WO2021102933A1 - 一种结构功能一体化石墨烯材料及其制备方法 - Google Patents

一种结构功能一体化石墨烯材料及其制备方法 Download PDF

Info

Publication number
WO2021102933A1
WO2021102933A1 PCT/CN2019/122044 CN2019122044W WO2021102933A1 WO 2021102933 A1 WO2021102933 A1 WO 2021102933A1 CN 2019122044 W CN2019122044 W CN 2019122044W WO 2021102933 A1 WO2021102933 A1 WO 2021102933A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
preparation
graphene oxide
plasticizer
graphite
Prior art date
Application number
PCT/CN2019/122044
Other languages
English (en)
French (fr)
Inventor
高超
李鹏
许震
汪波
刘英军
Original Assignee
杭州高烯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州高烯科技有限公司 filed Critical 杭州高烯科技有限公司
Priority to PCT/CN2019/122044 priority Critical patent/WO2021102933A1/zh
Publication of WO2021102933A1 publication Critical patent/WO2021102933A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof

Definitions

  • the invention relates to the field of nano materials, in particular to a graphene material with integrated structure and function and a preparation method thereof.
  • the existing methods for preparing graphene fibers are mainly based on liquid crystal wet spinning.
  • the nascent graphene oxide fibers obtained by wet spinning of liquid crystals will inevitably introduce defects such as wrinkles during the coagulation and drying process. These defects have been accompanied in the fiber during the subsequent chemical reduction and heat treatment, and gradually developed to affect the inheritance of graphene fibers.
  • An object of the present invention is to provide a structure-function integrated graphene material composed of graphite crystals with a length of 150 nm or more.
  • Large graphite crystals promote the transmission of phonons and electrons, improve electrical and thermal conductivity, and the large crystals are aligned in orientation. It also reduces internal stress and improves strength.
  • this graphene material includes a plurality of graphite crystals composed of graphene sheets, the orientation degree of the graphite crystals is above 85%, and the plurality of graphite crystals form a conductive and heat conduction path; wherein the orientation degree of the graphene sheets is greater than or equal to 80% , The density is greater than or equal to 1.8g/cm 3 , and the length of each graphite crystal is more than 150nm. The longer the crystal lasts, the longer the electrons and phonons can travel without scattering, and it has high electrical and thermal conductivity. At the same time, the orientation and density are high, the internal stress concentration is less, and the material is prevented from premature damage and the strength is high.
  • the thickness of the graphite crystal is above 15 nm.
  • the conductivity of graphite materials is determined by the migration of delocalized ⁇ electrons, so the number of ⁇ electrons that can be migrated plays a decisive factor in the conductivity of the material, so the crystal thickness has a greater contribution to the conductivity.
  • the materials include graphene fibers, graphene films, etc., but are not limited thereto.
  • the structure-function integrated graphene material of the present application The carbon content is above 98wt%.
  • the interlayer spacing of the graphene sheets is below 0.35nm, which ensures a higher degree of graphene of the graphene material, lower graphene interlayer spacing, increased material density, and increased graphitization degree , To ensure that the material has excellent electrical and thermal conductivity.
  • Another object of the present invention is to provide a method for preparing a graphene material with integrated structure and function.
  • the method adopts plasticizing stretching and heat treatment, and the plasticizing stretching makes the graphene sheets aligned in the axial direction straight, which is beneficial to Large-size graphite crystals are formed, and heat treatment further promotes the growth of graphite crystals.
  • a graphene material composed of graphene crystals is obtained.
  • the orientation degree of the graphite crystals is above 85%, and multiple graphite crystals form a conductive and heat conduction path; among them, the orientation degree of the graphene sheet is greater than or equal to 80%, and the density is greater than or equal to 1.8g/cm 3.
  • the length of each graphite crystal is above 150nm.
  • the method includes the following steps:
  • the graphene oxide assembly material is soaked in a plasticizer; during the soaking process, the graphene material is plasticized; the plasticizer enters between the layers, and the plasticization time is controlled to increase the layer spacing to 1.2 to 2.3nm, if the interlayer spacing is less than 1.2nm, the interaction between graphene fibers is too large, and the material does not exhibit or exhibits minimal plastic deformation; if the interlayer spacing is greater than 2.3nm, the interaction between graphene layers is too weak. During the subsequent stretching process, the entire layer slips and breaks directly.
  • the assembly material is stretched, and then an external force is applied to maintain the current length and release the inter-layer stress until the inter-layer stress is 0; the stretching after plasticization makes the material inside
  • the wrinkles are straightened, and then stretched, the stretched length is maintained, and the graphene sheet is dried to keep the wrinkled graphene sheet.
  • the stretch-release process can be performed once or twice.
  • the dried graphene oxide assembly material is thermally reduced to crystallize the graphene assembly material to obtain the aforementioned structure-function integrated graphene material.
  • the thermal reduction temperature is generally 1300-3000 degrees Celsius.
