WO2021102937A1 - 显示基板、显示面板及其制作方法和显示装置 - Google Patents

显示基板、显示面板及其制作方法和显示装置 Download PDF

Info

Publication number
WO2021102937A1
WO2021102937A1 PCT/CN2019/122050 CN2019122050W WO2021102937A1 WO 2021102937 A1 WO2021102937 A1 WO 2021102937A1 CN 2019122050 W CN2019122050 W CN 2019122050W WO 2021102937 A1 WO2021102937 A1 WO 2021102937A1
Authority
WO
WIPO (PCT)
Prior art keywords
display substrate
liquid crystal
display
layer
alignment layer
Prior art date
Application number
PCT/CN2019/122050
Other languages
English (en)
French (fr)
Inventor
黄华
谷新
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN201980002704.3A priority Critical patent/CN113196158B/zh
Priority to PCT/CN2019/122050 priority patent/WO2021102937A1/zh
Priority to US16/976,543 priority patent/US11385505B2/en
Publication of WO2021102937A1 publication Critical patent/WO2021102937A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133601Illuminating devices for spatial active dimming
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133548Wire-grid polarisers

Definitions

  • the embodiment of the present invention relates to a display substrate, a display panel, a manufacturing method thereof, and a display device.
  • a liquid crystal display device includes a liquid crystal display panel and a backlight module; the liquid crystal display panel includes an array substrate and a counter substrate arranged in pairs, and a liquid crystal layer between the array substrate and the counter substrate; the backlight module can provide a backlight to the display panel
  • the liquid crystal display panel controls the rotation of the liquid crystal molecules in the liquid crystal layer through the electric field of the array substrate and the opposite substrate to realize the light valve function, and modulates the backlight emitted by the backlight module, thereby realizing grayscale display.
  • a color filter can be provided on the opposite substrate, so that the liquid crystal display device can realize color display.
  • the embodiments of the present disclosure provide a display substrate, a display panel, a manufacturing method thereof, and a display device.
  • the display panel includes a first display substrate, a second display substrate, and a third display substrate; the second display substrate and the first display substrate are paired to form a first liquid crystal cell, and the third display substrate and the second display substrate are paired to form a second liquid crystal cell.
  • LCD box The display panel also includes a first alignment layer and a second alignment layer, the first alignment layer is located on the side of the second display substrate facing the first display substrate, and the second alignment layer is located on the side of the second display substrate facing the third display substrate.
  • the second alignment layer includes a metal wire grid polarizer and a buffer layer on the surface of the metal wire grid polarizer facing the third display substrate.
  • the above-mentioned second alignment layer can be produced under low temperature conditions, so that the display panel has a higher light transmittance.
  • At least one embodiment of the present disclosure provides a display panel including: a first display substrate; a second display substrate, the second display substrate and the first display substrate are paired to form a first liquid crystal cell; and a third display substrate , Located on the side of the second display substrate away from the first display substrate, the third display substrate and the second display substrate are paired to form a second liquid crystal cell; and the first alignment layer is located on the first display substrate
  • the side of the second display substrate facing the first display substrate, and the display panel further includes a second alignment layer located on the side of the second display substrate facing the third display substrate; the second alignment The layer includes a metal wire grid polarizer and a buffer layer on the surface of the metal wire grid polarizer facing the third display substrate.
  • the buffer layer includes a silicon oxide layer or a first photopolymer alignment layer.
  • the first liquid crystal cell includes a first liquid crystal layer located between the first display substrate and the second display substrate
  • the second liquid crystal cell includes A second liquid crystal layer located between the second display substrate and the third display substrate, and the buffer layer is arranged in contact with the second liquid crystal layer.
  • the buffer layer includes a silicon oxide layer, and the thickness of the silicon oxide ranges from 200 nm to 600 nm.
  • the buffer layer includes a silicon oxide layer
  • the surface of the silicon oxide layer away from the metal wire grid polarizer includes a plurality of micro trenches arranged in parallel.
  • the display panel further includes: a third alignment layer located on the side of the third display substrate facing the second display substrate; and a fourth alignment layer, Located on the side of the first display substrate facing the second display substrate, the first alignment layer, the third alignment layer and the fourth alignment layer are all polyimide alignment layers.
  • the second alignment layer includes a first photopolymer alignment layer
  • the display panel further includes a second photopolymer alignment layer located on the third display substrate. Facing the side of the second display substrate, the first photopolymer alignment layer and the second photopolymer alignment layer are both formed by the polymerization of alignment monomers by light.
  • the first liquid crystal cell includes: a first liquid crystal layer located between the first display substrate and the second display substrate, and the second liquid crystal cell It includes a second liquid crystal layer located between the second display substrate and the third display substrate, and the second liquid crystal layer includes a self-aligned liquid crystal material.
  • the self-aligned liquid crystal material includes liquid crystal molecules and alignment monomers.
  • the display panel further includes: a fourth alignment layer located on the side of the first display substrate facing the second display substrate; and a fifth alignment layer , Located between the second photopolymer alignment layer and the third display substrate, and the first alignment layer, the third alignment layer and the fifth alignment layer are all polyimide alignment layers.
  • the first liquid crystal cell is a display liquid crystal cell
  • the second liquid crystal cell is a dimming liquid crystal cell
  • At least one embodiment of the present disclosure further provides a display device including any of the above-mentioned display panels.
  • At least one embodiment of the present disclosure also provides a method for manufacturing a display panel, which includes: aligning a first display substrate and a second display substrate to form a first liquid crystal cell; and combining the second display substrate and the third display substrate A second liquid crystal cell is formed on the cell, and the manufacturing method of the display panel further includes: forming a first alignment layer on the side of the second display substrate facing the first display substrate; and on the second display substrate A second alignment layer is formed on the side facing the third display substrate, and the second alignment layer includes a metal wire grid polarizer and a buffer layer on the surface of the metal wire grid polarizer facing the third display substrate .
  • forming the second alignment layer on the side of the second display substrate facing the third display substrate includes: After the display substrate and the second display substrate are combined to form the first liquid crystal cell, the metal wire grid polarizer is formed on the side of the second display substrate away from the first display substrate; and A silicon oxide layer is formed on a side of the metal wire grid polarizer away from the first display substrate, and the silicon oxide layer is the buffer layer.
  • the metal wire grid polarizer is formed on the side of the second display substrate away from the first display substrate and the metal wire grid polarizer is formed on the metal wire grid polarizer.
  • the manufacturing temperature for forming the silicon oxide layer on the side of the sheet away from the first display substrate is less than 120 degrees Celsius.
  • aligning the first display substrate and the second display substrate to form the first liquid crystal cell includes: Forming a first liquid crystal layer between the second display substrate, and aligning the second display substrate and the third display substrate to form the second liquid crystal cell includes: interposing the second display substrate and the second display substrate A second liquid crystal layer is formed between the three display substrates, and the buffer layer is arranged in contact with the second liquid crystal layer.
  • aligning the second display substrate and the third display substrate to form the second liquid crystal cell includes: combining the second display substrate and the third display substrate into the second liquid crystal cell.
  • the third display substrate is paired with a cell; a self-aligned liquid crystal material is injected between the second display substrate and the third display substrate; and the second liquid crystal cell is irradiated with first ultraviolet light so that the self
  • the alignment monomer in the alignment liquid crystal material forms a first photopolymer alignment layer on the side of the second display substrate facing the third display substrate, and the third display substrate faces the second display substrate
  • a second photopolymer alignment layer is formed on one side, and the first photopolymer alignment layer is the buffer layer.
  • the manufacturing method of the display panel provided by an embodiment of the present disclosure further includes: before irradiating the self-aligned liquid crystal material with the first ultraviolet light, heating the self-aligned liquid crystal material to make the self-aligned liquid crystal The temperature of the material is higher than the clearing point of the self-aligned liquid crystal material by more than 10 degrees.
  • the manufacturing method of the display panel provided by an embodiment of the present disclosure further includes: irradiating the second liquid crystal cell with second ultraviolet light to completely remove the alignment monomer remaining in the second liquid crystal cell.
  • At least one embodiment of the present disclosure further provides a display substrate, which includes: a base substrate having a first side and a second side disposed opposite to each other; a first alignment layer located on the first side of the base substrate; And a second alignment layer located on the second side of the base substrate, the second alignment layer including a metal wire grid polarizer and a buffer layer located far from the base substrate, the metal wire grid polarizer
  • the buffer layer includes a silicon oxide layer or a photopolymer alignment layer.
  • FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • FIG. 3 is a scanning electron microscope diagram of a metal wire grid polarizer in a display panel according to an embodiment of the present disclosure
  • FIG. 4 is a scanning electron microscope diagram of a second alignment layer in a display panel according to an embodiment of the present disclosure
  • Figure 5 is a photomicrograph of directly using a metal wire grid polarizer to align liquid crystal molecules
  • FIG. 6 is a schematic diagram of a dark state of a display panel using a metal wire grid polarizer directly as an alignment layer;
  • FIG. 7 is a photomicrograph of the alignment of liquid crystal molecules by a second alignment layer provided by an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of a dark state of a display panel according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a display substrate according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another display substrate provided according to an embodiment of the present disclosure.
  • the backlight emitted by the backlight module can usually be controlled in zones, and the intensity of the backlight in different areas can be dynamically adjusted according to the gray scale requirements of the display screen, so as to achieve a higher dynamic contrast (High Dynamic Contrast). Contrast, HDR).
  • This dynamically dimmable backlight module can be divided into side-type backlight modules and direct-type backlight modules; side-type backlight modules can only be controlled in a row or column direction, that is to say, it can only be realized One-dimensional dynamic dimming results in unsatisfactory dynamic contrast effects; while direct-lit backlight modules can achieve two-dimensional dynamic dimming through the light-emitting elements arranged in a matrix.
  • the light-emitting elements are connected to the display panel.
  • the light mixing distance needs to be set larger, which results in a larger thickness of the backlight module, which makes it difficult to achieve lightness and thinness.
  • the liquid crystal display device can adopt a double liquid crystal cell structure, one liquid crystal cell is used for dynamic adjustment of the backlight in zones, and the other liquid crystal cell is used for the normal display of the display screen.
  • the liquid crystal display device adopting the double liquid crystal cell structure dynamically adjusts the backlight in zones through the liquid crystal cell, which can realize the zone dynamic adjustment at the pixel level, thereby realizing high dynamic contrast.
  • two liquid crystal cells usually include four display substrates. Therefore, the light transmittance of the two liquid crystal cells is easily reduced after the two liquid crystal cells are superimposed, so that the overall light efficiency of the liquid crystal display device is reduced.
  • a liquid crystal display device adopting a double liquid crystal cell structure can allow two liquid crystal cells to share a display substrate to reduce the number of display substrates, thereby increasing the light transmittance of the liquid crystal display device.
  • the substrate forms a double liquid crystal cell structure.
  • the film can be completed after a high temperature of 230 degrees Celsius and curing for about 30 minutes; and the highest temperature that the liquid crystal cell can withstand is 120 degrees Celsius, so how to make the alignment layer on the liquid crystal cell under low temperature conditions (less than 120 degrees) is the key point to realize the dual liquid crystal cell structure of three display substrates.
  • PI polyimide
  • the embodiments of the present disclosure provide a display substrate, a display panel, a manufacturing method thereof, and a display device.
  • the display panel includes a first display substrate, a second display substrate, and a third display substrate; the second display substrate and the first display substrate are paired to form a first liquid crystal cell, and the third display substrate is located on the second display substrate away from the first display substrate And the second display substrate to form a second liquid crystal cell.
