WO2021102922A1 - 一种高强度可溶性镁合金材料的制备方法 - Google Patents

一种高强度可溶性镁合金材料的制备方法 Download PDF

Info

Publication number
WO2021102922A1
WO2021102922A1 PCT/CN2019/122014 CN2019122014W WO2021102922A1 WO 2021102922 A1 WO2021102922 A1 WO 2021102922A1 CN 2019122014 W CN2019122014 W CN 2019122014W WO 2021102922 A1 WO2021102922 A1 WO 2021102922A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
alloy
melt
nickel
refining
Prior art date
Application number
PCT/CN2019/122014
Other languages
English (en)
French (fr)
Inventor
石志纲
刘胜濠
孟祥涛
Original Assignee
福建坤孚股份有限公司
上海格邦自动化科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建坤孚股份有限公司, 上海格邦自动化科技有限公司 filed Critical 福建坤孚股份有限公司
Priority to US16/756,854 priority Critical patent/US11473179B2/en
Priority to PCT/CN2019/122014 priority patent/WO2021102922A1/zh
Publication of WO2021102922A1 publication Critical patent/WO2021102922A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/08Down-hole devices using materials which decompose under well-bore conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/134Bridging plugs

Definitions

  • the invention relates to a method for preparing a high-strength soluble magnesium alloy material.
  • the purpose of the present invention is to overcome the above-mentioned defects and provide a method for preparing a high-strength soluble magnesium alloy material.
  • the reason for the uneven dissolution of the bridge plug material lies in the fact that the production of high-strength soluble magnesium alloy materials requires the addition of nickel to the magnesium alloy material, and the control of nickel and other alloy elements in the magnesium alloy bridge plug material To control the dissolution rate of the completion tool under specific conditions; the melting point of nickel is 1455°C, the density is 8.9g/cm3, while the melting point of magnesium is 648.8°C, the density is 1.748.9g/cm3, and the boiling point is only 1107°C; The melting point of nickel is high and the density is high, and the normal maximum temperature of the magnesium alloy melting furnace should not exceed 800°C.
  • Mg25Ni means Ni content is (23-27)%;
  • Mg30Ni means Ni content is (27 ⁇ 32)%;
  • This magnesium-nickel master alloy is close to the magnesium-nickel eutectic structure and forms a MgNi phase. It has a low melting point and is easy to add. This solves the difficulty of adding nickel to magnesium alloy products in smelting, and by adding other master alloys Methods such as improving the tensile strength and ductility of magnesium alloys.
  • a method for preparing high-strength soluble magnesium alloy material includes the following steps:
  • Refining Refining the fully alloyed magnesium melt at 750 ⁇ 20°C with RJ-6 as the refining solvent. After refining for about 5 minutes, let it stand for about 10 minutes.
  • the tensile strength of the produced magnesium alloy is 409 MPa; the dissolution rate is 52.63-58.16 mg/cm2/hr.
  • the step (1-1) charging first dry the moisture in the nickel powder particles, turn on the power supply of the intermediate frequency furnace or industrial frequency furnace, slowly heat the crucible to dark red, and load the magnesium ingot into the middle, intermediate frequency furnace or industrial frequency furnace. The frequency furnace continues to heat until the magnesium ingot is melted, and the temperature of the magnesium melt is above 700°C and the nickel powder is slowly added, stirring while adding.
  • the cooling material in the step (1-3) is magnesium ingot.
  • the order of addition in the step (3-2) is: Zn, Mg30Cu, Mg30Gd, Mg30Ni, Mg30Y, Mg30Zr; addition temperature: Zn 720 ⁇ 740°C; Mg30Cu 720 ⁇ 740°C; Mg30Gd 720 ⁇ 740°C; Mg30Ni 740 ⁇ 760°C; Mg30Y 740 ⁇ 760°C; Mg30Zr 780 ⁇ 800°C.
  • the beneficial effect of the present invention is that the magnesium alloy material produced by the present invention solves the difficulty of adding nickel to magnesium alloy products during smelting, so that the nickel is evenly distributed in the magnesium alloy, and the magnesium alloy can be dissolved.
  • the tensile strength and ductility are improved by adding metals of different compositions; the bridge plug is made into the plugging of oil and gas wells, so that the bridge plug has good tensile strength and maintains airtightness. It can dissolve evenly in special solutions in the later stage, and is completely soluble in a specified time under different geological temperatures and different geological salinity conditions, maintaining good characteristics.
  • a method for preparing high-strength soluble magnesium alloy material includes the following steps:
  • the intermediate frequency heating furnace and the power frequency heating furnace can be mixed with magnesium and nickel, which is conducive to the rapid heating and melting of the nickel plate; if nickel powder particles are used, they can be installed first The original magnesium ingot, after the magnesium ingot is completely melted, slowly add the nickel powder at the temperature of the magnesium melt above 700°C, and stir while adding.
