repeat count field is used to determine the repeat count of DCI.
  • the DCI includes repetition count indication information, and the repetition count indication information may be used to determine the repetition count N Rep of the uplink data.
  • the repetition count indication information can be carried by the repetition count field in the DCI.
  • the embodiment of the present application does not limit the number of bits included in the repetition number indication information.
  • the repetition number indication information may include 4 bits.
  • the modulation mode of the uplink data scheduled by DCI may be the first modulation mode; when N Rep is greater than the R0, the modulation mode of the uplink data scheduled by DCI is QPSK or BPSK, Where R0 is a positive integer greater than or equal to 1.
  • the modulation mode of the uplink data scheduled by DCI may be the first modulation mode; when N Rep is greater than or equal to the R0, the modulation mode of the uplink data scheduled by DCI is QPSK or BPSK, where R0 is a positive integer greater than or equal to 1.
  • R0 is an agreed value or a value configured by a network device.
  • R0 is 1 or 2 or 4 or 8 or 16 or 32 or 64 or 128.
  • R0 may be determined according to the number of subcarriers used when the terminal device sends uplink data. For example, when the number of subcarriers used by the terminal device to send the uplink data is 1, the value of R0 is the first value; the number of subcarriers used by the terminal device when sending the uplink data is 3 or 6 or At 12 o'clock, the value of R0 is the second value. The first value may be less than or equal to the second value.
  • the DCI includes DCI repetition count indication information, where the DCI repetition count indication information is used to determine the DCI repetition count.
  • the DCI repetition count indication information may be carried by the DCI repetition count field in the DCI.
  • the embodiment of the present application does not limit the number of bits included in the DCI repetition count indication information.
  • the DCI repetition count indication information may include 2 bits.
  • the modulation mode of the uplink data scheduled by DCI is the first modulation mode; when the number of repetitions of DCI is greater than the R1, the modulation mode of the uplink data scheduled by DCI QPSK or BPSK, where R1 is a positive integer greater than or equal to 1.
  • the modulation mode of the uplink data scheduled by DCI is the first modulation mode; when the number of repetitions of DCI is greater than or equal to the R1, the uplink data scheduled by DCI is The modulation mode is QPSK or BPSK, where R1 is a positive integer greater than or equal to 1.
  • R1 is an agreed value or a value configured by a network device.
  • R1 is 1 or 2 or 4 or R max /8 or R max /4 or R max /2 or R max , where R max is the maximum number of repetitions in the search space of the downlink control channel. This R max can be determined by the network Device Configuration.
  • R1 may be determined according to the number of subcarriers used when the terminal device sends uplink data. For example, when the number of subcarriers used by the terminal device to send the uplink data is 1, the value of R1 is the first value; the number of subcarriers used by the terminal device when sending the uplink data is 3 or 6, or At 12 o'clock, the value of R1 is the second value. The first value may be less than or equal to the second value.
  • the DCI includes MCS indication information, where the MCS indication information is used to determine the MCS index of the uplink data.
  • the MCS indication information can be carried by the MCS field in the DCI.
  • the embodiment of the present application does not limit the number of bits included in the MCS indication information.
  • the MCS indication information may include 4 bits or 5 bits or 6 bits.
  • the modulation mode of the uplink data scheduled by DCI is the first modulation mode; when the MCS index is less than M0, the modulation mode of the uplink data scheduled by the DCI is QPSK or BPSK, where M0 is an integer greater than or equal to zero.
  • the modulation mode of the uplink data scheduled by DCI is the first modulation mode; when the MCS index is less than or equal to M0, the modulation mode of the uplink data scheduled by the DCI is QPSK or BPSK , Where M0 is an integer greater than or equal to 0.
  • M0 is an agreed value or a value configured by a network device.
  • M0 is 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15.
  • M0 may be determined according to the number of subcarriers used when the terminal device sends uplink data. For example, when the number of subcarriers used by the terminal device to send the uplink data is 1, the value of M0 is the first value; the number of subcarriers used by the terminal device when sending the uplink data is 3 or 6 or At 12 o'clock, the value of M0 is the second value. The first value may be less than or equal to the second value.
  • the MCS indication information is carried by the MCS field in the DCI
  • the modulation mode of the uplink data scheduled by the DCI is QPSK or BPSK
  • the MCS index indicated by the MCS field and the TBS The corresponding relationship between the indexes can be as shown in Table 2 above.
  • the correspondence between the MCS index and the TBS index indicated by the MCS domain may be as shown in Table 3 above.
  • the number of bits included in the MCS field can also be increased.
  • the number of bits included in the MCS field is greater than 4.
  • the correspondence between the MCS index and the TBS index indicated by the MCS field may be as shown in Table 4 above.
  • the DCI includes MCS indication information, where the MCS indication information is used to determine the MCS index of the uplink data.
  • the MCS indication information can be carried by the MCS field in the DCI.
  • the embodiment of the present application does not limit the number of bits included in the MCS indication information.
  • the MCS indication information may include 4 bits or 5 bits or 6 bits.
  • the modulation mode of the uplink data scheduled by DCI is the first modulation mode; when the MCS index is less than M0, the modulation mode of the uplink data scheduled by the DCI is QPSK or BPSK, where M0 is a positive integer greater than or equal to 10.
  • the modulation mode of the uplink data scheduled by DCI is the first modulation mode; when the MCS index is less than or equal to M0, the modulation mode of the uplink data scheduled by the DCI is QPSK or BPSK , Where M0 is an integer greater than or equal to 0.
  • M0 is an agreed value or a value configured by a network device.
  • M0 is 0 or 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9 or 10 or 11 or 12 or 13 or 14 or 15.
  • M0 may be determined according to the number of subcarriers used when the terminal device sends uplink data. For example, when the number of subcarriers used by the terminal device to send the uplink data is 1, the value of M0 is the first value; the number of subcarriers used by the terminal device when sending the uplink data is 3 or 6 or At 12 o'clock, the value of M0 is the second value. The first value may be less than or equal to the second value.
  • the correspondence between the MCS index and the TBS index indicated by the MCS field may be as shown in Table 9a or Table 9b, where the terminal device uses the When the number of subcarriers is greater than 1, the corresponding relationship between the MCS index indicated by the MCS field and the TBS index can be shown in Table 9a; when the number of subcarriers used by the terminal device to send the uplink data is 1, the MCS field indicates The corresponding relationship between the MCS index and the TBS index can be as shown in Table 9b.
  • TBS index 0 2 0 1 2 1 2 2 2 3 2 3 4 2 4 5 2 5 6 2 6 7 2 7 8 2 8 9 2 9 10 2 10 11 2 11 12 2 12 13 2 13 17 4 12 18 4 13 19 4 14 20 4 15 twenty one 4 16 twenty two 4 17 twenty three 4 18 twenty four 4 19
  • TBS index 0 1 0 1 1 2 2 2 1 3 2 3 4 2 4 5 2 5 6 2 6 7 2 7 8 2 8 9 2 9 10 2 10 11 2 11 12 2 12
  • the RNTI is used to indicate the modulation method of the uplink data.
  • the modulation mode of the uplink data is the first modulation mode; the CRC of the downlink control channel carrying the DCI passes C-
  • the modulation mode of the uplink data is QPSK or BPSK.
  • the first RNTI may be configured by the network equipment, or may be determined in other ways.
  • the first RNTI may be an RNTI dedicated to the first modulation method.
  • the first RNTI is different from the C-RNTI, and the specific form of the first RNTI is not limited in this application, and will not be repeated here.
  • the modulation method of the uplink data is indicated by the subcarrier.
  • the DCI includes subcarrier indication information, where the subcarrier indication information is used to determine the number of subcarriers of the uplink data.
  • the subcarrier indication information may be carried by the subcarrier indication field in the DCI.
  • the modulation mode of the uplink data scheduled by DCI is the first modulation mode; when the number of subcarriers determined by the carrier indication information is less than S0 , The modulation mode of the uplink data scheduled by the DCI is QPSK or BPSK, where S0 is a positive integer greater than or equal to 1.
  • the modulation mode of the uplink data scheduled by the DCI is the first modulation mode; when the number of subcarriers determined by the carrier indication information is less than or equal to S0, the DCI scheduled
  • the modulation mode of the uplink data is QPSK or BPSK, where S0 is a positive integer greater than or equal to 1.
  • the modulation mode of the uplink data scheduled by DCI is the first modulation mode; when the number of subcarriers determined by the carrier indication information belongs to the second set, DCI
  • the modulation mode of the scheduled uplink data is QPSK or BPSK.
  • S0 is an agreed value or a value configured by a network device.
  • S0 is 1 or 3 or 6 or 12.
  • the first set is ⁇ 1 ⁇
  • the second set is ⁇ 3,6,12 ⁇ , or the first set is ⁇ 1,3 ⁇
  • the second set is ⁇ 6,12 ⁇
  • the first set is ⁇ 1,3 ⁇
  • the second set is ⁇ 6,12 ⁇
  • One set is ⁇ 1,3,6 ⁇
  • the second set is ⁇ 12 ⁇ .
  • the correspondence between the MCS index and the TBS index indicated by the MCS domain may be as shown in Table 3. Further optionally, in the first to sixth possible implementation manners, the number of bits included in at least one of the MCS field, the number of DCI repetitions, the RV field, the number of repetition fields, and the subcarrier indicator field in the DCI can be reduced. .
  • the MCS field can be reduced by 1 to 3 bits, that is, the number of bits included in the MCS field can be 1 or 2 or 3.
  • the MCS indication information is carried by the MCS field, the number of bits included in the MCS indication information is 1 or 2 or 3.
  • the repetition number field can be reduced by 1 to 3 bits, that is, the number of bits included in the repetition number field can be 0 or 1 or 2.
  • the repetition count indication information is carried by the repetition count field, the number of bits included in the repetition count indication information is 0 or 1, 2 or 3.
  • the number of bits included in the number of repetition indication information is 0, and it should be understood that the DCI does not include the number of repetition indication information, or the DCI does not include the number of repetition fields.
  • the number of repetitions of the uplink data scheduled by the DCI is 1 or other agreed values. .
  • the DCI repetition number field can be reduced by 1 to 2 bits, that is, the number of bits included in the DCI repetition number field can be 0 or 1.
  • the DCI repetition count indication information is carried by the DCI repetition count field, the number of bits included in the DCI repetition count indication information is 0 or 1.
  • the number of bits included in the number of repetition indication information is 0 should be understood as the DCI does not include the DCI repetition number indication information, or the DCI does not include the DCI repetition number field, at this time the repetition number of the DCI is 1 or other agreed values.
  • the RV field can be reduced by 1 bit, that is, the number of bits included in the RV field can be zero.
  • the RV indication information is carried by the RV field, the number of bits included in the RV indication information is 0. Where the number of bits included in the RV indication information is 0, it should be understood that the DCI does not include the RV indication information, or the DCI does not include the RV field.
  • the RV of the DCI scheduling uplink data is agreed to be 0 or 2, or understood as the DCI.
  • the initial RV for scheduling uplink data is agreed to be 0 or 2.
  • the subcarrier indicator field can be reduced by 1 to 6 bits, that is, the number of bits included in the subcarrier indicator field can be 0 or 1 or 2 or 3 or 4 or 5.
  • the subcarrier indication information is carried by the subcarrier indication field, the number of bits included in the subcarrier indication information is 0, 1, 2, 3, 4, or 5. Wherein, if the number of bits included in the subcarrier indication information is 0, it should be understood that the DCI does not include the subcarrier indication information, or the DCI does not include the subcarrier indication field.
  • the modulation mode of the uplink data scheduled by DCI is BPSK or QPSK
  • the number of bits included in the MCS field, DCI repetition number, repetition number field, RV field, and subcarrier indicator field cannot remain unchanged, that is, Keep the number of bits in the format N0 unchanged.
  • any one of the first to sixth possible implementation manners is just an example, and multiple fields in the DCI may also be used to jointly indicate the modulation manner of the uplink data. How to indicate the specific manner will not be repeated here.
  • the DCI may also include first information, and the first information may indicate the modulation mode of the uplink data scheduled by the DCI.
  • first information may indicate the modulation mode of the uplink data scheduled by the DCI.
  • different fields in the DCI implicitly indicate the modulation manner of the downlink data, which can save DCI signaling overhead.
  • the MCS field in the DCI indicates the modulation mode of the uplink data, which can save the DCI signaling overhead, while avoiding tailoring other fields and affecting the flexibility of base station scheduling.
  • the base station of this embodiment realizes flexible scheduling.
  • the DCI includes first information, and the first information is used to determine whether the modulation mode of the uplink data scheduled by the DCI is the first modulation mode or the QPSK or BPSK.
  • the modulation mode of the uplink data scheduled by the DCI is the first modulation mode
  • the modulation mode of the uplink data scheduled by the DCI is the QPSK or BPSK.
  • the first value and the second value are not the same, and the specific implementation of the first value and the second value is not limited in the embodiment of the present application.
  • the first information includes at least one bit, and the specific number of bits included can be determined according to actual conditions.
  • the first information includes 1 bit, and when the value of the first information is 1, it means that the modulation mode of the uplink data scheduled by DCI is the first modulation mode; the value of the first information is 0 When, it means that the modulation mode of the uplink data scheduled by the DCI is the QPSK or BPSK.
  • the modulation mode of the uplink data scheduled by the DCI is the first modulation mode
  • the value of the first information is 1, it means the modulation of the uplink data scheduled by the DCI
  • the mode is the QPSK or BPSK.
  • Implementation mode 1 Keep the number of bits included in other indication fields in the DCI unchanged, expand the DCI of the existing format N0, add at least one bit to the existing format N0, and the added at least one bit is used to carry the first information.
  • Implementation manner 2 Reduce the number of bits included in at least one of the MCS field, RV field, DCI repetition number, repetition number field, and subcarrier indicator field in DCI, and use part or all of the extra bits as the first information Included bits.
  • the MCS field can be reduced by 1 to 3 bits, that is, the number of bits included in the MCS field can be 1 or 2 or 3.
  • the MCS indication information is carried by the MCS field, the number of bits included in the MCS indication information is 1 or 2 or 3.
  • the repetition number field can be reduced by 1 to 3 bits, that is, the number of bits included in the repetition number field can be 0 or 1 or 2.
  • the repetition count indication information is carried by the repetition count field, the number of bits included in the repetition count indication information is 0 or 1, 2 or 3. Wherein, the number of bits included in the number of repetition indication information is 0.
  • the DCI does not include the number of repetition indication information, or the DCI does not include the number of repetition fields. At this time, the number of repetitions of the uplink data scheduled by the DCI is 1 or other agreed values. .
  • the DCI repetition number field can be reduced by 1 to 2 bits, that is, the number of bits included in the DCI repetition number field can be 0 or 1.
  • the DCI repetition count indication information is carried by the DCI repetition count field, the number of bits included in the DCI repetition count indication information is 0 or 1.
  • the number of bits included in the number of repetition indication information is 0 should be understood as the DCI does not include the DCI repetition number indication information, or the DCI does not include the DCI repetition number field, at this time the repetition number of the DCI is 1 or other agreed values.
  • the RV field can be reduced by 1 bit, that is, the number of bits included in the RV field can be zero.
  • the RV indication information is carried by the RV field, the number of bits included in the RV indication information is 0. Where the number of bits included in the RV indication information is 0, it should be understood that the DCI does not include the RV indication information, or the DCI does not include the RV field.
  • the RV of the DCI scheduling uplink data is agreed to be 0 or 2, or understood as the DCI.
  • the initial RV for scheduling uplink data is agreed to be 0 or 2.
  • the subcarrier indicator field can be reduced by 1 to 6 bits, that is, the number of bits included in the subcarrier indicator field can be 0 or 1 or 2 or 3 or 4 or 5.
  • the subcarrier indication information is carried by the subcarrier indication field, the number of bits included in the subcarrier indication information is 0, 1, 2, 3, 4, or 5. Wherein, if the number of bits included in the subcarrier indication information is 0, it should be understood that the DCI does not include the subcarrier indication information, or the DCI does not include the subcarrier indication field.
  • the modulation mode of the uplink data scheduled by DCI is BPSK or QPSK
  • the number of bits included in the MCS field, DCI repetition number, repetition number field, RV field, and subcarrier indicator field cannot remain unchanged, that is, Keep the number of bits in the format N0 unchanged.
  • the first information, the MCS field, the number of repetition fields, and the subcarrier indication field included in the DCI may be as shown in Table 10.
  • the first information includes 1 bit.
  • the MCS field includes 3 bits, which is 1 bit less than the prior art; the repetition number field includes 2 bits, which is 1 bit less than the prior art.
  • the subcarrier indicator field includes 5 bits, which is 1 bit less than the prior art. For other content included in the DCI, refer to Table 8, which will not be repeated here.
  • the value of the first information can be a preset value.
  • the value of the first information may be set to 0 or 1.
  • the value of the first information does not represent any meaning, that is, it is not used to indicate the modulation mode of the data scheduled by the DCI.
  • the embodiment of the present application performs tailoring through some fields in the DCI, which can save the DCI signaling overhead.
  • the embodiment of the present application also provides a method. For details, refer to the following description.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the current NB-IoT downlink channel coding method is tail-biting convolutional codes (TBCC).
  • TBCC tail-biting convolutional codes
  • the current maximum TBS is 2536 bits. After 16QAM is supported, the TBS needs to be further expanded. There will be a loss in performance if TBCC is still used for large code blocks.
  • the embodiment of the present application also provides a method to solve this problem, which will be described in detail below.
  • the embodiment of the present application may pre-appoint the following conditions: when the TBS scheduled by the DCI is greater than the preset value, the channel coding mode is Turbo. Or when the MCS indicated in the DCI is greater than the preset value, the channel coding mode is Turbo.
  • Step 1 The network equipment determines the channel coding method.
  • Step 2 The network device sends DCI to the terminal device, where the DCI is used to indicate the channel coding mode.
  • the channel coding mode when the TBS scheduled by the DCI is greater than the preset value, the channel coding mode is Turbo; or when the DCI indicates that the MCS is greater than the preset value, the channel coding mode is Turbo.
  • Step 3 The terminal device receives the DCI from the network device
  • Step 4 The terminal equipment determines the channel coding mode according to the DCI.
  • the terminal device may receive downlink data from the network device or send uplink data to the network device according to the determined channel coding mode and the scheduling information of the data in the DCI.
  • different channel coding methods can be used according to the scheduled TBS or MCS, which can improve the decoding performance.
  • the methods and operations implemented by terminal devices can also be implemented by components (such as chips or circuits) that can be used in terminal devices
  • the methods and operations implemented by network devices can also be implemented by It can be implemented by components (such as chips or circuits) of network devices.
