WO2021102885A1 - 压水堆核电站立式蒸汽发生器及其松动部件捕集装置 - Google Patents
压水堆核电站立式蒸汽发生器及其松动部件捕集装置 Download PDFInfo
- Publication number
- WO2021102885A1 WO2021102885A1 PCT/CN2019/121886 CN2019121886W WO2021102885A1 WO 2021102885 A1 WO2021102885 A1 WO 2021102885A1 CN 2019121886 W CN2019121886 W CN 2019121886W WO 2021102885 A1 WO2021102885 A1 WO 2021102885A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- top plate
- steam generator
- catching
- steam
- nuclear power
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 116
- 239000010802 sludge Substances 0.000 claims abstract description 30
- 230000000630 rising effect Effects 0.000 claims abstract description 17
- 239000012530 fluid Substances 0.000 claims description 21
- 230000002093 peripheral effect Effects 0.000 claims description 20
- 230000009471 action Effects 0.000 claims description 12
- 230000007704 transition Effects 0.000 claims description 10
- 238000000926 separation method Methods 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 238000009835 boiling Methods 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims 1
- 238000012546 transfer Methods 0.000 description 15
- 230000006872 improvement Effects 0.000 description 14
- 238000010586 diagram Methods 0.000 description 6
- 239000002184 metal Substances 0.000 description 4
- 230000001174 ascending effect Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000013517 stratification Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B1/00—Methods of steam generation characterised by form of heating method
- F22B1/02—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
- F22B1/16—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour
- F22B1/162—Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot liquid or hot vapour, e.g. waste liquid, waste vapour in combination with a nuclear installation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/002—Component parts or details of steam boilers specially adapted for nuclear steam generators, e.g. maintenance, repairing or inspecting equipment not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/22—Drums; Headers; Accessories therefor
- F22B37/225—Arrangements on drums or collectors for fixing tubes or for connecting collectors to each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/26—Steam-separating arrangements
- F22B37/268—Steam-separating arrangements specially adapted for steam generators of nuclear power plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B37/00—Component parts or details of steam boilers
- F22B37/02—Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
- F22B37/48—Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
- F22B37/483—Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers specially adapted for nuclear steam generators
Definitions
- the present invention belongs to the technical field of nuclear power. More specifically, the present invention relates to a PWR nuclear power standing steam generator and a loose part catching device thereof.
- the steam generator is the hub of the primary and secondary circuits of a nuclear power plant. It is used to transfer the heat generated by the reactor to the secondary side to generate steam, which is sent to the steam turbine to drive the generator to generate electricity.
- the primary pressure boundary of the steam generator includes the lower head, tube sheet and tube bundle.
- the lower head is divided into an inlet water chamber and an outlet water chamber by a partition plate.
- the reactor coolant passes through the inlet located on the lower head of the steam generator. Take over to enter, flow through the U-shaped heat transfer tube, and then flow out through the outlet nozzle on the lower head.
- the secondary side pressure boundary of the steam generator includes the tube sheet, the lower cylinder, the conical cylinder, the upper cylinder and the upper head.
- the feed water enters the steam generator through the water supply connection pipe, and then enters the water supply loop pipe after the water supply connection pipe. It is sprayed out through the nozzle on the water supply loop pipe, mixed with the saturated water separated from the steam-water separator, and flows into the tube bundle sleeve and the shell.
- the annular descending channel between the two reaches the secondary surface of the tube sheet. It enters the tube bundle through the gap between the lower end of the sleeve and the secondary side surface of the tube sheet.
- When the water rises through the tube bundle it is heated, and part of the water turns into steam to form a steam-water mixture.
- After the steam-water mixture flows out of the top of the tube bundle it enters the steam-water separator for coarse separation, then is finely separated by the dryer, and finally outputs dry saturated steam.
- the heat transfer tubes of the steam generator constitute the pressure-bearing boundary between the primary and secondary sides, and are responsible for isolating the radioactive materials of the primary loop of the reactor.
- the heat transfer tube is a seamless steel pipe with a wall thickness of about 1mm, but its integrity must be ensured to prevent the heat transfer tube from rupturing and leaking and causing serious contamination of the secondary circuit system.
- loose parts entering the steam generator through the water supply system may cause damage to the heat transfer tube.
- the loose parts are of different sizes and enter the steam generator through the J-pipe or sprinkler on the water supply ring pipe. Under the action of the fluid, the loose part enters the descending channel and contacts the heat transfer tube through the opening between the bottom of the tube bundle sleeve and the tube plate, forming a dent on the surface of the heat transfer tube, or continuous impact marks.
- the loose parts smaller than the heat transfer tube gap may enter the inside of the tube bundle and stay in the relatively stagnant area of the fluid. The remaining loose parts move with high frequency and small amplitude under the micro force of the fluid, causing fretting wear on the heat transfer tube, causing the tube The wall is thinned.
- the existing devices for preventing foreign matter from entering the steam generator mainly adopt a screening method, that is, a small-diameter J-shaped pipe or an I-shaped pipe with a spray hole is set on the water supply loop.
- a screening method that is, a small-diameter J-shaped pipe or an I-shaped pipe with a spray hole is set on the water supply loop.
- the purpose of the present invention is to overcome the shortcomings in the prior art and provide a reliable PWR nuclear power standing steam generator and its loose part trapping device, which can be collected and passed through the water supply ring during the commissioning and operation of the nuclear power plant.
- the tube enters the loose part of the steam generator to prevent the loose part from entering the tube bundle area and improve the working environment of the heat transfer tube.