  • the display panel also includes a first alignment layer and a second alignment layer, the first alignment layer is located on the side of the second display substrate facing the first display substrate, and the second alignment layer is located on the side of the second display substrate facing the third display substrate.
  • the second alignment layer includes a metal wire grid polarizer and a buffer layer on the surface of the metal wire grid polarizer facing the third display substrate.
  • the metal wire grid polarizer can function as a polarizer, on the other hand ,
  • the metal wire grid polarizer itself has a nano-micro periodic structure, so that the buffer layer formed on the surface of the metal wire grid polarizer facing the third display substrate also has a corresponding scale of nano micro grooves, so that the metal wire grid polarizer
  • the second alignment layer formed with the buffer layer can play the role of aligning the liquid crystal molecules; since the metal wire grid polarizer and the buffer layer can be made by vapor deposition process, it can achieve low temperature (less than 120 degrees)
  • the second alignment layer described above is fabricated on the first liquid crystal cell.
  • the display panel can use self-aligning liquid crystal materials and form the above-mentioned first photopolymer alignment layer by light, and complete the alignment of the liquid crystal molecules at the same time.
  • the second alignment layer can be fabricated on the first liquid crystal cell under low temperature conditions (less than 120 degrees).
  • FIG. 1 is a schematic structural diagram of a display panel provided according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of another display panel provided according to an embodiment of the present disclosure.
  • the display panel 100 includes a first display substrate 110, a second display substrate 120, and a third display substrate 130; the second display substrate 120 and the first display substrate 110 are paired to form a first liquid crystal cell. 101.
  • the third display substrate 130 is located on a side of the second display substrate 120 away from the first display substrate 110, and is aligned with the second display substrate 120 to form a second liquid crystal cell 102.
  • the display panel 100 adopts a double liquid crystal cell structure.
  • One liquid crystal cell can be used to dynamically adjust the backlight in zones, and the other liquid crystal cell is used for the normal display of the display screen, thereby simultaneously improving the contrast and realization of the display device using the display panel. Thin and light design.
  • the display panel 100 further includes a first alignment layer 141 and a second alignment layer 142.
  • the first alignment layer 141 is located on the side of the second display substrate 120 facing the first display substrate 110.
  • the second alignment layer 142 is located on the side of the second display substrate 120 facing the third display substrate 130; the second alignment layer 142 includes a metal wire grid polarizer 1422 and a surface of the metal wire grid polarizer 1422 facing the third display substrate 130 ⁇ Buffer Layer 1424.
  • the buffer layer 1424 may include a silicon oxide layer; or, as shown in FIG. 2, the buffer layer 1424 may be a first photopolymer alignment layer 161.
  • the metal wire grid polarizer when the second alignment layer includes a metal wire grid polarizer and a buffer layer on the surface of the metal wire grid polarizer facing the third display substrate, on the one hand, the metal wire grid polarizer It can function as a polarizer.
  • the metal wire grid polarizer itself has a nano-scale micro periodic structure, such as micro grooves, so that a buffer layer is formed on the surface of the metal wire grid polarizer facing the third display substrate.
  • the second alignment layer composed of the metal wire grid polarizer and the buffer layer can align the liquid crystal molecules; because the metal wire grid polarizer and the buffer layer can be used
  • the vapor deposition process can be used to fabricate the above-mentioned second alignment layer on the first liquid crystal cell under low temperature conditions (less than 120 degrees).
  • the buffer layer includes the first photopolymer alignment layer
  • the display panel can use self-aligning liquid crystal materials and form the above-mentioned first photopolymer alignment layer by light, and complete the alignment of the liquid crystal molecules at the same time.
  • the second alignment layer can be fabricated on the first liquid crystal cell under low temperature conditions (less than 120 degrees).
  • the above-mentioned first liquid crystal cell 101 is a display liquid crystal cell for realizing a display function
  • the second liquid crystal cell 102 is a dimming liquid crystal cell for controlling the intensity of the backlight incident to the display liquid crystal cell according to requirements.
  • the display panel can use the second liquid crystal cell 102 to dynamically adjust the backlight in zones, and the first liquid crystal cell 101 to perform normal display of the display screen, thereby simultaneously improving the contrast of the display device using the display panel and achieving lightness and thinness.
  • the dimming liquid crystal cell can also realize the requirement of switching between a narrow viewing angle and a wide viewing angle, and the requirement of controlling different luminous intensities of various positions on the display panel.
  • the aforementioned backlight may come from a direct-type backlight module or an edge-type backlight module, and the light emitted by the backlight module passes through the dimming liquid crystal cell and then enters the display liquid crystal cell to achieve display.
  • the first display substrate 110 may be a color film substrate, that is, a structure such as a color filter may be provided on the first display substrate, and the second display element 120 may be a main array substrate That is, the pixel structure and the pixel driving structure can be arranged on the second display substrate.
  • the pixel structure may include pixel electrodes, and the pixel driving structure may include thin film transistors. It should be noted that the specific settings of the above-mentioned pixel structure and pixel driving structure can refer to conventional designs, and the embodiments of the present disclosure are not limited herein.
  • the third display substrate 130 can be a sub-array substrate, that is, a dimming unit for dimming and a driving structure of the dimming unit can also be provided on the third display substrate.
  • Each dimming unit may also include a dimming electrode for controlling the deflection of the liquid crystal
  • the driving structure of each dimming unit may include a switch element to control the dimming state of each dimming unit.
  • the switching element may include a thin film transistor (TFT) and other elements for driving and controlling the dimming state of a plurality of dimming units.
  • a plurality of signal lines crossing each other may be formed on the third display substrate to define the above Multiple dimming units.
  • the above-mentioned signal line can input a voltage to the dimming electrode in each dimming unit through the switch element to drive the deflection of the liquid crystal molecules in the dimming liquid crystal cell.
  • the size of the pixel structure in the display liquid crystal cell may be smaller than the size of the dimming unit in the dimming liquid crystal cell, that is, one dimming unit corresponds to multiple pixel structures, thereby It can realize the dynamic local light control at the pixel level to obtain better contrast without generating large power consumption.
  • the first liquid crystal cell 101 includes a first liquid crystal layer 151 located between the first display substrate 110 and the second display substrate 120
  • the second liquid crystal cell 102 includes a first liquid crystal layer 151 located on the second display substrate 120.
  • the buffer layer 1424 is arranged in contact with the second liquid crystal layer 152. Since the buffer layer has a better anchoring force to the liquid crystal molecules, the arrangement of the buffer layer in contact with the second liquid crystal layer can better align the liquid crystal molecules.
  • the display panel 100 further includes a third alignment layer 143 located on the side of the third display substrate 130 facing the second display substrate 120.
  • the second alignment layer 142 and the third alignment layer 143 can align the liquid crystal molecules together, so that the alignment effect can be further improved.
  • the display panel 100 further includes: a fourth alignment layer 144 located on the side of the first display substrate 110 facing the second display substrate 120, the first alignment layer 141, the third alignment layer Both the 143 and the fourth alignment layer 144 are polyimide alignment layers.
  • the third alignment layer can adopt the usual alignment process and Material production.
  • the third alignment layer may be a polyimide alignment layer.
  • the fourth alignment layer can also be made using common alignment techniques and materials.
  • the fourth alignment layer may be a polyimide alignment layer.
  • FIG. 3 is a scanning electron micrograph of a metal wire grid polarizer in a display panel according to an embodiment of the present disclosure
  • FIG. 4 is a scanning of a second alignment layer in a display panel according to an embodiment of the present disclosure
  • Electron micrograph As shown in FIG. 3, the metal wire grid polarizer 1422 includes a plurality of parallel micro-grooves 14220.
  • the width of the micro-grooves 14220 ranges from 45 nanometers to 90 nanometers, such as 70 nanometers.
  • the spacing between the micro-grooves 14220 ranges from 45 nanometers to 90 nanometers, for example 70 nanometers.
  • the surface of the buffer layer 1424 away from the metal wire grid polarizer 1422 also includes a plurality of micro grooves arranged in parallel. ⁇ 14240.
  • the plurality of microgrooves 14240 can align the liquid crystal molecules.
  • the thickness of the metal wire grid polarizer in a direction perpendicular to the second display substrate may range from 140 nanometers to 160 nanometers.
  • the thickness of the metal wire grid polarizer may be 150 nanometers.
  • the above-mentioned metal wire grid polarizer can utilize the oscillation characteristics of free electrons on the metal surface, so that transverse electric (TE) polarized light whose electric field direction is parallel to the wire grid direction can excite electrons to oscillate along the wire grid direction, thereby causing reflection;
  • TE transverse electric
  • TM transverse magnetic
  • TM polarized light mainly exhibits transmission characteristics. That is, the light components whose electric field direction is parallel to the wire grid are almost all reflected by the metal wire grid polarization structure. Conversely, most of the light whose electric field direction is perpendicular to the wire grid can pass through the metal wire grid polarization structure.
  • the material of the metal wire grid polarizer can be aluminum, and it is formed by methods such as film formation and nanoimprinting or laser direct molding technology.
  • FIG. 5 is a photomicrograph of directly aligning liquid crystal molecules with a metal wire grid polarizer
  • FIG. 6 is a dark state schematic diagram of a display panel using a metal wire grid polarizer directly as an alignment layer
  • FIG. 7 is an implementation of the disclosure Example provides a photomicrograph of the second alignment layer aligning liquid crystal molecules
  • FIG. 8 is a schematic diagram of a dark state of a display panel according to an embodiment of the present disclosure.
  • the direct use of the metal wire grid polarizer to align the liquid crystal molecules is not good, and the dark state brightness of the display panel using the metal wire grid polarizer directly as the alignment layer is relatively high.
  • the embodiment of the present disclosure has a buffer layer formed on the surface of the metal wire grid polarizer away from the second substrate 120. The effect of the second alignment layer provided by the embodiment of the present disclosure on the alignment of liquid crystal molecules Very good, and the dark state brightness of the display panel provided by the embodiment of the present disclosure is relatively low.
  • the above-mentioned buffer layer is made of a material with a higher transmittance and a stronger anchoring force with the liquid crystal molecules.
  • the above-mentioned buffer layer is a silicon oxide layer.
  • the embodiments of the present disclosure include but are not limited to silicon oxide, and the above-mentioned buffer layer can also be made of silicon nitride or silicon oxynitride materials.
  • the thickness of the above-mentioned silicon oxide ranges from 200nm to 600nm. Within this thickness range, the surface of the buffer layer can better form micro-trenches on the surface due to the underlying wire grid periodic structure. While maintaining high transmittance, it has better anchoring force to liquid crystal molecules. In some examples, the thickness of the aforementioned silicon oxide is approximately 250 nm, so that it has a relatively high light transmittance.
  • the width and interval of the micro-grooves on the metal wire grid polarizer are both 70 nanometers and the thickness of the metal wire grid polarizer is 153 nanometers
  • the optical glue thickness of 2000 nanometers
  • the relative With a single metal wire grid polarizer for example, the light transmittance is 41.7%, and the degree of polarization is 99.4%
  • the overall light transmittance of the metal wire grid polarizer and the optical adhesive decreases (the light transmittance is 28%).
  • the silicon oxide is located between the optical glue layer and the metal wire grid polarizer, compared to a single metal wire grid polarizer (for example, the light transmittance is 41.7%) , The degree of polarization is 99.4%), and the overall light transmittance of the metal wire grid polarizer and optical glue has decreased (light transmittance of 30.3%).
  • the optical glue layer is located between the silicon oxide layer and the metal wire grid polarizer, compared to a single metal wire grid polarizer (for example, the light transmittance is 41.7 %, the degree of polarization is 99.4%), the overall light transmittance of the metal wire grid polarizer and optical glue has decreased (light transmittance is 28.3%).
  • silicon oxide is selected as the buffer layer, after forming silicon oxide with a thickness of 200 nm or more (for example, 250 nm) on the metal wire grid polarizer through a vapor deposition process, compared to a single metal wire grid linear polarizer (for example, light transmittance)
  • the overall light transmittance and polarization of the metal wire grid polarizer and silicon oxide remain basically unchanged (for example, the light transmittance is 41.7%, and the polarization degree is 99.4%).
  • the overall transmittance of the metal wire grid polarizer and silicon oxide is higher, and the degree of polarization is also higher.
  • the display panel 100 further includes a second photopolymer alignment layer 162, and the second photopolymer alignment layer 162 is located on the side of the third display substrate 130 facing the second display substrate 120 ;