  • the terminal device and the network device may include a hardware structure and/or software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. . Whether a certain function among the above-mentioned functions is executed by a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional modules in the various embodiments of the present application may be integrated in one processor, or may exist alone physically, or two or more modules may be integrated in one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • an embodiment of the present application further provides an apparatus 400 for implementing the functions of the terminal device or the network device in the above-mentioned method.
  • the device may be a software module or a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the apparatus 400 may include: a processing unit 401 and a communication unit 402.
  • the communication unit may also be referred to as a transceiver unit, and may include a sending unit and/or a receiving unit, which are respectively configured to perform the sending and receiving steps of the terminal device or the network device in the above method embodiment.
  • the apparatus 400 can implement the steps or processes executed by the terminal device or the network device corresponding to the above method embodiment, which are described separately below.
  • the communication unit 402 is configured to receive downlink control information DCI from a network device, where the DCI is used to schedule downlink data and indicate the modulation mode of the downlink data; the modulation mode of the downlink data is the first modulation mode or orthogonal Phase shift keying QPSK, the modulation order corresponding to the first modulation mode is greater than 2;
  • the processing unit 401 is configured to determine the modulation mode of the downlink data according to the DCI;
  • the communication unit 402 is configured to receive the downlink data according to the modulation mode.
  • the DCI includes repetition count indication information, where the repetition count indication information is used to determine the number of repetitions of the downlink data, NRep; when NRep is less than or equal to R0, the modulation of the downlink data The mode is the first modulation mode; when NRep is greater than the R0, the modulation mode of the downlink data is QPSK, where R0 is a positive integer greater than or equal to 1.
  • the repetition number indication information includes 4 bits.
  • the DCI includes DCI repetition count indication information, where the DCI repetition count indication information is used to determine the DCI repetition count; when the DCI repetition count is less than or equal to R1,
  • the modulation mode of the downlink data is the first modulation mode; when the number of repetitions of the DCI is greater than the R1, the modulation mode of the downlink data is QPSK, where R1 is a positive integer greater than or equal to 1.
  • the DCI repetition count indication information includes 2 bits.
  • the DCI includes coding and modulation strategy MCS indication information, where the MCS indication information is used to determine the MCS index of the downlink data; when the MCS index is greater than or equal to M0, the downlink The modulation mode of the data is the first modulation mode; when the MCS index is less than M0, the modulation mode of the downlink data is the QPSK, where M0 is an integer greater than or equal to zero.
  • the MCS indication information includes 4 bits or 5 bits or 6 bits.
  • the DCI includes first information, and the first information is used to determine whether the modulation mode of the downlink data is the first modulation mode or the QPSK; When the value is the first value, the modulation mode of the downlink data is the first modulation mode; when the value of the first information is the second value, the modulation mode of the downlink data is the QPSK.
  • the modulation mode of the downlink data is the first modulation mode, and the first RNTI is used by the network Device configuration; when the CRC of the downlink control channel carrying the DCI is scrambled by C-RNTI, the modulation mode of the downlink data is QPSK.
  • the number of bits used to determine the number of repetitions of the downlink data in the DCI is 0, 1, 2, or 3. .
  • the number of bits used to determine the number of DCI repetitions in the DCI is 0 or 1.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI further includes a coded modulation strategy MCS field, and the number of bits included in the MCS field is 1 or 2 or 3. Or 4.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode.
  • the power ratio of a signal when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode. The power ratio of a signal.
  • the second information includes M bits, and M is an integer greater than zero.
  • M is less than or equal to 3.
  • the first modulation mode is 8PSK, 16QAM, 64QAM, or 256QAM.
  • the format of the DCI is format N1.
  • the DCI includes second information, and the second information is used to determine a power ratio between the downlink data and the first signal.
  • the processing unit 401 is configured to determine a modulation mode of downlink data
  • the communication unit 402 is configured to send downlink control information DCI to a terminal device, where the DCI is used to schedule the downlink data and indicate the modulation mode of the downlink data; the modulation mode of the downlink data is the first modulation mode or the normal mode. In cross-phase shift keying QPSK, the modulation order corresponding to the first modulation mode is greater than 2; and the downlink data is sent to the terminal device according to the modulation mode.
  • the DCI includes repetition count indication information, where the repetition count indication information is used to determine the number of repetitions of the downlink data, NRep; when NRep is less than or equal to R0, the modulation of the downlink data The mode is the first modulation mode; when NRep is greater than the R0, the modulation mode of the downlink data is QPSK, where R0 is a positive integer greater than or equal to 1.
  • the repetition number indication information includes 4 bits.
  • the DCI includes DCI repetition count indication information, where the DCI repetition count indication information is used to determine the DCI repetition count; when the DCI repetition count is less than or equal to R1,
  • the modulation mode of the downlink data is the first modulation mode; when the number of repetitions of the DCI is greater than the R1, the modulation mode of the downlink data is QPSK, where R1 is a positive integer greater than or equal to 1.
  • the DCI repetition count indication information includes 2 bits.
  • the DCI includes coding and modulation strategy MCS indication information, where the MCS indication information is used to determine the MCS index of the downlink data; when the MCS index is greater than or equal to M0, the downlink The modulation mode of the data is the first modulation mode; when the MCS index is less than M0, the modulation mode of the downlink data is the QPSK, where M0 is an integer greater than or equal to zero.
  • the MCS indication information includes 4 bits or 5 bits or 6 bits.
  • the DCI includes first information, and the first information is used to determine whether the modulation mode of the downlink data is the first modulation mode or the QPSK; When the value is the first value, the modulation mode of the downlink data is the first modulation mode; when the value of the first information is the second value, the modulation mode of the downlink data is the QPSK.
  • the modulation mode of the downlink data is the first modulation mode, and the first RNTI is used by the network Device configuration; when the CRC of the downlink control channel carrying the DCI is scrambled by C-RNTI, the modulation mode of the downlink data is QPSK.
  • the number of bits used to determine the number of repetitions of the downlink data in the DCI is 0, 1, 2, or 3. .
  • the number of bits used to determine the number of DCI repetitions in the DCI is 0 or 1.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI further includes a coded modulation strategy MCS field, and the number of bits included in the MCS field is 1 or 2 or 3. Or 4.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode.
  • the power ratio of a signal when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode. The power ratio of a signal.
  • the second information includes M bits, and M is an integer greater than zero.
  • M is less than or equal to 3.
  • the first modulation mode is 8PSK, 16QAM, 64QAM, or 256QAM.
  • the format of the DCI is format N1.
  • the DCI includes second information, and the second information is used to determine a power ratio between the downlink data and the first signal.
  • the communication unit 402 is configured to receive downlink control information DCI from a network device, where the DCI is used to schedule uplink data and indicate the modulation mode of the uplink data; the modulation mode of the uplink data is the first modulation mode or orthogonal Phase shift keying QPSK or BPSK, the modulation order corresponding to the first modulation mode is greater than 2;
  • the processing unit 401 is configured to determine a modulation mode of the uplink data according to the DCI;
  • the communication unit 402 is configured to send the uplink data to the network device according to the modulation mode.
  • the device can also implement other methods. For details, refer to the description of the terminal device in FIG. 3, which will not be repeated here.
  • the processing unit 401 is configured to determine a modulation mode of uplink data
  • the communication unit 402 is configured to send downlink control information DCI to the terminal device, where the DCI is used to schedule the uplink data and indicate the modulation mode of the uplink data; the modulation mode of the uplink data is the first modulation mode Or quadrature phase shift keying QPSK or BPSK, the modulation order corresponding to the first modulation mode is greater than 2; and the uplink data from the terminal device is received according to the modulation mode.
  • the DCI is used to schedule the uplink data and indicate the modulation mode of the uplink data
  • the modulation mode of the uplink data is the first modulation mode Or quadrature phase shift keying QPSK or BPSK, the modulation order corresponding to the first modulation mode is greater than 2
  • the uplink data from the terminal device is received according to the modulation mode.
  • the device can also implement other methods. For details, refer to the description of the network device in FIG. 3, which will not be repeated here.
  • FIG. 5 shows a device 500 provided by an embodiment of the application, and the device shown in FIG. 5 may be a hardware circuit implementation of the device shown in FIG. 4.
  • the communication device can be applied to the flowchart shown in FIG. 2 to perform the functions of the terminal device or the network device in the foregoing method embodiment.
  • FIG. 5 only shows the main components of the communication device.
  • the apparatus 500 shown in FIG. 5 includes at least one processor 520, configured to implement any method in FIG. 2 provided in the embodiment of the present application.
  • the device 500 may further include at least one memory 530 for storing program instructions and/or data.
  • the memory 530 and the processor 520 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, and may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 520 may cooperate with the memory 530 to operate.
  • the processor 520 may execute program instructions stored in the memory 530. At least one of the at least one memory may be included in the processor.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processing circuit (digital signal processor, DSP), a dedicated integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field programmable gate array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing circuit
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • the apparatus 500 may further include a communication interface 510 for communicating with other devices through a transmission medium, so that the apparatus used in the apparatus 500 can communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the transceiver when the communication interface is a transceiver, the transceiver may include an independent receiver and an independent transmitter; it may also be a transceiver with integrated transceiver functions, or an interface circuit.
  • the device 500 may also include a communication line 540.
  • the communication interface 510, the processor 520, and the memory 530 may be connected to each other through a communication line 540;
  • the communication line 540 may be a peripheral component interconnection standard (peripheral component interconnect, PCI for short) bus or an extended industry standard architecture (extended industry standard architecture) , Referred to as EISA) bus and so on.
  • the communication line 540 can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used to represent in FIG. 5, but it does not mean that there is only one bus or one type of bus.
  • the communication interface 510 is configured to receive downlink control information DCI from a network device, where the DCI is used to schedule downlink data and indicate the modulation mode of the downlink data; the modulation mode of the downlink data is the first modulation mode or orthogonal Phase shift keying QPSK, the modulation order corresponding to the first modulation mode is greater than 2;
  • the processor 520 is configured to determine a modulation mode of the downlink data according to the DCI;
  • the communication interface 510 is configured to receive the downlink data according to the modulation mode.
  • the DCI includes repetition count indication information, where the repetition count indication information is used to determine the number of repetitions of the downlink data, NRep; when NRep is less than or equal to R0, the modulation of the downlink data The mode is the first modulation mode; when NRep is greater than the R0, the modulation mode of the downlink data is QPSK, where R0 is a positive integer greater than or equal to 1.
  • the repetition number indication information includes 4 bits.
  • the DCI includes DCI repetition count indication information, where the DCI repetition count indication information is used to determine the DCI repetition count; when the DCI repetition count is less than or equal to R1,
  • the modulation mode of the downlink data is the first modulation mode; when the number of repetitions of the DCI is greater than the R1, the modulation mode of the downlink data is QPSK, where R1 is a positive integer greater than or equal to 1.
  • the DCI repetition count indication information includes 2 bits.
  • the DCI includes coding and modulation strategy MCS indication information, where the MCS indication information is used to determine the MCS index of the downlink data; when the MCS index is greater than or equal to M0, the downlink The modulation mode of the data is the first modulation mode; when the MCS index is less than M0, the modulation mode of the downlink data is the QPSK, where M0 is an integer greater than or equal to zero.
  • the MCS indication information includes 4 bits or 5 bits or 6 bits.
  • the DCI includes first information, and the first information is used to determine whether the modulation mode of the downlink data is the first modulation mode or the QPSK; When the value is the first value, the modulation mode of the downlink data is the first modulation mode; when the value of the first information is the second value, the modulation mode of the downlink data is the QPSK.
  • the modulation mode of the downlink data is the first modulation mode, and the first RNTI is used by the network Device configuration; when the CRC of the downlink control channel carrying the DCI is scrambled by C-RNTI, the modulation mode of the downlink data is QPSK.
  • the number of bits used to determine the number of repetitions of the downlink data in the DCI is 0, 1, 2, or 3. .
  • the number of bits used to determine the number of DCI repetitions in the DCI is 0 or 1.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI further includes a coded modulation strategy MCS field, and the number of bits included in the MCS field is 1 or 2 or 3. Or 4.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode.
  • the power ratio of a signal when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode. The power ratio of a signal.
  • the second information includes M bits, and M is an integer greater than zero.
  • M is less than or equal to 3.
  • the first modulation mode is 8PSK, 16QAM, 64QAM, or 256QAM.
  • the format of the DCI is format N1.
  • the DCI includes second information, and the second information is used to determine a power ratio between the downlink data and the first signal.
  • the processor 520 is configured to determine a modulation mode of downlink data
  • the communication interface 510 is configured to send downlink control information DCI to a terminal device, where the DCI is used to schedule the downlink data and indicate the modulation mode of the downlink data; the modulation mode of the downlink data is the first modulation mode or the normal mode. In cross-phase shift keying QPSK, the modulation order corresponding to the first modulation mode is greater than 2; and the downlink data is sent to the terminal device according to the modulation mode.
  • the DCI includes repetition count indication information, where the repetition count indication information is used to determine the number of repetitions of the downlink data, NRep; when NRep is less than or equal to R0, the modulation of the downlink data The mode is the first modulation mode; when NRep is greater than the R0, the modulation mode of the downlink data is QPSK, where R0 is a positive integer greater than or equal to 1.
  • the repetition number indication information includes 4 bits.
  • the DCI includes DCI repetition count indication information, where the DCI repetition count indication information is used to determine the DCI repetition count; when the DCI repetition count is less than or equal to R1,
  • the modulation mode of the downlink data is the first modulation mode; when the number of repetitions of the DCI is greater than the R1, the modulation mode of the downlink data is QPSK, where R1 is a positive integer greater than or equal to 1.
  • the DCI repetition count indication information includes 2 bits.
  • the DCI includes coding and modulation strategy MCS indication information, where the MCS indication information is used to determine the MCS index of the downlink data; when the MCS index is greater than or equal to M0, the downlink The modulation mode of the data is the first modulation mode; when the MCS index is less than M0, the modulation mode of the downlink data is the QPSK, where M0 is an integer greater than or equal to zero.
  • the MCS indication information includes 4 bits or 5 bits or 6 bits.
  • the DCI includes first information, and the first information is used to determine whether the modulation mode of the downlink data is the first modulation mode or the QPSK; When the value is the first value, the modulation mode of the downlink data is the first modulation mode; when the value of the first information is the second value, the modulation mode of the downlink data is the QPSK.
  • the modulation mode of the downlink data is the first modulation mode, and the first RNTI is used by the network Device configuration; when the CRC of the downlink control channel carrying the DCI is scrambled by C-RNTI, the modulation mode of the downlink data is QPSK.
  • the number of bits used to determine the number of repetitions of the downlink data in the DCI is 0, 1, 2, or 3. .
  • the number of bits used to determine the number of DCI repetitions in the DCI is 0 or 1.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI further includes a coded modulation strategy MCS field, and the number of bits included in the MCS field is 1 or 2 or 3. Or 4.
  • the DCI when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode.
  • the power ratio of a signal when the modulation mode of the downlink data is the first modulation mode, the DCI includes second information, and the second information is used to determine the downlink data scheduled by the DCI and the first modulation mode. The power ratio of a signal.
  • the second information includes M bits, and M is an integer greater than zero.
  • M is less than or equal to 3.
  • the first modulation mode is 8PSK, 16QAM, 64QAM, or 256QAM.
  • the format of the DCI is format N1.
  • the DCI includes second information, and the second information is used to determine a power ratio between the downlink data and the first signal.
  • the communication interface 510 is configured to receive downlink control information DCI from a network device, where the DCI is used to schedule uplink data and indicate the modulation mode of the uplink data; the modulation mode of the uplink data is the first modulation mode or orthogonal Phase shift keying QPSK or BPSK, the modulation order corresponding to the first modulation mode is greater than 2;
  • the processor 520 is configured to determine the modulation mode of the uplink data according to the DCI;
  • the communication interface 510 is configured to send the uplink data to the network device according to the modulation mode.
  • the device can also implement other methods. For details, refer to the description of the terminal device in FIG. 3, which will not be repeated here.
  • the processor 520 is configured to determine a modulation mode of uplink data
  • the communication interface 510 is configured to send downlink control information DCI to the terminal device, where the DCI is used to schedule the uplink data and indicate the modulation mode of the uplink data; the modulation mode of the uplink data is the first modulation mode Or quadrature phase shift keying QPSK or BPSK, the modulation order corresponding to the first modulation mode is greater than 2, and the uplink data from the terminal device is received according to the modulation mode.
  • the DCI is used to schedule the uplink data and indicate the modulation mode of the uplink data
  • the modulation mode of the uplink data is the first modulation mode Or quadrature phase shift keying QPSK or BPSK, the modulation order corresponding to the first modulation mode is greater than 2
  • the uplink data from the terminal device is received according to the modulation mode.
  • the device can also implement other methods. For details, refer to the description of the network device in FIG. 3, which will not be repeated here.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法及装置,其中方法包括:终端设备接收来自网络设备的DCI,所述DCI用于调度下行数据,并指示所述下行数据的调制方式;下行数据的调制方式为第一调制方式或者QPSK,第一调制方式所对应的调制阶数大于2;终端设备根据所述调制方式接收所述下行数据。通过上面的流程,网络设备通过DCI指示下行数据的调制方式,终端设备从而可以根据DCI指示的调制方式接收下行数据,从而可以实现通过DCI指示高阶调制的调度。