  • the plasticization is uniform, and the layer spacing after plasticization is uniform.
  • the layer spacing can be obtained by dividing the total thickness by the number of layers and the X-ray diffraction method.
  • the layer spacing can be adjusted by adjusting the type of plasticizer.
  • the graphene assembly material includes graphene oxide fibers, graphene oxide tapes, and graphene oxide films; preferably, they are virgin graphene oxide fibers obtained by wet liquid crystal spinning.
  • the elongation at break of the graphene oxide material plasticized in step 1 is more than 30%. If immersed in acetic acid, the elongation of graphene oxide fiber at break reaches 34%.
  • the interlayer spacing of graphene oxide will gradually increase. As the layer spacing increases, the interaction between layers decreases, and the macroscopic materials begin to show plastic deformation. When the layer spacing is in the range of 1.1-1.8nm, the plastic deformation reaches the highest value. When the layer spacing continues to increase, due to the mutual The effect is too weak, causing slippage between the graphene oxide layers, showing a lower elongation at break.
  • the plasticizer is a single solvent with a polarity parameter between 0.3 and 0.75, or a mixture of multiple solvents.
  • a polarity parameter between 0.3 and 0.75
  • water with a high polarity and acetone with a low polarity are mutually matched to obtain a mixed solvent with moderate polarity, which can also be used as a plasticizer.
  • the plasticizer is selected from: glycerol, propylene glycol, ethylene glycol, triethylene glycol, acetone, isopropanol, acetic acid, methanol, tetraethylene glycol, pentaethylene glycol, hydrochloric acid, dilute sulfuric acid, organic amines Etc. or its mixed plasticizer.
  • the present invention also relates to the application of the above-mentioned structure-function integrated graphene material in graphene materials with high strength, high modulus, high electrical conductivity and high thermal conductivity.
  • the thermally conductive filler is used as a highly thermally conductive composite material or as a highly conductive composite material, using high strength as a composite structure.
  • the beneficial effect of the present invention is that the present invention uses a plasticizer to increase the plastic processing interval of the graphene oxide assembly material by 1-50%, which is very rare in the processing of inorganic materials.
  • the post-stretching heat treatment obtains a graphene material with integrated structure and function that integrates high strength, high modulus, high electrical conductivity, and high thermal conductivity.
  • Fig. 1 is the data of the strength, modulus, electrical conductivity, and thermal conductivity of the fiber obtained in Example 1, where n-GF refers to the virgin graphene fiber, and p-GF refers to the graphene fiber after plasticization and stretching.
  • the nascent graphene oxide fiber is soaked in acetic acid (polarity parameter is 6) to soak it. After soaking, the interlayer spacing is 1.4 nm, and the elongation at break is 34%.
  • the graphite crystals in the structure After the wide-angle X-ray diffraction test, the graphite crystals in the structure have a length of more than 150nm; the overall orientation degree is more than 85%. Two adjacent graphite crystals are in contact with each other, and multiple graphite crystals form a conductive and heat-conducting path.
  • the orientation degree of the graphene sheets in the fiber is 92%.
  • the density test is 1.89g cm -3 .
  • the tensile test was tested on Keysight's T150U instrument, and the result was 3.4GPa.
  • the electrical conductivity was tested by the fiber four-wire method, and the fiber electrical conductivity was as high as 1.2 MS/m.
  • the thermal conductivity test uses the T-shaped method, and the test shows that the thermal conductivity of the fiber reaches 1580W m -1 K -1 .
  • Fig. 1 is the data of the strength, modulus, electrical conductivity, and thermal conductivity of the fiber obtained in Example 1, where n-GF refers to the virgin graphene fiber, and p-GF refers to the graphene fiber after plasticization and stretching.
  • n-GF refers to the virgin graphene fiber
  • p-GF refers to the graphene fiber after plasticization and stretching.
  • the graphite crystal in its structure After wide-angle X-ray diffraction test, the graphite crystal in its structure, the length of each graphite crystal is more than 200nm; the overall orientation degree is more than 85%, two adjacent graphite crystals are in contact with each other, and multiple graphite crystals form a conductive and heat conduction path.
  • the orientation degree of the graphene sheets in the fiber is 0.94.
  • the density test is 2.02g cm -3 .
  • the conductivity of the film is as high as 1.22MS/m.
  • Thermal conductivity test highly oriented and large crystals make the thermal conductivity of the film as high as 1900S/m.
  • the graphite crystals in the structure have a length of more than 180nm for each graphite crystal; the overall orientation degree is more than 85%, two adjacent graphite crystals are in contact with each other, and multiple graphite crystals form a conductive and heat conduction path.
  • the orientation degree of the graphene sheets in the fiber is 0.93.
  • the density test is 1.99g cm -3 .
  • the conductivity of the film is as high as 1.20MS/m.
  • Thermal conductivity test highly oriented and large crystals make the thermal conductivity of the film as high as 1800S/m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种结构功能一体化石墨烯材料及其制备方法,所述石墨烯纤维具有高强度、高模量、高导电、高导热的优异性能,该方法如下:将石墨烯组装材料在塑化剂的存在下,进行塑化拉伸,达到最佳拉伸比。经过热处理后,得到集高强度、高模量、高导电和高导热一体的石墨烯材料。本发明是一种结构功能一体化石墨烯纤维及其制备方法。