  • the first photopolymer alignment layer 161 and the second photopolymer alignment layer 162 are all alignment monomers through light polymerization.
  • the first photopolymer alignment layer 161 and the second photopolymer alignment layer 162 can jointly align liquid crystal molecules, and the second photopolymer alignment layer 162 can be formed by photopolymerization, so it can also be achieved under low temperature conditions. Formed below (less than 120 degrees).
  • the first liquid crystal cell 101 includes a first liquid crystal layer 151 located between the first display substrate 110 and the second display substrate 120, and the second liquid crystal cell 102 includes a second display substrate 120. And the second liquid crystal layer 152 between the third display substrate 130.
  • the second liquid crystal layer 152 may include a self-aligned liquid crystal material. Therefore, after the first liquid crystal cell completes the cell alignment, the first liquid crystal cell and the third display substrate can be directly aligned, and then the self-aligned liquid crystal material is processed (for example, light), so that the self-aligned liquid crystal material can be processed by itself Orient and form the above-mentioned first photopolymer orientation layer. It can be seen that the display panel can complete the alignment of liquid crystal molecules under low temperature conditions (less than 120 degrees).
  • the aforementioned self-aligned liquid crystal material includes liquid crystal molecules and alignment monomers.
  • the alignment monomer can be polymerized by irradiation to complete the alignment of the liquid crystal molecules and form the aforementioned first photopolymer alignment layer.
  • the above-mentioned display panel 100 further includes a fourth alignment layer 144, which is located between the second photopolymer alignment layer 162 and the third display substrate 130, and can be oriented on the first photopolymer.
  • the liquid crystal molecules are pre-aligned.
  • the above-mentioned fourth alignment layer can adopt the usual alignment process and Material production.
  • the fourth alignment layer may be a polyimide alignment layer.
  • the above-mentioned display panel 100 further includes a fifth alignment layer 145, which is located on the side of the first display substrate 110 close to the second display substrate 120.
  • the display panel 100 further includes a sealant 190 for sealing the first liquid crystal layer 151 between the first display substrate 110 and the second display substrate 120, or The second liquid crystal layer 152 is sealed between the second display substrate 120 and the third display substrate 130.
  • the orthographic projection of the first photopolymer alignment layer 161 and the second photopolymer alignment layer 162 on the second display substrate 120 is located on the entire projection of the sealant 190 on the second display substrate 120 within.
  • An embodiment of the present disclosure also provides a manufacturing method of the display panel.
  • the manufacturing method of the display panel includes: aligning a first display substrate and a second display substrate to form a first liquid crystal cell; and aligning the second display substrate and a third display substrate to form a second liquid crystal cell.
  • the manufacturing method further includes: forming a first alignment layer on the side of the second display substrate facing the first display substrate; and forming a second alignment layer on the side of the second display substrate facing the third display substrate.
  • the layer includes a metal wire grid polarizer and a buffer layer on the surface of the metal wire grid polarizer facing the third display substrate.
  • the aforementioned buffer layer may be a silicon oxide layer or a first photopolymer alignment layer.
  • the metal The wire grid polarizer can function as a polarizer.
  • the metal wire grid polarizer itself has a nano-micro periodic structure, such as micro grooves, so that it is formed on the surface of the metal wire grid polarizer facing the third display substrate.
  • the buffer layer also has nano-micro grooves of the corresponding scale, so that the second alignment layer composed of the metal wire grid polarizer and the buffer layer can play the role of aligning the liquid crystal molecules; because the metal wire grid polarizer and the buffer layer are both It can be produced by a vapor deposition process, so that the above-mentioned second alignment layer can be produced on the first liquid crystal cell under low temperature conditions (less than 120 degrees).
  • the display panel can use self-aligning liquid crystal materials and form the above-mentioned first photopolymer alignment layer by light, and at the same time complete the alignment of the liquid crystal molecules, thereby It is also possible to fabricate the above-mentioned second alignment layer on the first liquid crystal cell under low temperature conditions (less than 120 degrees).
  • forming the second alignment layer on the side of the second display substrate facing the third display substrate includes: after the first display substrate and the second display substrate are aligned to form the first liquid crystal cell, in the second display A metal wire grid polarizer is formed on the side of the substrate away from the first display substrate; and a silicon oxide layer is formed on the side of the metal wire grid polarizer away from the first display substrate, and the silicon oxide is the aforementioned buffer layer. Since both the metal wire grid polarizer and the buffer layer can be produced by a vapor deposition process, the above-mentioned second alignment layer can be produced on the first liquid crystal cell under low temperature conditions (less than 120 degrees).
  • SiH4 and N2O with a pressure of 1000 Torr and a flow rate of 550 mil can be used for vapor deposition to form a silicon oxide layer, where the flow rates of SiH4 and N2O are 120 sccm and 1800 sccm, respectively; SiH4, N2, and N2O with a pressure of 1200 Torr and a flow rate of 710 mil were vapor deposited to form a silicon oxide layer.
  • the production temperature of forming the metal wire grid polarizer on the side of the second display substrate away from the first display substrate and forming the buffer layer on the side of the metal wire grid polarizer away from the first display substrate is less than 120 degrees Celsius.
  • a metal layer can be formed on the side of the second display substrate away from the first display substrate through a vapor deposition process, and then the metal layer can be etched through an etching process to form a metal wire grid polarizer, and then through a vapor deposition process
  • a buffer layer is formed on the side of the metal wire grid polarizer away from the first display substrate, so that the second alignment layer can be fabricated on the first liquid crystal cell under low temperature conditions (less than 120 degrees).
  • the embodiments of the present disclosure include but are not limited to this, and other processes can also be used to fabricate the metal wire grid polarizer and buffer layer, as long as the fabrication temperature is less than 120 degrees Celsius.
  • cell-celling the first display substrate and the second display substrate to form the first liquid crystal cell includes: forming a first liquid crystal layer between the first display substrate and the second display substrate.
  • Combining the second display substrate and the third display substrate to form the second liquid crystal cell includes: forming a second liquid crystal layer between the second display substrate and the third display substrate, and the buffer layer is arranged in contact with the second liquid crystal layer. Since the buffer layer has a better anchoring force to the liquid crystal molecules, the arrangement of the buffer layer in contact with the second liquid crystal layer can better align the liquid crystal molecules.
  • a liquid crystal material may be injected between the first display substrate and the second display substrate through an ODF (One Drop Filling) process to form the above-mentioned first liquid crystal layer, and the liquid crystal material may be injected between the second display substrate and the third display substrate to form the first liquid crystal layer.
  • ODF One Drop Filling
  • the above-mentioned second liquid crystal layer is formed.
  • aligning the second display substrate and the third display substrate to form the second liquid crystal cell includes: aligning the second display substrate and the third display substrate; injecting between the second display substrate and the third display substrate Self-aligned liquid crystal material; the second liquid crystal cell is irradiated with first ultraviolet light, so that the alignment monomer in the self-aligned liquid crystal material forms a first photopolymer alignment layer on the side of the second display substrate facing the third display substrate, A second photopolymer alignment layer is formed on the side of the third display substrate facing the second display substrate, and the aforementioned first photopolymer alignment layer may be the aforementioned buffer layer.
  • the self-aligned liquid crystal material can be oriented by irradiating the first ultraviolet light, and the above-mentioned first photopolymer alignment layer and second photopolymer alignment layer can be formed.
  • the above-mentioned first photopolymer alignment layer and the second photopolymer alignment layer under low temperature conditions (less than 120 degrees).
  • the first ultraviolet light may be polarized ultraviolet light.
  • the embodiments of the present disclosure include but are not limited thereto, and the first ultraviolet light may also be other types of ultraviolet light.
  • the wavelength of the first ultraviolet light is approximately 254 nm; the illuminance range of the first ultraviolet light is 2000-10000 mj; the intensity of the first ultraviolet light of the first ultraviolet light is The range is 100-200mw/cm 2 .
  • the manufacturing method further includes: before irradiating the self-aligned liquid crystal material with the first ultraviolet light, heating the self-aligned liquid crystal material so that the temperature of the self-aligned liquid crystal material is greater than or equal to the clearing point of the self-aligned liquid crystal material +10
  • the degree of self-orientation can be better.
  • a metal lamp can be used to heat the second liquid crystal cell, such as heating to 105 degrees Celsius; for example, the power of the metal lamp is 160 mw, and the illuminance of the metal lamp is approximately 7500 mj.
  • the manufacturing method further includes: irradiating the second liquid crystal cell with second ultraviolet light to completely remove the alignment monomer remaining in the second liquid crystal cell, thereby improving the display quality of the display panel.
  • the wavelength of the aforementioned second ultraviolet light is approximately 365 nm; the illuminance of the aforementioned second ultraviolet light is approximately 10 mw; and the irradiation time range of the aforementioned second ultraviolet light is 10-30 minutes.
  • FIG. 9 is a schematic structural diagram of a display substrate provided according to an embodiment of the present disclosure.
  • Fig. 10 is a schematic structural diagram of another display substrate according to an embodiment of the present disclosure.
  • the display substrate 300 includes a base substrate 1200 with a first side 1201 and a second side 1202 disposed opposite to each other; the first alignment layer 141 is located on the first side 1201 of the base substrate 1200, The two alignment layers 142 are located on the second side 1202 of the base substrate 1200.
  • the second alignment layer 142 includes a metal wire grid polarizer 1422 and a buffer layer 1424 on the surface of the metal wire grid polarizer 1422 facing the third display substrate 130.
  • the second alignment layer 142 includes a first photopolymer alignment layer 161.
  • the display substrate provided by the embodiment of the present disclosure is provided with alignment layers on both sides, so that it can be cell-celled with two other display substrates at the same time to form a dual liquid crystal cell structure, thereby simultaneously improving the contrast and contrast of the display device using the display panel. Achieve a thin and light design.
  • the metal wire grid polarizer can function as a polarizer, and the other
  • the metal wire grid polarizer itself has a nano-micro periodic structure, such as micro grooves, so that the buffer layer formed on the surface of the metal wire grid polarizer facing the third display substrate also has nano micro grooves of corresponding dimensions, thereby
  • the second alignment layer composed of the metal wire grid polarizer and the buffer layer can align the liquid crystal molecules; since the metal wire grid polarizer and the buffer layer can be made by vapor deposition process, it can be realized under low temperature conditions.
  • the above-mentioned second alignment layer is fabricated on the liquid crystal cell.
  • the display panel including the display substrate can use self-aligning liquid crystal materials to form the above-mentioned first photopolymer alignment layer by light, and simultaneously complete the alignment of the liquid crystal molecules. Therefore, the second alignment layer can be fabricated on the liquid crystal cell under low temperature conditions (less than 120 degrees).
  • the base substrate provided in this embodiment may be the second display substrate in the display panel provided in the foregoing embodiment, and the foregoing second alignment layer may also be the second orientation in the display panel provided in the foregoing embodiment. Therefore, the specific structure of the second alignment layer can also refer to the specific structure of the second alignment layer in the second display substrate provided in the above-mentioned embodiment, which will not be repeated here.
  • An embodiment of the present disclosure also provides a display device.
  • the display device includes the above-mentioned display panel.
  • the display device can fabricate the above-mentioned second alignment layer on the first liquid crystal cell under low temperature conditions (less than 120 degrees), thereby forming a dual liquid crystal cell structure, thereby simultaneously improving contrast and realizing a thinner and lighter design.
  • the display device may be a large-size display device such as a TV or an electronic picture frame.
  • the embodiments of the present disclosure include but are not limited thereto, and the display device may also be an electronic product with a display function, such as a computer, a notebook computer, a mobile phone, a tablet computer, and a navigator.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种显示基板、显示面板及其制作方法和显示装置。该显示面板(100)包括第一显示基板(110)、第二显示基板(120)和第三显示基板(130);第二显示基板(120)和第一显示基板(110)对盒形成第一液晶盒(101),第三显示基板(130)和第二显示基板(120)对盒形成第二液晶盒(102)。该显示面板(100)还包括第一取向层(141)和第二取向层(142),第一取向层(141)位于第二显示基板(120)面对第一显示基板(110)的一侧,第二取向层(142)位于第二显示基板(120)面对第三显示基板(130)的一侧;第二取向层(142)包括金属线栅偏光片(1422)和位于金属线栅偏光片(1422)面对第三显示基板(130)的表面上的缓冲层(1424)。上述的第二取向层可在低温条件下制作,从而使得该显示面板具有较高的光透过率。