Description

一种数据传输方法及装置 技术领域
本申请涉及无线通信技术领域,特别涉及一种数据传输方法及装置。
背景技术
物联网(internet of things,IoT)是“物物相连的互联网”。它将互联网的用户端扩展到了任何物品与物品之间,进行信息交换和通信。这样的通信方式也称为机器间通信(machine type communications,MTC),通信的节点称为MTC终端。典型的物联网应用包括智能电网、智能农业、智能交通、智能家居以及环境检测等各个方面。由于物联网需要应用在多种场景中比如从室外到室内,从地上到地下,因而对物联网的设计提出了很多特殊的要求。由于IoT中,节点之间传输数据所使用的带宽较小,因此也可以称为窄带物联网(narrow band internet of things,NB-IoT)。
目前,NB-IoT下行支持的调制方式为正交相移键控(quadrature phase shift keying,QPSK),上行支持的调制方式为二相移相键控(binary phase shift keying,BPSK)和QPSK,可支持低速物联网业务。NB-IoT R17中考虑引入高阶调制,比如16正交幅度调制(16quadrature amplitude modulation,16QAM)、64QAM,以提升数据传输速率,进而支持更高速的物联网业务。下行控制信息如何支持高阶调制的调度,是一个亟待解决的问题。
发明内容
本申请实施方式的目的在于提供一种数据传输方法及装置,用以支持高阶调制的调度。
第一方面,本申请实施例提供一种数据传输方法,包括:终端设备接收来自网络设备的下行控制信息DCI,所述DCI用于调度下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者正交相移键控QPSK,所述第一调制方式所对应的调制阶数大于2;所述终端设备根据所述调制方式接收所述下行数据。
通过上面的流程,网络设备通过DCI指示下行数据的调制方式,终端设备从而可以根据DCI指示的调制方式接收下行数据,从而可以实现通过DCI进行高阶调制的调度。
在一种可能的实施方式中,所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述下行数据的重复次数N Rep;N Rep小于或者等于R0时,所述下行数据的调制方式为第一调制方式;N Rep大于所述R0时,所述下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
在一种可能的实施方式中,所述重复次数指示信息包括4比特。
在一种可能的实施方式中,所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;所述DCI的重复次数小于或者等于R1时,所述下行数据的调制方式为所述第一调制方式;所述DCI的重复次数大于所述R1时,所述下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
在一种可能的实施方式中,所述DCI重复次数指示信息包括2比特。
在一种可能的实施方式中,所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引;所述MCS索引大于或者等于M0时,所述 下行数据的调制方式为所述第一调制方式;所述MCS索引小于M0时,所述下行数据的调制方式为所述QPSK,其中M0为大于或者等于0的正整数。
在一种可能的实施方式中,所述MCS指示信息包括4比特或者5比特或者6比特。
在一种可能的实施方式中,所述DCI包括第一信息,所述第一信息用于确定所述下行数据的调制方式为所述第一调制方式或所述QPSK;所述第一信息的取值为第一值时,所述下行数据的调制方式为所述第一调制方式;所述第一信息的取值为第二值时,所述下行数据的调制方式为所述QPSK。
在一种可能的实施方式中,承载所述DCI的下行控制信道的CRC通过第一RNTI加扰时,所述下行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;承载所述DCI的下行控制信道的CRC通过C-RNTI加扰时,所述下行数据的调制方式为QPSK。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定所述下行数据的重复次数的比特数为0或者1或者2或者3。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定DCI重复次数的比特数为0或者1。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI还包括编码调制策略MCS域,所述MCS域包括的比特数为1或者2或者3或者4。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
在一种可能的实施方式中,所述第二信息包括M个比特,M为大于0的整数。
在一种可能的实施方式中,M小于或等于3。
在一种可能的实施方式中,所述第一调制方式为8PSK或者16QAM或者64QAM或者256QAM。
在一种可能的实施方式中,所述DCI的格式为格式N1。
在一种可能的实施方式中,所述DCI包括第二信息,所述第二信息用于确定所述下行数据和第一信号的功率比值。
第二方面,提供一种数据传输方法,包括:网络设备确定下行数据的调制方式,并向所述终端设备发送下行控制信息DCI,所述DCI用于调度所述下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者正交相移键控QPSK,所述第一调制方式所对应的调制阶数大于2;所述网络设备按照所述调制方式向所述终端设备发送所述下行数据。
通过上面的流程,网络设备通过DCI指示下行数据的调制方式,终端设备从而可以根据DCI指示的调制方式接收下行数据,从而可以实现通过DCI进行高阶调制的调度。
在一种可能的实施方式中,所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述下行数据的重复次数NRep;NRep小于或者等于R0时,所述下行数据的调制方式为第一调制方式;NRep大于所述R0时,所述下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
在一种可能的实施方式中,所述重复次数指示信息包括4比特。
在一种可能的实施方式中,所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;所述DCI的重复次数小于或者等于R1时, 所述下行数据的调制方式为所述第一调制方式;所述DCI的重复次数大于所述R1时,所述下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
在一种可能的实施方式中,所述DCI重复次数指示信息包括2比特。
在一种可能的实施方式中,所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引;所述MCS索引大于或者等于M0时,所述下行数据的调制方式为所述第一调制方式;所述MCS索引小于M0时,所述下行数据的调制方式为所述QPSK,其中M0为大于或者等于0的整数。
在一种可能的实施方式中,所述MCS指示信息包括4比特或者5比特或者6比特。
在一种可能的实施方式中,所述DCI包括第一信息,所述第一信息用于确定所述下行数据的调制方式为所述第一调制方式或所述QPSK;所述第一信息的取值为第一值时,所述下行数据的调制方式为所述第一调制方式;所述第一信息的取值为第二值时,所述下行数据的调制方式为所述QPSK。
在一种可能的实施方式中,承载所述DCI的下行控制信道的CRC通过第一RNTI加扰时,所述下行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;承载所述DCI的下行控制信道的CRC通过C-RNTI加扰时,所述下行数据的调制方式为QPSK。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定所述下行数据的重复次数的比特数为0或者1或者2或者3。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定DCI重复次数的比特数为0或者1。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI还包括编码调制策略MCS域,所述MCS域包括的比特数为1或者2或者3或者4。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
在一种可能的实施方式中,所述第二信息包括M个比特,M为大于0的整数。
在一种可能的实施方式中,M小于或等于3。
在一种可能的实施方式中,所述第一调制方式为8PSK或者16QAM或者64QAM或者256QAM。
在一种可能的实施方式中,所述DCI的格式为格式N1。
在一种可能的实施方式中,所述DCI包括第二信息,所述第二信息用于确定所述下行数据和第一信号的功率比值。
第三方面,本申请提供一种方法,包括:终端设备接收来自网络设备的下行控制信息DCI,所述DCI用于调度上行数据,并指示所述上行数据的调制方式;所述上行数据的调制方式为第一调制方式或者正交相移键控QPSK或者BPSK,所述第一调制方式所对应的调制阶数大于2;所述终端设备根据所述调制方式向所述网络设备发送所述上行数据。
通过上面的流程,网络设备通过DCI指示上行数据的调制方式,终端设备从而可以根据DCI指示的调制方式接收上行数据,从而可以实现通过DCI进行高阶调制的调度。
在一种可能的实施方式中,所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述上行数据的重复次数N Rep;N Rep小于或者等于R0时,所述上行数据的调制方式为所述第一调制方式;N Rep大于所述R0时,所述上行数据的调制方式为QPSK 或者BPSK,其中R0为大于或者等于1的正整数。
在一种可能的实施方式中,所述重复次数指示信息包括3比特。
在一种可能的实施方式中,所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;所述DCI的重复次数小于或者等于R1时,所述上行数据的调制方式为所述第一调制方式;所述DCI的重复次数大于所述R1时,所述上行数据的调制方式为QPSK或者BPSK,其中R1为大于或者等于1的正整数。
在一种可能的实施方式中,所述DCI重复次数指示信息包括2比特。
在一种可能的实施方式中,所述DCI包括子载波指示信息,其中所述子载波指示信息用于确定所述上行数据的子载波数;所述子载波数大于或者等于S0时,所述上行数据的调制方式为所述第一调制方式;所述子载波数小于S0时,所述上行数据的调制方式为QPSK或者BPSK,其中S0为大于或者等于1的正整数。
在一种可能的实施方式中,所述子载波指示信息包括6比特。
在一种可能的实施方式中,所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述上行数据的MCS索引;所述MCS索引大于或者等于M0时,所述上行数据的调制方式为所述第一调制方式;所述MCS索引小于M0时,所述上行数据的调制方式为QPSK或者BPSK,其中R1为大于或者等于1的正整数。
在一种可能的实施方式中,所述MCS指示信息包括4比特或者5比特或者6比特。
在一种可能的实施方式中,所述DCI包括第一信息,所述第一信息用于确定所述上行数据的调制方式;所述第一信息的取值为第一值时,所述上行数据的调制方式为所述第一调制方式;所述第一信息的取值为第二值时,所述上行数据的调制方式为QPSK或者BPSK。
在一种可能的实施方式中,承载所述DCI的下行控制信道的CRC通过第一RNTI加扰时,所述上行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;
承载所述DCI的下行控制信道的CRC通过C-RNTI加扰时,所述上行数据的调制方式为QPSK或者BPSK。
在一种可能的实施方式中,所述上行数据的调制方式为所述第一调制方式时,所述DCI中用于指示所述上行数据的重复次数的比特数为0或者1或者2或者3。
在一种可能的实施方式中,所述上行数据的调制方式为所述第一调制方式时,所述DCI中用于确定DCI重复次数的比特数为0或者1。
在一种可能的实施方式中,所述上行数据的调制方式为所述第一调制方式时,所述DCI中用于确定上行数据的子载波数的比特数为0或者1或2或3或4或5。
在一种可能的实施方式中,所述上行数据的调制方式为所述第一调制方式时,所述DCI还包括编码调制策略MCS域,所述MCS域包括的比特数为1或者2或者3或者4。
在一种可能的实施方式中,所述上行数据的调制方式为所述第一调制方式时,所述DCI中用于指示所述上行数据的冗余版本的比特数为0或者1。
在一种可能的实施方式中,所述第一调制方式为8PSK或者16QAM或者64QAM或者256QAM。
在一种可能的实施方式中,所述DCI的格式为格式N0。
在一种可能的实施方式中,承载所述DCI的下行控制信道的CRC通过SPS C-RNTI加扰时,所述第一信息的取值设置为0或者1。
第四方面,本申请提供一种方法,包括:网络设备确定上行数据的调制方式,并向所述终端设备发送下行控制信息DCI,所述DCI用于调度所述上行数据,并指示所述上行数据的调制方式;所述上行数据的调制方式为第一调制方式或者正交相移键控QPSK或者BPSK,所述第一调制方式所对应的调制阶数大于2;网络设备按照所述调制方式接收来自所述终端设备的上行数据。
通过上面的流程,网络设备通过DCI指示上行数据的调制方式,终端设备从而可以根据DCI指示的调制方式接收上行数据,从而可以实现通过DCI进行高阶调制的调度。
在一种可能的实施方式中,所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述上行数据的重复次数N Rep;N Rep小于或者等于R0时,所述上行数据的调制方式为所述第一调制方式;N Rep大于所述R0时,所述上行数据的调制方式为QPSK或者BPSK,其中R0为大于或者等于1的正整数。
在一种可能的实施方式中,所述重复次数指示信息包括3比特。
在一种可能的实施方式中,所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;所述DCI的重复次数小于或者等于R1时,所述上行数据的调制方式为所述第一调制方式;所述DCI的重复次数大于所述R1时,所述上行数据的调制方式为QPSK或者BPSK,其中R1为大于或者等于1的正整数。
在一种可能的实施方式中,所述DCI重复次数指示信息包括2比特。
在一种可能的实施方式中,所述DCI包括子载波指示信息,其中所述子载波指示信息用于确定所述上行数据的子载波数;所述子载波数大于或者等于S0时,所述上行数据的调制方式为所述第一调制方式;所述子载波数小于S0时,所述上行数据的调制方式为QPSK或者BPSK,其中S01为大于或者等于1的正整数。
在一种可能的实施方式中,所述子载波指示信息包括6比特。
在一种可能的实施方式中,所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述上行数据的MCS索引;所述MCS索引大于或者等于M0时,所述上行数据的调制方式为所述第一调制方式;所述MCS索引小于M0时,所述上行数据的调制方式为QPSK或者BPSK,其中R1为大于或者等于1的正整数。
在一种可能的实施方式中,所述MCS指示信息包括4比特或者5比特或者6比特。
在一种可能的实施方式中,所述DCI包括第一信息,所述第一信息用于确定所述上行数据的调制方式;所述第一信息的取值为第一值时,所述上行数据的调制方式为所述第一调制方式;所述第一信息的取值为第二值时,所述上行数据的调制方式为QPSK或者BPSK。
在一种可能的实施方式中,承载所述DCI的下行控制信道的CRC通过第一RNTI加扰时,所述上行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;
承载所述DCI的下行控制信道的CRC通过C-RNTI加扰时,所述上行数据的调制方式为QPSK或者BPSK。
在一种可能的实施方式中,所述上行数据的调制方式为所述第一调制方式时,所述DCI中用于指示所述上行数据的重复次数的比特数为0或者1或者2或者3。
在一种可能的实施方式中,所述上行数据的调制方式为所述第一调制方式时,所述DCI中用于确定DCI重复次数的比特数为0或者1。
在一种可能的实施方式中,所述上行数据的调制方式为所述第一调制方式时,所述DCI 中用于确定上行数据的子载波数的比特数为0或者1或2或3或4或5。
在一种可能的实施方式中,所述上行数据的调制方式为所述第一调制方式时,所述DCI还包括编码调制策略MCS域,所述MCS域包括的比特数为1或者2或者3或者4。
在一种可能的实施方式中,所述上行数据的调制方式为所述第一调制方式时,所述DCI中用于指示所述上行数据的冗余版本的比特数为0或者1。
在一种可能的实施方式中,所述第一调制方式为8PSK或者16QAM或者64QAM或者256QAM。
在一种可能的实施方式中,所述DCI的格式为格式N0。
在一种可能的实施方式中,承载所述DCI的下行控制信道的CRC通过SPS C-RNTI加扰时,所述第一信息的取值设置为0或者1。
第五方面,本申请还提供一种通信装置,该通信装置具有实现上述第一方面或第三方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中终端设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与网络设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第一方面或第三方面提供的方法中的描述,此处不做赘述。
第六方面,本申请还提供一种通信装置,该通信装置具有实现上述第二方面或第四方面提供的任一方法。该通信装置可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或单元。
在一种可能的实现方式中,该通信装置包括:处理器,该处理器被配置为支持该通信装置执行以上所示方法中网络设备的相应功能。该通信装置还可以包括存储器,该存储可以与处理器耦合,其保存该通信装置必要的程序指令和数据。可选地,该通信装置还包括通信接口,该通信接口用于支持该通信装置与终端设备等设备之间的通信。
在一种可能的实现方式中,该通信装置包括相应的功能单元,分别用于实现以上方法中的步骤。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的实施方式中,通信装置的结构中包括处理单元和通信单元,这些单元可以执行上述方法示例中相应功能,具体参见第二方面或第四方面提供的方法中的描述,此处不做赘述。
第七方面,本申请提供一种通信装置,所述通信装置包括处理器,当所述处理器执行存储器中的计算机程序或指令时,如第一方面至第四方面任一方面所述的方法被执行。
第八方面,本申请提供一种通信装置,所述通信装置包括处理器和存储器,所述存储器用于存储计算机程序或指令;所述处理器用于执行所述存储器所存储的计算机程序或指 令,以使所述通信装置执行如第一方面至第四方面任一方面中所示的相应的方法。
第九方面,本申请提供一种通信装置,所述通信装置包括处理器、存储器和收发器,所述收发器,用于接收信号或者发送信号;所述存储器,用于存储计算机程序或指令;所述处理器,用于从所述存储器调用所述计算机程序或指令执行如第一方面至第四方面任一方面所述的方法。
第十方面,本申请提供一种通信装置,所述通信装置包括处理器和接口电路,所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如第一方面至第四方面任一方面所示的相应的方法。
第十一方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当计算机读取并执行所述计算机程序或指令时,使得第一方面至第四方面任一方面所述的方法被实现。