Description

一种结构功能一体化石墨烯材料及其制备方法 技术领域
本发明涉及纳米材料领域,特别是一种结构功能一体化石墨烯材料及其制备方法。
背景技术
2004年,英国曼彻斯特大学A.K.Geim教授课题组运用机械剥离法成功制备石墨烯,并将其悬挂于微型金架上,推翻了完美二维晶体结构无法在非绝对零度下稳定存在的这一论断。换言之,自由态的石墨烯在室温下可以稳定存在;而在相同条件下,其他任何已知材料都会被氧化或分解,甚至在相当于其单层厚度10倍时就变得不稳定。从结构上说,石墨烯(Graphene)是紧密堆积成二维蜂窝状晶格结构的sp2杂化单层碳原子晶体,层内碳原子以共价键的形式连接,具有超高的强度(120GPa),因此以石墨烯作为源头材料构建特定结构的碳基材料,从而实现碳质功能材料纳米结构的设计和可控以及宏量地制备已经逐渐引起全球科学家的关注。但是由于纳米尺度在向宏观材料组装过程中,难免引入大量缺陷,导致单片的优异性质难以在宏观组装体中实现完美继承,如单层石墨烯拥有的极高的强度、模量、导电率和导热率。尤其在石墨烯纤维材料,目前石墨烯的纤维材料仍难以突破2GPa的大关,导热率低于1200W m -1K -1。因此探寻如何能更精确地控制缺陷,提高组装的效率,得到结构功能一体化的石墨烯纤维,成为了一大难题。
目前来看,现有的制备石墨烯纤维的方法主要基于液晶湿法纺丝。但是通过液晶湿法纺丝得到的初生氧化石墨烯纤维在凝固和干燥过程中难免引入褶皱等缺陷,这些缺陷在后续化学还原以及热处理中一直伴随在纤维内部,逐渐发展成为影响石墨烯纤维继承单片石墨烯优异性能的一大难题。所以这种由初生氧化石墨烯纤维还原后得到的初生石墨烯纤维性能差,难以发挥单层石墨烯的优异性能。
发明内容
本发明的一个目的在于提供一种由长度在150nm以上的石墨晶体构成的结构功能一体化石墨烯材料,大的石墨晶体促进了声子电子的传输,提高了导电导热,而大晶体取向排列,又减少内部应力,提高强度。具体的,这种石墨烯材料包括多个由石墨烯片构成的石墨晶体,石墨晶体的取向度在85%以上,多个石墨晶体构成导电导热通路;其中,石墨烯片取向度大于等于80%,密度大 于等于1.8g/cm 3,每个石墨晶体的长度在150nm以上。晶体持续长度越长,电子和声子可以无散射传输更长的距离,具有高的导电导热性能;同时取向度和密度高,内部应力集中点较少,避免材料过早发生破坏,强度高。
进一步地,石墨晶体厚度在15nm以上。石墨材料的导电率由离域π电子的迁移决定,因此可迁移的π电子的数量对材料导电率起到决定性因素,因此晶体厚度对导电率有较大的贡献。
本申请中,所述材料包括石墨烯纤维、石墨烯膜等,但不限于此。
经测试证明,含碳量低于98%会使材料内部存在较多声子和电子散射点,降低材料的导电导热性能,因此,作为优选的方案,本申请的结构功能一体化石墨烯材料中,含碳量在98wt%以上。
作为优选的方案,每个石墨晶体中,石墨烯片的层间距在0.35nm以下,保证了石墨烯材料较高的石墨化程度,较低的石墨烯层间距,材料密度增加,石墨化程度增加,能保证材料具有优异的导电导热特性。