- the present invention provides a loose part catching device for a steam generator of a pressurized water reactor nuclear power plant, which is arranged on the top plate of the sludge collector, and a plurality of steam-water separator rising cylinders are arranged on the top plate.
- An end away from the top plate is provided with a folded plate extending toward the center of the top plate.
- the catching enclosure is welded to the top plate, and both ends of the catching enclosure are respectively welded to the riser of the separator. On the outer surface.
- the arc transition between the folded plate and the catching coaming plate has a transition radius of 5-25 mm.
- the angle between the folded plate and the catching coaming is 30°-150°.
- the top plate is provided with small holes in the central area and small holes in the peripheral peripheral area, and the catching enclosure is located in the small holes in the peripheral peripheral area.
- the catching enclosure and the folded plate projected on the top plate to form a radius larger than the water supply loop sprinkler pipe or J-shaped set of the steam generator The radius formed by the projection of the tube on the top plate.
- the present invention also provides a PWR nuclear power standing steam generator, which includes an upper dish-shaped head, an upper cylinder, a conical cylinder, a lower cylinder, a tube sheet and a lower head.
- a PWR nuclear power standing steam generator which includes an upper dish-shaped head, an upper cylinder, a conical cylinder, a lower cylinder, a tube sheet and a lower head.
- the two ends of the inverted U-shaped tube bundle are inserted into the tube holes and mechanically connected with the tube sheet to form a tube bundle including many inverted U-shaped tubes.
- the sleeve, the lower cylinder and the cone-shaped cylinder form an annular channel, in which a sludge collector is provided on the top of the sleeve, and a loose part catching device and a plurality of steam-water separators are arranged on the top of the sludge collector.
- the catching enclosure is welded on the top plate, and both ends of the catching enclosure are respectively welded to the outer surface of the separator riser cylinder .
- the sleeve top plate is provided with openings, and the openings are connected with the same number of riser cylinders of the steam-water separator, and rotary vanes are arranged inside the riser.
- the steam-water two-phase mixture produced by boiling inside the sleeve flows through the openings on the top plate of the sleeve and enters the rising cylinder. Under the action of the rotating blades, the steam-water spirals centrifugal movement. Under the action of centrifugal force, the steam-water occurs Separate.
- the separated water re-enters the pool set above the top of the sleeve, and the wet steam separated by the primary separator continues to flow upward through the dryer to separate and dry again ,
- the steam after the secondary separation flows out of the steam generator through the restrictor arranged in the center of the upper dish-shaped head.
- the recycled water separated from the steam-water separator is mixed with the feedwater ring and enters the annular channel.
- the fluid flow velocity of the annular channel is relatively high, and the central area above the sleeve top plate The fluid flow rate is slow, and there is a pressure difference between the central area and the outer circumferential area of the top plate.
- a water supply pipe is arranged above the sludge collector.
- the water supply pipe has an approximately circular structure with a diameter smaller than that of the sleeve top plate and is arranged horizontally on the steam generator. Inside the generator.
- the arc transition between the folded plate and the catching coaming plate has a transition radius of 5-25 mm.
- the angle between the folded plate and the catching enclosure is 30°-150°.
- the top plate is provided with small holes in the central area and small holes in the peripheral peripheral area, and the trap enclosure is located inside the small holes in the peripheral peripheral area.
- the radius formed by the projection of the catching enclosure and the folded plate on the top plate is larger than that of the water supply loop spray pipe or the J-shaped pipe on the top plate of the steam generator. The radius of the projection.
- the advantages of the PWR nuclear power standing steam generator and its loose part trapping device of the present invention are: during the refueling period, the water on the secondary side of the steam generator will be emptied, and the installed enclosure The folding plate can trap the loose parts on the top plate, so as not to migrate into the annular channel under the action of fluid.
- the steam generator is emptied, the water in the enclosed area of the enclosure plate and the folded plate can be drained through the small hole in the central area of the top plate of the sludge collector, which will not affect the in-service work of the top plate of the sludge collector.
- the enclosure and the folded plate can trap the loose parts on the top plate, so as not to migrate into the annular channel under the action of the fluid, so the reliability of the standing steam generator of the pressurized water reactor nuclear power can be realized. run.
- Fig. 1 is a schematic diagram of the structure of a standing steam generator for a pressurized water reactor nuclear power plant according to the present invention.
- Figure 2 is a schematic diagram of the structure of the sludge collector in Figure 1.
- Fig. 3 is a schematic structural diagram of three different embodiments of the loose part catching device in Fig. 2.
- FIG. 1 is a schematic diagram of the structure of a standing steam generator 10 for a pressurized water reactor nuclear power plant according to the present invention.
- the steam generator 10 is a vertical shell-and-tube heat exchanger, which includes an upper dish-shaped head 12, an upper cylinder 13, a conical cylinder 14, a lower cylinder 15, a tube sheet 16 and The next cover head 17.
- tube holes 18 are provided on the tube plate 16. Both ends of the inverted U-shaped tube bundle 11 are inserted into the tube holes 18 and mechanically connected to the tube plate 16.
- the tube bundle 11 forms a heat transfer surface that exchanges heat with the primary circuit, so that the heat of the primary circuit coolant is transferred to the secondary side, and the water on the secondary side is boiled to produce steam.
- the partition plate 19 divides the inside of the lower head 17 into two chambers 20 and 21, forming an inverted U-shaped tube header.
- the chamber 20 is a primary fluid inlet chamber, which is connected with the inlet nozzle 22.
- the chamber 21 is a primary fluid outlet chamber, which is connected with the outlet nozzle 23. Therefore, the primary side coolant of the reactor enters the chamber 20 from the inlet nozzle 22, flows through the tubes of the inverted U-shaped tube bundle 11, enters the chamber 21, and exits the steam generator through the outlet nozzle 23.