第十二方面,本申请提供一种包括指令的计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得第一方面至第四方面任一方面所述的方法被实现。
第十三方面,本申请提供一种芯片,包括处理器,所述处理器与存储器耦合,用于执行所述存储器中存储的计算机程序或指令,当所述处理器执行所述计算机程序或指令时,使得第一方面至第四方面任一方面所述的方法被实现。
第十四方面,本申请提供一种系统,包括上述第五方面提供的终端设备以及上述第六方面提供的网络设备。
附图说明
图1为适用于本申请实施例的网络架构示意图;
图2为本申请实施例提供的一种数据传输方法流程示意图;
图3为本申请实施例提供的一种数据传输方法流程示意图;
图4为本申请实施例提供的一种通信装置结构示意图;
图5为本申请实施例提供的一种通信装置结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例可以应用于无线通信系统,尤其适用于支持NB-IoT或者eMTC的移动通信系统,例如:新无线(new radio,NR)系统、长期演进(long term evolution,LTE)系统、先进的长期演进(advanced long term evolution,LTE-A)系统、演进的长期演进(evolved long term evolution,eLTE)系统、未来通信系统等其它通信系统,在此不做限制。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的方法的通信系统的示意图。如图1所示,网络设备和终端设备1~终端设备5组成一个通信系统,在该通信系统中,网络设备可以发送信息给终端设备1~终端设备5中的一个或多个终端设备。此外,终端设备4~终端设备5也组成一个通信系统。
本申请实施例中,终端设备,可以为具有无线收发功能的设备或可设置于任一设备中的芯片,也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移 动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
网络设备,可以是LTE系统中的演进型基站(evolutional node B,eNB),可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB)等。
结合前面的描述,如图2所示,为本申请实施例提供的一种数据传输方法流程示意图。参见图2,该方法包括:
步骤201:网络设备确定下行数据的调制方式,并向所述终端设备发送下行控制信息。
图2所示的流程中,下行控制信息(downlink control channel,DCI)用于调度所述下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者QPSK。
本申请实施例中,所述第一调制方式所对应的调制阶数大于2。举例来说,所述第一调制方式可以为8PSK或者16QAM或者64QAM或者256QAM等。
需要说明的是,网络设备具体如何确定下行数据的调制方式,本申请实施例对此并不限定。
可选的,步骤201之前,网络设备还可以向终端设备发送配置信息,所述配置信息指示激活第一调制方式。终端设备接收到所述配置信息,可以确定网络设备调度的下行数据可能采用第一调制方式调制。
步骤202:网络设备按照所述调制方式向所述终端设备发送所述下行数据。
步骤203:终端设备接收来自网络设备的下行控制信息。
步骤204:终端设备根据所述下行控制信息指示的调制方式接收所述下行数据。
通过上面的流程,网络设备通过DCI指示下行数据的调制方式,终端设备从而可以根据DCI指示的调制方式接收下行数据。
下面分别描述如何实现通过DCI指示下行数据的调制方式。
实施例一:
在该实施例中,DCI的格式为格式N1,可以通过DCI中的不同域隐式的指示下行数据的调制方式,下面分别进行描述。
DCI的格式为格式N1时,DCI中包括的内容可以参考表1所示。
表1
Figure PCTCN2019122190-appb-000001
Figure PCTCN2019122190-appb-000002
表1中,格式N0/格式N1区分标识域,用于指示该DCI的格式;格式N0用于上行调度;格式N1用于下行调度。终端设备是通过格式N0/格式N1区分标识域来识别DCI的格式到底是格式N0还是格式N1,进而可以确定该DCI是用于上行调度还是下行调度。其中,也可以将格式N0/格式N1区分标识域称作DCI格式标记域。
NPDCCH order指示域,用于指示当前的DCI调度是否由NPDCCH order触发的随机接入过程。
调度时延域,用于确定DCI调度的下行数据和/或信令传输的起始时间。
资源分配域,用于确定DCI调度的下行数据和/或信令的资源的分配,比如时域资源的分配。
调制和编码策略域,用于确定DCI调度的下行数据和/或信令的MCS索引。根据MCS域和资源分配域还可以确定数据的传输块大小(transport block size,TBS)。
重复次数域,用于确定DCI调度的下行数据的重复次数。
新数据指示域,用于指示当前调度的传输是新传还是重传。
HARQ-ACK资源域,用于指示确认(acknowledge,ACK)/否定确认(negative acknowledgement,NACK)反馈信息传输的时频资源位置。
DCI重复次数域,用于确定DCI的重复次数。
第一种可能的实现方式中,通过重复次数指示信息确定下行数据的调制方式。
在该实现方式中,DCI包括重复次数指示信息,所述重复次数指示信息可以用于确定所述下行数据的重复次数N Rep
举例来说,重复次数指示信息可以通过DCI中的重复次数域携带。
本申请实施例对重复次数指示信息包括的比特数并不限定,例如重复次数指示信息可以包括4比特。
在该实现方式中,N Rep小于或者等于R0时,DCI调度的下行数据的调制方式可以为第一调制方式;N Rep大于所述R0时,DCI调度的下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
或者,在该实现方式中,N Rep小于R0时,DCI调度的下行数据的调制方式可以为第一调制方式;N Rep大于或者等于所述R0时,DCI调度的下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
需要说明的是,R0为约定值或者由网络设备配置的值。例如,R0为1或2或4或8或16或32或64或128或192或256或384或512或768或1024或1536或2048。
示例性的,终端设备接收的下行数据所在的载波的部署模式不同,R0相同或者不同。
举例来说,终端设备接收的下行数据所在的载波的部署模式为带内部署时,R0的取值为第一数值;终端设备接收的下行数据所在的载波的部署模式为独立部署或者保护带部署时,R0的取值为第二数值;其中所述第一数值可以小于或者等于所述第二数值。
第二种可能的实现方式中,通过DCI重复次数指示信息确定下行数据的调制方式。
在该实现方式中,DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数。
举例来说,DCI重复次数指示信息可以通过DCI中的DCI重复次数域携带。
本申请实施例对DCI重复次数指示信息包括的比特数并不限定,例如DCI重复次数指示信息可以包括2比特。
在该实现方式中,DCI的重复次数小于或者等于R1时,DCI调度的下行数据的调制方式为所述第一调制方式;DCI的重复次数大于所述R1时,DCI调度的下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。或者,在该实现方式中,DCI的重复次数小于R1时,DCI调度的下行数据的调制方式为所述第一调制方式;DCI的重复次数大于或者等于所述R1时,DCI调度的下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
需要说明的是,R1为约定值或者由网络设备配置的值。例如,R1为1或2或4或R max/8或R max/4或R max/2或R max,其中R max为下行控制信道的搜索空间的最大重复次数,该R max可以由该网络设备配置。
示例性的,终端设备接收的下行数据所在的载波的部署模式不同,R1相同或者不同。
举例来说,终端设备接收的下行数据所在的载波的部署模式为带内部署时,R1的取值为第一数值;终端设备接收的下行数据所在的载波的部署模式为独立部署或者保护带部署时,R1的取值为第二数值;其中所述第一数值可以小于或者等于所述第二数值。
第三种可能的实现方式中,通过MCS指示信息确定下行数据的调制方式。
在该实现方式中,DCI包括MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引。
举例来说,MCS指示信息可以通过DCI中的MCS域携带。
本申请实施例对MCS指示信息包括的比特数并不限定,例如MCS指示信息可以包括4比特或者5比特或者6比特。
在该实现方式中,MCS索引大于或者等于M0时,DCI调度的下行数据的调制方式为所述第一调制方式;MCS索引小于M0时,DCI调度的下行数据的调制方式为QPSK,其中M0为大于或者等于0的整数。
或者,在该实现方式中,MCS索引大于M0时,DCI调度的下行数据的调制方式为所述第一调制方式;MCS索引小于或者等于M0时,DCI调度的下行数据的调制方式为QPSK,其中M0为大于或者等于0的整数。
需要说明的是,M0为约定值或者由网络设备配置的值。例如,M0为0或1或2或3或4或5或6或7或8或9或10或11或12或13或14或15。
示例性的,终端设备接收的下行数据所在的载波的部署模式不同,M0相同或者不同。
举例来说,终端设备接收的下行数据所在的载波的部署模式为带内部署时,M0的取 值为第一数值;终端设备接收的下行数据所在的载波的部署模式为独立部署或者保护带部署时,M0的取值为第二数值;其中所述第一数值可以小于或者等于所述第二数值。
第四种可能的实现方式中,通过无线网络临时标识(radio network tempory identity,RNTI)指示下行数据的调制方式。
目前,承载所述DCI的下行控制信道的循环冗余校验(cyclic redundancy check,CRC)是通过RNTI加扰的。为此,在该实现方式中,可以建立RNTI与调制方式的对应关系。
示例性的,承载所述DCI的下行控制信道的CRC通过第一RNTI加扰时,所述下行数据的调制方式为所述第一调制方式;承载所述DCI的下行控制信道的CRC通过小区无线网络临时标识(cell radio network temporary identity,C-RNTI)加扰时,所述下行数据的调制方式为QPSK。
其中,第一RNTI可以由网络设备配置,也可以通过其他方式确定。第一RNTI可以是第一调制方式专用的RNTI。第一RNTI与C-RNTI不同,第一RNTI的具体形式,本申请并不限定,在此不再赘述。
需要说明的是,第一至第四任一种可能的实现方式只是示例,还可以通过DCI中的多个域联合指示下行数据的调制方式,具体如何指示,在此不再赘述。
需要说明的是,目前MCS域指示的MCS索引与TBS索引之间的对应关系可以参考表2所示。
表2
MCS索引 调制阶数 TBS索引
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10
11 2 11
12 2 12
13 2 13
结合前面的描述,在第一至第四种可能的实现方式中,当DCI调度的下行数据的调制方式为QPSK时,MCS域指示的MCS索引与TBS索引之间的对应关系可以保持如表2所示的不变。
当DCI调度的下行数据的调制方式为第一调制方式时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如表3所示。
表3
MCS索引 调制阶数 TBS索引
0 4 12
1 4 13
2 4 14
3 4 15
4 4 16
5 4 17
6 4 18
7 4 19
当然,以上只是示例,MCS域中包括的比特数为其他值时,可以参考上面的描述,在此不再赘述。
进一步的,第一至第四任一种可能的实现方式中,DCI还可以包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
具体地,第一信号可以是窄带参考信号(narrowband reference signal,NRS),或者小区参考信号(cell-specific reference signal,CRS),或者解调参考信号(demodulation reference signal,DMRS),或者窄带辅同步信号(narrowband secondary synchronization signal,NSSS),或者窄带主同步信号(narrowband primary synchronization signal,NPSS),或者辅同步信号(secondary synchronization signal,SSS),或者主同步信号(primary synchronization signal,PSS)。
具体地,功率比值可以是每资源元素能量(energy per resource element,EPRE)的比值,也就是说所述第二信息用于确定所述DCI调度的下行数据的EPRE和第一信号的EPRE的比值。
需要说明的是,DCI中可以在任何情况下都包括第二信息。或者也可以在DCI调度的下行数据的调制方式为所述第一调制方式时,DCI中包括第二信息;相应的,在DCI调度的下行数据的调制方式为QPSK时,DCI中不包括第二信息。
上面的方法中,通过第二信息指示出功率比值,可以实现对下行数据的功率控制,提高传输鲁棒性。
在实施例一中,当DCI中包括第二信息时,所述第二信息可以包括M个比特,M为大于0的整数。举例来说,M可以小于或等于3。例如M为0或1或2或3。
举例来说,当第二信息包括2个比特时,第二信息指示的下行数据和第一信号的功率比值,可以如表4所示。
表4
第二信息 下行数据和第一信号的功率比值
00 第一比值
01 第二比值
11 第三比值
10 第四比值
表4中,第一比值至第四比值的具体取值可以根据实际情况确定,在此不再限定。
当DCI中包括第二信息时,可以存在多种实现方式,下面分别进行描述。
实现方式一:保持DCI中其它指示域包括的比特数的不变,对现有的格式N1的DCI进行扩展,即在现有格式N1的增加M个比特,这M个比特用于携带第二信息。
实现方式二:减少DCI中一个或多个指示域中的比特数,并将多余的比特中的部分或全部作为第二信息包括的比特。在该方式中,DCI中包括的比特数,相比于现有技术中的格式N1的DCI包括的比特数,可以保持不变,也可以增加至少一个比特。
举例来说,可以减少DCI中以下一个或多个指示域中的比特数:
MCS域;重复次数域;DCI重复次数域。
结合上面的描述,若MCS域减少L1个比特,重复次数域减少L2个比特,DCI重复次数域减少L3个比特,第二信息包括的比特数为M,那么M≥L1+L2+L3。其中,L1、L2以及L3均为大于或等于0的整数。
当减少MCS域中包括的比特数时,MCS域可以减少1至3个比特,即MCS域包括的比特数可以为1或者2或者3。相应的,当MCS指示信息通过MCS域携带时,MCS指示信息包括的比特数为1或者2或者3。
当减少重复次数域中包括的比特数时,重复次数域可以减少1至4个比特,即重复次数域包括的比特数可以为0或者1或者2或者3。当重复次数指示信息通过重复次数域携带时,重复次数指示信息包括的比特数为0或者1或者2或者3。其中,重复次数指示信息包括的比特数为0应理解为DCI中不包括重复次数指示信息,或者DCI中不包括重复次数域,此时该DCI调度的下行数据的重复次数为1或者其它约定值。
当减少DCI重复次数域中包括的比特数时,DCI重复次数域可以减少1至2个比特,即DCI重复次数域包括的比特数可以为0或者1。当DCI重复次数指示信息通过DCI重复次数域携带时,DCI重复次数指示信息包括的比特数为0或者1。其中,重复次数指示信息包括的比特数为0应理解为DCI中不包括DCI重复次数指示信息,或者DCI中不包括DCI重复次数域,此时该DCI的重复次数为1或者其它约定值。
需要说明的是,当DCI中不包括第二信息时,MCS域、重复次数域以及DCI重复次数域中包括的比特数不可以保持不变,此时MCS域可以包括4个比特,重复次数域可以包括4个比特,DCI重复次数域可以包括2个比特。
本申请实施例中,还可以通过是否在DCI中携带第二信息,指示DCI调度的下行数据的调制方式,具体可以参考实施例二中的描述。
本申请实施例通过DCI中的不同域隐式的指示下行数据的调制方式,可以节省DCI信令开销。
实施例二:
通过MCS指示信息确定下行数据的调制方式。
在该实现方式中,DCI包括MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引。
举例来说,MCS指示信息可以通过DCI中的MCS域携带。
本申请实施例对MCS指示信息包括的比特数并不限定,例如MCS指示信息可以包括4比特或者5比特或者6比特。
在该实现方式中,MCS索引大于或者等于M0时,DCI调度的下行数据的调制方式为所述第一调制方式;MCS索引小于M0时,DCI调度的下行数据的调制方式为QPSK,其 中M0为大于或者等于0的整数。
或者,在该实现方式中,MCS索引大于M0时,DCI调度的下行数据的调制方式为所述第一调制方式;MCS索引小于或者等于M0时,DCI调度的下行数据的调制方式为QPSK,其中M0为大于或者等于0的整数。
需要说明的是,M0为约定值或者由网络设备配置的值。例如,M0为0或1或2或3或4或5或6或7或8或9或10或11或12或13或14或15。
示例性的,终端设备接收的下行数据所在的载波的部署模式不同,M0相同或者不同。
举例来说,终端设备接收的下行数据所在的载波的部署模式为带内部署时,M0的取值为第一数值;终端设备接收的下行数据所在的载波的部署模式为独立部署或者保护带部署时,M0的取值为第二数值;其中所述第一数值可以小于或者等于所述第二数值。
进一步的,第一至第四任一种可能的实现方式中,DCI还可以包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和参考信号第一信号的功率比值。
需要说明的是,DCI中可以在任何情况下都包括第二信息。或者也可以在DCI调度的下行数据的调制方式为所述第一调制方式时,DCI中包括第二信息;相应的,在DCI调度的下行数据的调制方式为QPSK时,DCI中不包括第二信息。
本申请实施例中MCS域包括的比特数可以为4或5或6。
例如MCS域中包括的比特数为4时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如表5a或者表5b所示。其中,终端设备接收的下行数据所在的载波的部署模式为独立部署或者保护带部署时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如表5a所示;终端设备接收的下行数据所在的载波的部署模式为带内部署时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如表5b所示。
表5a
MCS索引 调制阶数 TBS索引
0 2 0
1 2 2
2 2 4
3 2 6
4 2 8
5 2 10
6 2 12
7 2 13
9 4 12
10 4 13
11 4 14
12 4 15
13 4 16
14 4 17
15 4 18
表5b
MCS索引 调制阶数 TBS索引
0 2 0
1 2 2
2 2 4
3 2 6
4 2 8
5 2 10
6 4 8
7 4 9
9 4 10
10 4 11
11 4 12
12 4 13
13 4 14
14 4 15
15 4 16
例如MCS域中包括的比特数为5时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如表6所示。
表6
MCS索引 调制阶数 TBS索引