  • the properties of the solid-liquid heterogeneous melting of the compound Mg2Ni at 768°C are determined.
  • the boiling point of magnesium is 1090°C, so the melting temperature of magnesium-nickel master alloy should not be too high.
  • the maximum melting temperature should not exceed 920°C.
  • the nickel content is generally controlled below 35%, which is beneficial to adding in the subsequent alloying process.
  • MgNi phase (I ⁇ Mg+Mg2Ni) is gradually formed in the Mg-Ni alloy melt, and a large amount of heat will be released, which will make the temperature of the alloy melt continue to rise, which also accelerates the melting rate of metallic nickel in the magnesium melt;
  • you can turn off the heating power or reduce the heating power keep stirring the Mg-Ni alloy melt, pay attention to observe and monitor the change of the alloy melt temperature, when the melt temperature reaches about 860°C
  • the heating power is turned off, try to control the temperature of the alloy melt to continue to rise; when the melt temperature is as high as about 900 °C, you can appropriately add a spare cooling material (magnesium ingot) to control the melt temperature to continue to rise, and the cold material should not be added at one time
  • Excessive cooling of the alloy melt is not conducive to the formation of the Mg2Ni phase structure, until the metal nickel is completely melted into the magnesium melt; the alloy melt must be continuously stirred throughout the
  • alloying elements Zn, Gd, Y, Cu, Ni, Zr prepare and add alloying elements Zn, Gd, Y, Cu, Ni, Zr. Except for Zn directly added metallic zinc; the others are all added with Mg30Gd master alloy, Mg30Y master alloy, Mg30Zr master alloy, Mg30Cu master alloy, Mg30Ni master alloy; the order of addition is: Zn, Mg30Cu, Mg30Gd, Mg30Ni, Mg30Y, Mg30Zr; addition temperature :Zn 720 ⁇ 740°C; Mg30Cu 720 ⁇ 740°C; Mg30Gd 720 ⁇ 740°C; Mg30Ni 740 ⁇ 760°C; Mg30Y 740 ⁇ 760°C; Mg30Zr 780 ⁇ 800°C; before adding, all alloying elements are preheated to 250 ⁇ 300°C; the addition process must be added slowly, stirring while adding.
  • refining refining the fully alloyed magnesium melt at 750 ⁇ 20°C, and the solvent used for refining is RJ-6.
  • the magnesium alloy melt should be fully stirred without leaving dead corners and sprinkled on the wave peaks.
  • the range of stirring should not cause the magnesium liquid to splash; after refining for about 5 minutes, let it stand for about 10 minutes, and take a sample for the second analysis of the composition in front of the furnace. If the analysis result does not meet the chemical composition requirements of the grade, a second addition of alloying elements is required until the composition meets the requirements. Adding alloying elements should not exceed 3 times at most, otherwise it will remelt after pouring.
  • the elements that have decreased during cooling and pouring shall be taken as the middle and upper limit to be qualified.
  • the refining time is 15-20 minutes, it is appropriate to observe the change state of the alloy melt during the refining process. If the magnesium melt is observed to be upside down in a mirror state, it means the refining is qualified.
  • Casting adopt low-pressure filling and electromagnetic stirring to form the mold; reasonably adjust the process parameters during the casting process: alloy melt temperature, pouring speed, water cooling strength, distribution funnel, etc.; prevent hot cracks, cold barriers and other defects in the casting rods defect.
  • Cast rods are extruded after homogenization heat treatment; since the casting rods will produce component segregation and shrinkage stress during the rapid solidification process, in order to eliminate the segregation of components and internal stress in the casting rods, improve the follow-up of the casting rods.
  • Process machinability Perform homogenization heat treatment at 410 ⁇ 20°C for 16 hours on the cast rods, then open the furnace door, cool down with the furnace for 30 minutes, and then exit the furnace for air cooling; according to the requirements of the extrusion process, the equipment and bars are heated in sections for extrusion molding.
  • the produced magnesium alloy material contains Cu: 0.5-2.5% (weight ratio), Ni: 0.5-1.5% (weight ratio), Gd: 8.0-10.0% (weight ratio), Y: 2.0-4.0% (weight ratio) , Zn: 0.5-2.0% (weight ratio).
  • the tensile strength properties of the produced magnesium alloy material samples are as follows:
  • the dissolution rate of the prepared magnesium alloy material sample is 52.63-58.16mg/cm2/hr; see the following table for details:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Continuous Casting (AREA)