本发明的另一个目的在于提供一种结构功能一体化石墨烯材料的制备方法,该方法通过塑化拉伸和热处理,塑化拉伸使得石墨烯片沿着轴向是平直排列,有利于大尺寸的石墨晶体的形成,而热处理进一步促进了石墨晶体的生长。最终得到由石墨烯晶体构成的石墨烯材料,石墨晶体的取向度在85%以上,多个石墨晶体构成导电导热通路;其中,石墨烯片取向度大于等于80%,密度大于等于1.8g/cm 3,每个石墨晶体的长度在150nm以上。
具体的,该方法包括如下步骤:
(1)将氧化石墨烯组装材料放在塑化剂中进行浸泡;在浸泡过程中,石墨烯材料发生塑化;塑化剂进入层间,控制塑化时间,使层间距增大到1.2到2.3nm,如果层间距低于1.2nm,石墨烯纤维层间相互作用太大,材料不表现出或者表现出极小的塑性变形;如果层间距大于2.3nm,石墨烯层间相互作用太弱,在后续拉伸处理过程中整个是层间滑移,直接拉断。
(2)在塑化剂中,对组装材料进行拉伸,然后施加外力以保持当前长度,释放掉片层间的应力,直到片层间的应力为0;塑化后的拉伸使得材料内部褶皱被拉直,然后拉伸后,保持拉伸的长度,进行干燥,使去掉褶皱的石墨烯片保持下来,该拉伸-释放过程可以进行一次或两次以上。
(3)干燥后的氧化石墨烯组装材料进行热还原,使石墨烯组装材料进行结晶,得到前述的结构功能一体化石墨烯材料。热还原温度一般在1300-3000摄氏度。
上述过程中,由于浸泡过程的均匀性,塑化作用均匀,塑化后层间距均匀, 层间距可以通过总厚度除以层数以及X射线衍射方法来获得。
上述过程中,可以通过调控塑化剂的种类来调控上述层间距。塑化剂极性参数越大,塑化作用越强,层间距越大。
进一步地,所述石墨烯组装材料包括氧化石墨烯纤维、氧化石墨烯带子、氧化石墨烯膜;优选为湿法液晶纺丝得到的初生氧化石墨烯纤维。
作为优选的方案,经步骤1塑化后的氧化石墨烯材料的断裂伸长率为30%以上。如使用乙酸浸泡,氧化石墨烯纤维断裂伸长率达34%。
进一步地,经过塑化剂插层,氧化石墨烯的层间距会逐渐增加。随着层间距的增加,层间相互作用减少,宏观材料开始表现出塑性变形,当层间距在1.1-1.8nm的范围内时,塑性变形达到最高值,当层间距继续增加,由于层间相互作用太弱,导致氧化石墨烯层之间发生滑移,表现出较低的断裂伸长率。
本申请中,所述塑化剂为极性参数为0.3-0.75之间的单一溶剂,或多种溶剂混合液。如极性很高的水和极性较低的丙酮互配,得到极性适中的混合溶剂,也可以作为塑化剂使用。
所述塑化剂选自:丙三醇、丙二醇、乙二醇、三乙二醇、丙酮、异丙醇、乙酸、甲醇、四乙二醇、五乙二醇、盐酸、稀硫酸、有机胺等或其混合塑化剂。
本发明还涉及上述结构功能一体化石墨烯材料在高强度、高模量、高导电和高导热的石墨烯材料中的应用。例如,导热填料作为高导热复合材料或者作为高导电复合材料,利用高强度做复合结构件。
本发明的有益效果在于:本发明使用塑化剂,提升氧化石墨烯组装材料1~50%的塑性加工区间,这在无机材料加工中是非常难得的。通过50%的塑性加工区间,拉伸后热处理得到了集高强度、高模量、高导电、高导热为一体的结构功能一体化的石墨烯材料。
附图说明
图1为实施例1得到的纤维的强度、模量、导电率、导热率的数据,其中n-GF指初生石墨烯纤维,p-GF指经过塑化拉伸后的石墨烯纤维。
具体实施方式
实施例1
(1)将氧化石墨烯DMF的纺丝液挤出进入乙酸乙酯的凝固浴中,经过湿法液晶纺丝得到初生氧化石墨烯纤维。