- a sleeve 30 is provided on the periphery of the tube bundle 11, and the sleeve 30, the lower cylinder 15 and the tapered cylinder 14 form an annular channel 31.
- the top of the sleeve 30 is provided with a sludge collector 50.
- the sludge collector 50 is provided with a set of openings 40.
- the openings 40 are connected with the same number of a set of steam-water separator rising cylinders 41.
- the rising cylinder 41 is provided with rotary vanes. 42.
- the steam-water two-phase mixture produced by boiling inside the sleeve 30 flows through the opening 40 on the sleeve cover 32 and enters the ascending cylinder 41.
- the water supply pipe 70 includes a water supply loop assembly 71 and a thermowell assembly 72.
- the water supply loop assembly 71 is located above the thermowell assembly 71 to reduce the thermal stratification effect of the fluid in the pipeline.
- the water supply loop assembly 71 has an approximately circular structure and is arranged horizontally inside the steam generator 10.
- the water supply nozzle 73 is welded to the water supply ring assembly 71, and the number of openings 40 and nozzles 73 is calculated and determined according to the flow rate of the main water supply. A large number of nozzle holes are provided on the nozzle 73, and the diameter of the nozzle holes is 5-9 mm.
- the water level in the steam generator 10 needs to ensure that the water supply outlet is submerged.
- the main feed water of the steam generator 10 enters the fluid passage 71 a in the feed water loop assembly 71 from the fluid passage 72 a in the thermowell assembly, and enters the steam generator 10 through the fluid passage 73 a inside the nozzle.
- foreign matter entering the feed water can be intercepted by the opening, and foreign matter larger than the inner diameter of the nozzle opening will not enter the steam generator 10.
- the main feed water that enters the steam generator through the feed water ring is mixed with the recycled water separated by the separator and the dryer, and then enters the annular channel 31, and then enters the tube bundle 11 through the opening 33 at the bottom of the sleeve 30, and is heated to boil to generate steam.
- FIG. 2 is a schematic diagram of the structure of the sludge collector 50.
- the top plate 51 of the sludge collector 50 is provided with a large number of small holes 51 a in the center area, small holes 51 b in the peripheral area, and a plurality of steam separator rising cylinders 41.
- the recycled water separated from the steam-water separator enters the outer space of the ascending cylinder 41 of the steam-water separator, and most of the recycled water is mixed with the feed water from the feed water ring 70 and enters the annular channel 31.
- the fluid flow velocity of the annular channel 31 is relatively high, and the fluid flow velocity above the top plate of the sleeve is relatively slow.
- a catching enclosure 80 is provided between the adjacent riser cylinders 41 of the steam-water separator located on the periphery.
- the catching enclosure 80 is welded to the top plate 51, and both ends are welded to the outer surface of the separator riser 41 (it can also be used Other fixed connection methods, such as threaded connection or riveting).
- the ascending cylinder 41 of the steam separator and the catching enclosure 80 on the periphery of the steam generator are jointly enclosed around the top plate 51 of the sludge collector.
- the end of the enclosure 80 away from the top plate 51 is provided with a folded plate 81 facing the center of the top cover of the sludge collector 50.
- the angle between the folded plate 81 and the enclosure 80 can be 90° ⁇ 60° (30°-150°) .
- a circular arc transition may also be provided between the folded plate 81 and the enclosure 80, and the transition radius is 5-25 mm.
- FIG. 3 is a schematic diagram of the structure of the loose part catching device.
- the loose part catching device is set up on the top plate of the sludge collector 50 and includes a surrounding plate 80 and a folded plate 81 connected to it.
- the folded plate 81 extends toward the center of the top plate 51 of the sludge collector 50.
- the enclosure 80 is located inside the small hole in the peripheral area 51b of the top plate 51 of the sludge collector 50. Therefore, the arrangement of the enclosure 80 does not affect the pressure difference between the central area 51a and the peripheral area 51b of the top plate 51, and does not affect the sludge collector Normal operation function.
- the present invention has the following advantages:
- the radius formed by the projection of the enclosure plate 80 and the folded plate 81 of the loose part catching device on the top plate 51 is greater than the radius formed by the projection of the water supply ring sprinkler pipe or the J-shaped pipe on the top plate 51. Because the fluid velocity in the center of the pool above the sludge collector 50 is relatively small, foreign objects with a size smaller than the inner diameter of the J-pipe or the diameter of the spray hole, such as metal rods, welding rods, and metal sheets, enter the steam generator and migrate to the annular channel. Before 31, it either settles on the top plate 51 under the action of gravity, or is captured by the enclosure 80 and the folded plate 81.
- the water on the secondary side of the steam generator will be emptied, and the enclosing plate 80 and the folded plate 81 are provided to trap the loose parts on the top plate 51 so as not to migrate into the annular channel 31 under the action of the fluid.
- the water in the area enclosed by the enclosure 80 and the folded plate 81 can be drained through the small holes in the central area 51a of the top plate 51 of the sludge collector 50, and will not affect the sludge collector 50 on the top plate 51.