Abstract

一种高强度可溶性镁合金材料的制备方法,包括以下步骤:(1)制作Mg25Ni或Mg30Ni镁镍中间合金;(2)装料;(3)升温熔化并合金化;(4)精炼;对合金化充分的镁熔体在750±20℃进行精炼,精炼用溶剂为RJ-6,精炼约5分钟后,静置约10分钟;解决了在熔炼这种需要添加镍元素到镁合金产品中的难度,使镍在镁合金中分布均匀;该镁合金材料制作成油气井进行封堵的桥塞,使桥塞具有很好的抗拉强度,保持密封性,又能后期特殊溶液下溶解的均匀,不同地质温度和不同地质矿化度条件下、在规定时间内完全可溶,保持很好的特性。

Description

一种高强度可溶性镁合金材料的制备方法 技术领域
本发明涉及一种高强度可溶性镁合金材料的制备方法。
背景技术
油气勘探开发对象逐渐向低渗透、低品位资源转变;水平井分段压裂技术成为储层改造、有效提高单井产量的重要手段;作为分段压裂的重要工具之一,桥塞应用日益广泛,通过桥塞对油气井进行封堵后,桥塞需要有较好的抗拉强度及延展性;如需要对该油气井进行继续施工的话,往往需要采用专用的设备对桥塞进行专业的钻通处理,以便去除桥塞的封堵效果,而钻通桥塞的过程较为复杂,且操作起来不够便利,同时碎屑和作业液体易污染储层,所以现在研发可溶性桥塞来解决这一问题;而现有工艺制造的镁合金桥塞可溶性桥塞存在抗拉强度、延展性较差,及桥塞材料溶解不均匀的问题。
技术问题
本发明的目的是克服上述缺陷,提供一种高强度可溶性镁合金材料的制备方法。
我们经过大量实验研究,发现桥塞材料溶解不均匀的问题的原因在于:制作高强度可溶性镁合金材料,需要在镁合金材料中添加镍,通过控制镍及其他合金元素在镁合金桥塞材料中的含量,来控制完井工具,在特定条件下的溶解速率;镍的熔点为1455℃,密度8.9g/cm3,而镁的熔点为648.8℃,密度1.748.9g/cm3,沸点只有1107℃;镍的熔点高密度大,镁合金熔炉温度正常最高不宜超过800℃,所以在这种镁合金材料熔炼过程中,如果直接在镁熔体中加入金属镍,将会给熔炼带来很大的难度;首先熔炼速度很缓慢,其次由于密度超过于镁的五倍以上,金属镍加入镁熔体中很快将沉降在坩埚底部,很难形成Mg2Ni合金化组织,造成在规定的时间内材料溶解不均匀,影响施工。
技术解决方案
为了解决这一熔炼难关,我们自己研发生产出了,镁镍中间合金两款1、Mg25Ni即Ni含量为(23~27)%;2、Mg30Ni即Ni含量为(27~32)%;这两款镁镍中间合金,接近镁镍共晶组织,形成MgNi相,具有熔点低,便于添加,这样就解决了在熔炼这种需要添加镍元素到镁合金产品中的难度,并通过添加其他中间合金等方法提高镁合金的抗拉强度及延展性。
本发明采用以下技术方案:
一种高强度可溶性镁合金材料的制备方法,包括以下步骤:
(1)制作Mg25Ni或Mg30Ni镁镍中间合金。
(1-1)装料:先开启中频炉或工频炉电源,缓慢加热坩埚至暗红色;将镍料装在坩埚四周,镁锭装入中间,中频炉或工频炉继续加热至镁锭及镍料融化后进行搅拌。
(1-2)装料完毕开始升温熔化,镁镍中间合金的熔炼温度为920℃,镍含量控制在23%-35%之间。
(1-3)当金属镍已熔化2/3时,调小加热功率,不断搅拌Mg-Ni合金熔体,注意观察并监测合金熔体温度的变化状况,当熔体温度达860℃时,关闭加热电源,尽量控制合金熔体温度继续上升;当熔体温度高达900℃左右时,可适当添加备用的降温冷料,直至金属镍全部熔入镁熔体。
(1-4)当合金熔体温度基本稳定,不再有上升趋势,在搅拌合金熔体时也不再感觉坩埚底部有不熔物时,可逐步加入余下冷料;调整浇注温度至680~760℃,浇入铸锭机锭模后冷却备用。
(2)准备好原镁锭、锌锭、Mg30Gd中间合金、Mg30Y中间合金、Mg30Zr中间合金、Mg30Cu中间合金、Mg30Ni中间合金;待坩埚预热至暗红色(约500℃)开始按顺序装料。
(3)升温熔化并合金化。
(3-1)装料完毕开始升温熔化,至坩埚中料全部熔化,熔体温度达700±20℃时,用氩气充分搅拌合金熔体,并撒上适量RJ-5溶剂,制作 10-15分钟后静置15-20分钟;取样作第一次炉前成分分析,并清除坩埚底部熔渣。
(3-2)参照第一次炉前成分分析分析结果及总配料数,进行配制添加合金元素Zn、Gd、Y 、Cu、Ni、Zr;除Zn直接添加金属锌外; 其余都以Mg30Gd中间合金、Mg30Y中间合金、Mg30Zr中间合金、Mg30Cu中间合金、Mg30Ni中间合金添加;在添加前,所有中间合金预热至250~300℃。