Description

显示基板、显示面板及其制作方法和显示装置 技术领域
本发明的实施例涉及一种显示基板、显示面板及其制作方法和显示装置。
背景技术
随着显示技术的不断发展,液晶显示技术已经成为主流的显示技术。通常,液晶显示装置包括液晶显示面板和背光模组;液晶显示面板包括对盒设置的阵列基板和对置基板以及阵列基板和对置基板之间的液晶层;背光模组可向显示面板提供背光,液晶显示面板通过阵列基板和对置基板的电场来控制液晶层中液晶分子的旋转来实现光阀作用,并对背光模组出射的背光进行调制,从而可实现灰阶显示。另一方面,对置基板上可设置彩色滤光片,从而使得该液晶显示装置可实现彩色显示。
发明内容
本公开的实施例提供一种显示基板、显示面板及其制作方法和显示装置。该显示面板包括第一显示基板、第二显示基板和第三显示基板;第二显示基板和第一显示基板对盒形成第一液晶盒,第三显示基板和第二显示基板对盒形成第二液晶盒。该显示面板还包括第一取向层和第二取向层,第一取向层位于第二显示基板面对第一显示基板的一侧,第二取向层位于第二显示基板面对第三显示基板的一侧;第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对第三显示基板的表面上的缓冲层。上述的第二取向层可在低温条件下制作,从而使得该显示面板具有较高的光透过率。
本公开至少一个实施例提供一种显示面板,其包括:第一显示基板;第二显示基板,所述第二显示基板和所述第一显示基板对盒形成第一液晶盒;第三显示基板,位于所述第二显示基板远离所述第一显示基板的一侧,所述第三显示基板和所述第二显示基板对盒形成第二液晶盒;以及第一取向层,位于所述第二显示基板面对所述第一显示基板的一侧,所述显示面板还包括第二取向层,位于所述第二显示基板面对所述第三显示基板的一侧;所述第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对所述第三显示基板的表面上的缓冲层。
例如,在本公开一实施例提供的显示面板中,所述缓冲层包括氧化硅层或第一光聚合物取向层。
例如,在本公开一实施例提供的显示面板中,所述第一液晶盒包括位于所述第一显示基板和所述第二显示基板之间的第一液晶层,所述第二液晶盒包括位于所述第二显示基板和所述第三显示基板之间的第二液晶层,所述缓冲层与所述第二液晶层接触设置。
例如,在本公开一实施例提供的显示面板中,所述缓冲层包括氧化硅层,所述氧化硅的厚度范围在200nm-600nm。
例如,在本公开一实施例提供的显示面板中,所述缓冲层包括氧化硅层,所述氧化硅层远离所述金属线栅偏光片的表面包括平行设置的多个微沟槽。
例如,在本公开一实施例提供的显示面板中,所述显示面板还包括:第三取向层,位于所述第三显示基板面对所述第二显示基板的一侧;第四取向层,位于所述第一显示基板面对所述第二显示基板的一侧,所述第一取向层、所述第三取向层和所述第四取向层均为聚酰亚胺取向层。
例如,在本公开一实施例提供的显示面板中,所述第二取向层包括第一光聚合物取向层,所述显示面板还包括第二光聚合物取向层,位于所述第三显示基板面对所述第二显示基板的一侧,所述第一光聚合物取向层和所述第二光聚合物取向层均为取向单体经过光照聚合而成。
例如,在本公开一实施例提供的显示面板中,所述第一液晶盒包括:位于所述第一显示基板和所述第二显示基板之间的第一液晶层,所述第二液晶盒包括位于所述第二显示基板和所述第三显示基板之间的第二液晶层,所述第二液晶层包括自取向液晶材料。
例如,在本公开一实施例提供的显示面板中,所述自取向液晶材料包括液晶分子和取向单体。
例如,在本公开一实施例提供的显示面板中,所述显示面板还包括:第四取向层,位于所述第一显示基板面对所述第二显示基板的一侧;以及第五取向层,位于所述第二光聚合物取向层和所述第三显示基板之间,所述第一取向层、所述第三取向层和所述第五取向层均为聚酰亚胺取向层。
例如,在本公开一实施例提供的显示面板中,所述第一液晶盒为显示液晶盒,所述第二液晶盒为调光液晶盒。
本公开至少一个实施例还提供一种显示装置,包括上述任一项的显示面 板。
本公开至少一个实施例还提供一种显示面板的制作方法,其包括:将第一显示基板和第二显示基板对盒形成第一液晶盒;以及将所述第二显示基板和第三显示基板对盒形成第二液晶盒,所述显示面板的制作方法还包括:在所述第二显示基板面对所述第一显示基板的一侧形成第一取向层;以及在所述第二显示基板面对所述第三显示基板的一侧形成第二取向层,所述第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对所述第三显示基板的表面上的缓冲层。
例如,在本公开一实施例提供的显示面板的制作方法中,在所述第二显示基板面对所述第三显示基板的一侧形成所述第二取向层包括:在将所述第一显示基板和所述第二显示基板对盒形成所述第一液晶盒之后,在所述第二显示基板远离所述第一显示基板的一侧形成所述金属线栅偏光片;以及在所述金属线栅偏光片远离所述第一显示基板的一侧形成氧化硅层,所述氧化硅层为所述缓冲层。
例如,在本公开一实施例提供的显示面板的制作方法中,在所述第二显示基板远离所述第一显示基板的一侧形成所述金属线栅偏光片和在所述金属线栅偏光片远离所述第一显示基板的一侧形成所述氧化硅层的制作温度小于120摄氏度。
例如,在本公开一实施例提供的显示面板的制作方法中,将所述第一显示基板和所述第二显示基板对盒形成所述第一液晶盒包括:在所述第一显示基板和所述第二显示基板之间形成第一液晶层,将所述第二显示基板和所述第三显示基板对盒形成所述第二液晶盒包括:在所述第二显示基板和所述第三显示基板之间形成第二液晶层,所述缓冲层与所述第二液晶层接触设置。
例如,在本公开一实施例提供的显示面板的制作方法中,将所述第二显示基板和所述第三显示基板对盒形成所述第二液晶盒包括:将所述第二显示基板和所述第三显示基板对盒;在所述第二显示基板和所述第三显示基板之间注入自取向液晶材料;以及采用第一紫外光照射所述第二液晶盒,以使得所述自取向液晶材料中的取向单体在所述第二显示基板面对所述第三显示基板的一侧形成第一光聚合物取向层,在所述第三显示基板面对所述第二显示基板的一侧形成第二光聚合物取向层,所述第一光聚合物取向层为所述缓冲层。
例如,本公开一实施例提供的显示面板的制作方法还包括:在采用所述第 一紫外光照射所述自取向液晶材料之前,对所述自取向液晶材料进行加热以使所述自取向液晶材料的温度比所述自取向液晶材料的清亮点大10度以上。
例如,本公开一实施例提供的显示面板的制作方法还包括:采用第二紫外光照射所述第二液晶盒,以完全去除所述第二液晶盒中残留的所述取向单体。
本公开至少一个实施例还提供一种显示基板,其包括:衬底基板,具有相对设置的第一侧和第二侧;第一取向层,位于所述衬底基板的所述第一侧;以及第二取向层,位于所述衬底基板的所述第二侧,所述第二取向层包括金属线栅偏光片和位于金属线栅偏光片远离所述衬底基板的缓冲层,所述缓冲层包括氧化硅层或光聚合物取向层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开一实施例提供的一种显示面板的结构示意图;
图2为根据本公开一实施例提供的另一种显示面板的结构示意图;
图3为根据本公开一实施例提供的一种显示面板中的金属线栅偏光片的扫描电镜图;
图4为根据本公开一实施例提供的一种显示面板中的第二取向层的扫描电镜图;
图5为直接采用金属线栅偏光片对液晶分子进行取向的显微照片;
图6为一种采用金属线栅偏光片直接作为取向层的显示面板的暗态示意图;
图7为本公开一实施例提供的第二取向层对液晶分子进行取向的显微照片;
图8为根据本公开一实施例提供的一种显示面板的暗态示意图;
图9为根据本公开一实施例提供的一种显示基板的结构示意图;以及
图10为根据本公开一实施例提供的另一种显示基板的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开 实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
随着显示技术的不断发展,人们对于大尺寸显示装置(例如,电视产品)的显示质量的追求也越来越高,导致大尺寸显示装置的竞争也越来越激烈。然而,由于液晶配向、液晶材料以及其他材料对光的散射的影响,通常的液晶显示装置难以实现较高的对比度。
为了提高液晶显示装置的对比度,通常可对背光模组出射的背光进行分区控制,并根据显示画面的灰度需求来动态地调节不同区域的背光的强度,从而实现较高的动态对比度(High Dynamic Contrast,HDR)。这种可动态调光的背光模组可划分为侧入式背光模组和直下式背光模组;侧入式背光模组只能通过行方向或者列方向进行分区控制,也就是说只能实现一维的动态调光,导致动态对比度的效果不太理想;而直下式背光模组可通过矩阵排列的发光元件来实现二维的动态调光,但是为了防止出现Mura不良,发光元件到显示面板的混光距离需要设置得较大,从而导致背光模组的厚度较大,难以实现轻薄化。
为了同时提高液晶显示装置的对比度和实现轻薄化设计,液晶显示装置可采用双液晶盒结构,一个液晶盒用于对背光进行分区动态调节,另一个液晶盒用于显示画面的正常显示。采用双液晶盒结构的液晶显示装置通过液晶盒对背光进行分区动态调节,可实现像素级别的分区动态调节,从而可实现很高的动态对比度。然而,两个液晶盒通常包括四个显示基板,因此两个液晶盒叠加之后容易导致光透过率降低,使得该液晶显示装置的整体光效降低。