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10
11 2 11
12 2 12
13 2 13
17 4 12
18 4 13
19 4 14
20 4 15
21 4 16
22 4 17
23 4 18
24 4 19
当然,以上只是示例,MCS域中包括的比特数为其他值时,可以参考上面的描述,在此不再赘述。
本申请实施例中,DCI中还可以包括第一信息,第一信息可以指示DCI调度的下行数据的调制方式,具体可以参考实施例三中的描述。
本实施例中第一信号和功率比值的描述可以参考实施例一部分相关内容的描述,在此不再赘述。
本申请实施例通过DCI中MCS域指示下行数据的调制方式,可以节省DCI信令开销,同时避免对其它域进行裁剪,影响基站调度的灵活性,因此通过本实施例基站实现灵活调度。
实施例三:
DCI包括第一信息,所述第一信息用于确定所述DCI调度的下行数据的调制方式为所述第一调制方式或所述QPSK。
举例来说,所述第一信息的取值为第一值时,所述DCI调度的下行数据的调制方式为所述第一调制方式;所述第一信息的取值为第二值时,所述DCI调度的下行数据的调制方式为所述QPSK。其中,第一值和第二值不相同,第一值和第二值的具体实现方式,本申请实施例对此并不限定。
需要说明的是。第一信息包括至少一个比特,具体包括的比特数量可以根据实际情况确定。举例来说,第一信息包括1个比特,当第一信息的取值为1时,表示DCI调度的下行数据的调制方式为所述第一调制方式;所述第一信息的取值为0时,表示DCI调度的下行数据的调制方式为所述QPSK。或者,当第一信息的取值为0时,表示DCI调度的下行数据的调制方式为所述第一调制方式;所述第一信息的取值为1时,表示DCI调度的下行数据的调制方式为所述QPSK。第一信息包括其他数量的比特时,可以参考上面的描述,在此不再赘述。
示例性的,在实施例三中,DCI调度的下行数据的调制方式为所述第一调制方式时,DCI中还可以包括第二信息,第二信息包括M个比特。
当DCI中包括第二信息时,可以存在多种实现方式,下面分别进行描述。
实现方式一:保持DCI中其它指示域包括的比特数的不变,对现有的格式N1的DCI进行扩展,即在现有格式N1的增加M个比特,这M个比特用于携带第二信息。
实现方式二:减少DCI中MCS域和重复次数域中的比特数,并将多余的比特作为第二信息包括的比特。在该方式中,MCS域中的比特数可以减少1至3个,重复次数域中的比特数可以减少1至2个。举例来说,DCI中包括的第一信息、MCS域、重复次数域以及第二指示信息可以如表7所示。
表7
DCI中包括的内容 包括的比特数
第一信息 1
MCS域 3
重复次数域 2
第二信息 3
表7中,MCS域包括3个比特,相对于现有技术减少了1个比特;重复次数域包括2个比特,相对于现有技术减少了2个比特。DCI中包括的其他内容可以参考表1所示,在此不再赘述。
需要说明的是,在该实现方式中,需要说明的是,DCI调度的下行数据的调制方式为QPSK时,MCS域指示的MCS索引与TBS索引之间的对应关系可以参考表2所示。DCI调度的下行数据的调制方式为第一调制方式时,MCS域指示的MCS索引与TBS索引之间的对应关系可以参考表3所示。
需要说明的是,在该实现方式中,可以减少DCI中MCS域、重复次数域以及DCI重复次数域中的下一个或多个指示域中的比特数。
例如,当减少MCS域中包括的比特数时,MCS域可以减少1至3个比特,即MCS域包括的比特数可以为1或者2或者3。当减少重复次数域中包括的比特数时,重复次数域可以减少1至4个比特,即重复次数域包括的比特数可以为0或者1或者2或者3。当减少DCI重复次数域中包括的比特数时,DCI重复次数域可以减少1至2个比特,即DCI重复次数域包括的比特数可以为0或者1。
需要说明的是,当DCI中不包括第二信息时,MCS域、重复次数域以及DCI重复次数域中包括的比特数不可以保持不变,此时MCS域可以包括4个比特,重复次数域可以包括4个比特,DCI重复次数域可以包括2个比特。
具体如何减少DCI中MCS域、重复次数域以及DCI重复次数域中的比特数,可以参考前面实施例一部分相关内容的描述,在此不再赘述。
本实施例中第一信号和功率比值的描述可以参考实施例一部分相关内容的描述,在此不再赘述。
本申请实施例通过DCI中一些域进行裁剪,可以节省DCI信令开销。
前面描述了DCI调度下行数据的情况,本申请实施例中,还提供了一种方法,可以适用于DCI调度上行数据的情况,下面分别进行描述。
如图3所示,为本申请实施例提供的一种数据传输方法流程示意图。参见图3,该方法包括:
步骤301:网络设备确定上行数据的调制方式,并向所述终端设备发送DCI。
其中,DCI用于调度所述上行数据,并指示所述上行数据的调制方式;所述上行数据的调制方式为第一调制方式或者QPSK或者BPSK。
本申请实施例中,所述第一调制方式所对应的调制阶数大于2。举例来说,所述第一调制方式可以为8PSK或者16QAM或者64QAM或者256QAM等。
需要说明的是,网络设备具体如何确定上行数据的调制方式,本申请实施例对此并不限定。
可选的,步骤301之前,网络设备还可以向终端设备发送配置信息,所述配置信息指示激活第一调制方式。终端设备接收到所述配置信息,可以确定网络设备调度的上行数据可能采用第一调制方式调制。
步骤302:终端设备接收来自网络设备的DCI。
步骤303:终端设备根据所述DCI指示的调制方式向所述网络设备发送所述上行数据。
步骤304:网络设备按照所述调制方式接收来自所述终端设备的上行数据。
通过上面的流程,网络设备通过DCI指示上行数据的调制方式,终端设备从而可以根据DCI指示的调制方式发送上行数据。
下面分别描述如何实现通过DCI指示上行数据的调制方式。
实施例四:
在该实施例中,DCI的格式为格式N0,可以通过DCI中的不同域隐式的指示上行数据的调制方式,下面分别进行描述。
DCI的格式为格式N0时,DCI中包括的内容可以参考表8所示。
表8
DCI中包括的内容 包括的比特数
区分格式N0或格式N1的标识域 1
子载波指示域 6
资源分配域 3
调度时延域 2
MCS域 4
冗余版本(Redundancy Version,RV)域 1
重复次数域 3
新数据指示域 1
DCI重复次数域 2
表8中,格式N0/格式N1区分标识域,用于指示该DCI的格式;格式N0用于上行调度;格式N1用于下行调度。
子载波指示域,用于指示一个连续子载波集合。
调度时延域,用于确定DCI调度的上行数据和/或信令的传输的起始时间。
资源分配域,用于确定DCI调度的上行数据和/或信令的资源的分配,比如时域资源的分配。
调制和编码策略域,用于确定DCI调度的上行数据和/或信令的MCS索引。根据MCS域和资源分配域还可以确定上行数据的传输块大小(transport block size,TBS)。
重复次数域,用于确定DCI调度的上行数据的重复次数。
新数据指示域,用于指示当前调度的传输是新传还是重传。
冗余版本域,用于确定上行数据和/或信令传输时采用的冗余版本。
DCI重复次数域,用于确定DCI的重复次数。
第一种可能的实现方式中,DCI包括重复次数指示信息,所述重复次数指示信息可以用于确定所述上行数据的重复次数N Rep
举例来说,重复次数指示信息可以通过DCI中的重复次数域携带。
本申请实施例对重复次数指示信息包括的比特数并不限定,例如重复次数指示信息可以包括4比特。
在该实现方式中,N Rep小于或者等于R0时,DCI调度的上行数据的调制方式可以为 第一调制方式;N Rep大于所述R0时,DCI调度的上行数据的调制方式为QPSK或者BPSK,其中R0为大于或者等于1的正整数。
或者,在该实现方式中,N Rep小于R0时,DCI调度的上行数据的调制方式可以为第一调制方式;N Rep大于或者等于所述R0时,DCI调度的上行数据的调制方式为QPSK或者BPSK,其中R0为大于或者等于1的正整数。
需要说明的是,R0为约定值或者由网络设备配置的值。例如,R0为1或2或4或8或16或32或64或128。
示例性的,R0可以根据终端设备发送上行数据时所采用的子载波个数确定。举例来说,终端设备发送所述上行数据时采用的子载波个数为1时,R0的取值为第一数值;终端设备发送所述上行数据时采用的子载波个数为3或6或12时,R0的取值为第二数值。所述第一数值可以小于或者等于所述第二数值。
第二种可能的实现方式中,DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数。
举例来说,DCI重复次数指示信息可以通过DCI中的DCI重复次数域携带。
本申请实施例对DCI重复次数指示信息包括的比特数并不限定,例如DCI重复次数指示信息可以包括2比特。
在该实现方式中,DCI的重复次数小于或者等于R1时,DCI调度的上行数据的调制方式为所述第一调制方式;DCI的重复次数大于所述R1时,DCI调度的上行数据的调制方式为QPSK或者BPSK,其中R1为大于或者等于1的正整数。
或者,在该实现方式中,DCI的重复次数小于R1时,DCI调度的上行数据的调制方式为所述第一调制方式;DCI的重复次数大于或者等于所述R1时,DCI调度的上行数据的调制方式为QPSK或者BPSK,其中R1为大于或者等于1的正整数。
需要说明的是,R1为约定值或者由网络设备配置的值。例如,R1为1或2或4或R max/8或R max/4或R max/2或R max,其中R max为下行控制信道的搜索空间的最大重复次数,该R max可以由该网络设备配置。
示例性的,R1可以根据终端设备发送上行数据时所采用的子载波个数确定。举例来说,终端设备发送所述上行数据时采用的子载波个数为1时,R1的取值为第一数值;终端设备发送所述上行数据时采用的子载波个数为3或6或12时,R1的取值为第二数值。所述第一数值可以小于或者等于所述第二数值。
第三种可能的实现方式中,DCI包括MCS指示信息,其中所述MCS指示信息用于确定所述上行数据的MCS索引。
举例来说,MCS指示信息可以通过DCI中的MCS域携带。
本申请实施例对MCS指示信息包括的比特数并不限定,例如MCS指示信息可以包括4比特或者5比特或者6比特。
在该实现方式中,MCS索引大于或者等于M0时,DCI调度的上行数据的调制方式为所述第一调制方式;MCS索引小于M0时,DCI调度的上行数据的调制方式为QPSK或者BPSK,其中M0为大于或者等于0的整数。
或者,在该实现方式中,MCS索引大于M0时,DCI调度的上行数据的调制方式为所 述第一调制方式;MCS索引小于或者等于M0时,DCI调度的上行数据的调制方式为QPSK或者BPSK,其中M0为大于或者等于0的整数。
需要说明的是,M0为约定值或者由网络设备配置的值。例如,M0为0或1或2或3或4或5或6或7或8或9或10或11或12或13或14或15。
示例性的,M0可以根据终端设备发送上行数据时所采用的子载波个数确定。举例来说,终端设备发送所述上行数据时采用的子载波个数为1时,M0的取值为第一数值;终端设备发送所述上行数据时采用的子载波个数为3或6或12时,M0的取值为第二数值。所述第一数值可以小于或者等于所述第二数值。
需要说明的是,在第三种可能的实现方式中,MCS指示信息通过DCI中的MCS域携带时,当DCI调度的上行数据的调制方式为QPSK或者BPSK时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如前面的表2所示。
当DCI调度的上行数据的调制方式为第一调制方式时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如前面的表3所示。
或者,还可以增加MCS域中包括的比特数,此时MCS域中包括的比特数大于4。例如MCS域中包括的比特数为5时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如前面的表4所示。
第四种可能的实现方式中,DCI包括MCS指示信息,其中所述MCS指示信息用于确定所述上行数据的MCS索引。
举例来说,MCS指示信息可以通过DCI中的MCS域携带。
本申请实施例对MCS指示信息包括的比特数并不限定,例如MCS指示信息可以包括4比特或者5比特或者6比特。
在该实现方式中,MCS索引大于或者等于M0时,DCI调度的上行数据的调制方式为所述第一调制方式;MCS索引小于M0时,DCI调度的上行数据的调制方式为QPSK或者BPSK,其中M0为大于或者等于10的正整数。
或者,在该实现方式中,MCS索引大于M0时,DCI调度的上行数据的调制方式为所述第一调制方式;MCS索引小于或者等于M0时,DCI调度的上行数据的调制方式为QPSK或者BPSK,其中M0为大于或者等于0的整数。
需要说明的是,M0为约定值或者由网络设备配置的值。例如,M0为0或1或2或3或4或5或6或7或8或9或10或11或12或13或14或15。
示例性的,M0可以根据终端设备发送上行数据时所采用的子载波个数确定。举例来说,终端设备发送所述上行数据时采用的子载波个数为1时,M0的取值为第一数值;终端设备发送所述上行数据时采用的子载波个数为3或6或12时,M0的取值为第二数值。所述第一数值可以小于或者等于所述第二数值。
举例来说,MCS域中包括的比特数为5时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如表9a或者表9b所示,其中终端设备发送所述上行数据时采用的子载波个数大于1时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如表9a所示;终端设备发送所述上行数据时采用的子载波个数为1时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如表9b所示。
表9a
MCS索引 调制阶数 TBS索引
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10
11 2 11
12 2 12
13 2 13
17 4 12
18 4 13
19 4 14
20 4 15
21 4 16
22 4 17
23 4 18
24 4 19
表9b
MCS索引 调制阶数 TBS索引
0 1 0
1 1 2
2 2 1
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10
11 2 11
12 2 12
13 2 13
17 4 12
18 4 13
19 4 14
20 4 15
21 4 16
22 4 17
23 4 18
24 4 19
第五种可能的实现方式中,通过RNTI指示上行数据的调制方式。
在该实现方式中,可以建立RNTI与调制方式的对应关系。
示例性的,承载所述DCI的下行控制信道的CRC通过第一RNTI加扰时,所述上行数据的调制方式为所述第一调制方式;承载所述DCI的下行控制信道的CRC通过C-RNTI加扰时,所述上行数据的调制方式为QPSK或者BPSK。
其中,第一RNTI可以由网络设备配置,也可以通过其他方式确定。第一RNTI可以是第一调制方式专用的RNTI。第一RNTI与C-RNTI不同,第一RNTI的具体形式,本申请并不限定,在此不再赘述。
第六种可能的实现方式中,通过子载波指示上行数据的调制方式。
在该实现方式中,DCI包括子载波指示信息,其中所述子载波指示信息用于确定所述上行数据的子载波数。
举例来说,子载波指示信息可以通过DCI中的子载波指示域携带。
在该实现方式中,子载波指示信息确定的子载波数大于或者等于S0时,DCI调度的上行数据的调制方式为所述第一调制方式;所述载波指示信息确定的子载波数小于S0时,DCI调度的上行数据的调制方式为QPSK或者BPSK,其中S0为大于或者等于1的正整数。
或者,子载波指示信息确定的子载波数大于S0时,DCI调度的上行数据的调制方式为所述第一调制方式;所述载波指示信息确定的子载波数小于或者等于S0时,DCI调度的上行数据的调制方式为QPSK或者BPSK,其中S0为大于或者等于1的正整数。
或者,子载波指示信息确定的子载波数属于第一集合时,DCI调度的上行数据的调制方式为所述第一调制方式;所述载波指示信息确定的子载波数属于第二集合时,DCI调度的上行数据的调制方式为QPSK或者BPSK。
需要说明的是,S0为约定值或者由网络设备配置的值。例如,S0为1或3或6或12。
需要说明的是,第一集合为{1},第二集合为{3,6,12},或者,第一集合为{1,3},第二集合为{6,12},或者,第一集合为{1,3,6},第二集合为{12}。
结合前面的描述,在第一至第六种可能的实现方式中,当DCI调度的上行数据的调制方式为QPSK或者BPSK时,MCS域指示的MCS索引与TBS索引之间的对应关系可以保持如表2所示的不变。
当DCI调度的上行数据的调制方式为第一调制方式时,MCS域指示的MCS索引与TBS索引之间的对应关系可以如表3所示。进一步可选的,在第一至第六种可能的实现方 式中,可以减少DCI中MCS域、DCI重复次数、RV域、重复次数域以及子载波指示域中的至少一项所包括的比特数。
当减少MCS域中包括的比特数时,MCS域可以减少1至3个比特,即MCS域包括的比特数可以为1或者2或者3。相应的,当MCS指示信息通过MCS域携带时,MCS指示信息包括的比特数为1或者2或者3。
当减少重复次数域中包括的比特数时,重复次数域可以减少1至3个比特,即重复次数域包括的比特数可以为0或者1或者2。当重复次数指示信息通过重复次数域携带时,重复次数指示信息包括的比特数为0或者1或者2或者3。其中,重复次数指示信息包括的比特数为0应理解为DCI中不包括重复次数指示信息,或者DCI中不包括重复次数域,此时该DCI调度的上行数据的重复次数为1或者其它约定值。
当减少DCI重复次数域中包括的比特数时,DCI重复次数域可以减少1至2个比特,即DCI重复次数域包括的比特数可以为0或者1。当DCI重复次数指示信息通过DCI重复次数域携带时,DCI重复次数指示信息包括的比特数为0或者1。其中,重复次数指示信息包括的比特数为0应理解为DCI中不包括DCI重复次数指示信息,或者DCI中不包括DCI重复次数域,此时该DCI的重复次数为1或者其它约定值。
当减少RV域中包括的比特数时,RV域可以减少1个比特,即RV域包括的比特数可以为0。当RV指示信息通过RV域携带时,RV指示信息包括的比特数为0。其中,RV指示信息包括的比特数为0应理解为DCI中不包括RV指示信息,或者DCI中不包括RV域,此时该DCI调度上行数据的RV约定为0或者2,或者理解为该DCI调度上行数据的初始RV约定为0或者2。
当减少子载波指示域中包括的比特数时,子载波指示域可以减少1至6个比特,即子载波指示域包括的比特数可以为0或者1或2或3或4或5。当子载波指示信息通过子载波指示域携带时,子载波指示信息包括的比特数为0或者1或2或3或4或5。其中,子载波指示信息包括的比特数为0应理解为DCI中不包括子载波指示信息,或者DCI中不包括子载波指示域。
需要说明的是,当DCI调度的上行数据的调制方式为BPSK或者QPSK时,MCS域、DCI重复次数、重复次数域、RV域以及子载波指示域中包括的比特数不可以保持不变,即保持格式N0中的比特数不变。
需要说明的是,第一至第六任一种可能的实现方式只是示例,还可以通过DCI中的多个域联合指示上行数据的调制方式,具体如何指示,在此不再赘述。
本申请实施例中,DCI中还可以包括第一信息,第一信息可以指示DCI调度的上行数据的调制方式,具体可以参考实施例五中的描述。
本申请实施例中,对于第一种至第三种可能的实现方式,以及第五种和第六种可能的实现方式,通过DCI中的不同域隐式的指示下行数据的调制方式,可以节省DCI信令开销。
本申请实施例中,对于第四种可能的实现方式,通过DCI中MCS域指示上行数据的调制方式,可以节省DCI信令开销,同时避免对其它域进行裁剪,影响基站调度的灵活性,因此通过本实施例基站实现灵活调度。
实施例五:
DCI包括第一信息,所述第一信息用于确定所述DCI调度的上行数据的调制方式为所 述第一调制方式或所述QPSK或者BPSK。
举例来说,所述第一信息的取值为第一值时,所述DCI调度的上行数据的调制方式为所述第一调制方式;所述第一信息的取值为第二值时,所述DCI调度的上行数据的调制方式为所述QPSK或者BPSK。其中,第一值和第二值不相同,第一值和第二值的具体实现方式,本申请实施例对此并不限定。