(4)精炼;对合金化充分的镁熔体在750±20℃进行精炼,精炼用溶剂为RJ-6,精炼约5分钟后,静置约10分钟。
(5)静置;精炼完成后,先清理坩埚周边熔渣与镁熔体液面熔渣,并撒上覆盖剂。
(6)浇铸;采用低压装注,电磁搅拌结晶器成形。
(7)铸棒均匀化热处理后挤压成型。
此时,制作出的镁合金抗拉强度为409 MPa;溶解速率为52.63-58.16mg/cm2/hr。
优选的,所述步骤(1-1)装料:先烘干镍粉颗粒中的潮气,开启中频炉或工频炉电源,缓慢加热坩埚至暗红色,镁锭装入中间,中频炉或工频炉继续加热至镁锭融化,镁熔体温度在700℃以上缓慢添加镍粉,边添加边搅拌。
优选的,所述步骤(1-3)的降温冷料为镁锭。
优选的,所述步骤(3-2)中的添加顺序为:Zn、Mg30Cu、Mg30Gd、Mg30Ni、Mg30Y、Mg30Zr;添加温度:Zn 720~740℃;Mg30Cu 720~740℃;Mg30Gd 720~740℃;Mg30Ni 740~760℃;Mg30Y 740~760℃;Mg30Zr 780~800℃。
有益效果
本发明的有益效果在于:采用本发明制作的镁合金材料,解决了在熔炼这种需要添加镍元素到镁合金产品中的难度,使的镍在镁合金中分布均匀,也使得镁合金可以溶解的均匀,同时通过添加不同成分的金属,使之抗拉强度,延展性都得到提升;制作成油气井进行封堵的桥塞,使的桥塞具有很好的抗拉强度,保持密封性,又能后期特殊溶液下溶解的均匀,不同地质温度和不同地质矿化度条件下、在规定时间内完全可溶,保持很好的特性。
本发明的实施方式
为了使本发明的目的、技术方案更加清楚,以下结合附图及实施例,对本发明进行进一步说明:
一种高强度可溶性镁合金材料的制备方法,包括以下步骤:
一、制作Mg25Ni或Mg30Ni镁镍中间合金。
1.1、装料:先开启中频或工频炉电源,缓慢加热坩埚至暗红色;如果用镍薄板先进行预热,如果用镍粉颗粒也必须先烘干镍粉颗粒中的潮气;将经加热或未经加热的镍板装在坩埚四周镁锭装入中间,中频加热炉、工频加热炉可镁镍混合装炉,这样有利于镍板快速加热熔化;如果选用镍粉颗粒,可先装原镁锭,待镁锭完全熔化后,镁熔体温度在700℃以上缓慢添加镍粉,边添加边搅拌。
1.2、装料完毕开始升温熔化,由于金属镍熔点高,需要吸收大量热能才能熔化,而镁的熔点低,同时装入坩埚中的这两种合金元素,镁先熔化,而镍还需要一个较长的吸热过程,才缓慢熔入镁熔体中形成合金组织,根据合金相图理论,原子结构理论及热力学动力学理论,Mg-Ni体系内在温度为512℃和1082℃时,有两个共晶型无变量转变,在768℃有包晶型无变量转变,并确定化合物Mg2Ni在768℃时固液异成分熔化的性质。而镁的沸点为1090℃,所以镁镍中间合金的熔炼温度不宜过高,熔炼温度最高不得超过920℃,镍含量一般都控制在35%以下,这样有利于在后续合金化过程中添加。
1.3、当镁全部熔化后,坩埚中的镍板也已经吸收了大量的热能,也在开始缓慢熔化,这时适当搅拌镁熔体,会加速镍板的熔化,随着镍板的吸热熔化,在Mg-Ni合金熔体中逐渐形成MgNi相(I≒Mg+Mg2Ni),并将放出大量热量,将使合金熔体温度不断上升,这样也加速了金属镍在镁熔体的熔化速度;当金属镍已熔化2/3以上时,可关闭加热电源或调小加热功率,不断搅拌Mg-Ni合金熔体,注意观察并监测合金熔体温度的变化状况,当熔体温度达860℃左右时,关闭加热电源,尽量控制合金熔体温度继续上升;当熔体温度高达900℃左右时,可适当添加备用的降温冷料(镁锭),控制熔体温度继续上升,冷料一次不宜添加过多,合金熔体过冷不利于Mg2Ni相组织的形成,直至金属镍全部熔入镁熔体;整个过程要不断搅拌合金熔体,逐步使镁镍中间合金的合金化组织均匀减少偏析;在Mg-Ni中间合金熔化过程中关键的控制过程是金属镍在熔化过程中先是吸收大量热量,逐步熔入镁熔体中,并形成Mg2Ni相,在形成Mg2Ni组织过程中将又放出大量的热量,将使合金熔体温度快速上升,所以在装料前先预留部分镁锭作冷料,来控制合金熔体温度的快速上升。
1.4、当合金熔体温度基本稳定,不再有上升趋势,在搅拌合金熔体时也不再感觉坩埚底部有不熔物时,可逐步加入余下冷料;调整浇注温度至680~760℃,温度过低流动性不好,过高合金熔体吸气严重,浇注成形不好,浇入铸锭机锭模后冷却备用。