- Service work When water is poured into the empty steam generator, the surrounding plate 80 and the folded plate 81 are provided to trap the loose parts on the top plate 51 so as not to migrate into the annular channel 31 under the action of fluid.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Separating Particles In Gases By Inertia (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
一种压水堆核电站蒸汽发生器(10)用松动部件捕集装置以及包括该松动部件捕集装置的压水堆核电站立式蒸汽发生器(10);所述的松动部件捕集装置设置于泥渣收集器(50)的顶板(51)上,顶板(51)上设有多个汽水分离器上升筒(41),位于外围的相邻汽水分离器上升筒(41)之间均设有固接在顶板(51)上的捕集围板(80),每个捕集围板(80)的两端分别固接在分离器上升筒(41)的外表面上,捕集围板(80)远离顶板(51)的一端设有朝向顶板的中心延伸的折板(81)。
Description
本发明属于核电技术领域,更具体地说,本发明涉及一种压水堆核电站立式蒸汽发生器及其松动部件捕集装置。
蒸汽发生器是核电站一、二回路的枢纽,用于将反应堆产生的热量传递给二次侧产生蒸汽,并输送至汽轮机以推动发电机发电。
蒸汽发生器一次侧压力边界包括下封头、管板和管束,其中,下封头由分隔板分隔成进口水室和出口水室,反应堆冷却剂通过位于蒸汽发生器下封头上的进口接管进入,流经U形传热管,再经下封头上的出口接管流出。
蒸汽发生器二次侧压力边界包括管板、下部筒体、锥形筒体、上部筒体和上封头。给水经过给水接管进入蒸汽发生器,给水经过给水接管后进入给水环管,通过给水环管上的喷嘴喷出,与从汽水分离装置分离出来的饱和水混合后,流入管束套筒与壳体之间的环形下降通道,到达管板二次侧表面。通过套筒下端与管板二次侧表面间的间隙进入管束,水在通过管束上升时受热,部分水变成蒸汽,形成汽水混合物。汽水混合物流出管束顶部后,进入汽水分离器进行粗分离,然后由干燥器进行细分离,最后输出干饱和蒸汽。
蒸汽发生器传热管构成了一二次侧之间的承压边界,承担着隔离反应堆一回路冷却剂放射性物质的功能。传热管为壁厚1mm左右的无缝钢管,但其完整性必须得到保证,以防止传热管破裂、泄漏导致二回路系统严重受污染。
众所周知,通过给水系统进入蒸汽发生器的松动部件可能造成传热管的损伤。松动部件大小不一,通过给水环管上的J型管或喷淋头进入蒸汽发生器。在 流体作用下,松动部件进入下降通道,通过管束套筒底部和管板之间的开口与传热管接触,在传热管表面形成凹痕,或者连续撞击痕迹。小于传热管间隙的松动部件可能进入管束内部,在流体相对滞止区域停留,停留的松动部件在流体的微作用力下发生高频小振幅运动,对传热管产生微动磨损,造成管壁减薄。撞击凹痕和微动磨损在严重情况下,均可能导致传热管破裂,引起核电厂非计划停堆,需要花费昂贵的代价进行修复。因此,防止外来的松动部件进入蒸汽发生器和防止已进入的松动部件迁移至管束的装置十分必要。
目前,已有的预防外来异物进入蒸汽发生器的装置主要采取筛选方式,即通过给水环管上设置小直径的J形管或者带有喷淋孔的I型管。当外来异物尺寸大于J型管内径或者喷淋孔直径时,可以被拦截在给水管道中。但是,尺寸小于J型管内径或者喷淋孔直径的异物仍可以通过并进入蒸汽发生器,这些松动部件,如金属条、焊条、金属片,仍会对传热管的完整性构成威胁。
有鉴于此,实有必要提供一种可靠的压水堆核电站立式蒸汽发生器及其松动部件捕集装置,其可在核电站的调试、运行过程中,收集经过给水环管进入蒸汽发生器的松动部件,防止松动部件进入管束区域,改善传热管的工作环境。
发明内容
本发明的目的在于:克服现有技术中的缺陷,提供一种可靠的压水堆核电站立式蒸汽发生器及其松动部件捕集装置,可在核电站的调试、运行过程中,收集经过给水环管进入蒸汽发生器的松动部件,防止松动部件进入管束区域,改善传热管的工作环境。
为了实现上述发明目的,本发明提供一种压水堆核电站蒸汽发生器用松动部件捕集装置,设置于泥渣收集器的顶板上,顶板上设有多个汽水分离器上升筒,其中,位于外围的相邻汽水分离器上升筒之间均设有固接在顶板上的捕集围板,每个捕集围板的两端分别固接在分离器上升筒的外表面上,捕集围板远 离顶板的一端设有朝向顶板的中心延伸的折板。
作为本发明压水堆核电站蒸汽发生器用松动部件捕集装置的一种改进,所述捕集围板焊接在所述顶板上,所述捕集围板的两端分别焊接在分离器上升筒的外表面上。
作为本发明压水堆核电站蒸汽发生器用松动部件捕集装置的一种改进,所述折板与捕集围板之间圆弧过渡,过渡半径为5~25mm。
作为本发明压水堆核电站蒸汽发生器用松动部件捕集装置的一种改进,所述折板与捕集围板之间的夹角为30°-150°。
作为本发明压水堆核电站蒸汽发生器用松动部件捕集装置的一种改进,所述顶板设有中心区域小孔和外围周向区域小孔,所述捕集围板位于外围周向区域小孔的内侧。
作为本发明压水堆核电站蒸汽发生器用松动部件捕集装置的一种改进,所述捕集围板和折板在顶板投影形成的半径大于蒸汽发生器设置的给水环管喷淋管或J型管在顶板投影形成的半径。
为了实现上述发明目的,本发明还提供了一种压水堆核电站立式蒸汽发生器,包括上部碟形封头、上部筒体、锥形筒体、下部筒体、管板和下封头,管板上设有多个管孔,倒U型管管束两端插入管孔并与管板机械连接,形成包括众多倒U型管的管束,管束外围设有套筒且上方设有套筒顶板,套筒和下部筒体、锥形筒体形成环形通道,其中,套筒顶板上设有泥渣收集器,泥渣收集器的顶板上设有松动部件捕集装置和多个汽水分离器上升筒,位于外围的相邻汽水分离器上升筒之间均设有固接在顶板上的捕集围板,每个捕集围板的两端分别固接在分离器上升筒的外表面上,捕集围板远离顶板的一端设有朝向顶板的中心延伸的折板。
作为本发明压水堆核电站立式蒸汽发生器的一种改进,所述捕集围板焊接 在所述顶板上,所述捕集围板的两端分别焊接在分离器上升筒的外表面上。