需要说明的是。第一信息包括至少一个比特,具体包括的比特数量可以根据实际情况确定。举例来说,第一信息包括1个比特,当第一信息的取值为1时,表示DCI调度的上行数据的调制方式为所述第一调制方式;所述第一信息的取值为0时,表示DCI调度的上行数据的调制方式为所述QPSK或者BPSK。
或者,当第一信息的取值为0时,表示DCI调度的上行数据的调制方式为所述第一调制方式;所述第一信息的取值为1时,表示DCI调度的上行数据的调制方式为所述QPSK或者BPSK。第一信息包括其他数量的比特时,可以参考上面的描述,在此不再赘述。
示例性的,在该实施例中,当DCI中包括第一信息时,可以存在多种实现方式,下面分别进行描述。
实现方式一:保持DCI中其它指示域包括的比特数的不变,对现有的格式N0的DCI进行扩展,在现有格式N0的增加至少一个比特,增加的至少一个比特用于携带第一信息。
实现方式二:减少DCI中MCS域、RV域、DCI重复次数、重复次数域以及子载波指示域中的至少一项所包括的比特数,并将多余的比特中的部分或全部作为第一信息包括的比特。
当减少MCS域中包括的比特数时,MCS域可以减少1至3个比特,即MCS域包括的比特数可以为1或者2或者3。相应的,当MCS指示信息通过MCS域携带时,MCS指示信息包括的比特数为1或者2或者3。
当减少重复次数域中包括的比特数时,重复次数域可以减少1至3个比特,即重复次数域包括的比特数可以为0或者1或者2。当重复次数指示信息通过重复次数域携带时,重复次数指示信息包括的比特数为0或者1或者2或者3。其中,重复次数指示信息包括的比特数为0应理解为DCI中不包括重复次数指示信息,或者DCI中不包括重复次数域,此时该DCI调度的上行数据的重复次数为1或者其它约定值。
当减少DCI重复次数域中包括的比特数时,DCI重复次数域可以减少1至2个比特,即DCI重复次数域包括的比特数可以为0或者1。当DCI重复次数指示信息通过DCI重复次数域携带时,DCI重复次数指示信息包括的比特数为0或者1。其中,重复次数指示信息包括的比特数为0应理解为DCI中不包括DCI重复次数指示信息,或者DCI中不包括DCI重复次数域,此时该DCI的重复次数为1或者其它约定值。
当减少RV域中包括的比特数时,RV域可以减少1个比特,即RV域包括的比特数可以为0。当RV指示信息通过RV域携带时,RV指示信息包括的比特数为0。其中,RV指示信息包括的比特数为0应理解为DCI中不包括RV指示信息,或者DCI中不包括RV域,此时该DCI调度上行数据的RV约定为0或者2,或者理解为该DCI调度上行数据的初始RV约定为0或者2。
当减少子载波指示域中包括的比特数时,子载波指示域可以减少1至6个比特,即子载波指示域包括的比特数可以为0或者1或2或3或4或5。当子载波指示信息通过子载 波指示域携带时,子载波指示信息包括的比特数为0或者1或2或3或4或5。其中,子载波指示信息包括的比特数为0应理解为DCI中不包括子载波指示信息,或者DCI中不包括子载波指示域。
需要说明的是,当DCI调度的上行数据的调制方式为BPSK或者QPSK时,MCS域、DCI重复次数、重复次数域、RV域以及子载波指示域中包括的比特数不可以保持不变,即保持格式N0中的比特数不变。
举例来说,DCI中包括的第一信息、MCS域、重复次数域以及子载波指示域可以如表10所示。
表10
DCI中包括的内容 包括的比特数
第一信息 1
MCS域 3
重复次数域 2
子载波指示域 5
表10中,第一信息包括1个比特。MCS域包括3个比特,相对于现有技术减少了1个比特;重复次数域包括2个比特,相对于现有技术减少了1个比特。子载波指示域包括5个比特,相对于现有技术减少了1个比特。DCI中包括的其他内容可以参考表8所示,在此不再赘述。
需要说明的是,表10只是示例,还可能存在其他情况,在此不再赘述。
进一步的,当DCI中包括第一信息时,在承载所述DCI的下行控制信道的CRC通过半永久性调度(semi-persistent scheduling,SPS)C-RNTI加扰时,所述第一信息的取值可以为预设值。例如,第一信息包括1个比特时,第一信息的取值可以设置为0或者1。此时第一信息的取值不代表任何含义,即不用于指示DCI调度的数据的调制方式。
本申请实施例通过DCI中一些域进行裁剪,可以节省DCI信令开销。
本申请实施例还提供一种方法,具体参见下面的描述。
实施例六:
目前NB-IoT下行信道编码方式为咬尾卷积码(tail-biting convolutional codes,TBCC),目前最大TBS为2536bit,支持16QAM后TBS需要进一步扩大。大码块仍采用TBCC性能会有损失。本申请实施例还提供一种方法,可以解决该问题,下面详细描述。
本申请实施例可以预先约定一下条件:DCI调度的TBS大于预设值时,信道编码方式为Turbo。或者DCI中指示的MCS大于预设值时,信道编码方式为Turbo。
步骤一:网络设备确定信道编码方式。
步骤二:网络设备向终端设备发送DCI,所述DCI用于指示信道编码方式。
具体的,DCI调度的TBS大于预设值时,信道编码方式为Turbo;或者DCI中指示MCS大于预设值时,信道编码方式为Turbo。
步骤三:终端设备接收来自网络设备的DCI;
步骤四:终端设备根据DCI确定信道编码方式。
终端设备可以根据确定的信道编码方式和DCI中数据的调度信息从网络设备接收下行数据,或者向网络设备发送上行数据。
上面的方法中,可以根据调度的TBS或者MCS采用不同的信道编码方式,可以提升 译码性能。
本文中描述的各个实施例可以为独立的方案,也可以根据内在逻辑进行组合,这些方案都落入本申请的保护范围中。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法和操作,也可以由可用于终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和操作,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上述本申请提供的实施例中,分别从各个设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端设备与网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
与上述构思相同,如图4所示,本申请实施例还提供一种装置400用于实现上述方法中终端设备或网络设备的功能。例如,该装置可以为软件模块或者芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。该装置400可以包括:处理单元401和通信单元402。
本申请实施例中,通信单元也可以称为收发单元,可以包括发送单元和/或接收单元,分别用于执行上文方法实施例中终端设备或网络设备发送和接收的步骤。
以下,结合图4至图5详细说明本申请实施例提供的通信装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
在一种可能的设计中,该装置400可实现对应于上文方法实施例中的终端设备或者网络设备执行的步骤或者流程,下面分别进行描述。
示例性地,当该装置400实现图2所示的流程中终端设备的功能时:
通信单元402,用于接收来自网络设备的下行控制信息DCI,所述DCI用于调度下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者正交相移键控QPSK,所述第一调制方式所对应的调制阶数大于2;
处理单元401,用于根据所述DCI确定所述下行数据的调制方式;
所述通信单元402,用于根据所述调制方式接收所述下行数据。
在一种可能的实施方式中,所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述下行数据的重复次数NRep;NRep小于或者等于R0时,所述下行数据的调制方式为第一调制方式;NRep大于所述R0时,所述下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
在一种可能的实施方式中,所述重复次数指示信息包括4比特。
在一种可能的实施方式中,所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;所述DCI的重复次数小于或者等于R1时, 所述下行数据的调制方式为所述第一调制方式;所述DCI的重复次数大于所述R1时,所述下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
在一种可能的实施方式中,所述DCI重复次数指示信息包括2比特。
在一种可能的实施方式中,所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引;所述MCS索引大于或者等于M0时,所述下行数据的调制方式为所述第一调制方式;所述MCS索引小于M0时,所述下行数据的调制方式为所述QPSK,其中M0为大于或者等于0的整数。
在一种可能的实施方式中,所述MCS指示信息包括4比特或者5比特或者6比特。
在一种可能的实施方式中,所述DCI包括第一信息,所述第一信息用于确定所述下行数据的调制方式为所述第一调制方式或所述QPSK;所述第一信息的取值为第一值时,所述下行数据的调制方式为所述第一调制方式;所述第一信息的取值为第二值时,所述下行数据的调制方式为所述QPSK。
在一种可能的实施方式中,承载所述DCI的下行控制信道的CRC通过第一RNTI加扰时,所述下行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;承载所述DCI的下行控制信道的CRC通过C-RNTI加扰时,所述下行数据的调制方式为QPSK。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定所述下行数据的重复次数的比特数为0或者1或者2或者3。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定DCI重复次数的比特数为0或者1。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI还包括编码调制策略MCS域,所述MCS域包括的比特数为1或者2或者3或者4。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
在一种可能的实施方式中,所述第二信息包括M个比特,M为大于0的整数。
在一种可能的实施方式中,M小于或等于3。
在一种可能的实施方式中,所述第一调制方式为8PSK或者16QAM或者64QAM或者256QAM。
在一种可能的实施方式中,所述DCI的格式为格式N1。
在一种可能的实施方式中,所述DCI包括第二信息,所述第二信息用于确定所述下行数据和第一信号的功率比值。
示例性地,当该装置400实现图2所示的流程中网络设备的功能时:
处理单元401,用于确定下行数据的调制方式;
通信单元402,用于向终端设备发送下行控制信息DCI,所述DCI用于调度所述下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者正交相移键控QPSK,所述第一调制方式所对应的调制阶数大于2;按照所述调制方式向所述终端设备发送所述下行数据。
在一种可能的实施方式中,所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述下行数据的重复次数NRep;NRep小于或者等于R0时,所述下行数据的调制方式为第一调制方式;NRep大于所述R0时,所述下行数据的调制方式为QPSK, 其中R0为大于或者等于1的正整数。
在一种可能的实施方式中,所述重复次数指示信息包括4比特。
在一种可能的实施方式中,所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;所述DCI的重复次数小于或者等于R1时,所述下行数据的调制方式为所述第一调制方式;所述DCI的重复次数大于所述R1时,所述下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
在一种可能的实施方式中,所述DCI重复次数指示信息包括2比特。
在一种可能的实施方式中,所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引;所述MCS索引大于或者等于M0时,所述下行数据的调制方式为所述第一调制方式;所述MCS索引小于M0时,所述下行数据的调制方式为所述QPSK,其中M0为大于或者等于0的整数。
在一种可能的实施方式中,所述MCS指示信息包括4比特或者5比特或者6比特。
在一种可能的实施方式中,所述DCI包括第一信息,所述第一信息用于确定所述下行数据的调制方式为所述第一调制方式或所述QPSK;所述第一信息的取值为第一值时,所述下行数据的调制方式为所述第一调制方式;所述第一信息的取值为第二值时,所述下行数据的调制方式为所述QPSK。
在一种可能的实施方式中,承载所述DCI的下行控制信道的CRC通过第一RNTI加扰时,所述下行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;承载所述DCI的下行控制信道的CRC通过C-RNTI加扰时,所述下行数据的调制方式为QPSK。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定所述下行数据的重复次数的比特数为0或者1或者2或者3。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定DCI重复次数的比特数为0或者1。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI还包括编码调制策略MCS域,所述MCS域包括的比特数为1或者2或者3或者4。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
在一种可能的实施方式中,所述第二信息包括M个比特,M为大于0的整数。
在一种可能的实施方式中,M小于或等于3。
在一种可能的实施方式中,所述第一调制方式为8PSK或者16QAM或者64QAM或者256QAM。
在一种可能的实施方式中,所述DCI的格式为格式N1。
在一种可能的实施方式中,所述DCI包括第二信息,所述第二信息用于确定所述下行数据和第一信号的功率比值。
示例性地,当该装置400实现图3所示的流程中终端设备的功能时:
通信单元402,用于接收来自网络设备的下行控制信息DCI,所述DCI用于调度上行数据,并指示所述上行数据的调制方式;所述上行数据的调制方式为第一调制方式或者正交相移键控QPSK或者BPSK,所述第一调制方式所对应的调制阶数大于2;
处理单元401,用于根据所述DCI确定所述上行数据的调制方式;
通信单元402,用于根据所述调制方式向所述网络设备发送所述上行数据。
该装置还可以实现其他方法,具体可以参考图3中关于终端设备的描述,在此不再赘述。
示例性地,当该装置400实现图3所示的流程中网络设备的功能时:
处理单元401,用于确定上行数据的调制方式;
通信单元402,用于向所述终端设备发送下行控制信息DCI,所述DCI用于调度所述上行数据,并指示所述上行数据的调制方式;所述上行数据的调制方式为第一调制方式或者正交相移键控QPSK或者BPSK,所述第一调制方式所对应的调制阶数大于2;按照所述调制方式接收来自所述终端设备的上行数据。
该装置还可以实现其他方法,具体可以参考图3中关于网络设备的描述,在此不再赘述。
如图5所示为本申请实施例提供的装置500,图5所示的装置可以为图4所示的装置的一种硬件电路的实现方式。该通信装置可适用于图2所示出的流程图中,执行上述方法实施例中终端设备或者网络设备的功能。为了便于说明,图5仅示出了该通信装置的主要部件。
图5所示的装置500包括至少一个处理器520,用于实现本申请实施例提供的图2中任一方法。
装置500还可以包括至少一个存储器530,用于存储程序指令和/或数据。存储器530和处理器520耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器520可能和存储器530协同操作。处理器520可能执行存储器530中存储的程序指令。所述至少一个存储器中的至少一个可以包括于处理器中。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理电路(digital signal processor,DSP)、专用集成芯片(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
装置500还可以包括通信接口510,用于通过传输介质和其它设备进行通信,从而用于装置500中的装置可以和其它设备进行通信。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。在本申请实施例中,通信接口为收发器时,收发器可以包括独立的接收器、独立的发射器;也可以集成收发功能的收发器、或者是接口电路。
装置500还可以包括通信线路540。其中,通信接口510、处理器520以及存储器530可以通过通信线路540相互连接;通信线路540可以是外设部件互连标准(peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。所述通信线路540可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
示例性地,当该装置500实现图2所示的流程中终端设备的功能时:
通信接口510,用于接收来自网络设备的下行控制信息DCI,所述DCI用于调度下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者正交相移键控QPSK,所述第一调制方式所对应的调制阶数大于2;
处理器520,用于根据所述DCI确定所述下行数据的调制方式;
所述通信接口510,用于根据所述调制方式接收所述下行数据。
在一种可能的实施方式中,所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述下行数据的重复次数NRep;NRep小于或者等于R0时,所述下行数据的调制方式为第一调制方式;NRep大于所述R0时,所述下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
在一种可能的实施方式中,所述重复次数指示信息包括4比特。
在一种可能的实施方式中,所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;所述DCI的重复次数小于或者等于R1时,所述下行数据的调制方式为所述第一调制方式;所述DCI的重复次数大于所述R1时,所述下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
在一种可能的实施方式中,所述DCI重复次数指示信息包括2比特。
在一种可能的实施方式中,所述DCI包括编码调制策略MCS指示信息,其中所述MCS 指示信息用于确定所述下行数据的MCS索引;所述MCS索引大于或者等于M0时,所述下行数据的调制方式为所述第一调制方式;所述MCS索引小于M0时,所述下行数据的调制方式为所述QPSK,其中M0为大于或者等于0的整数。
在一种可能的实施方式中,所述MCS指示信息包括4比特或者5比特或者6比特。
在一种可能的实施方式中,所述DCI包括第一信息,所述第一信息用于确定所述下行数据的调制方式为所述第一调制方式或所述QPSK;所述第一信息的取值为第一值时,所述下行数据的调制方式为所述第一调制方式;所述第一信息的取值为第二值时,所述下行数据的调制方式为所述QPSK。