二、准备好原镁锭、锌锭、Mg30Gd中间合金、Mg30Y中间合金、Mg30Zr中间合金、Mg30Cu中间合金、Mg30Ni中间合金;待坩埚预热至暗红色(约500℃)开始按顺序装料;在装料前先在坩埚底部及周边撒上适量溶解剂,大块回炉料及镁锭装上部;不得出现搭桥现象;边装边撒上适量溶剂;如一次性装不完的余料,可在升温熔化过程中逐步添加。
三、升温熔化并合金化。
3.1装料完毕开始升温熔化,至坩埚中料全部熔化,熔体温度达700±20℃时,用氩气充分搅拌合金熔体,并撒上适量RJ-5溶剂,一是防止镁液燃烧,二是对合金熔体进行第一次精炼,约10-15分钟后静置15-20分钟;取样作第一次炉前成分分析,并清除坩埚底部熔渣。
3.2、参照第一次炉前成分分析分析结果及总配料数,进行配制添加合金元素Zn、Gd、Y 、Cu、Ni、Zr。除Zn直接添加金属锌外; 其余都以Mg30Gd中间合金、Mg30Y中间合金、Mg30Zr中间合金、Mg30Cu中间合金、Mg30Ni中间合金添加;添加顺序为:Zn、Mg30Cu、Mg30Gd、Mg30Ni、Mg30Y、Mg30Zr;添加温度:Zn 720~740℃;Mg30Cu 720~740℃;Mg30Gd 720~740℃;Mg30Ni 740~760℃;Mg30Y 740~760℃;Mg30Zr 780~800℃;在添加前,所有合金元素预热至250~300℃;添加过程必须缓慢添加,边添加边搅拌。在添加合金元素过程中,可撒上适量RJ-5溶剂,防止镁液燃烧;每种合金元素添加完后,充分搅拌5分钟后,再添加另一种合金元素,待所有合金元素添加完成后,继续搅拌充分10~15分钟,逐步使其充分合金化;然后调整合金熔体温度至750±20℃开始精炼。
四、精炼;对合金化充分的镁熔体在750±20℃进行精炼,精炼用溶剂为RJ-6,在精炼过程中要充分搅拌镁合金熔体,不留死角,并在波峰上撒上一定量的精炼剂,搅拌幅度以不使镁液飞溅为宜;先精炼约5分钟后,静置约10分钟,取样进行第二次炉前成分分析。如果分析结果不符合牌号化学成分要求,需要进行第二次补加合金元素,直至成分达到要求。补加合金元素,最多不得超过3次,否则浇注后重溶。如果经检测已达到合金牌号化学成分要求范围的中限,降温浇注时有下降的元素取中上限表示合格。继续精炼,精炼时间15~20分钟,以观察合金熔体在精炼过程中的变化状态确定为宜,如果观察到镁熔体上下翻转呈呈镜面态,表示精炼合格。
五、静置;精炼完成后,先清理坩埚周边熔渣与镁熔体液面熔渣,并撒上覆盖剂;设定合金熔体温度750±20℃,高温静置20分钟后,设定合金熔体温度730±20℃,静置40~60分钟。取炉前样,做炉前成分分析。不合格,先清除坩埚底部熔渣,补加合金元素,进行合金化,精炼等按规范重复。如果检测结果合格,调整合金熔体至浇注温度710±20℃,准备浇注。
六、浇铸;采用低压装注,电磁搅拌结晶器成形;在浇注过程中合理调控工艺参数:合金熔体温度、浇注速度、水冷强度、分配漏斗等;防止铸棒产生热裂、冷隔等不良缺陷。
七、铸棒均匀化热处理后挤压成型;由于铸棒在快速凝固过程中,将会产生成分偏析及收缩应力,为了消除铸棒内部存在的成分区域偏析及内应力的存在,提高铸棒后续工序可加工性。对铸棒进行410±20℃均匀化热处理16小时,然后开炉门,随炉冷却30分钟后,退出炉膛空冷;按挤压工艺要求对设备及棒料进行分段加热进行挤压成型。
制作出的镁合金材料含有Cu:0.5-2.5%(重量比),Ni:0.5-1.5%(重量比),Gd:8.0-10.0%(重量比),Y:2.0-4.0%(重量比),Zn:0.5-2.0%(重量比)。
制作出的镁合金材料样品的抗拉强度性能如下表:
  试样编号 试样序号 抗拉强度Rm Rp0.2 断后伸长率A
单位     MPa MPa %
试样1 1-1 φ93-1 397.8558 336.1346 4.56
试样2 1-2 φ93-2 409.3806 327.7214 5.40
试样3 1-3 φ93-3 405.0152 322.1891 5.60
制作出的镁合金材料样品的溶解速率为52.63-58.16mg/cm2/hr;详见下表:
Figure 438809dest_path_image001
以上所述,仅是本发明较佳实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所作的任何细微修改、等同变化与修饰,仍属于本发明的保护范围。