作为本发明压水堆核电站立式蒸汽发生器的一种改进,所述套筒顶板设有开孔,开孔与同样数量的一组汽水分离器上升筒相连接,上升筒内部设置有旋叶,套筒内部因沸腾产生的蒸汽-水两相混合物流经套筒顶板开孔进入上升筒,在旋叶的作用下,蒸汽-水发生螺旋离心运动,在离心力的作用下,蒸汽-水发生分离。
作为本发明压水堆核电站立式蒸汽发生器的一种改进,被分离的水重新进入设置于套筒顶板上方的水池,经初级分离器分离后的湿蒸汽继续向上流动经干燥器再次分离干燥,二次分离后的蒸汽通过设置在上部碟形封头中央的限流器流出蒸汽发生器。
作为本发明压水堆核电站立式蒸汽发生器的一种改进,从汽水分离器分离出来的再循环水与给水环混合进入环形通道,环形通道的流体流动速度较大,套筒顶板上方中心区域的流体流动速度较慢,顶板的中心区域和外围周向区域存在压差。
作为本发明压水堆核电站立式蒸汽发生器的一种改进,所述泥渣收集器上方设有给水管,给水管为近似圆形结构形式,直径小于套筒顶板的直径,水平布置在蒸汽发生器内部。
作为本发明压水堆核电站立式蒸汽发生器的一种改进,所述折板与捕集围板之间圆弧过渡,过渡半径为5~25mm。
作为本发明压水堆核电站立式蒸汽发生器的一种改进,所述折板与捕集围板之间的夹角为30°-150°。
作为本发明压水堆核电站立式蒸汽发生器的一种改进,所述顶板设有中心区域小孔和外围周向区域小孔,所述捕集围板位于外围周向区域小孔的内侧。
作为本发明压水堆核电站立式蒸汽发生器的一种改进,所述捕集围板和折 板在顶板投影形成的半径大于蒸汽发生器设置的给水环管喷淋管或J型管在顶板投影形成的半径。
与现有技术相比,本发明压水堆核电站立式蒸汽发生器及其松动部件捕集装置的优点在于:在换料期间,蒸汽发生器二次侧水将被排空,设置的围板和折板可以捕集顶板上的松动部件,以免在流体作用下迁移进入环形通道。当蒸汽发生器排空时,围板和折板围合区域的水可以通过泥渣收集器顶板中心区域小孔排空,不会影响泥渣收集器顶板的在役工作。在往空的蒸汽发生器注水时,设置的围板和折板可以捕集顶板上的松动部件,以免在流体作用下迁移进入环形通道,因此可实现压水堆核电站立式蒸汽发生器的可靠运行。
下面结合附图和具体实施方式,对本发明压水堆核电站立式蒸汽发生器及其松动部件捕集装置及其有益技术效果进行详细说明。
图1为本发明压水堆核电站立式蒸汽发生器的结构示意图。
图2为图1中泥渣收集器的结构示意图。
图3为图2中松动部件捕集装置三种不同实施方式的结构示意图。
为了使本发明的发明目的、技术方案及其技术效果更加清晰,以下结合具体实施方式,对本发明进行进一步详细说明。应当理解的是,本说明书中描述的具体实施方式仅仅是为了解释本发明,并非为了限定本发明。
请参照图1所示,为本发明压水堆核电站立式蒸汽发生器10的结构示意图。在图示实施方式中,蒸汽发生器10为立式管壳式换热器,其包括上部碟形封头12、上部筒体13、锥形筒体14、下部筒体15、管板16和下封头17。
管板16上设有成千上万个管孔18,倒U型管管束11两端插入管孔18并于管板16机械连接。管束11形成了与一回路换热的传热面,从而将一回路冷 却剂的热量传递给二次侧,使二次侧的水沸腾产生蒸汽。
分隔板19将下封头17内部分隔为20和21两个腔室,形成了倒U型管的管联箱。腔室20为一次侧流体进口腔室,其与进口接管22相连。腔室21为一次侧流体出口腔室,其与出口接管23相连。因此,反应堆一次侧冷却剂从进口接管22进入腔室20,流经倒U型管束11的管内,进入腔室21,通过出口接管23流出蒸汽发生器。
管束11外围设置有套筒30,套筒30和下部筒体15、锥形筒体14形成了环形通道31。套筒30顶部设有泥渣收集器50,泥渣收集器50设有一组开孔40,开孔40与同样数量的一组汽水分离器上升筒41相连接,上升筒41内部设有旋叶42。套筒30内部因沸腾产生的蒸汽-水两相混合物流经套筒顶盖32上的开孔40,进入上升筒41,在旋叶42的作用下,蒸汽-水发生螺旋离心运动,在离心力的作用下,蒸汽-水发生分离。被分离的水重新进入泥渣收集器50上方的水池。经初级分离器分离后的湿蒸汽继续向上流动经干燥器60再次分离干燥,二次分离后的蒸汽通过设置在上部碟形封头12中央的限流器90流出蒸汽发生器。
给水管70包括给水环管组件71和热套管组件72,给水环管组件71位于热套管组件71上方,以减轻管道内流体热分层效应。给水环管组件71为近似圆形结构形式,水平布置在蒸汽发生器10内部。给水环管组件71上焊接给水喷嘴73,开孔40和喷嘴73的数量根据主给水的流量计算确定。喷嘴73上设有数量众多的喷孔,喷孔的直径为5~9mm。
在蒸汽发生器10正常运行和正常运行瞬态工况下,蒸汽发生器10内的水位需要保证淹没给水出口。蒸汽发生器10主给水从热套管组件内的流体通道72a进入给水环管组件71内的流体通道71a,流经喷嘴内部的流体通道73a进入蒸汽发生器10内部。同时,由于喷嘴的开孔直径小,进入给水的异物可以被开孔拦截,大于喷嘴开孔内径的异物不会进入到蒸汽发生器10内部。通过给水环进 入蒸汽发生器的主给水与分离器、干燥器分离出来的再循环水混合后进入环形通道31,然后通过套筒30底部的开口33进入管束11,经加热沸腾产生蒸汽。
请参照图2所示,为泥渣收集器50的结构示意图。泥渣收集器50的顶板51设置了数量众多的中心区域小孔51a、外围周向区域小孔51b,以及多个汽水分离器上升筒41。从汽水分离器分离出来的再循环水进入汽水分离器上升筒41的外部空间,大部分再循环水与给水环70出来的给水混合进入环形通道31。环形通道31的流体流动速度较大,套筒顶板上方的流体流动速度较慢,顶板51的中心区域51a和外围周向区域51b存在压差。上述压差的存在,使得一部分再循环水从顶板中心区域51a的小孔进入到泥渣收集器50,从外围周向区域51b的小孔流出。在泥渣收集器50内部,再循环水从中心呈辐射状沿半径不断变大的方向流动,流体速度逐渐降低,使得悬浮在再循环水中的泥渣颗粒沉积在泥渣收集器50内部的表面上,通过非能动的方式完成泥渣的沉积。