(2)将初生氧化石墨烯纤维,放在乙酸(极性参数为6)中浸泡使其浸泡, 浸泡后其层间距为1.4nm,断裂伸长率为34%。
(3)对溶胀后的氧化石墨烯纤维进行三次塑化拉伸和还原,每次的拉伸率为15%,然后施加外力以保持当前长度,释放掉片层间的应力;
(4)干燥后经2800摄氏度热处理得到结构功能一体化的石墨烯纤维。
经广角X射线衍射测试,其结构中石墨晶体,每个石墨晶体的长度在150nm以上;整体取向度在85%以上,相邻两个石墨晶体相互接触,多个石墨晶体构成导电导热通路。
经广角X射线衍射测试,该纤维中,石墨烯片取向度92%。
密度测试为1.89g cm -3
拉伸测试在Keysight T150U仪器测试,结果为3.4GPa。
利用纤维四线法对导电率进行测试,得到纤维导电率高达1.2MS/m。
导热率测试使用T形法,测试得到纤维导热率达到1580W m -1K -1
图1为实施例1得到的纤维的强度、模量、导电率、导热率的数据,其中n-GF指初生石墨烯纤维,p-GF指经过塑化拉伸后的石墨烯纤维。结合图1以及上述的结构表征可以看出,晶体持续长度越长,电子和声子可以无散射传输更长的距离,具有高的导电导热性能;同时取向度和密度高,内部应力集中点较少,避免材料过早发生破坏,强度高。
实施例2
(1)将氧化石墨烯的液晶溶液铺在PET的基底上,然后用刮刀刮平,接着室温干燥得到氧化石墨烯初生的膜。
(2)将初生氧化石墨烯膜裁成长条状,放在乙二醇(极性参数为0.68)中浸泡使其浸泡,浸泡后其层间距为1.8nm,断裂伸长率为18%。
(3)对溶胀后的氧化石墨烯膜进行三次塑化拉伸和还原,每次的拉伸率为5%,然后施加外力以保持当前长度,释放掉片层间的应力;
(4)干燥后经2800摄氏度热处理得到结构功能一体化的石墨烯膜。
经广角X射线衍射测试,其结构中石墨晶体,每个石墨晶体的长度在200nm以上;整体取向度在85%以上,相邻两个石墨晶体相互接触,多个石墨晶体构成导电导热通路。
经广角X射线衍射测试,该纤维中,石墨烯片取向度0.94。
密度测试为2.02g cm -3
拉伸测试,膜的强度可达200MPa。
导电率测试,膜的导电率高达1.22MS/m。
导热率测试,高度取向和大晶体使膜的导热率高达1900S/m。
实施例3
(1)将氧化石墨烯的液晶溶液通过抽滤瓶抽滤得到初生的氧化石墨烯膜。
(2)将抽滤得到的氧化石墨烯膜放置在丙酮(极性参数为5.1)中浸泡,浸泡后其层间距为1.1nm,断裂伸长率为13%。
(3)对溶胀后的氧化石墨烯膜进行一次塑化拉伸和还原,拉伸率为10%,然后施加外力以保持当前的长度,释放掉片层间的应力。
(4)干燥后经过2800摄氏度热处理得到结构功能一体化的石墨烯膜。
经广角X射线衍射测试,其结构中石墨晶体,每个石墨晶体的长度在180nm以上;整体取向度在85%以上,相邻两个石墨晶体相互接触,多个石墨晶体构成导电导热通路。
经广角X射线衍射测试,该纤维中,石墨烯片取向度0.93。
密度测试为1.99g cm -3
拉伸测试,膜的强度可达180Mpa。
导电率测试,膜的导电率高达1.20MS/m。
导热率测试,高度取向和大晶体使膜的导热率高达1800S/m。