Claims (4)

  1. 一种高强度可溶性镁合金材料的制备方法,其特征在于,包括以下步骤:
    (1)制作Mg25Ni或Mg30Ni镁镍中间合金;
    (1-1)装料:先开启中频炉或工频炉电源,缓慢加热坩埚至暗红色;将镍料装在坩埚四周,镁锭装入中间,中频炉或工频炉继续加热至镁锭及镍料融化后进行搅拌;
    (1-2)装料完毕开始升温熔化,镁镍中间合金的熔炼温度为920℃,镍含量控制在23%-35%之间;
    (1-3)当金属镍已熔化2/3时,调小加热功率,不断搅拌Mg-Ni合金熔体,注意观察并监测合金熔体温度的变化状况,当熔体温度达860℃时,关闭加热电源,尽量控制合金熔体温度继续上升;当熔体温度高达900℃左右时,可适当添加备用的降温冷料,直至金属镍全部熔入镁熔体;
    (1-4)当合金熔体温度基本稳定,不再有上升趋势,在搅拌合金熔体时也不再感觉坩埚底部有不熔物时,可逐步加入余下冷料;调整浇注温度至680~760℃,浇入铸锭机锭模后冷却备用;
    (2)准备好原镁锭、锌锭、Mg30Gd中间合金、Mg30Y中间合金、Mg30Zr中间合金、Mg30Cu中间合金、Mg30Ni中间合金;待坩埚预热至暗红色(约500℃)开始按顺序装料;
    (3)升温熔化并合金化;
    (3-1)装料完毕开始升温熔化,至坩埚中料全部熔化,熔体温度达700±20℃时,用氩气充分搅拌合金熔体,并撒上适量RJ-5溶剂,制作 10-15分钟后静置15-20分钟;取样作第一次炉前成分分析,并清除坩埚底部熔渣;
    (3-2)参照第一次炉前成分分析分析结果及总配料数,进行配制添加合金元素Zn、Gd、Y 、Cu、Ni、Zr;除Zn直接添加金属锌外; 其余都以Mg30Gd中间合金、Mg30Y中间合金、Mg30Zr中间合金、Mg30Cu中间合金、Mg30Ni中间合金添加;在添加前,所有中间合金预热至250~300℃;
    (4)精炼;对合金化充分的镁熔体在750±20℃进行精炼,精炼用溶剂为RJ-6,精炼约5分钟后,静置约10分钟;
    (5)静置;精炼完成后,先清理坩埚周边熔渣与镁熔体液面熔渣,并撒上覆盖剂;
    (6)浇铸;采用低压装注,电磁搅拌结晶器成形;
    (7)铸棒均匀化热处理后挤压成型;
    此时,制作出的镁合金抗拉强度为409 MPa;溶解速率为52.63-58.16mg/cm2/hr。
  2. 根据权利要求1所述的一种高强度可溶性镁合金材料的制备方法,其特征在于:
    所述步骤(1-1)装料:先烘干镍粉颗粒中的潮气,开启中频炉或工频炉电源,缓慢加热坩埚至暗红色,镁锭装入中间,中频炉或工频炉继续加热至镁锭融化,镁熔体温度在700℃以上缓慢添加镍粉,边添加边搅拌。
  3. 根据权利要求1所述的一种高强度可溶性镁合金材料的制备方法,其特征在于:
    所述步骤(1-3)的降温冷料为镁锭。
  4. 根据权利要求1所述的一种高强度可溶性镁合金材料的制备方法,其特征在于:
    所述步骤(3-2)中的添加顺序为:Zn、Mg30Cu、Mg30Gd、Mg30Ni、Mg30Y、Mg30Zr;添加温度:Zn 720~740℃;Mg30Cu 720~740℃;Mg30Gd 720~740℃;Mg30Ni 740~760℃;Mg30Y 740~760℃;Mg30Zr 780~800℃。
PCT/CN2019/122014 2019-11-29 2019-11-29 一种高强度可溶性镁合金材料的制备方法 WO2021102922A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/756,854 US11473179B2 (en) 2019-11-29 2019-11-29 Method for preparing high-strength, dissolvable magnesium alloy material
PCT/CN2019/122014 WO2021102922A1 (zh) 2019-11-29 2019-11-29 一种高强度可溶性镁合金材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/122014 WO2021102922A1 (zh) 2019-11-29 2019-11-29 一种高强度可溶性镁合金材料的制备方法