位于外围的相邻汽水分离器上升筒41之间均设有捕集围板80,捕集围板80焊接在顶板51上,其两端焊接在分离器上升筒41的外表面(也可以采用其他固接方式,如螺纹连接或铆接)。如此设置,蒸汽发生器外围的汽水分离器上升筒41和捕集围板80共同围合在泥渣收集器顶板51的外周围。围板80远离顶板51的一端设有朝向泥渣收集器50顶盖中心的折板81,折板81与围板80之间的夹角可以为90°±60°(30°-150°)。在本发明的其他实施方式中,折板81与围板80之间也可以设有圆弧过渡,过渡半径为5~25mm。
请参照图3所示,为松动部件捕集装置的结构示意图。松动部件捕集装置设立在泥渣收集器50的顶板上,包括围板80和与之连接的折板81,折板81朝向泥渣收集器50顶板51中心延伸。围板80位于泥渣收集器50顶板51外围区域51b小孔的内侧,因此,围板80的设置不影响顶板51的中心区域51a和外围周向区域51b的压差,不影响泥渣收集器的正常运行功能。
结合以上对本发明压水堆核电站立式蒸汽发生器及其松动部件捕集装置的具体实施方式的描述可以看出,相对于现有技术,本发明具有以下优点:
松动部件捕集装置的围板80和折板81在顶板51投影形成的半径大于给水环管喷淋管或J型管在顶板51投影形成的半径。由于泥渣收集器50上方的水池中心流体速度相对较小,当尺寸小于J型管内径或者喷淋孔直径的异物,如金属条、焊条、金属片,进入蒸汽发生器,在迁移至环形通道31之前,或在重力作用下沉降在顶板51上,或被围板80和折板81捕获。
在换料期间,蒸汽发生器二次侧水将被排空,设置的围板80和折板81可以捕集顶板51上的松动部件,以免在流体作用下迁移进入环形通道31。当蒸汽发生器排空时,围板80和折板81围合的区域的水可以通过泥渣收集器50顶板51中心区域51a小孔排空,不会影响泥渣收集器50顶板51的在役工作。在往空的蒸汽发生器注水时,设置的围板80和折板81可以捕集顶板51上的松动部件,以免在流体作用下迁移进入环形通道31。
根据上述原理,本发明还可以对上述实施方式进行适当的变更和修改。因此,本发明并不局限于上面揭示和描述的具体实施方式,对本发明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。
Claims (16)
- 一种压水堆核电站蒸汽发生器用松动部件捕集装置,设置于泥渣收集器的顶板上,顶板上设有多个汽水分离器上升筒,其特征在于,位于外围的相邻汽水分离器上升筒之间均设有固接在顶板上的捕集围板,每个捕集围板的两端分别固接在分离器上升筒的外表面上,捕集围板远离顶板的一端设有朝向顶板的中心延伸的折板。
- 根据权利要求1所述的松动部件捕集装置,其特征在于,所述捕集围板焊接在所述顶板上,所述捕集围板的两端分别焊接在分离器上升筒的外表面上。
- 根据权利要求1所述的松动部件捕集装置,其特征在于,所述折板与捕集围板之间圆弧过渡,过渡半径为5~25mm。
- 根据权利要求1所述的松动部件捕集装置,其特征在于,所述折板与捕集围板之间的夹角为30°-150°。
- 根据权利要求1所述的松动部件捕集装置,其特征在于,所述顶板设有中心区域小孔和外围周向区域小孔,所述捕集围板位于外围周向区域小孔的内侧。
- 根据权利要求1所述的松动部件捕集装置,其特征在于,所述捕集围板和折板在顶板投影形成的半径大于蒸汽发生器设置的给水环管喷淋管或J型管在顶板投影形成的半径。
- 一种压水堆核电站立式蒸汽发生器,包括上部碟形封头、上部筒体、锥形筒体、下部筒体、管板和下封头,管板上设有多个管孔,倒U型管管束两端插入管孔并与管板机械连接,形成包括众多倒U型管的管束,管束外围设有套筒且上方设有套筒顶板,套筒和下部筒体、锥形筒体形成环形通道,其特征在于,所述套筒顶板上设有泥渣收集器,泥渣收集器的顶板上设有松动部件捕集 装置和多个汽水分离器上升筒,位于外围的相邻汽水分离器上升筒之间均设有固接在顶板上的捕集围板,每个捕集围板的两端分别固接在分离器上升筒的外表面上,捕集围板远离顶板的一端设有朝向顶板的中心延伸的折板。
- 根据权利要求7所述的压水堆核电站立式蒸汽发生器,其特征在于,所述捕集围板焊接在所述顶板上,所述捕集围板的两端分别焊接在分离器上升筒的外表面上。
- 根据权利要求7所述的压水堆核电站立式蒸汽发生器,其特征在于,所述套筒顶板设有开孔,开孔与同样数量的一组汽水分离器上升筒相连接,上升筒内部设置有旋叶,套筒内部因沸腾产生的蒸汽-水两相混合物流经套筒顶板开孔进入上升筒,在旋叶的作用下,蒸汽-水发生螺旋离心运动,在离心力的作用下,蒸汽-水发生分离。
- 根据权利要求7所述的压水堆核电站立式蒸汽发生器,其特征在于,被分离的水重新进入设置于套筒顶板上方的水池,经初级分离器分离后的湿蒸汽继续向上流动经干燥器再次分离干燥,二次分离后的蒸汽通过设置在上部碟形封头中央的限流器流出蒸汽发生器。
- 根据权利要求10所述的压水堆核电站立式蒸汽发生器,其特征在于,从汽水分离器分离出来的再循环水与给水环混合进入环形通道,环形通道的流体流动速度较大,套筒顶板上方中心区域的流体流动速度较慢,顶板的中心区域和外围周向区域存在压差。
- 根据权利要求11所述的压水堆核电站立式蒸汽发生器,其特征在于,所述泥渣收集器上方设有给水管,给水管为近似圆形结构形式,直径小于套筒顶板的直径,水平布置在蒸汽发生器内部。
- 根据权利要求7至12中任一项所述的压水堆核电站立式蒸汽发生器,其特征在于,所述折板与捕集围板之间圆弧过渡,过渡半径为5~25mm。
- 根据权利要求7至12中任一项所述的压水堆核电站立式蒸汽发生器,其特征在于,所述折板与捕集围板之间的夹角为30°-150°。
- 根据权利要求7至12中任一项所述的压水堆核电站立式蒸汽发生器,其特征在于,所述顶板设有中心区域小孔和外围周向区域小孔,所述捕集围板位于外围周向区域小孔的内侧。
- 根据权利要求7至12中任一项所述的压水堆核电站立式蒸汽发生器,其特征在于,所述捕集围板和折板在顶板投影形成的半径大于蒸汽发生器设置的给水环管喷淋管或J型管在顶板投影形成的半径。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19953742.4A EP4080115A4 (en) | 2019-11-26 | 2019-11-29 | VERTICAL STEAM GENERATOR OF A PRESSURIZED WATER REACTOR IN A NUCLEAR POWER PLANT AND DEVICE FOR COLLECTING DISSOLVED PARTS THEREOF |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911171908.8A CN111140830A (zh) | 2019-11-26 | 2019-11-26 | 压水堆核电站立式蒸汽发生器及其松动部件捕集装置 |