对此,采用双液晶盒结构的液晶显示装置可使两个液晶盒共用一个显示基板来减少显示基板的数量,从而提高该液晶显示装置的光透过率。在三个显示 基板的双液晶盒结构的制作过程中,通常需要先使得第一显示基板和第二显示基板对盒形成一个液晶盒,然后在该液晶盒上形成取向层,最后与第三显示基板形成双液晶盒结构。然而,由于目前成熟的制作取向层的取向工艺是采用聚酰亚胺(PI)取向材料制造,通过230摄氏度的高温,经过约30分钟固化才能完成成膜;而液晶盒能承受的最高温度是120摄氏度,所以如何实现在低温条件下(小于120度)在液晶盒上制作取向层是实现三个显示基板的双液晶盒结构的关键点。
因此,本公开实施例提供一种显示基板、显示面板及其制作方法和显示装置。该显示面板包括第一显示基板、第二显示基板和第三显示基板;第二显示基板和第一显示基板对盒形成第一液晶盒,第三显示基板位于第二显示基板远离第一显示基板的一侧,并和第二显示基板对盒形成第二液晶盒。该显示面板还包括第一取向层和第二取向层,第一取向层位于第二显示基板面对第一显示基板的一侧,第二取向层位于第二显示基板面对第三显示基板的一侧;第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对第三显示基板的表面上的缓冲层。第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对第三显示基板的表面上的缓冲层时,一方面,金属线栅偏光片可起到偏光片的作用,另一方面,金属线栅偏光片本身具有纳米微观周期结构,使得形成在金属线栅偏光片面对第三显示基板的表面上的缓冲层也具有相应尺度的纳米微沟槽,从而使得金属线栅偏光片和缓冲层构成的第二取向层可起到对液晶分子进行配向的作用;由于金属线栅偏光片和缓冲层均可采用气相沉积工艺制作,从而可实现在低温条件下(小于120度)在第一液晶盒上制作上述的第二取向层。当缓冲层包括第一光聚合物取向层时,该显示面板可采用自取向液晶材料并通过光照的方式形成上述的第一光聚合物取向层,并同时完成对液晶分子的配向,从而也可实现在低温条件下(小于120度)在第一液晶盒上制作上述的第二取向层。
下面,结合附图对本公开实施例提供的显示基板、显示面板及其制作方法和显示装置进行详细的说明。
图1为根据本公开一实施例提供的一种显示面板的结构示意图。图2为根据本公开一实施例提供的另一种显示面板的结构示意图。
如图1和图2所示,该显示面板100包括第一显示基板110、第二显示基板120和第三显示基板130;第二显示基板120和第一显示基板110对盒形成 第一液晶盒101,第三显示基板130位于第二显示基板120远离第一显示基板110的一侧,并和第二显示基板120对盒形成第二液晶盒102。该显示面板100采用了双液晶盒结构,可利用一个液晶盒对背光进行分区动态调节,另一个液晶盒用于显示画面的正常显示,从而可同时提高采用该显示面板的显示装置的对比度和实现轻薄化设计。
如图1和图2所示,该显示面板100还包括第一取向层141和第二取向层142,第一取向层141位于第二显示基板120面对第一显示基板110的一侧,第二取向层142位于第二显示基板120面对第三显示基板130的一侧;第二取向层142包括金属线栅偏光片1422和位于金属线栅偏光片1422面对第三显示基板130的表面上的缓冲层1424。
如图1所示,缓冲层1424可包括氧化硅层;或者,如图2所示,缓冲层1424可为第一光聚合物取向层161。
在本公开实施例提供的显示面板中,第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对第三显示基板的表面上的缓冲层时,一方面,金属线栅偏光片可起到偏光片的作用,另一方面,金属线栅偏光片本身具有纳米级微观周期结构,例如微沟槽,使得形成在金属线栅偏光片面对第三显示基板的表面上的缓冲层也具有相应尺度的纳米级微沟槽,从而使得金属线栅偏光片和缓冲层构成的第二取向层可起到对液晶分子进行配向的作用;由于金属线栅偏光片和缓冲层均可采用气相沉积工艺制作,从而可实现在低温条件下(小于120度)在第一液晶盒上制作上述的第二取向层。当缓冲层包括第一光聚合物取向层时,该显示面板可采用自取向液晶材料并通过光照的方式形成上述的第一光聚合物取向层,并同时完成对液晶分子的配向,从而也可实现在低温条件下(小于120度)在第一液晶盒上制作上述的第二取向层。
在一些示例中,上述的第一液晶盒101为显示液晶盒,用于实现显示功能,第二液晶盒102为调光液晶盒,用于根据需求控制入射至显示液晶盒的背光的强弱。由此,该显示面板可利用第二液晶盒102对背光进行分区动态调节,利用第一液晶盒101来进行显示画面的正常显示,从而可同时提高采用该显示面板的显示装置的对比度和实现轻薄化设计。例如,调光液晶盒还可以实现窄视角与宽视角之间的转换的需求、控制该显示面板上各个位置的发光强度不同的需求等。需要说明的是,上述的背光可以来自于直下式背光模组或侧入式背光模组,背光模组发出的光经过调光液晶盒后入射到显示液晶盒以实现显示。
例如,当第一液晶盒101为显示液晶盒时,第一显示基板110可为彩膜基板,即第一显示基板上可设置彩色滤光片等结构,第二显示件120可为主阵列基板,即第二显示基板上可设置像素结构和像素驱动结构。例如,像素结构可包括像素电极,像素驱动结构可包括薄膜晶体管。需要说明的是,上述的像素结构和像素驱动结构的具体设置可参见常规设计,本公开实施例在此不作限制。
例如,当第二液晶盒102为调光液晶盒时,第三显示基板130可为副阵列基板,即第三显示基板上也可设置调光用的个调光单元和调光单元的驱动结构,各调光单元也可包括控制液晶偏转的调光电极,各调光单元的驱动结构可包括开关元件以控制各调光单元的调光状态。例如开关元件可以包括薄膜晶体管(TFT)等用于驱动和控制多个调光单元的调光状态的元件,例如,第三显示基板上还可以形成有多条彼此交叉的信号线以限定上述的多个调光单元。上述信号线可以通过开关元件对各调光单元中的调光电极输入电压,以驱动调光液晶盒中的液晶分子偏转。
例如,在本公开实施例提供的显示面板中,显示液晶盒中的像素结构的尺寸可小于调光液晶盒中的调光单元的尺寸,即,一个调光单元对应于多个像素结构,从而既可以实现像素级别的动态局域光控制,获得更好的对比度,又不会产生较大的功耗。
在一些示例中,如图1所示,第一液晶盒101包括位于第一显示基板110和第二显示基板120之间的第一液晶层151,第二液晶盒102包括位于第二显示基板120和第三显示基板130之间的第二液晶层152,缓冲层1424与所述第二液晶层152接触设置。由于缓冲层对液晶分子具有较好的锚定力,将缓冲层与所述第二液晶层接触设置可更好地对液晶分子进行配向。
在一些示例中,如图1所示,该显示面板100还包括第三取向层143,位于第三显示基板130面对第二显示基板120的一侧。由此,第二取向层142和第三取向层143可共同对液晶分子进行配向,从而可进一步提高配向效果。
在一些示例中,如图1所示,显示面板100还包括:第四取向层144,位于第一显示基板110面对第二显示基板120的一侧,第一取向层141、第三取向层143和第四取向层144均为聚酰亚胺取向层。需要说明的是,由于第三显示基板在与第二显示基板对盒形成第二液晶盒之前,可以接受较高温度的处理或工艺,因此,上述的第三取向层可采用通常的取向工艺和材料制作。例如, 第三取向层可为聚酰亚胺取向层。同理,第四取向层也可采用通常的取向工艺和材料制作。例如,第四取向层可为聚酰亚胺取向层。
图3为根据本公开一实施例提供的一种显示面板中的金属线栅偏光片的扫描电镜图;图4为根据本公开一实施例提供的一种显示面板中的第二取向层的扫描电镜图。如图3所示,金属线栅偏光片1422包括多个平行的微沟槽14220,微沟槽14220的宽度范围在45纳米至90纳米,例如70纳米,微沟槽14220之间的间隔范围在45纳米至90纳米,例如70纳米。
如图4所示,由于缓冲层1424直接形成在金属线栅偏光片1422远离第二基板120的表面上,因此缓冲层1424远离金属线栅偏光片1422的表面也包括平行设置的多个微沟槽14240。多个微沟槽14240可对液晶分子进行配向。例如,金属线栅偏光片在垂直于第二显示基板的方向上的厚度范围可为140纳米-160纳米。例如,金属线栅偏光片的厚度可为150纳米。
需要说明的是,上述的金属线栅偏光片可利用金属表面自由电子的振荡特性,使得电场方向与线栅方向平行的横电(TE)偏振光能够激发电子沿线栅方向振荡,从而发生反射;而电场方向与线栅方向垂直的横磁(TM)偏振光由于周期性结构的限制无法激发自由电子振荡,因此TM偏振光主要表现为透射特性。也就是电场方向平行于线栅的光分量几乎全部被金属线栅偏振结构反射,反过来,电场方向垂直于线栅的大部分光都可以透过金属线栅偏振结构。
例如,金属线栅偏光片的材料可选择铝,并经过成膜和纳米压印或激光直接成型技术等方法形成。
图5为直接采用金属线栅偏光片对液晶分子进行取向的显微照片;图6为一种采用金属线栅偏光片直接作为取向层的显示面板的暗态示意图;图7为本公开一实施例提供的第二取向层对液晶分子进行取向的显微照片;图8为根据本公开一实施例提供的一种显示面板的暗态示意图。
如图5和图6所示,直接采用金属线栅偏光片对液晶分子进行取向的效果不佳,并且采用金属线栅偏光片直接作为取向层的显示面板的暗态亮度较高。如图7和图8所示,本公开实施例在在金属线栅偏光片远离第二基板120的表面上形成有缓冲层,本公开实施例提供的第二取向层对液晶分子进行取向的效果很好,并且本公开实施例提供的显示面板的暗态亮度较低。
在一些示例中,上述的缓冲层采用透过率较高且与液晶分子之间的锚定力较强的材料制作。
例如,上述的缓冲层为氧化硅层。当然,本公开实施例包括但不限于氧化硅,上述的缓冲层也可采用氮化硅或氮氧化硅材料制作。