在一种可能的实施方式中,承载所述DCI的下行控制信道的CRC通过第一RNTI加扰时,所述下行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;承载所述DCI的下行控制信道的CRC通过C-RNTI加扰时,所述下行数据的调制方式为QPSK。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定所述下行数据的重复次数的比特数为0或者1或者2或者3。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定DCI重复次数的比特数为0或者1。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI还包括编码调制策略MCS域,所述MCS域包括的比特数为1或者2或者3或者4。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
在一种可能的实施方式中,所述第二信息包括M个比特,M为大于0的整数。
在一种可能的实施方式中,M小于或等于3。
在一种可能的实施方式中,所述第一调制方式为8PSK或者16QAM或者64QAM或者256QAM。
在一种可能的实施方式中,所述DCI的格式为格式N1。
在一种可能的实施方式中,所述DCI包括第二信息,所述第二信息用于确定所述下行数据和第一信号的功率比值。
示例性地,当该装置500实现图2所示的流程中网络设备的功能时:
处理器520,用于确定下行数据的调制方式;
通信接口510,用于向终端设备发送下行控制信息DCI,所述DCI用于调度所述下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者正交相移键控QPSK,所述第一调制方式所对应的调制阶数大于2;按照所述调制方式向所述终端设备发送所述下行数据。
在一种可能的实施方式中,所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述下行数据的重复次数NRep;NRep小于或者等于R0时,所述下行数据的调制方式为第一调制方式;NRep大于所述R0时,所述下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
在一种可能的实施方式中,所述重复次数指示信息包括4比特。
在一种可能的实施方式中,所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;所述DCI的重复次数小于或者等于R1时, 所述下行数据的调制方式为所述第一调制方式;所述DCI的重复次数大于所述R1时,所述下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
在一种可能的实施方式中,所述DCI重复次数指示信息包括2比特。
在一种可能的实施方式中,所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引;所述MCS索引大于或者等于M0时,所述下行数据的调制方式为所述第一调制方式;所述MCS索引小于M0时,所述下行数据的调制方式为所述QPSK,其中M0为大于或者等于0的整数。
在一种可能的实施方式中,所述MCS指示信息包括4比特或者5比特或者6比特。
在一种可能的实施方式中,所述DCI包括第一信息,所述第一信息用于确定所述下行数据的调制方式为所述第一调制方式或所述QPSK;所述第一信息的取值为第一值时,所述下行数据的调制方式为所述第一调制方式;所述第一信息的取值为第二值时,所述下行数据的调制方式为所述QPSK。
在一种可能的实施方式中,承载所述DCI的下行控制信道的CRC通过第一RNTI加扰时,所述下行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;承载所述DCI的下行控制信道的CRC通过C-RNTI加扰时,所述下行数据的调制方式为QPSK。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定所述下行数据的重复次数的比特数为0或者1或者2或者3。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI中用于确定DCI重复次数的比特数为0或者1。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI还包括编码调制策略MCS域,所述MCS域包括的比特数为1或者2或者3或者4。
在一种可能的实施方式中,所述下行数据的调制方式为所述第一调制方式时,所述DCI包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
在一种可能的实施方式中,所述第二信息包括M个比特,M为大于0的整数。
在一种可能的实施方式中,M小于或等于3。
在一种可能的实施方式中,所述第一调制方式为8PSK或者16QAM或者64QAM或者256QAM。
在一种可能的实施方式中,所述DCI的格式为格式N1。
在一种可能的实施方式中,所述DCI包括第二信息,所述第二信息用于确定所述下行数据和第一信号的功率比值。
示例性地,当该装置500实现图3所示的流程中终端设备的功能时:
通信接口510,用于接收来自网络设备的下行控制信息DCI,所述DCI用于调度上行数据,并指示所述上行数据的调制方式;所述上行数据的调制方式为第一调制方式或者正交相移键控QPSK或者BPSK,所述第一调制方式所对应的调制阶数大于2;
处理器520,用于根据所述DCI确定所述上行数据的调制方式;
通信接口510,用于根据所述调制方式向所述网络设备发送所述上行数据。
该装置还可以实现其他方法,具体可以参考图3中关于终端设备的描述,在此不再赘述。
示例性地,当该装置400实现图3所示的流程中网络设备的功能时:
处理器520,用于确定上行数据的调制方式;
通信接口510,用于向所述终端设备发送下行控制信息DCI,所述DCI用于调度所述上行数据,并指示所述上行数据的调制方式;所述上行数据的调制方式为第一调制方式或者正交相移键控QPSK或者BPSK,所述第一调制方式所对应的调制阶数大于2;按照所述调制方式接收来自所述终端设备的上行数据。
该装置还可以实现其他方法,具体可以参考图3中关于网络设备的描述,在此不再赘述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信装置,其特征在于,包括:
    通信单元,用于接收来自网络设备的下行控制信息DCI,所述DCI用于调度下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者正交相移键控QPSK,所述第一调制方式所对应的调制阶数大于2;
    处理单元,用于根据所述DCI确定所述下行数据的调制方式;
    所述通信单元,用于根据所述调制方式接收所述下行数据。
  2. 根据权利要求1所述的装置,其特征在于,
    所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述下行数据的重复次数N Rep
    N Rep小于或者等于R0时,所述下行数据的调制方式为第一调制方式;
    N Rep大于所述R0时,所述下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
  3. 根据权利要求1所述的装置,其特征在于,
    所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;
    所述DCI的重复次数小于或者等于R1时,所述下行数据的调制方式为所述第一调制方式;
    所述DCI的重复次数大于所述R1时,所述下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
  4. 根据权利要求1所述的装置,其特征在于,
    所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引;
    所述MCS索引大于或者等于M0时,所述下行数据的调制方式为所述第一调制方式;
    所述MCS索引小于M0时,所述下行数据的调制方式为所述QPSK,其中M0为大于或者等于0的整数。
  5. 根据权利要求1所述的装置,其特征在于,所述DCI包括第一信息,所述第一信息用于确定所述下行数据的调制方式为所述第一调制方式或所述QPSK;
    所述第一信息的取值为第一值时,所述下行数据的调制方式为所述第一调制方式;
    所述第一信息的取值为第二值时,所述下行数据的调制方式为所述QPSK。
  6. 根据权利要求1所述的装置,其特征在于,承载所述DCI的下行控制信道的循环冗余校验CRC通过第一无线网络临时标识RNTI加扰时,所述下行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;
    承载所述DCI的下行控制信道的CRC通过小区无线网络临时标识C-RNTI加扰时,所述下行数据的调制方式为QPSK。
  7. 根据权利要求1-6任一所述的装置,其特征在于,所述下行数据的调制方式为所述第一调制方式时,所述DCI包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
  8. 一种通信装置,其特征在于,包括:
    处理单元,用于确定下行数据的调制方式;
    通信单元,用于向终端设备发送下行控制信息DCI,所述DCI用于调度所述下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者正交相移键控QPSK,所述第一调制方式所对应的调制阶数大于2;按照所述调制方式向所述终端设备发送所述下行数据。
  9. 根据权利要求8所述的装置,其特征在于,
    所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述下行数据的重复次数N Rep
    N Rep小于或者等于R0时,所述下行数据的调制方式为第一调制方式;
    N Rep大于所述R0时,所述下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
  10. 根据权利要求8所述的装置,其特征在于,
    所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;
    所述DCI的重复次数小于或者等于R1时,所述下行数据的调制方式为所述第一调制方式;
    所述DCI的重复次数大于所述R1时,所述下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
  11. 根据权利要求8所述的装置,其特征在于,
    所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引;
    所述MCS索引大于或者等于M0时,所述下行数据的调制方式为所述第一调制方式;
    所述MCS索引小于M0时,所述下行数据的调制方式为所述QPSK,其中M0为大于或者等于0的整数。
  12. 根据权利要求8所述的装置,其特征在于,所述DCI包括第一信息,所述第一信息用于确定所述下行数据的调制方式为所述第一调制方式或所述QPSK;
    所述第一信息的取值为第一值时,所述下行数据的调制方式为所述第一调制方式;
    所述第一信息的取值为第二值时,所述下行数据的调制方式为所述QPSK。
  13. 根据权利要求8所述的装置,其特征在于,承载所述DCI的下行控制信道的循环冗余校验CRC通过第一无线网络临时标识RNTI加扰时,所述下行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;
    承载所述DCI的下行控制信道的CRC通过小区无线网络临时标识C-RNTI加扰时,所述下行数据的调制方式为QPSK。
  14. 根据权利要求8-13任一所述的装置,其特征在于,所述下行数据的调制方式为所述第一调制方式时,所述DCI包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
  15. 一种数据传输方法,其特征在于,包括:
    终端设备接收来自网络设备的下行控制信息DCI,所述DCI用于调度下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者正交相移键控QPSK,所述第一调制方式所对应的调制阶数大于2;
    所述终端设备根据所述调制方式接收所述下行数据。
  16. 根据权利要求15所述的方法,其特征在于,
    所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述下行数据的重复次数N Rep
    N Rep小于或者等于R0时,所述下行数据的调制方式为第一调制方式;
    N Rep大于所述R0时,所述下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
  17. 根据权利要求15所述的方法,其特征在于,
    所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;
    所述DCI的重复次数小于或者等于R1时,所述下行数据的调制方式为所述第一调制方式;
    所述DCI的重复次数大于所述R1时,所述下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
  18. 根据权利要求15所述的方法,其特征在于,
    所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引;
    所述MCS索引大于或者等于M0时,所述下行数据的调制方式为所述第一调制方式;
    所述MCS索引小于M0时,所述下行数据的调制方式为所述QPSK,其中M0为大于或者等于0的整数。
  19. 根据权利要求15所述的方法,其特征在于,所述DCI包括第一信息,所述第一信息用于确定所述下行数据的调制方式为所述第一调制方式或所述QPSK;
    所述第一信息的取值为第一值时,所述下行数据的调制方式为所述第一调制方式;
    所述第一信息的取值为第二值时,所述下行数据的调制方式为所述QPSK。
  20. 根据权利要求15所述的方法,其特征在于,承载所述DCI的下行控制信道的循环冗余校验CRC通过第一无线网络临时标识RNTI加扰时,所述下行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;
    承载所述DCI的下行控制信道的CRC通过小区无线网络临时标识C-RNTI加扰时,所述下行数据的调制方式为QPSK。
  21. 根据权利要求15-20任一所述的方法,其特征在于,所述下行数据的调制方式为所述第一调制方式时,所述DCI包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
  22. 一种数据传输方法,其特征在于,包括:
    网络设备确定下行数据的调制方式,并向所述终端设备发送下行控制信息DCI,所述DCI用于调度所述下行数据,并指示所述下行数据的调制方式;所述下行数据的调制方式为第一调制方式或者正交相移键控QPSK,所述第一调制方式所对应的调制阶数大于2;
    所述网络设备按照所述调制方式向所述终端设备发送所述下行数据。
  23. 根据权利要求22所述的方法,其特征在于,
    所述DCI包括重复次数指示信息,其中所述重复次数指示信息用于确定所述下行数据的重复次数N Rep
    N Rep小于或者等于R0时,所述下行数据的调制方式为第一调制方式;
    N Rep大于所述R0时,所述下行数据的调制方式为QPSK,其中R0为大于或者等于1的正整数。
  24. 根据权利要求22所述的方法,其特征在于,
    所述DCI包括DCI重复次数指示信息,其中所述DCI重复次数指示信息用于确定所述DCI的重复次数;
    所述DCI的重复次数小于或者等于R1时,所述下行数据的调制方式为所述第一调制方式;
    所述DCI的重复次数大于所述R1时,所述下行数据的调制方式为QPSK,其中R1为大于或者等于1的正整数。
  25. 根据权利要求22所述的方法,其特征在于,
    所述DCI包括编码调制策略MCS指示信息,其中所述MCS指示信息用于确定所述下行数据的MCS索引;
    所述MCS索引大于或者等于M0时,所述下行数据的调制方式为所述第一调制方式;
    所述MCS索引小于M0时,所述下行数据的调制方式为所述QPSK,其中M0为大于或者等于0的整数。
  26. 根据权利要求22所述的方法,其特征在于,所述DCI包括第一信息,所述第一信息用于确定所述下行数据的调制方式为所述第一调制方式或所述QPSK;
    所述第一信息的取值为第一值时,所述下行数据的调制方式为所述第一调制方式;
    所述第一信息的取值为第二值时,所述下行数据的调制方式为所述QPSK。
  27. 根据权利要求22所述的方法,其特征在于,承载所述DCI的下行控制信道的循环冗余校验CRC通过第一无线网络临时标识RNTI加扰时,所述下行数据的调制方式为所述第一调制方式,其中第一RNTI由所述网络设备配置;
    承载所述DCI的下行控制信道的CRC通过小区无线网络临时标识C-RNTI加扰时,所述下行数据的调制方式为QPSK。
  28. 根据权利要求22-27任一所述的方法,其特征在于,所述下行数据的调制方式为所述第一调制方式时,所述DCI包括第二信息,所述第二信息用于确定所述DCI调度的下行数据和第一信号的功率比值。
  29. 一种通信装置,其特征在于,包括处理器,收发器,和存储器;
    所述处理器,用于执行所述存储器中存储的计算机程序或指令,当执行所述计算机程序或指令时,使得所述通信装置实现权利要求15至21或22至28中任意一项所述的方法。
  30. 一种可读存储介质,其特征在于,包括计算机程序或指令,当执行所述计算机程序或指令时,如权利要求15至21或22至28中任意一项所述的方法被执行。
PCT/CN2019/122190 2019-11-29 2019-11-29 一种数据传输方法及装置 WO2021103004A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227021280A KR20220104028A (ko) 2019-11-29 2019-11-29 데이터 송신 방법 및 장치
CN201980102592.9A CN114747188A (zh) 2019-11-29 2019-11-29 一种数据传输方法及装置
JP2022531499A JP2023503656A (ja) 2019-11-29 2019-11-29 データ伝送方法および装置
EP19954707.6A EP4054139A4 (en) 2019-11-29 2019-11-29 DATA TRANSMISSION METHOD AND DEVICE
PCT/CN2019/122190 WO2021103004A1 (zh) 2019-11-29 2019-11-29 一种数据传输方法及装置
US17/827,007 US20220287065A1 (en) 2019-11-29 2022-05-27 Data transmission method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122190 WO2021103004A1 (zh) 2019-11-29 2019-11-29 一种数据传输方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/827,007 Continuation US20220287065A1 (en) 2019-11-29 2022-05-27 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2021103004A1 true WO2021103004A1 (zh) 2021-06-03