Claims (14)

  1. 一种结构功能一体化石墨烯材料,其特征在于:包括多个由石墨烯片构成的石墨晶体,石墨晶体的取向度在85%以上,多个石墨晶体构成导电导热通路;结构功能一体化石墨烯材料中,石墨烯片取向度大于等于80%,密度大于等于1.8g/cm 3,每个石墨晶体的长度在150nm以上。
  2. 根据权利要求1所述的石墨烯材料,其特征在于,所述石墨晶体的厚度在15nm以上。
  3. 根据权利要求1所述的石墨烯材料,其特征在于,所述材料为石墨烯纤维、石墨烯带子、石墨烯膜。
  4. 根据权利要求1所述的石墨烯材料,其特征在于,含碳量在98wt%以上。
  5. 根据权利要求1所述的石墨烯材料,其特征在于,每个石墨晶体中,石墨烯片的层间距在0.35nm以下。
  6. 如权利要求1所述的结构功能一体化石墨烯材料的制备方法,其特征在于,包括如下步骤:
    (1)将氧化石墨烯组装材料放在塑化剂中进行浸泡;
    (2)在塑化剂中,对组装材料进行拉伸,然后施加外力以保持当前长度,释放掉片层间的应力,直到片层间的应力为0;
    (3)干燥后的氧化石墨烯组装材料进行热还原,得到结构功能一体化石墨烯材料。
  7. 根据权利要求6所述的制备方法,其特征在于,所述石墨烯组装材料包括氧化石墨烯纤维、氧化石墨烯带子、氧化石墨烯膜;优选为湿法液晶纺丝组装得到的初生氧化石墨烯纤维。
  8. 根据权利要求6所述的制备方法,其特征在于,经步骤1塑化后的氧化石墨烯材料的断裂伸长率为30%以上。
  9. 根据权利要求6所述的制备方法,其特征在于,经过塑化剂插层,氧化石墨烯的层间距会逐渐增加。随着层间距的增加,层间相互作用减少,宏观材料开始表现出塑性变形,当层间距在1.1-1.8nm的范围内时,塑性变形达到最高值,当层间距继续增加,由于层间相互作用太弱,导致氧化石墨烯层之间发生滑移,表现出较低的断裂伸长率。
  10. 根据权利要求6所述的制备方法,其特征在于,所述塑化剂为极性参数为0.3-0.75之间的单一溶剂,或多种溶剂混合液。
  11. 根据权利要求9所述的制备方法,其特征在于,所述塑化剂选自:丙三醇、丙二醇、乙二醇、三乙二醇、丙酮、异丙醇、乙酸、甲醇、四乙二醇、五 乙二醇、盐酸、稀硫酸、有机胺等或其混合塑化剂。
  12. 根据权利要求6所述的制备方法,其特征在于,热还原的温度为1300-3000摄氏度。
  13. 根据权利要求6所述的制备方法,其特征在于,步骤2重复两次以上。
  14. 如权利要求1所述的结构功能一体化石墨烯材料在高强度、高模量、高导电和高导热的石墨烯材料中的应用。
PCT/CN2019/122044 2019-11-29 2019-11-29 一种结构功能一体化石墨烯材料及其制备方法 WO2021102933A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122044 WO2021102933A1 (zh) 2019-11-29 2019-11-29 一种结构功能一体化石墨烯材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122044 WO2021102933A1 (zh) 2019-11-29 2019-11-29 一种结构功能一体化石墨烯材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021102933A1 true WO2021102933A1 (zh) 2021-06-03

Family

ID=76129868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122044 WO2021102933A1 (zh) 2019-11-29 2019-11-29 一种结构功能一体化石墨烯材料及其制备方法

Country Status (1)