Publications (1)

Publication Number Publication Date
WO2021102922A1 true WO2021102922A1 (zh) 2021-06-03

Family

ID=76128996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122014 WO2021102922A1 (zh) 2019-11-29 2019-11-29 一种高强度可溶性镁合金材料的制备方法

Country Status (2)

Country Link
US (1) US11473179B2 (zh)
WO (1) WO2021102922A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094259A (zh) * 2022-06-15 2022-09-23 安徽飞翔新材料科技有限公司 一种铜镁合金的制备方法
CN115572927A (zh) * 2022-11-09 2023-01-06 上海交通大学 一种大尺寸稀土镁合金铸锭均匀化热处理方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147760A1 (zh) * 2021-01-08 2022-07-14 上海格邦自动化科技有限公司 一种快速溶解的高塑性可溶镁合金材料及其制备方法
CN114855007B (zh) * 2022-03-31 2023-12-05 有研金属复材(忻州)有限公司 一种高强度快速溶解镁合金材料的制备方法
CN116287919A (zh) * 2023-02-01 2023-06-23 江西师达镁合金技术有限公司 一种可溶性镁钐稀土合金及其制备方法
CN117488121B (zh) * 2023-11-13 2024-04-09 青岛科技大学 一种铝箔生产用优质铝基中间合金制造的新方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113096A (ja) * 1993-10-18 1995-05-02 Yushiro Chem Ind Co Ltd マグネシウム合金用水溶性加工油剤
CN104120320A (zh) * 2014-07-04 2014-10-29 东莞宜安科技股份有限公司 一种可降解稀土镁合金医用生物材料及制备方法
CN107385245A (zh) * 2017-06-09 2017-11-24 西安理工大学 基于油气开采用可溶性合金压裂球的制造方法
JP2017206757A (ja) * 2016-05-20 2017-11-24 不二ライトメタル株式会社 分解性マグネシウム合金
CN107523732A (zh) * 2017-08-15 2017-12-29 太原科技大学 一种含Na快速降解镁合金及其制备方法
CN109161768A (zh) * 2018-10-23 2019-01-08 重庆大学 一种含铜高强韧快速降解镁合金及其制备方法与用途
CA3012511A1 (en) * 2017-07-27 2019-01-27 Terves Inc. Degradable metal matrix composite
CN109295368A (zh) * 2018-10-23 2019-02-01 重庆大学 含镍高强韧可控降解镁合金材料及其制备方法和应用
CN109628810A (zh) * 2018-11-29 2019-04-16 山东银光钰源轻金属精密成型有限公司 一种高强度易腐蚀的变形镁合金及其制备方法
CN110106416A (zh) * 2019-05-24 2019-08-09 山东省科学院新材料研究所 一种超高强度可溶解镁合金及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10689740B2 (en) * 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
CA2991310C (en) * 2015-07-23 2023-08-08 Hydrexia Pty Ltd Mg-based alloy for hydrogen storage
CN107739858B (zh) * 2017-10-20 2019-11-12 宝钛集团有限公司 一种镍锰中间合金在制备ErNiCr-3合金中的应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07113096A (ja) * 1993-10-18 1995-05-02 Yushiro Chem Ind Co Ltd マグネシウム合金用水溶性加工油剤
CN104120320A (zh) * 2014-07-04 2014-10-29 东莞宜安科技股份有限公司 一种可降解稀土镁合金医用生物材料及制备方法
JP2017206757A (ja) * 2016-05-20 2017-11-24 不二ライトメタル株式会社 分解性マグネシウム合金
CN107385245A (zh) * 2017-06-09 2017-11-24 西安理工大学 基于油气开采用可溶性合金压裂球的制造方法
CA3012511A1 (en) * 2017-07-27 2019-01-27 Terves Inc. Degradable metal matrix composite
CN107523732A (zh) * 2017-08-15 2017-12-29 太原科技大学 一种含Na快速降解镁合金及其制备方法
CN109161768A (zh) * 2018-10-23 2019-01-08 重庆大学 一种含铜高强韧快速降解镁合金及其制备方法与用途
CN109295368A (zh) * 2018-10-23 2019-02-01 重庆大学 含镍高强韧可控降解镁合金材料及其制备方法和应用
CN109628810A (zh) * 2018-11-29 2019-04-16 山东银光钰源轻金属精密成型有限公司 一种高强度易腐蚀的变形镁合金及其制备方法
CN110106416A (zh) * 2019-05-24 2019-08-09 山东省科学院新材料研究所 一种超高强度可溶解镁合金及其制备方法和应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094259A (zh) * 2022-06-15 2022-09-23 安徽飞翔新材料科技有限公司 一种铜镁合金的制备方法
CN115094259B (zh) * 2022-06-15 2023-08-25 安徽飞翔新材料科技有限公司 一种铜镁合金的制备方法
CN115572927A (zh) * 2022-11-09 2023-01-06 上海交通大学 一种大尺寸稀土镁合金铸锭均匀化热处理方法
CN115572927B (zh) * 2022-11-09 2023-11-07 上海交通大学 一种大尺寸稀土镁合金铸锭均匀化热处理方法

Also Published As

Publication number Publication date
US11473179B2 (en) 2022-10-18
US20210404041A1 (en) 2021-12-30

Similar Documents

Publication Publication Date Title
WO2021102922A1 (zh) 一种高强度可溶性镁合金材料的制备方法
CN101914709B (zh) 一种高强韧铸造铝合金的制备方法
CN102409213B (zh) 一种热处理强化的高强镁合金的制备方法
CN107447144B (zh) 一种耐热稀土铝合金及其制备方法
CN109706354A (zh) 一种具有良好塑性的材料及其制备方法
CN108300884B (zh) 一种亚共晶Al-Mg2Si合金的变质及细化方法
CN104532078A (zh) 一种ahs铝合金及其铝合金挤压棒
CN111139386B (zh) 一种高强度可溶性镁合金材料的制备方法
CN105219992B (zh) 一种AlV55中间合金的制备方法
CN109825731A (zh) 一种建筑门窗加工用高强度铝合金材料的制备方法
CN112126804A (zh) 一种铜模冷却和直接时效制备铜铬铌合金棒材的方法
CN104232958A (zh) 一种成分均匀的Cu-Mg-Y合金的熔炼工艺
CN106756352B (zh) 一种内生Cr2B和MgO双相颗粒增强镁基复合材料的制备方法
CN110144501A (zh) 一种长效变质的高硅铝合金及其变质工艺
CN108165784B (zh) 一种直径为720mm的ZK61M镁合金棒材制备工艺
CN115094285A (zh) 一种耐热高强稀土镁合金材料及制备方法
CN114214529B (zh) 一种铝合金熔炼用硅添加剂及其制备方法
CN207749170U (zh) 一种核反应堆用铅铋合金的制备装置
CN107058834A (zh) 一种耐热稀土镁合金及其制备方法
CN111549268A (zh) 一种高塑可溶Mg-Gd基镁合金及其制备方法
Yang et al. Effects of process parameters on the macrostructure of a squeeze-cast Mg-2.5 mass% Nd alloy
CN115433862B (zh) 一种无Ni可降解镁基材料的制备方法
CN116043082B (zh) 一种高塑性、耐热可溶镁合金及其制备方法
CN109536774A (zh) 铜合金材料、制备方法及滑动轴承
CN107419120B (zh) 一种采用微合金化和快速凝固工艺复合制备高强亚共晶Al-Si合金的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19954238

Country of ref document: EP

Kind code of ref document: A1