CN201911171908.8 | 2019-11-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021102885A1 true WO2021102885A1 (zh) | 2021-06-03 |
Family
ID=70516705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/121886 WO2021102885A1 (zh) | 2019-11-26 | 2019-11-29 | 压水堆核电站立式蒸汽发生器及其松动部件捕集装置 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4080115A4 (zh) |
CN (1) | CN111140830A (zh) |
WO (1) | WO2021102885A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111928215B (zh) * | 2020-07-02 | 2022-07-19 | 合肥通用机械研究院有限公司 | 一种高效紧凑式蒸汽发生装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85108669A (zh) * | 1984-12-03 | 1986-06-10 | 西屋电气公司 | 应用于核蒸汽发生器的带有内部档板的淤渣收集器 |
JPH0821602A (ja) * | 1994-07-06 | 1996-01-23 | Mitsubishi Heavy Ind Ltd | 竪型蒸気発生器のスラッジコレクタ |
US20080121194A1 (en) * | 2006-11-28 | 2008-05-29 | Prabhu Padmanabha J | Steam generator loose parts collector weir |
CN104456511A (zh) * | 2014-10-29 | 2015-03-25 | 黑龙江宏宇电站设备有限公司 | 自然循环蒸汽发生器及发生方法 |
CN105023498A (zh) * | 2015-06-17 | 2015-11-04 | 中科华核电技术研究院有限公司 | 蒸汽发生器试验系统 |
CN106575529A (zh) * | 2014-07-23 | 2017-04-19 | 西屋电气有限责任公司 | 在蒸汽发生器内操控设备的方法和装置 |
CN109681858A (zh) * | 2019-01-30 | 2019-04-26 | 中广核工程有限公司 | 一种用于压水堆核电站蒸汽发生器的泥渣收集装置 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4303043A (en) * | 1979-07-25 | 1981-12-01 | Westinghouse Electric Corp. | Sludge collection system for a nuclear steam generator |
US4718479A (en) * | 1985-09-06 | 1988-01-12 | Westinghouse Electric Corp. | Antivibration bar installation apparatus |
US7726169B2 (en) * | 2006-02-06 | 2010-06-01 | Westinghouse Electric Co. Llc | Method of assessing the performance of a steam generator |
US8953735B2 (en) * | 2006-11-28 | 2015-02-10 | Westinghouse Electric Company Llc | Steam generator dual system sludge and loose parts collector |
KR101086344B1 (ko) * | 2009-07-01 | 2011-11-23 | 한전케이피에스 주식회사 | 증기발생기 2차측 관판 상부의 전열관 다발 틈새 육안 검사 및 이물질 제거장치 |
US10896767B2 (en) * | 2011-04-07 | 2021-01-19 | Westinghouse Electric Company Llc | Method of detecting an existence of a loose part in a steam generator of a nuclear power plant |
CN203272395U (zh) * | 2013-04-22 | 2013-11-06 | 中国核动力研究设计院 | 压水堆核电厂蒸汽发生器定距螺杆防松结构 |
CN104357644B (zh) * | 2014-11-05 | 2016-10-05 | 上海电气核电设备有限公司 | 一种核电蒸汽发生器环缝热处理装置系统及其用途 |
CN107464587A (zh) * | 2017-07-13 | 2017-12-12 | 东方电气(广州)重型机器有限公司 | 核电蒸汽发生器局部热处理防止传热管凹痕的系统及方法 |
CN109297009B (zh) * | 2018-09-29 | 2024-07-12 | 中广核研究院有限公司 | 一种蒸汽发生器及其传热管支撑装置和传热管安装方法 |
CN109543894B (zh) * | 2018-11-15 | 2020-11-24 | 深圳中广核工程设计有限公司 | 一种核电站松脱部件事前预测系统及预测方法 |
-
2019
- 2019-11-26 CN CN201911171908.8A patent/CN111140830A/zh active Pending
- 2019-11-29 EP EP19953742.4A patent/EP4080115A4/en active Pending
- 2019-11-29 WO PCT/CN2019/121886 patent/WO2021102885A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85108669A (zh) * | 1984-12-03 | 1986-06-10 | 西屋电气公司 | 应用于核蒸汽发生器的带有内部档板的淤渣收集器 |
JPH0821602A (ja) * | 1994-07-06 | 1996-01-23 | Mitsubishi Heavy Ind Ltd | 竪型蒸気発生器のスラッジコレクタ |
US20080121194A1 (en) * | 2006-11-28 | 2008-05-29 | Prabhu Padmanabha J | Steam generator loose parts collector weir |
CN106575529A (zh) * | 2014-07-23 | 2017-04-19 | 西屋电气有限责任公司 | 在蒸汽发生器内操控设备的方法和装置 |
CN104456511A (zh) * | 2014-10-29 | 2015-03-25 | 黑龙江宏宇电站设备有限公司 | 自然循环蒸汽发生器及发生方法 |
CN105023498A (zh) * | 2015-06-17 | 2015-11-04 | 中科华核电技术研究院有限公司 | 蒸汽发生器试验系统 |
CN109681858A (zh) * | 2019-01-30 | 2019-04-26 | 中广核工程有限公司 | 一种用于压水堆核电站蒸汽发生器的泥渣收集装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4080115A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4080115A1 (en) | 2022-10-26 |
EP4080115A4 (en) | 2024-03-20 |
CN111140830A (zh) | 2020-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4629481A (en) | Low pressure drop modular centrifugal moisture separator | |
JP5285212B2 (ja) | 気水分離器 | |
EP1985917B1 (en) | Steam generator loose parts collector weir | |
EP2872826B1 (en) | Axial flow steam generator feedwater dispersion apparatus | |
JP2010518402A (ja) | 加圧水型原子炉のスカート状整流装置 | |
US7867309B2 (en) | Steam-water separator | |
JPWO2011129063A1 (ja) | 気水分離器およびそれを用いた原子炉システム | |
WO2021102885A1 (zh) | 压水堆核电站立式蒸汽发生器及其松动部件捕集装置 | |
EP0183049B1 (en) | Perforated flow distribution plate | |
EP2694904B1 (en) | Steam generator tube lane flow buffer | |
KR20210080946A (ko) | 스월 베인형 습분 분리장치 | |
US4736713A (en) | Foraminous or perforated flow distribution plate | |
EP0493900A1 (en) | Steam dryer | |
US8619942B2 (en) | Radioactive debris trap | |
US3267906A (en) | Compact heat source and heat exchanger | |
JP2009075001A (ja) | 原子炉 | |
US3895674A (en) | Inlet flow distributor for a heat exchanger | |
JP3971146B2 (ja) | 気水分離器及び沸騰水型原子炉 | |
RU2702346C2 (ru) | Устройство сброса пара для ядерной энергетической установки | |
CA2702332C (en) | Feedwater debris trap | |
US20090092216A1 (en) | Steam generator dual system sludge and loose parts collector | |
US4644908A (en) | Steam generator wrapper closure and method of installing the same | |
US20150310944A1 (en) | Steam separation system and nuclear boiling water reactor including the same | |
JPS61122402A (ja) | 蒸気発生器 | |
CA2830992C (en) | Steam generator tube lane flow buffer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19953742 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019953742 Country of ref document: EP Effective date: 20220627 |