Country Link
WO (1) WO2021102933A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534868A (zh) * 2011-12-26 2012-07-04 浙江大学 一种高强度宏观石墨烯导电纤维的制备方法
CN102586951A (zh) * 2012-01-18 2012-07-18 浙江大学 一种基于石墨烯/聚丙烯腈复合碳纤维的制备方法
US20140308449A1 (en) * 2013-04-15 2014-10-16 Aruna Zhamu Process for producing continuous graphitic fibers from living graphene molecules
CN105648579A (zh) * 2016-03-31 2016-06-08 浙江大学 一种超细石墨烯纤维及其制备方法
CN108793149A (zh) * 2018-07-26 2018-11-13 杭州高烯科技有限公司 一种增强氧化石墨烯膜的方法及一种高强石墨烯膜的制备方法
KR20190110726A (ko) * 2018-03-21 2019-10-01 재단법인차세대융합기술연구원 금속 나노입자가 함유된 그래핀 섬유의 제조 방법 및 이를 이용한 멀티 센서

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534868A (zh) * 2011-12-26 2012-07-04 浙江大学 一种高强度宏观石墨烯导电纤维的制备方法
CN102586951A (zh) * 2012-01-18 2012-07-18 浙江大学 一种基于石墨烯/聚丙烯腈复合碳纤维的制备方法
US20140308449A1 (en) * 2013-04-15 2014-10-16 Aruna Zhamu Process for producing continuous graphitic fibers from living graphene molecules
CN105648579A (zh) * 2016-03-31 2016-06-08 浙江大学 一种超细石墨烯纤维及其制备方法
KR20190110726A (ko) * 2018-03-21 2019-10-01 재단법인차세대융합기술연구원 금속 나노입자가 함유된 그래핀 섬유의 제조 방법 및 이를 이용한 멀티 센서
CN108793149A (zh) * 2018-07-26 2018-11-13 杭州高烯科技有限公司 一种增强氧化石墨烯膜的方法及一种高强石墨烯膜的制备方法

Similar Documents

Publication Publication Date Title
CN110982114B (zh) 芳纶/碳纳米管杂化气凝胶薄膜、其制备方法及应用
CN110938898B (zh) 一种石墨烯纤维的制备方法
CN111003703B (zh) 一种结构功能一体化石墨烯材料及其制备方法
KR101537987B1 (ko) 복합체 탄소나노튜브 파이버/얀의 제조 방법
US8858776B2 (en) Preparation of graphene sheets
CN104418316B (zh) 碳纳米管海绵体及其制备方法
US20150111449A1 (en) Method for preparing graphene oxide films and fibers
WO2017128648A1 (zh) 一种超柔性高导热石墨烯膜及其制备方法
Ma et al. Laser programmable patterning of RGO/GO Janus paper for multiresponsive actuators
KR20170121504A (ko) 전계유도 습식 방사 공정을 이용한 그래핀산화물 섬유, 그래핀 섬유, 그래핀 또는 그래핀(산화물) 복합 섬유의 제조방법
Meng et al. 2d crystal–based fibers: Status and challenges
KR101073853B1 (ko) 기재 상에 나노 구조체로 이루어진 망상 필름의 제조 방법 및 그에 따라 제조된 나노 구조체 망상 필름이 구비된 기재
JP2015524883A (ja) グラフェン繊維およびその形成方法
JP7050667B2 (ja) 一体化した高配向ハロゲン化グラフェンのモノリス膜
JP2010083755A (ja) カーボンナノチューブ複合材料及びその製造方法
JP2011105569A (ja) グラフェン薄膜の製膜方法
KR101928911B1 (ko) 전계유도 습식 방사 공정을 이용한 그래핀산화물 섬유, 그래핀 섬유, 그래핀 또는 그래핀(산화물) 복합 섬유의 제조방법
JP2010047761A (ja) カーボンナノチューブ/ポリマー複合材料の製造方法
CN110607577B (zh) 石墨烯气凝胶中空纤维、其制备方法及应用
CN105752963A (zh) 一种基于石墨烯的可折叠电热膜器件
US20180209075A1 (en) Graphene fiber and method of manufacturing same
CN109502570B (zh) 导电的大应变碳纳米管复合薄膜、制备方法及测试方法
CN107687086B (zh) 多孔石墨烯-碳纳米管复合纤维及其快速制备方法
JP7255911B2 (ja) 溶媒の可塑化および発泡によるエアロゲル材料の製造方法
JP2010091844A (ja) カーボンナノチューブ配向膜の作製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954529

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19954529

Country of ref document: EP

Kind code of ref document: A1