在一些示例中,上述的氧化硅的厚度范围在200nm-600nm之间,在该厚度范围内,缓冲层的表面能够因下面的线栅周期结构更好地在表面形成微沟槽,从而可在保持较高的透过率的同时,对液晶分子具有较好的锚定力。在一些示例中,上述的氧化硅的厚度大致为250nm,从而具有较高的光透过率。
例如,当金属线栅偏光片上的微沟槽的宽度和间隔均为70纳米时,金属线栅偏光片的厚度为153纳米时,当选择光学胶(厚度为2000纳米)作为缓冲层时,相对于单独金属线栅线偏光片(例如,光透过率为41.7%,偏振度为99.4%),金属线栅偏光片和光学胶的整体的光透过率有所下降(光透过率为28%)。当选择光学胶和氧化硅的复合层作为缓冲层,并且氧化硅位于光学胶层和金属线栅偏光片之间时,相对于单独金属线栅线偏光片(例如,光透过率为41.7%,偏振度为99.4%),金属线栅偏光片和光学胶的整体的光透过率有所下降(光透过率为30.3%)。当选择光学胶和氧化硅的复合层作为缓冲层,并且光学胶层位于氧化硅层和金属线栅偏光片之间时,相对于单独金属线栅线偏光片(例如,光透过率为41.7%,偏振度为99.4%),金属线栅偏光片和光学胶的整体的光透过率有所下降(光透过率为28.3%)。当选择氧化硅作为缓冲层时,在金属线栅偏光片上通过气相沉积工艺形成厚度在200nm以上(例如,250nm)的氧化硅之后,相对于单独金属线栅线偏光片(例如,光透过率为41.7%,偏振度为99.4%),金属线栅偏光片和氧化硅的整体的光透过率和偏振度基本保持不变(例如,光透过率为41.7%,偏振度为99.4%)。可见,选择氧化硅作为缓冲层在具有较好的取向效果的同时,金属线栅偏光片和氧化硅的整体的透过率较高,偏振度也较高。
在一些示例中,如图2所示,该显示面板100还包括第二光聚合物取向层162,第二光聚合物取向层162位于第三显示基板130面对第二显示基板120的一侧;上述的第一光聚合物取向层161和第二光聚合物取向层162均为取向单体经过光照聚合而成。由此,第一光聚合物取向层161和第二光聚合物取向层162可共同对液晶分子进行取向,并且第二光聚合物取向层162可通过光聚合形成,因此也可实现在低温条件下(小于120度)形成。
在一些示例中,如图2所示,第一液晶盒101包括位于第一显示基板110和第二显示基板120之间的第一液晶层151,第二液晶盒102包括位于第二显 示基板120和第三显示基板130之间的第二液晶层152。第二液晶层152可包括自取向液晶材料。因此,在第一液晶盒完成对盒之后,可直接将第一液晶盒与第三显示基板对盒,然后进行自取向液晶材料进行处理(例如,光照),从而使得自取向液晶材料可自己进行取向并形成上述的第一光聚合物取向层。可见,该显示面板可在低温条件下(小于120度)完成对液晶分子的取向。
在一些示例中,上述的自取向液晶材料包括液晶分子和取向单体。取向单体可经过光照进行聚合,从而完成对液晶分子的取向和形成上述的第一光聚合物取向层。
在一些示例中,如图2所示,上述的显示面板100还包括第四取向层144,位于第二光聚合物取向层162和第三显示基板130之间,可在第一光聚合物取向层和第二光聚合物取向层形成之前对液晶分子起到预取向的作用。需要说明的是,由于第三显示基板在与第二显示基板对盒形成第二液晶盒之前,可以接受较高温度的处理或工艺,因此,上述的第四取向层可采用通常的取向工艺和材料制作。例如,第四取向层可为聚酰亚胺取向层。
在一些示例中,如图1和图2所示,上述的显示面板100还包括第五取向层145,位于第一显示基板110靠近第二显示基板120的一侧。
在一些示例中,如图1和图2所示,该显示面板100还包括封框胶190,用于将第一液晶层151密封在第一显示基板110和第二显示基板120之间,或者将第二液晶层152密封在第二显示基板120和第三显示基板130之间。
例如,如图2所示,第一光聚合物取向层161和第二光聚合物取向层162在第二显示基板120上的正投影位于封框胶190在第二显示基板120上的整投影之内。
本公开一实施例还提供一种显示面板的制作方法。该显示面板的制作方法包括:将第一显示基板和第二显示基板对盒形成第一液晶盒;和将第二显示基板和第三显示基板对盒形成第二液晶盒。该制作方法还包括:在第二显示基板面对第一显示基板的一侧形成第一取向层;以及在第二显示基板面对第三显示基板的一侧形成第二取向层,第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对第三显示基板的表面上的缓冲层。例如,上述的缓冲层可为氧化硅层或第一光聚合物取向层。
在本公开实施例提供的显示面板的制作方法中,当第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对第三显示基板的表面上的缓冲层时,一方 面,金属线栅偏光片可起到偏光片的作用,另一方面,金属线栅偏光片本身具有纳米微观周期结构,例如微沟槽,使得形成在金属线栅偏光片面对第三显示基板的表面上的缓冲层也具有相应尺度的纳米微沟槽,从而使得金属线栅偏光片和缓冲层构成的第二取向层可起到对液晶分子进行配向的作用;由于金属线栅偏光片和缓冲层均可采用气相沉积工艺制作,从而可实现在低温条件下(小于120度)在第一液晶盒上制作上述的第二取向层。当第二取向层包括第一光聚合物取向层时,该显示面板可采用自取向液晶材料并通过光照的方式形成上述的第一光聚合物取向层,并同时完成对液晶分子的配向,从而也可实现在低温条件下(小于120度)在第一液晶盒上制作上述的第二取向层。
在一些示例中,在第二显示基板面对第三显示基板的一侧形成第二取向层包括:在将第一显示基板和第二显示基板对盒形成第一液晶盒之后,在第二显示基板远离第一显示基板的一侧形成金属线栅偏光片;以及在金属线栅偏光片远离第一显示基板的一侧形成氧化硅层,该氧化硅为上述的缓冲层。由于金属线栅偏光片和缓冲层均可采用气相沉积工艺制作,从而可实现在低温条件下(小于120度)在第一液晶盒上制作上述的第二取向层。例如,当缓冲层为氧化硅时,可采用压强为1000Torr,流速为550mil的SiH4和N2O进行气相沉积,以形成氧化硅层,其中SiH4和N2O的流量分别为120sccm和1800sccm;当然,也可采用压强为1200Torr,流速为710mil的SiH4、N2和N2O进行气相沉积,以形成氧化硅层,其中SiH4、N2和N2O的流量分别为50sccm、500sccm和1800sccm。在一些示例中,在第二显示基板远离第一显示基板的一侧形成金属线栅偏光片和在金属线栅偏光片远离第一显示基板的一侧形成缓冲层的制作温度小于120摄氏度。例如,可通过气相沉积工艺在第二显示基板远离第一显示基板的一侧形成金属层,然后通过刻蚀工艺对该金属层进行刻蚀以形成金属线栅偏光片,然后再通过气相沉积工艺在金属线栅偏光片远离第一显示基板的一侧形成缓冲层,从而可在低温条件下(小于120度)在第一液晶盒上制作上述的第二取向层。当然,本公开实施例包括但不限于此,也可采用其他工艺制作上述的金属线栅偏光片和缓冲层,只要制作温度小于120摄氏度即可。
在一些示例中,将第一显示基板和第二显示基板对盒形成第一液晶盒包括:在第一显示基板和第二显示基板之间形成第一液晶层。将第二显示基板和第三显示基板对盒形成第二液晶盒包括:在第二显示基板和第三显示基板之间 形成第二液晶层,缓冲层与第二液晶层接触设置。由于缓冲层对液晶分子具有较好的锚定力,将缓冲层与所述第二液晶层接触设置可更好地对液晶分子进行配向。
例如,可通过ODF(One Drop Filling)工艺在第一显示基板和第二显示基板之间注入液晶材料以形成上述第一液晶层,在第二显示基板和第三显示基板之间注入液晶材料以形成上述的第二液晶层。
在一些示例中,将第二显示基板和第三显示基板对盒形成第二液晶盒包括:将第二显示基板和第三显示基板对盒;在第二显示基板和第三显示基板之间注入自取向液晶材料;采用第一紫外光照射第二液晶盒,以使得自取向液晶材料中的取向单体在第二显示基板面对第三显示基板的一侧形成第一光聚合物取向层,在第三显示基板面对第二显示基板的一侧形成第二光聚合物取向层,上述的第一光聚合物取向层可为上述的缓冲层。由此,可通过照射第一紫外光来使得自取向液晶材料进行取向,并形成上述的第一光聚合物取向层和第二光聚合物取向层。由此,可实现在低温条件下(小于120度)形成上述的第一光聚合物取向层和第二光聚合物取向层。
例如,第一紫外光可为偏振紫外光。当然,本公开实施例包括但不限于此,第一紫外光也可为其他类型的紫外光。
例如,上述的第一紫外光的波长大致为254nm;上述的第一紫外光的照度范围在2000-10000mj;上述的第一紫外光的上述的第一紫外光的上述的第一紫外光的强度范围在100-200mw/cm 2
在一些示例中,该制作方法还包括:在采用第一紫外光照射自取向液晶材料之前,对自取向液晶材料进行加热以使自取向液晶材料的温度大于等于自取向液晶材料的清亮点+10度,从而可更好地进行自取向。
例如,可采用金属灯对第二液晶盒进行加热,例如加热至105摄氏度;例如,金属灯的功率为160mw,金属灯的照度大致为7500mj。
在一些示例中,该制作方法还包括:采用第二紫外光照射第二液晶盒,以完全去除第二液晶盒中残留的取向单体,从而提高该显示面板的显示质量。
例如,上述的第二紫外光的波长大致为365nm;上述的第二紫外光的照度大致为10mw;上述的第二紫外光的照射时间范围在10-30分钟。
本公开一实施例还提供一种显示基板。图9为根据本公开一实施例提供的一种显示基板的结构示意图。图10为根据本公开一实施例提供的另一种显示 基板的结构示意图。
如图9和图10所示,该显示基板300包括衬底基板1200,具有相对设置的第一侧1201和第二侧1202;第一取向层141位于衬底基板1200的第一侧1201,第二取向层142位于衬底基板1200的第二侧1202。如图9所示,第二取向层142包括金属线栅偏光片1422和位于金属线栅偏光片1422面对第三显示基板130的表面上的缓冲层1424。如图10所示,第二取向层142包括第一光聚合物取向层161。
本公开实施例提供的显示基板的两侧均设置有取向层,从而可同时与两个其他的显示基板对盒以形成双液晶盒结构,从而可同时提高采用该显示面板的显示装置的对比度和实现轻薄化设计。当第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对第三显示基板的表面上的缓冲层时,一方面,金属线栅偏光片可起到偏光片的作用,另一方面,金属线栅偏光片本身具有纳米微观周期结构,例如微沟槽,使得形成在金属线栅偏光片面对第三显示基板的表面上的缓冲层也具有相应尺度的纳米微沟槽,从而使得金属线栅偏光片和缓冲层构成的第二取向层可起到对液晶分子进行配向的作用;由于金属线栅偏光片和缓冲层均可采用气相沉积工艺制作,从而可实现在低温条件下(小于120度)在液晶盒上制作上述的第二取向层。当第二取向层包括第一光聚合物取向层时,包括该显示基板的显示面板可采用自取向液晶材料并通过光照的方式形成上述的第一光聚合物取向层,并同时完成对液晶分子的配向,从而也可实现在低温条件下(小于120度)在液晶盒上制作上述的第二取向层。
需要说明的是,本实施例提供的衬底基板可为上述实施例提供的显示面板中的第二显示基板,上述的第二取向层也可为上述实施例提供的显示面板中的第二取向层,因此第二取向层的具体结构也可参见上述实施例提供的第二显示基板中的第二取向层的具体结构,在此不再赘述。
本公开一实施例还提供一种显示装置。该显示装置包括上述的显示面板。由此,该显示装置可实现在低温条件下(小于120度)在第一液晶盒上制作上述的第二取向层,从而可形成双液晶盒结构,进而可同时提高对比度和实现轻薄化设计。
例如,该显示装置可为电视、电子画框等大尺寸显示装置。当然,本公开实施例包括但不限于此,该显示装置也可电脑、笔记本电脑、手机、平板电脑、导航仪等具有显示功能的电子产品。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种显示面板,包括:
    第一显示基板;
    第二显示基板,所述第二显示基板和所述第一显示基板对盒形成第一液晶盒;
    第三显示基板,位于所述第二显示基板远离所述第一显示基板的一侧,所述第三显示基板和所述第二显示基板对盒形成第二液晶盒;以及
    第一取向层,位于所述第二显示基板面对所述第一显示基板的一侧,
    其中,所述显示面板还包括第二取向层,位于所述第二显示基板面对所述第三显示基板的一侧;
    所述第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对所述第三显示基板的表面上的缓冲层。
  2. 根据权利要求1所述的显示面板,其中,所述缓冲层包括氧化硅层或第一光聚合物取向层。
  3. 根据权利要求1所述的显示面板,其中,所述第一液晶盒包括位于所述第一显示基板和所述第二显示基板之间的第一液晶层,所述第二液晶盒包括位于所述第二显示基板和所述第三显示基板之间的第二液晶层,所述缓冲层与所述第二液晶层接触设置。
  4. 根据权利要求2所述的显示面板,其中,所述缓冲层包括氧化硅层,所述氧化硅的厚度范围在200nm-600nm。
  5. 根据权利要求2或4所述的显示面板,其中,所述缓冲层包括氧化硅层,所述氧化硅层远离所述金属线栅偏光片的表面包括平行设置的多个微沟槽。
  6. 根据权利要求4或5所述的显示面板,其中,所述显示面板还包括:
    第三取向层,位于所述第三显示基板面对所述第二显示基板的一侧;
    第四取向层,位于所述第一显示基板面对所述第二显示基板的一侧,
    其中,所述第一取向层、所述第三取向层和所述第四取向层均为聚酰亚胺取向层。
  7. 根据权利要求2所述的显示面板,其中,所述第二取向层包括第一光聚合物取向层,所述显示面板还包括第二光聚合物取向层,位于所述第三显示 基板面对所述第二显示基板的一侧,
    所述第一光聚合物取向层和所述第二光聚合物取向层均为取向单体经过光照聚合而成。
  8. 根据权利要求7所述的显示面板,其中,所述第一液晶盒包括:位于所述第一显示基板和所述第二显示基板之间的第一液晶层,所述第二液晶盒包括位于所述第二显示基板和所述第三显示基板之间的第二液晶层,所述第二液晶层包括自取向液晶材料。
  9. 根据权利要求8所述的显示面板,其中,所述自取向液晶材料包括液晶分子和取向单体。
  10. 根据权利要求7-9中任一项所述的显示面板,其中,所述显示面板还包括:
    第四取向层,位于所述第一显示基板面对所述第二显示基板的一侧;以及
    第五取向层,位于所述第二光聚合物取向层和所述第三显示基板之间,
    其中,所述第一取向层、所述第三取向层和所述第五取向层均为聚酰亚胺取向层。
  11. 根据权利要求1-10中任一项所述的显示面板,其中,所述第一液晶盒为显示液晶盒,所述第二液晶盒为调光液晶盒。
  12. 一种显示装置,包括根据权利要求1-11中任一项所述的显示面板。
  13. 一种显示面板的制作方法,包括:
    将第一显示基板和第二显示基板对盒形成第一液晶盒;以及
    将所述第二显示基板和第三显示基板对盒形成第二液晶盒,
    其中,所述显示面板的制作方法还包括:在所述第二显示基板面对所述第一显示基板的一侧形成第一取向层;以及在所述第二显示基板面对所述第三显示基板的一侧形成第二取向层,
    所述第二取向层包括金属线栅偏光片和位于金属线栅偏光片面对所述第三显示基板的表面上的缓冲层。
  14. 根据权利要求13所述的制作方法,其中,在所述第二显示基板面对所述第三显示基板的一侧形成所述第二取向层包括:
    在将所述第一显示基板和所述第二显示基板对盒形成所述第一液晶盒之后,在所述第二显示基板远离所述第一显示基板的一侧形成所述金属线栅偏光片;以及
    在所述金属线栅偏光片远离所述第一显示基板的一侧形成氧化硅层,所述氧化硅层为所述缓冲层。
  15. 根据权利要求14所述的制作方法,其中,在所述第二显示基板远离所述第一显示基板的一侧形成所述金属线栅偏光片和在所述金属线栅偏光片远离所述第一显示基板的一侧形成所述氧化硅层的制作温度小于120摄氏度。
  16. 根据权利要求15所述的制作方法,其中,将所述第一显示基板和所述第二显示基板对盒形成所述第一液晶盒包括:在所述第一显示基板和所述第二显示基板之间形成第一液晶层,
    将所述第二显示基板和所述第三显示基板对盒形成所述第二液晶盒包括:在所述第二显示基板和所述第三显示基板之间形成第二液晶层,
    其中,所述缓冲层与所述第二液晶层接触设置。
  17. 根据权利要求13所述的制作方法,其中,将所述第二显示基板和所述第三显示基板对盒形成所述第二液晶盒包括:
    将所述第二显示基板和所述第三显示基板对盒;
    在所述第二显示基板和所述第三显示基板之间注入自取向液晶材料;以及
    采用第一紫外光照射所述第二液晶盒,以使得所述自取向液晶材料中的取向单体在所述第二显示基板面对所述第三显示基板的一侧形成所述第一光聚合物取向层,在所述第三显示基板面对所述第二显示基板的一侧形成第二光聚合物取向层,所述第一光聚合物取向层为所述缓冲层。
  18. 根据权利要求17所述的制作方法,还包括:
    在采用所述第一紫外光照射所述自取向液晶材料之前,对所述自取向液晶材料进行加热以使所述自取向液晶材料的温度比所述自取向液晶材料的清亮点大10度以上。
  19. 根据权利要求17所述的制作方法,还包括:采用第二紫外光照射所述第二液晶盒,以完全去除所述第二液晶盒中残留的所述取向单体。
  20. 一种显示基板,包括:
    衬底基板,具有相对设置的第一侧和第二侧;
    第一取向层,位于所述衬底基板的所述第一侧;以及
    第二取向层,位于所述衬底基板的所述第二侧,
    其中,所述第二取向层包括金属线栅偏光片和位于金属线栅偏光片远离所述衬底基板的缓冲层,所述缓冲层包括氧化硅层或光聚合物取向层。
PCT/CN2019/122050 2019-11-29 2019-11-29 显示基板、显示面板及其制作方法和显示装置 WO2021102937A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980002704.3A CN113196158B (zh) 2019-11-29 2019-11-29 显示基板、显示面板及其制作方法和显示装置
PCT/CN2019/122050 WO2021102937A1 (zh) 2019-11-29 2019-11-29 显示基板、显示面板及其制作方法和显示装置
US16/976,543 US11385505B2 (en) 2019-11-29 2019-11-29 Display substrate, display panel and manufacturing method thereof, display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122050 WO2021102937A1 (zh) 2019-11-29 2019-11-29 显示基板、显示面板及其制作方法和显示装置

Publications (1)

Publication Number Publication Date
WO2021102937A1 true WO2021102937A1 (zh) 2021-06-03

Family

ID=76091506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122050 WO2021102937A1 (zh) 2019-11-29 2019-11-29 显示基板、显示面板及其制作方法和显示装置

Country Status (3)

Country Link
US (1) US11385505B2 (zh)
CN (1) CN113196158B (zh)
WO (1) WO2021102937A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109397A1 (en) * 2004-11-24 2006-05-25 Organic Lighting Technologies Llc Organic light emitting diode backlight inside LCD
CN105785638A (zh) * 2016-05-09 2016-07-20 深圳市华星光电技术有限公司 Lcd显示器
CN108333825A (zh) * 2017-01-20 2018-07-27 深超光电(深圳)有限公司 液晶显示面板、其制造方法及液晶显示器
CN108983515A (zh) * 2018-10-12 2018-12-11 京东方科技集团股份有限公司 一种液晶显示器件及其制备方法和显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211928B1 (en) * 1996-03-26 2001-04-03 Lg Electronics Inc. Liquid crystal display and method for manufacturing the same
JP5539612B2 (ja) * 2006-04-13 2014-07-02 三星ディスプレイ株式會社 配向膜の製造方法
KR101303981B1 (ko) * 2007-09-19 2013-09-04 라벤브릭 엘엘씨 나노스케일의 와이어 그리드를 포함하는 저 방사율 윈도우 필름 및 코팅
CN105785493B (zh) * 2016-05-09 2019-01-22 深圳市华星光电技术有限公司 金属光栅偏光片及其制作方法
JP6547789B2 (ja) * 2017-05-30 2019-07-24 セイコーエプソン株式会社 液晶装置の製造方法
JP7030480B2 (ja) * 2017-11-09 2022-03-07 パナソニック液晶ディスプレイ株式会社 液晶表示装置
CN108957841A (zh) 2018-08-29 2018-12-07 京东方科技集团股份有限公司 显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060109397A1 (en) * 2004-11-24 2006-05-25 Organic Lighting Technologies Llc Organic light emitting diode backlight inside LCD
CN105785638A (zh) * 2016-05-09 2016-07-20 深圳市华星光电技术有限公司 Lcd显示器
CN108333825A (zh) * 2017-01-20 2018-07-27 深超光电(深圳)有限公司 液晶显示面板、其制造方法及液晶显示器
CN108983515A (zh) * 2018-10-12 2018-12-11 京东方科技集团股份有限公司 一种液晶显示器件及其制备方法和显示装置

Also Published As

Publication number Publication date
US20210165286A1 (en) 2021-06-03
CN113196158A (zh) 2021-07-30
CN113196158B (zh) 2023-12-19
US11385505B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
TWI311661B (en) A liquid crystal display and a method for manufacturing thereof
WO2017084175A1 (zh) 液晶显示装置及其制作方法
JP5739217B2 (ja) 液晶表示装置
WO2014183397A1 (zh) 显示装置
US9541793B2 (en) Liquid crystal display panel and display apparatus using the same
US8154695B2 (en) Liquid crystal display and method of fabricating the same
US9104070B2 (en) Liquid crystal display panel and display apparatus using the same
US9507201B2 (en) Liquid crystal display panel and display apparatus using the same
US9013661B2 (en) Liquid crystal display panel and display apparatus using the same
WO2016049959A1 (zh) 液晶显示装置
US20070247566A1 (en) Liquid crystal display module
US9720276B2 (en) Liquid crystal display panel and display apparatus using the same
US8199293B2 (en) Method of manufacturing liquid crystal display
JP2019174630A (ja) 液晶パネル及びその製造方法
WO2010098063A1 (ja) 液晶表示装置
CN110320710B (zh) 液晶面板及其制造方法
WO2021102937A1 (zh) 显示基板、显示面板及其制作方法和显示装置
WO2014012313A1 (zh) Tft-lcd滤色器阵列基板、制作方法及液晶显示装置
WO2013166807A1 (zh) 蓝相液晶面板和显示装置
JP2009003194A (ja) 液晶表示パネルおよび液晶表示装置
WO2023097789A1 (zh) 显示面板及其制备方法、显示装置
CN110320715B (zh) 液晶面板及其制造方法
TWI417618B (zh) 液晶顯示面板的製作方法
CN110320711B (zh) 液晶面板及其制造方法
CN112987368A (zh) 一种阵列基板、液晶显示面板及液晶显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954633

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19954633

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19954633

Country of ref document: EP

Kind code of ref document: A1