Family

ID=76130055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122190 WO2021103004A1 (zh) 2019-11-29 2019-11-29 一种数据传输方法及装置

Country Status (6)

Country Link
US (1) US20220287065A1 (zh)
EP (1) EP4054139A4 (zh)
JP (1) JP2023503656A (zh)
KR (1) KR20220104028A (zh)
CN (1) CN114747188A (zh)
WO (1) WO2021103004A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973403A (zh) * 2013-02-06 2014-08-06 中国移动通信集团公司 调制编码方案指示、下行数据接收方法及装置
CN106464647A (zh) * 2014-03-21 2017-02-22 株式会社Kt 用于发送和接收下行链路控制信息的方法和设备
WO2018085666A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Modulation and coding scheme restriction for specific combinations of transport block size and number of resource blocks for limited buffer rate matching
WO2018204852A1 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Enhancements to modulation order determination

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101842204B1 (ko) * 2014-03-28 2018-03-26 엘지전자 주식회사 무선접속 시스템에서 256qam 지원을 위한 채널상태정보 보고 방법 및 장치
US11057921B2 (en) * 2014-10-01 2021-07-06 Samsung Electronics Co., Ltd. System and method for improving spectral efficiency and coverage for user equipments
US20160218788A1 (en) * 2015-01-28 2016-07-28 Lg Electronics Inc. Method and apparatus for transmitting channel state information
CN111769860B (zh) * 2015-09-25 2021-07-23 中兴通讯股份有限公司 Cqi信息接收方法、发送方法、接收装置及发送装置
US20180019794A1 (en) * 2016-07-14 2018-01-18 Sharp Laboratories Of America, Inc. Systems and methods for downlink control information for multiple-user superposition transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973403A (zh) * 2013-02-06 2014-08-06 中国移动通信集团公司 调制编码方案指示、下行数据接收方法及装置
CN106464647A (zh) * 2014-03-21 2017-02-22 株式会社Kt 用于发送和接收下行链路控制信息的方法和设备
WO2018085666A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Modulation and coding scheme restriction for specific combinations of transport block size and number of resource blocks for limited buffer rate matching
WO2018204852A1 (en) * 2017-05-05 2018-11-08 Qualcomm Incorporated Enhancements to modulation order determination

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Remaining details of support of larger max PDSCH/PUSCH TBS", 3GPP DRAFT; R1-1702151, vol. RAN WG1, 7 February 2017 (2017-02-07), Athens, Greece, pages 1 - 12, XP051221060 *
KT CORP: "Views on TBS determination for Rel-13 MTC", R1-156028, 3GPP TSG RAN WG1 MEETING #82BIS, vol. RAN WG1, 25 September 2015 (2015-09-25), Malmö, Sweden, pages 1 - 3, XP051021358 *
NOKIA, NOKIA SHANGHAI BELL: "Remaining issue on supporting DL 64QAM for efeMTC", 3GPP DRAFT; R1-1717224, vol. RAN WG1, 29 September 2017 (2017-09-29), Prague, Czech Republic, pages 1 - 3, XP051351575 *
See also references of EP4054139A4 *

Also Published As

Publication number Publication date
US20220287065A1 (en) 2022-09-08
KR20220104028A (ko) 2022-07-25
EP4054139A1 (en) 2022-09-07
CN114747188A (zh) 2022-07-12
JP2023503656A (ja) 2023-01-31
EP4054139A4 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
US20210337538A1 (en) Method for multiplexing uplink control information and apparatus
WO2021043010A1 (zh) 信息增强方法、装置、设备和存储介质
US10554344B2 (en) Feedback method for hybrid automatic repeat request and an apparatus thereof
US11464019B2 (en) Downlink control information transmission method, device and network equipment
CN111436153B (zh) 一种信息处理方法、终端设备及网络设备
EP3734883A1 (en) Method and apparatus for transmitting uplink control information
CN111133817B (zh) 通信方法和装置
US11902943B2 (en) Communication method and communications apparatus
WO2021062580A1 (zh) 确定侧行链路传输资源的方法和装置
EP3595220A1 (en) Method and apparatus for sending and receiving feedback information
WO2019024927A1 (zh) 一种上行控制信息传输方法和装置
JPWO2018203438A1 (ja) 端末及び通信方法
WO2020143813A1 (zh) 传输信息的方法和装置
WO2021068140A1 (zh) 无线通信的方法、终端设备和网络设备
WO2019192515A1 (zh) 一种反馈信息的传输方法和装置
WO2018201807A1 (zh) 一种确定数据是否受到破坏的方法及装置
WO2018127094A1 (zh) 数据传输方法及装置
WO2021103004A1 (zh) 一种数据传输方法及装置
WO2021022662A1 (zh) 无线通信的方法、终端设备和网络设备
CN114846755A (zh) 一种数据的反馈方法及装置
WO2020187217A1 (zh) 一种传输信息的方法和装置
US20240063964A1 (en) Communication method and apparatus, and computer-readable storage medium
US12010690B2 (en) Communication method, communications apparatus, and storage medium
WO2022206990A1 (zh) 数据传输方法及装置
WO2023283958A1 (zh) 信息处理方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531499

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019954707

Country of ref document: EP

Effective date: 20220531

ENP Entry into the national phase

Ref document number: 20227021280

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE