WO2021102763A1 - 接收物理下行共享信道的方法和装置 - Google Patents

接收物理下行共享信道的方法和装置 Download PDF

Info

Publication number
WO2021102763A1
WO2021102763A1 PCT/CN2019/121376 CN2019121376W WO2021102763A1 WO 2021102763 A1 WO2021102763 A1 WO 2021102763A1 CN 2019121376 W CN2019121376 W CN 2019121376W WO 2021102763 A1 WO2021102763 A1 WO 2021102763A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdsch
time domain
domain resource
resource configuration
urllc
Prior art date
Application number
PCT/CN2019/121376
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202110975953.XA priority Critical patent/CN113708906B/zh
Priority to KR1020227018370A priority patent/KR20220104727A/ko
Priority to CN201980082042.5A priority patent/CN113261358A/zh
Priority to EP19954463.6A priority patent/EP4044723A4/en
Priority to PCT/CN2019/121376 priority patent/WO2021102763A1/zh
Priority to JP2022529707A priority patent/JP2023509286A/ja
Publication of WO2021102763A1 publication Critical patent/WO2021102763A1/zh
Priority to US17/735,059 priority patent/US20220264627A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • This application relates to the field of communications, and in particular to a method and device for receiving a physical downlink shared channel.
  • the 5th generation (5G) mobile communication system supports physical downlink shared channel (PDSCH) aggregate transmission and ultra-reliable low-latency communication (URLLC) ) Repeat transmission.
  • PDSCH physical downlink shared channel
  • URLLC ultra-reliable low-latency communication
  • the network device can retransmit the PDSCH in multiple consecutive time slots through the same transmission/reception point (TRP), and the number of PDSCH retransmissions is indicated by high-level signaling.
  • URLLC repeated transmission the network device can retransmit the PDSCH in multiple time slots, where the network device can use different TRPs to retransmit the PDSCH in these multiple time slots, and the number of retransmissions is determined by DCI signaling .
  • the two transmission methods may conflict, resulting in the terminal being unable to determine which method to use to receive the PDSCH.
  • the present application provides a method and device for receiving PDSCH, which can avoid the conflict between the above two transmission modes.
  • a method for receiving PDSCH including: determining a PDSCH aggregation coefficient and a first time domain resource configuration, wherein the first time domain resource configuration is a time domain resource configuration list configured through higher layer signaling, Alternatively, the first time domain resource configuration is a time domain resource configuration determined from a time domain resource configuration list configured by high-layer signaling according to downlink control information (DCI); according to the PDSCH aggregation coefficient and/ Or the first time domain resource configuration receives at least one PDSCH.
  • DCI downlink control information
  • the terminal device may determine the specific time domain position of the PDSCH in the time slot according to the first time domain resource configuration. Based on different situations of the first time domain resource configuration, the terminal device may choose to use the PDSCH aggregation coefficient or not to use the PDSCH aggregation coefficient when receiving at least one PDSCH, thereby avoiding the conflict between PDSCH aggregation transmission and URLLC repeated transmission.
  • another method for receiving PDSCH including: receiving a time domain resource configuration list for PDSCH transmission, at least one time domain resource configuration in the time domain resource configuration list includes the number of URLLC repetitions; not expected Receive PDSCH aggregation coefficient.
  • the foregoing undesired reception of the PDSCH aggregation coefficient may be interpreted as: when receiving the PDSCH aggregation coefficient, the terminal device determines not to receive the PDSCH; or the terminal device does not expect to be configured with the URLLC repetition number and the PDSCH aggregation coefficient at the same time. Therefore, the above method can avoid the conflict between the aggregated PDSCH transmission and the repeated transmission of URLLC.
  • a device for receiving PDSCH can realize the function corresponding to the method in the first aspect or the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the device is a terminal device or a chip.
  • the device may include a processing unit and a transceiving unit.
  • the processing unit may be a processor, and the transceiving unit may be a transceiver;
  • the terminal device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions, and the processing The unit executes the instructions stored in the storage unit, so that the terminal device executes the method described in the first aspect or the second aspect.
  • the processing unit may be a processor, and the transceiving unit may be an input/output interface, a pin or a circuit, etc.; the processing unit executes the instructions stored in the storage unit to include the
  • the terminal device of the chip executes the method described in the first aspect or the second aspect
  • the storage unit may be a storage unit (for example, a register, a cache, etc.) in the chip, or a terminal device located outside the chip.
  • Storage unit for example, read only memory, random access memory, etc.).
  • a computer-readable storage medium stores a computer program.
  • the processor executes the method described in the first aspect or the second aspect. .
  • a computer program product including computer program code, when the computer program code is executed by a processor, the processor executes the method described in the first aspect or the second aspect.
  • a computer program which when running on a computer, causes the computer to execute the method described in the first aspect or the second aspect.
  • Figure 1 is a schematic diagram of a communication system suitable for the present application
  • FIG. 2 is a schematic diagram of PDSCH aggregation transmission provided by this application.
  • FIG. 3 is a schematic diagram of URLLC repeated transmission provided by this application.
  • FIG. 4 is a schematic diagram of another URLLC repeated transmission provided by this application.
  • FIG. 5 is a schematic diagram of a method for receiving PDSCH provided by the present application.
  • Fig. 6 is a schematic diagram of another method for receiving PDSCH provided by the present application.
  • FIG. 7 is a schematic diagram of a device for receiving PDSCH provided by the present application.
  • FIG. 8 is a schematic diagram of another device for receiving PDSCH provided by the present application.
  • Fig. 9 is a schematic diagram of a device for receiving PDSCH provided by the present application.
  • FIG. 1 is a schematic diagram of a communication system suitable for this application.
  • the communication system 100 includes a network device 110 and a terminal device 120.
  • the terminal device 120 communicates with the network device 110 through electromagnetic waves.
  • the terminal device 120 may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, for example, the third-generation partnership project (3 rd Generation partnership project, 3GPP) defined user equipment (user equipment, UE), mobile station (mobile station, MS), soft terminal, home gateway, set-top box, etc.
  • 3GPP Third-generation partnership project
  • the network device 110 may be a base station defined by 3GPP, for example, a base station (gNB) in a 5G mobile communication system.
  • the network device 110 may also be a non-3GPP (non-3GPP) access network device, such as an access gateway (AG).
  • the network device 110 may also be a relay station, an access point, a vehicle-mounted device, a wearable device, or other types of devices.
  • the communication system 100 is only an example, and the communication system applicable to the present application is not limited to this.
  • the number of network devices and terminal devices included in the communication system 100 may also be other numbers.
  • network equipment can use PDSCH aggregate transmission to transmit downlink data.
  • the network equipment can configure the PDSCH aggregation factor (pdsch-AggregationFactor) for the terminal equipment through radio resource control (radio resource control, RRC) signaling.
  • RRC radio resource control
  • the terminal equipment When the terminal equipment is scheduled to receive the PDSCH, it needs to set the PDSCH aggregation coefficient in continuous M (M is The PDSCH is repeatedly received in a positive integer) timeslots, where the scheduling mode for the network equipment to schedule the terminal equipment to receive the PDSCH can be dynamic scheduling or semi-continuous scheduling.
  • Fig. 2 is a schematic diagram of PDSCH aggregation transmission provided by the present application.
  • the PDSCH aggregation coefficient configured by the network device is 4, and the network device schedules the terminal device to receive the PDSCH in time slot 0 through the DCI. After receiving the DCI, the terminal device starts from time slot 0 and receives the PDSCH in 4 consecutive time slots, that is, receives the PDSCH in time slot 0, time slot 1, time slot 2, and time slot 3.
  • the frequency domain resources and time domain resources used by the 4 PDSCHs may be the same or different, where the same time domain resources used by the 4 PDSCHs means that the time domain resources in the time slots occupied by the 4 PDSCHs are the same;
  • the PDSCH in slot 0 and the PDSCH in slot 1 occupy the same time domain resources, which can be understood as: the number of symbols occupied by the PDSCH in slot 0 is the same as the number of symbols occupied by the PDSCH in slot 1 .
  • the network device can configure the URLLC repetition number (URLLCRepNum) for the terminal device, where the network device can pre-configure a time domain resource configuration list (pdsch-TimeDomainAllocationList) through RRC signaling. ), the list contains one or more PDSCH time domain resource configurations (PSDCH-TimeDomainResourceAllocation).
  • the PDSCH time domain resource configuration is an RRC parameter, which can include URLLC times; the terminal device can be configured according to the time domain resource allocation in the DCI. , TDRA) domain determines a time domain resource configuration from the time domain resource configuration list.
  • a time domain resource configuration determined by the terminal device from the time domain resource list does not include the number of URLLC repetitions, the terminal device does not need to repeatedly receive PDSCH; if the terminal equipment determines a time domain resource configuration from the time domain resource list that contains URLLC repetitions Number of times, the terminal device repeatedly receives the PDSCH according to the number of URLLC repetitions.
  • the remaining parameters can all be used in PDSCH aggregation transmission.
  • each TCI state is used for repeated transmission of a TRP.
  • Fig. 3 is a schematic diagram of URLLC repeated transmission provided by the present application.
  • the number of URLLC repetitions determined by the terminal device is 4, and the network device schedules the terminal device to receive the PDSCH in time slot 0 through the DCI. After receiving the DCI, the terminal device starts from time slot 0 and receives the PDSCH in 4 consecutive time slots, that is, receives the PDSCH in time slot 0, time slot 1, time slot 2, and time slot 3.
  • the frequency domain resources and time domain resources used by the 4 PDSCHs may be the same or different, where the same time domain resources used by the 4 PDSCHs means that the time domain resources in the time slots occupied by the 4 PDSCHs are the same;
  • the PDSCH in slot 0 and the PDSCH in slot 1 occupy the same time domain resources, which can be understood as: the number of symbols occupied by the PDSCH in slot 0 is the same as the number of symbols occupied by the PDSCH in slot 1 .
  • DCI can indicate two TCI states and a redundant version (RV).
  • the two TCI states are TCI state 0 and TCI state 1.
  • the RV is RV0, where TCI state 0 corresponds to TRP1, and TCI state 1 corresponds to TRP2 and RV0 correspond to the PDSCH in time slot 0.
  • TRP1 transmits PDSCH in time slot 0 and time slot 1
  • TRP2 transmits PDSCH in time slot 2 and time slot 3
  • the terminal equipment will be based on RV0 and TCI status 0 in time slot 0.
  • TRP1 receives PDSCH.
  • the terminal device may determine that the redundancy version in time slot 1 is RV2 according to a preset rule, and receive the PDSCH from TRP1 based on RV2 and TCI state 0. Subsequently, the terminal device may receive PDSCH from TRP2 based on RV0 and TCI state 1, and receive PDSCH from TRP2 based on RV2 and TCI state 1.
  • the terminal device may send an acknowledgement (acknowledgement, ACK) or a negative acknowledgement (NACK) to TRP1, indicating the reception of the PDSCH received 4 times.
  • acknowledgement acknowledgement
  • NACK negative acknowledgement
  • the method includes:
  • the method shown in FIG. 5 may be executed by a terminal device or a chip in the terminal device.
  • the above-mentioned high-level signaling is, for example, RRC signaling, and the method for the terminal device to determine the first time domain resource configuration is as shown in the above example related to the time domain resource configuration.
  • first and second are used to distinguish different individuals in objects of the same type.
  • first time domain resource configuration and “first time domain resource configuration” are two different There are no other restrictions on time domain resource configuration.
  • the terminal device After determining the PDSCH aggregation coefficient and the first time domain resource configuration, the terminal device can perform the following steps.
  • S520 Receive at least one PDSCH according to the PDSCH aggregation coefficient and/or the first time domain resource configuration.
  • the terminal device may determine the specific time domain position of the PDSCH in the time slot according to the first time domain resource configuration. In addition, based on different situations of the first time domain resource configuration, the terminal device can choose to use the PDSCH aggregation coefficient or not to use the PDSCH aggregation coefficient when receiving at least one PDSCH, thereby avoiding the conflict between the PDSCH aggregation transmission and the URLLC repeated transmission.
  • the at least one PDSCH is a PDSCH that transmits the same data, or is referred to as repeated transmission of the same PDSCH.
  • Method 1 the first time domain resource configuration is a time domain resource configuration list.
  • Case 1-1 and Case 1-2 below are two alternative examples of Method 1.
  • At least one time domain resource configuration in the time domain resource configuration list includes the number of URLLC repetitions.
  • the terminal device may determine the second time domain resource configuration from the time domain resource configuration list according to the TDRA domain in the DCI for scheduling the at least one PDSCH, and according to the second time domain resource Configure to receive the at least one PDSCH.
  • the PDSCH aggregation coefficient is not used to receive the at least one PDSCH, that is, when at least one time domain resource configuration in the current domain resource configuration list includes the number of URLLC repetitions, the priority of the URLLC repetition number in the first time domain resource configuration is higher. Priority for the PDSCH aggregation coefficient.
  • the foregoing second time domain resource configuration may include the number of URLLC repetitions or may not include the number of URLLC repetitions.
  • the terminal device receives at least one PDSCH in N consecutive time slots, where N is the number of URLLC repetitions included in the second time domain resource configuration, and N is positive Integer. For example, if N is equal to 4, the terminal device receives 4 PDSCHs in 4 consecutive time slots.
  • the terminal device receives a PDSCH in a time slot, which may be determined based on the DCI indicating the second time domain resource configuration.
  • each PDSCH in at least one PDSCH received by the terminal device includes one or two data streams.
  • a data stream is, for example, data corresponding to a demodulation reference signal (DMRS) port.
  • the DCI used to schedule the at least one PDSCH may indicate at most two TCI states, that is, the DCI used to schedule the at least one PDSCH may indicate one TCI state, may indicate two TCI states, or may not indicate TCI status.
  • the terminal device receives the at least one PDSCH in M consecutive time slots, where M is a PDSCH aggregation coefficient, and M is an integer greater than 1.
  • At least one PDSCH received by the terminal device includes one data stream.
  • the DCI used to schedule the at least one PDSCH may indicate at most one TCI state, that is, the DCI used to schedule the at least one PDSCH may indicate one TCI state, or may not indicate the TCI state.
  • the first time domain resource configuration is a time domain resource configuration determined by the terminal device from a time domain resource configuration list configured by high-level signaling according to DCI.
  • Case 2-1 and Case 2-2 below are two alternative examples of Method 2.
  • the first time domain resource configuration includes the number of URLLC repetitions.
  • the terminal device may receive at least one PDSCH in N consecutive time slots, where N is the number of URLLC repetitions included in the first time domain resource configuration, and N is a positive integer. At this time, N may be an integer greater than 1. Alternatively, N may be an integer greater than or equal to 1.
  • the at least one PDSCH includes one or two data streams.
  • the DCI for scheduling the at least one PDSCH indicates at most two TCI states, that is, the DCI for scheduling the at least one PDSCH may indicate one TCI state, may indicate two TCI states, or may not indicate a TCI state.
  • the terminal device may receive at least one PDSCH in M consecutive time slots, where M is a PDSCH aggregation coefficient, and M is an integer greater than 1.
  • the at least one PDSCH contains one data stream.
  • the DCI used to schedule the at least one PDSCH indicates at most one TCI state.
  • the first time domain resource configuration is a time domain resource configuration determined by the terminal device from a time domain resource configuration list configured by high-level signaling according to DCI.
  • the following case 3-1, case 3-2, and case 3-3 are three alternative examples of method 3.
  • the first time domain resource configuration includes the number of URLLC repetitions, and the number of URLLC repetitions is greater than one.
  • the terminal device may receive at least one PDSCH in N consecutive time slots, where N is the number of URLLC repetitions included in the first time domain resource configuration, and N is a positive integer.
  • the at least one PDSCH includes one or two data streams.
  • the DCI for scheduling the at least one PDSCH indicates at most two TCI states, that is, the DCI for scheduling the at least one PDSCH may indicate one TCI state, may indicate two TCI states, or may not indicate a TCI state.
  • the first time domain resource configuration includes the number of repetitions of URLLC, and the number of repetitions of URLLC is equal to one.
  • the terminal device may receive at least one PDSCH in M consecutive time slots, where M is a PDSCH aggregation coefficient, and M is an integer greater than 1.
  • the at least one PDSCH contains one data stream.
  • the DCI used to schedule the at least one PDSCH indicates at most one TCI state.
  • the first time domain resource configuration does not include the number of URLLC repetitions.
  • the terminal device can adopt the same processing method as in case 3-2.
  • the above has introduced an example of how to receive the PDSCH when the terminal device receives the PDSCH aggregation coefficient and the first time domain resource configuration.
  • the terminal device receives the time domain resource configuration list for PDSCH transmission, and when at least one time domain resource configuration in the time domain resource configuration list includes the number of URLLC repetitions, the terminal device can execute the method shown in FIG. 6 .
  • S610 Receive a time domain resource configuration list used for PDSCH transmission, where at least one time domain resource configuration in the time domain resource configuration list includes the number of URLLC repetitions.
  • the network device has sent the number of URLLC repetitions for PDSCH transmission. If the network device sends the PDSCH aggregation coefficient again, it may cause the PDSCH aggregation transmission and the URLLC repeated transmission to conflict. Therefore, the terminal device can perform the following steps.
  • the foregoing undesired reception of the PDSCH aggregation coefficient may be interpreted as: when receiving the PDSCH aggregation coefficient, the terminal device determines not to receive the PDSCH; or the terminal device does not expect to be configured with the URLLC repetition number and the PDSCH aggregation coefficient at the same time.
  • the network device will not send the PDSCH aggregation coefficient after sending the URLLC repetition times for PDSCH transmission; or the network device will not configure the URLLC repetition times and the PDSCH aggregation coefficient at the same time.
  • the apparatus for receiving PDSCH includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the present application may divide the functional units of the device receiving PDSCH according to the foregoing method examples. For example, each function may be divided into each functional unit, or two or more functions may be integrated into one processing unit.
  • the above functional units can be implemented in the form of hardware or software functional units. It should be noted that the division of units in this application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • Fig. 7 is a schematic structural diagram of a device for receiving PDSCH provided by the present application.
  • the device 700 includes a processing unit 710 and a receiving unit 720, and the receiving unit 720 can execute the receiving step under the control of the processing unit 710.
  • the processing unit 710 is configured to determine a PDSCH aggregation coefficient and a first time domain resource configuration, where the first time domain resource configuration is a time domain resource configuration list configured through higher layer signaling, or the first time domain resource
  • the configuration is a time domain resource configuration determined from the time domain resource configuration list configured by high-level signaling according to DCI;
  • the receiving unit 720 is configured to receive at least one PDSCH according to the PDSCH aggregation coefficient and/or the first time domain resource configuration.
  • the processing unit 710 is further configured to: when at least one time domain resource configuration in the time domain resource configuration list includes the number of URLLC repetitions
  • the processing unit 710 is further configured to: when at least one time domain resource configuration in the time domain resource configuration list includes the number of URLLC repetitions
  • the receiving unit 720 is specifically configured to: according to the second time domain resource Configure to receive the at least one PDSCH.
  • the receiving unit 720 is specifically configured to: receive the at least one PDSCH in N consecutive time slots, where N is the second time domain The number of URLLC repetitions included in the resource configuration. N is a positive integer.
  • each PDSCH in the at least one PDSCH includes one or two data streams.
  • the DCI used to schedule the at least one PDSCH indicates at most two TCI states.
  • the PDSCH aggregation coefficient is not used for receiving the at least one PDSCH.
  • the receiving unit 720 is specifically configured to: when all time domain resource configurations in the time domain resource configuration list do not include the number of URLLC repetitions When receiving the at least one PDSCH in M consecutive time slots according to the PDSCH aggregation coefficient, where M is the PDSCH aggregation coefficient, and M is an integer greater than 1.
  • each PDSCH in the at least one PDSCH includes one data stream.
  • the DCI used to schedule the at least one PDSCH indicates at most one TCI state.
  • the receiving unit 720 is specifically configured to: When the domain resource configuration includes the number of URLLC repetitions, the at least one PDSCH is received in N consecutive time slots, where N is the number of URLLC repetitions, and N is a positive integer; or, when the first time domain When the resource configuration does not include the number of URLLC repetitions, the at least one PDSCH is received in M consecutive time slots, where M is the PDSCH aggregation coefficient, and M is an integer greater than 1.
  • each PDSCH in the at least one PDSCH includes one or two data streams.
  • the DCI used to schedule the at least one PDSCH indicates at most two TCI states.
  • the PDSCH aggregation coefficient is not used to receive the at least one PDSCH.
  • each PDSCH in the at least one PDSCH includes one data stream.
  • the DCI used to schedule the at least one PDSCH indicates at most one TCI state.
  • the receiving unit 720 is specifically configured to: When the number of URLLC repetitions in the domain resource configuration is greater than 1, the at least one PDSCH is received in N consecutive time slots, where N is the number of URLLC repetitions, and N is a positive integer; or, when the first When the number of URLLC repetitions in a time domain resource configuration is equal to 1, the at least one PDSCH is received in M consecutive time slots, where M is the PDSCH aggregation coefficient, and M is an integer greater than 1.
  • each PDSCH in the at least one PDSCH includes one or two data streams.
  • the DCI used to schedule the at least one PDSCH indicates at most two TCI states.
  • the PDSCH aggregation coefficient is not used to receive the at least one PDSCH.
  • each PDSCH in the at least one PDSCH includes one data stream.
  • the DCI used to schedule the at least one PDSCH indicates at most one TCI state.
  • Fig. 8 is a schematic structural diagram of another device for receiving PDSCH provided by the present application.
  • the device 800 includes a processing unit 810 and a receiving unit 820, and the receiving unit 820 can perform receiving steps under the control of the processing unit 810.
  • the receiving unit 820 is configured to receive a time domain resource configuration list used for PDSCH transmission, where at least one time domain resource configuration in the time domain resource configuration list includes the number of URLLC repetitions;
  • the processing unit 810 is configured to: not expect to receive PDSCH aggregation coefficients.
  • the processing unit 810 is configured to: when the PDSCH aggregation coefficient is received through the receiving unit 820, determine not to receive the PDSCH.
  • FIG. 9 shows a schematic structural diagram of a device for receiving PDSCH provided by the present application.
  • the dotted line in Figure 9 indicates that the unit or the module is optional.
  • the device 900 may be used to implement the methods described in the foregoing method embodiments.
  • the device 900 may be a terminal device or a chip.
  • the device 900 includes one or more processors 901, and the one or more processors 901 can support the device 900 to implement the methods in the method embodiments corresponding to FIGS. 2 to 6.
  • the processor 901 may be a general-purpose processor or a special-purpose processor.
  • the processor 901 may be a central processing unit (CPU).
  • the CPU can be used to control the device 900, execute a software program, and process data of the software program.
  • the device 900 may also include a communication unit 905 to implement signal input (reception) and output (transmission).
  • the device 900 may be a chip, and the communication unit 905 may be an input and/or output circuit of the chip, or the communication unit 905 may be a communication interface of the chip, and the chip may be used as a terminal device or a network device or other wireless communication device. made of.
  • the device 900 may be a terminal device, and the communication unit 905 may be a transceiver of the terminal device, or the communication unit 905 may be a transceiver circuit of the terminal device.
  • the device 900 may include one or more memories 902 with a program 904 stored thereon, and the program 904 may be run by the processor 901 to generate an instruction 903 so that the processor 901 executes the method described in the foregoing method embodiment according to the instruction 903.
  • data may also be stored in the memory 902.
  • the processor 901 may also read data stored in the memory 902. The data may be stored at the same storage address as the program 904, and the data may also be stored at a different storage address from the program 904.
  • the processor 901 and the memory 902 may be provided separately or integrated together, for example, integrated on a system-on-chip (SOC) of the terminal device.
  • SOC system-on-chip
  • the device 900 may also include an antenna 906.
  • the communication unit 905 is used to implement the transceiver function of the device 900 through the antenna 906.
  • the processor 901 may be a CPU, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices , For example, discrete gates, transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • This application also provides a computer program product, which, when executed by the processor 901, implements the method described in any method embodiment in this application.
  • the computer program product may be stored in the memory 902, for example, a program 904.
  • the program 904 is finally converted into an executable object file that can be executed by the processor 901 through processing processes such as preprocessing, compilation, assembly, and linking.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a computer, the method described in any method embodiment in the present application is implemented.
  • the computer program can be a high-level language program or an executable target program.
  • the computer-readable storage medium is, for example, the memory 902.
  • the memory 902 may be a volatile memory or a non-volatile memory, or the memory 902 may include both a volatile memory and a non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the disclosed system, device, and method may be implemented in other ways. For example, some features of the method embodiments described above may be ignored or not implemented.
  • the device embodiments described above are merely illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the foregoing coupling includes electrical, mechanical, or other forms of connection.
  • the size of the sequence number of each process does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • system and “network” in this article are often used interchangeably in this article.
  • the term “and/or” in this article is only an association relationship that describes associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist simultaneously There are three cases of B.
  • the character “/" in this text generally indicates that the associated objects before and after are in an "or" relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种接收PDSCH的方法,包括:确定PDSCH聚合系数和第一时域资源配置,其中,所述第一时域资源配置为通过高层信令配置的时域资源配置列表,或者,所述第一时域资源配置为根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置;根据所述PDSCH聚合系数和/或所述第一时域资源配置接收至少一个PDSCH。终端设备可以根据第一时域资源配置确定PDSCH在时隙内的具体时域位置。基于第一时域资源配置的不同情况,终端设备在接收至少一个PDSCH时可以选择使用PDSCH聚合系数或者不使用PDSCH聚合系数,从而避免了PDSCH聚合传输与URLLC重复传输发生冲突。

Description

接收物理下行共享信道的方法和装置 技术领域
本申请涉及通信领域,具体涉及一种接收物理下行共享信道的方法和装置。
背景技术
为了提高传输可靠性,第五代(5th generation,5G)移动通信系统支持物理下行共享信道(physical downlink shared channel,PDSCH)聚合传输和超可靠低时延通信(ultra-reliable low-latency communication,URLLC)重复传输。在PDSCH聚合传输中,网络设备可以通过同一个传输接收点(transmission/reception point,TRP)在连续的多个时隙中重传PDSCH,PDSCH的重传次数是通过高层信令指示的。在URLLC重复传输中,网络设备可以在多个时隙中重传PDSCH,其中,网络设备可以在这多个时隙中使用不同的TRP重传PDSCH,且重传的次数是通过DCI信令确定。
若网络设备同时为终端设备配置了上述两种传输方式,两种传输方式可能存在冲突,导致终端无法确定采用哪种方式来接收PDSCH。
发明内容
本申请提供了一种接收PDSCH的方法和装置,能够避免上述两种传输方式的冲突。
第一方面,提供了一种接收PDSCH的方法,包括:确定PDSCH聚合系数和第一时域资源配置,其中,所述第一时域资源配置为通过高层信令配置的时域资源配置列表,或者,所述第一时域资源配置为根据下行控制信息(downlink control information,DCI)从高层信令配置的时域资源配置列表中确定的一个时域资源配置;根据所述PDSCH聚合系数和/或所述第一时域资源配置接收至少一个PDSCH。
终端设备可以根据第一时域资源配置确定PDSCH在时隙内的具体时域位置。基于第一时域资源配置的不同情况,终端设备在接收至少一个PDSCH时可以选择使用PDSCH聚合系数或者不使用PDSCH聚合系数,从而避免了PDSCH聚合传输与URLLC重复传输发生冲突。
第二方面,提供了另一种接收PDSCH的方法,包括:接收用于PDSCH传输的时域资源配置列表,所述时域资源配置列表中的至少一个时域资源配置包括URLLC重复次数;不期望接收PDSCH聚合系数。
上述不期望接收PDSCH聚合系数可以被解释为:当接收到PDSCH聚合系数时,终端设备确定不接收PDSCH;或者,终端设备不期望同时被配置URLLC重复次数和PDSCH聚合系数。因此,上述方法可以避免PDSCH聚合传输与URLLC重复传输发送冲突。
第三方面,提供了一种接收PDSCH的装置,该装置可以实现第一方面或第二方面中的方法所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置为终端设备或芯片。该装置可以包括处理单元和收发单元。当该装置是终端设备时,该处理单元可以是处理器,该收发单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行第一方面或第二方面所 述的方法。当该装置是终端设备内的芯片时,该处理单元可以是处理器,该收发单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使包含该芯片的终端设备执行第一方面或第二方面所述的方法,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序,该计算机程序被处理器执行时,使得处理器执行第一方面或第二方面所述的方法。
第五方面,提供了一种计算机程序产品,包括计算机程序代码,当该计算机程序代码被处理器运行时,使得处理器执行第一方面或第二方面所述的方法。
第六方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行第一方面或第二方面所述的方法。
附图说明
图1是一种适用于本申请的通信系统的示意图;
图2是本申请提供的一种PDSCH聚合传输的示意图;
图3是本申请提供的一种URLLC重复传输的示意图;
图4是本申请提供的另一种URLLC重复传输的示意图;
图5是本申请提供的一种接收PDSCH的方法的示意图;
图6是本申请提供的另一种接收PDSCH的方法的示意图;
图7是本申请提供的一种接收PDSCH的装置的示意图;
图8是本申请提供的另一种接收PDSCH的装置的示意图;
图9是本申请提供的一种接收PDSCH的设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先介绍本申请的应用场景,图1是一种适用于本申请的通信系统的示意图。
通信系统100包括网络设备110和终端设备120。终端设备120通过电磁波与网络设备110进行通信。
在本申请中,终端设备120可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,例如,第三代合作伙伴计划(3 rd generation partnership project,3GPP)所定义的用户设备(user equipment,UE),移动台(mobile station,MS),软终端,家庭网关,机顶盒等等。
网络设备110可以是3GPP所定义的基站,例如,5G移动通信系统中的基站(gNB)。网络设备110也可以是非3GPP(non-3GPP)的接入网设备,例如接入网关(access gateway,AG)。网络设备110还可以是中继站、接入点、车载设备、可穿戴设备或其它类型的设备。
通信系统100仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统100中包含的网络设备和终端设备的数量还可以是其它的数量。
为了提高传输可靠性,网络设备可以使用PDSCH聚合传输传输下行数据。网络设备可以通过无线资源控制(radio resource control,RRC)信令为终端设备配置PDSCH聚合系数(pdsch-AggregationFactor),当终端设备被调度接收PDSCH时,需要按照PDSCH聚合系数在连续的M(M为正整数)个时隙内重复接收PDSCH,其中,网络设备调度终端设备接收PDSCH的调度方式可以是动态调度,也可以半持续调度。
图2是本申请提供的一种PDSCH聚合传输的示意图。
网络设备配置的PDSCH聚合系数为4,并且,网络设备通过DCI调度终端设备在时隙0内接收PDSCH。终端设备接收到DCI后,从时隙0开始,在连续4个时隙内接收PDSCH,即,在时隙0、时隙1、时隙2和时隙3内接收PDSCH。该4个PDSCH使用的频域资源和时域资源可以相同,也可以不同,其中,该4个PDSCH使用时域资源相同指的是:该4个PDSCH占用的时隙内的时域资源相同;例如,时隙0内的PDSCH和时隙1内的PDSCH占用时域资源相同,可以被理解为:时隙0内的PDSCH占用的符号的编号和时隙1内的PDSCH占用的符号的编号相同。
当网络设备决定使用URLLC重复(repetition)传输传输PDSCH时,网络设备可以为终端设备配置URLLC重复次数(URLLCRepNum),其中,网络设备可以通过RRC信令预先配置一个时域资源配置列表(pdsch-TimeDomainAllocationList),该列表包含一个或多个PDSCH时域资源配置(PSDCH-TimeDomainResourceAllocation),PDSCH时域资源配置为RRC参数,可以包含URLLC次数;终端设备可以根据DCI中的时域资源配置(time domain resource allocation,TDRA)域从时域资源配置列表中确定一个时域资源配置。若终端设备从时域资源列表中确定的一个时域资源配置不包含URLLC重复次数,则终端设备不需要重复接收PDSCH;若终端设备从时域资源列表中确定的一个时域资源配置包含URLLC重复次数,则终端设备按照该URLLC重复次数重复接收PDSCH。上述时域资源配置列表中,除了URLLC重复次数,其余参数均可以在PDSCH聚合传输中被使用。
在URLLC重复传输场景中,若不同时隙内的PDSCH被不同的TRP传输,则不同的TRP可以采用不同波束,此时,网络设备需要在一个DCI中指示多个传输配置指示(transmission control indicator,TCI)状态,每个TCI状态用于一个TRP的重复传输。
图3是本申请提供的一种URLLC重复传输的示意图。
终端设备确定的URLLC重复次数为4,并且,网络设备通过DCI调度终端设备在时隙0内接收PDSCH。终端设备接收到DCI后,从时隙0开始,在连续4个时隙内接收PDSCH,即,在时隙0、时隙1、时隙2和时隙3内接收PDSCH。该4个PDSCH使用的频域资源和时域资源可以相同,也可以不同,其中,该4个PDSCH使用时域资源相同指的是:该4个PDSCH占用的时隙内的时域资源相同;例如,时隙0内的PDSCH和时隙1内的PDSCH占用时域资源相同,可以被理解为:时隙0内的PDSCH占用的符号的编号和时隙1内的PDSCH占用的符号的编号相同。
DCI可以指示两个TCI状态和一个冗余版本(redundant version,RV),该两个TCI状态为TCI状态0和TCI状态1,该RV为RV0,其中,TCI状态0对应TRP1,TCI状态1对应TRP2,RV0对应时隙0内的PDSCH。如图4所示,若TRP1在时隙0和时隙 1中传输PDSCH,并且,TRP2在时隙2和时隙3内传输PDSCH,则终端设备在时隙0内基于RV0和TCI状态0从TRP1接收PDSCH。终端设备可以根据预设规则确定时隙1内的冗余版本为RV2,并基于RV2和TCI状态0从TRP1接收PDSCH。随后,终端设备可以基于RV0和TCI状态1从TRP2接收PDSCH,以及,基于RV2和TCI状态1从TRP2接收PDSCH。
此外,终端设备可以向TRP1发送肯定应答(acknowledgement,ACK)或否定应答(negative acknowledgement,NACK),指示4次接收PDSCH的接收情况。
下面,将介绍本申请提供的解决上述两种传输方式之间的冲突的方法。
如图5所示,该方法包括:
S510,确定PDSCH聚合系数和第一时域资源配置,其中,所述第一时域资源配置为通过高层信令配置的时域资源配置列表,或者,所述第一时域资源配置为根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置。
图5所示的方法可以由终端设备或者终端设备中的芯片执行。上述高层信令例如是RRC信令,终端设备确定第一时域资源配置的方法如上文中与时域资源配置相关的示例所示。
在本申请中,“第一”、“第二”用于区分相同类型的对象中的不同个体,例如,“第一时域资源配置”和“第一时域资源配置”为两个不同的时域资源配置,除此之外不存在其它限定。
终端设备确定PDSCH聚合系数和第一时域资源配置后,可以执行下列步骤。
S520,根据所述PDSCH聚合系数和/或所述第一时域资源配置接收至少一个PDSCH。
终端设备可以根据第一时域资源配置确定PDSCH在时隙内的具体时域位置。此外,基于第一时域资源配置的不同情况,终端设备在接收至少一个PDSCH时可以选择使用PDSCH聚合系数或者不使用PDSCH聚合系数,从而避免了PDSCH聚合传输与URLLC重复传输冲突的情况。
在本申请中,所述至少一个PDSCH为传输相同数据的PDSCH,或者称为同一个PDSCH的重复传输。
下面,将描述终端设备如何接收PDSCH的三种方法。
方法1,第一时域资源配置为时域资源配置列表。下文中的情况1-1和情况1-2是方法1的两个可选的示例。
情况1-1,所述时域资源配置列表中的至少一个时域资源配置包括URLLC重复次数。
终端设备在执行S520的过程中,可以根据调度所述至少一个PDSCH的DCI中的TDRA域,从所述时域资源配置列表中确定第二时域资源配置,并根据所述第二时域资源配置接收所述至少一个PDSCH。其中,PDSCH聚合系数不用于接收所述至少一个PDSCH,即,当时域资源配置列表中的至少一个时域资源配置包括URLLC重复次数时,第一时域资源配置中的URLLC重复次数的优先级高于PDSCH聚合系数的优先级。
上述第二时域资源配置可能包括URLLC重复次数,也可能不包括URLLC重复次数。
当所述第二时域资源配置包含URLLC重复次数时,终端设备在N个连续的时隙中接收至少一个PDSCH,其中,N为第二时域资源配置中包含的URLLC重复次数,N为正整数。例如,N等于4,则终端设备在4个连续的时隙中接收4个PDSCH。
当所述第二时域资源配置中不包含URLLC重复次数时,终端设备在一个时隙中接 收一个PDSCH,该时隙可以基于指示第二时域资源配置的DCI确定。
在情况1-1中,终端设备接收到的至少一个PDSCH中的每个PDSCH包含一个或者两个数据流。一个数据流例如是一个解调参考信号(demodulation reference signal,DMRS)端口对应的数据。此外,用于调度所述至少一个PDSCH的DCI最多可以指示两个TCI状态,即,用于调度所述至少一个PDSCH的DCI可以指示一个TCI状态,也可以指示两个TCI状态,也可以不指示TCI状态。
情况1-2,所述时域资源配置列表中的全部时域资源配置都不包括URLLC重复次数,即网络设备在高层信令中不配置URLLC重复次数。
终端设备在执行S520的过程中,在M个连续的时隙中接收所述至少一个PDSCH,其中,M为PDSCH聚合系数,并且,M为大于1的整数。
在情况1-2中,终端设备接收的至少一个PDSCH包含一个数据流。此外,用于调度所述至少一个PDSCH的DCI最多可以指示一个TCI状态,即,用于调度所述至少一个PDSCH的DCI可以指示一个TCI状态,也可以不指示TCI状态。
方法2,第一时域资源配置为终端设备根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置。下文中的情况2-1和情况2-2是方法2的两个可选的示例。
情况2-1,第一时域资源配置包括URLLC重复次数。
终端设备在执行S520的过程中,可以在N个连续的时隙内接收至少一个PDSCH,其中,N为所述第一时域资源配置包括的URLLC重复次数,并且,N为正整数。此时,N可以是大于1的整数。或者,N也可以是大于或等于1的整数。该至少一个PDSCH包含一个或两个数据流。此外,调度该至少一个PDSCH的DCI最多指示两个TCI状态,即,用于调度所述至少一个PDSCH的DCI可以指示一个TCI状态,也可以指示两个TCI状态,也可以不指示TCI状态。
情况2-2,第一时域资源配置不包括URLLC重复次数。
终端设备在执行S520的过程中,可以在M个连续的时隙内接收至少一个PDSCH,其中,M为PDSCH聚合系数,并且,M为大于1的整数。该至少一个PDSCH包含一个数据流。此外,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
方法3,第一时域资源配置为终端设备根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置。下文中的情况3-1、情况3-2和情况3-3是方法3的三个可选的示例。
情况3-1,第一时域资源配置包括URLLC重复次数,且所述URLLC重复次数大于1。
终端设备在执行S520的过程中,可以在N个连续的时隙内接收至少一个PDSCH,其中,N为所述第一时域资源配置包括的URLLC重复次数,并且,N为正整数。该至少一个PDSCH包含一个或两个数据流。此外,调度该至少一个PDSCH的DCI最多指示两个TCI状态,即,用于调度所述至少一个PDSCH的DCI可以指示一个TCI状态,也可以指示两个TCI状态,也可以不指示TCI状态。
情况3-2,第一时域资源配置包括URLLC重复次数,且所述URLLC重复次数等于1。
终端设备在执行S520的过程中,可以在M个连续的时隙内接收至少一个PDSCH,其中,M为PDSCH聚合系数,并且,M为大于1的整数。该至少一个PDSCH包含一个 数据流。此外,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
情况3-3,第一时域资源配置不包括URLLC重复次数。
此时,终端设备可以采用和情况3-2相同的处理方式。
上文介绍了终端设备接收到PDSCH聚合系数和第一时域资源配置的情况下如何接收PDSCH的示例。当终端设备接收到用于PDSCH传输的时域资源配置列表时,并且,当该时域资源配置列表中的至少一个时域资源配置包括URLLC重复次数时,终端设备可以执行图6所示的方法。
S610,接收用于PDSCH传输的时域资源配置列表,所述时域资源配置列表中的至少一个时域资源配置包括URLLC重复次数。
在上述情况中,网络设备已发送了用于PDSCH传输的URLLC重复次数,若网络设备再发送PDSCH聚合系数,则可能导致PDSCH聚合传输与URLLC重复传输发送冲突,因此,终端设备可以执行下列步骤。
S620,不期望接收PDSCH聚合系数。
上述不期望接收PDSCH聚合系数可以被解释为:当接收到PDSCH聚合系数时,终端设备确定不接收PDSCH;或者,终端设备不期望同时被配置URLLC重复次数和PDSCH聚合系数。
相应地,网络设备在发送了用于PDSCH传输的URLLC重复次数之后,不会再发送PDSCH聚合系数;或者,网络设备不会同时配置URLLC重复次数和PDSCH聚合系数。
通过上述方法,可以避免PDSCH聚合传输与URLLC重复传输发送冲突。
上文详细介绍了本申请提供的接收PDSCH的方法的示例。可以理解的是,接收PDSCH的装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对接收PDSCH的装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述功能单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图7是本申请提供的一种接收PDSCH的装置的结构示意图。该装置700包括处理单元710和接收单元720,接收单元720能够在处理单元710的控制下执行接收步骤。
处理单元710用于:确定PDSCH聚合系数和第一时域资源配置,其中,所述第一时域资源配置为通过高层信令配置的时域资源配置列表,或者,所述第一时域资源配置为根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置;
接收单元720用于:根据所述PDSCH聚合系数和/或所述第一时域资源配置接收至少一个PDSCH。
可选地,当所述第一时域资源配置为所述时域资源配置列表时,处理单元710还用于:当所述时域资源配置列表中的至少一个时域资源配置包括URLLC重复次数时,根 据用于调度所述至少一个PDSCH的DCI中的TDRA域,从所述时域资源配置列表中确定第二时域资源配置;接收单元720具体用于:根据所述第二时域资源配置接收所述至少一个PDSCH。
可选地,当所述第二时域资源配置包含URLLC重复次数时,接收单元720具体用于:在N个连续的时隙中接收所述至少一个PDSCH,其中N为所述第二时域资源配置中包含的URLLC重复次数,N为正整数。
可选地,所述至少一个PDSCH中的每个PDSCH包含一个或者两个数据流。
可选地,用于调度所述至少一个PDSCH的DCI最多指示两个TCI状态。
可选地,所述PDSCH聚合系数不用于接收所述至少一个PDSCH。
可选地,当所述第一时域资源配置为所述时域资源配置列表时,接收单元720具体用于:当所述时域资源配置列表中的全部时域资源配置不包括URLLC重复次数时,根据所述PDSCH聚合系数在M个连续的时隙中接收所述至少一个PDSCH,其中,M为所述PDSCH聚合系数,并且,M为大于1的整数。
可选地,所述至少一个PDSCH中的每个PDSCH包含一个数据流。
可选地,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
可选地,当所述第一时域资源配置为根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置时,接收单元720具体用于:当所述第一时域资源配置包括URLLC重复次数时,在N个连续的时隙内接收所述至少一个PDSCH,其中,N为所述URLLC重复次数,并且,N为正整数;或者,当所述第一时域资源配置不包括URLLC重复次数时,在M个连续的时隙内接收所述至少一个PDSCH,其中,M为所述PDSCH聚合系数,并且,M为大于1的整数。
可选地,当所述第一时域资源配置包括URLLC重复次数时,所述至少一个PDSCH中的每个PDSCH包含一个或者两个数据流。
可选地,当所述第一时域资源配置包括URLLC重复次数时,用于调度所述至少一个PDSCH的DCI最多指示两个TCI状态。
可选地,当所述第一时域资源配置包括URLLC重复次数时,所述PDSCH聚合系数不用于接收所述至少一个PDSCH。
可选地,当所述第一时域资源配置不包括URLLC重复次数时,所述至少一个PDSCH中的每个PDSCH包含一个数据流。
可选地,当所述第一时域资源不配置包括URLLC重复次数时,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
可选地,当所述第一时域资源配置为根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置时,接收单元720具体用于:当所述第一时域资源配置中的URLLC重复次数大于1时,在N个连续的时隙内接收所述至少一个PDSCH,其中,N为所述URLLC重复次数,并且,N为正整数;或者,当所述第一时域资源配置中的URLLC重复次数等于1时,在M个连续的时隙内内接收所述至少一个PDSCH,其中,M为所述PDSCH聚合系数,并且,M为大于1的整数。
可选地,当所述第一时域资源配置中的URLLC重复次数大于1时,所述至少一个PDSCH中的每个PDSCH包含一个或者两个数据流。
可选地,当所述第一时域资源配置中的URLLC重复次数大于1时,用于调度所述 至少一个PDSCH的DCI最多指示两个TCI状态。
可选地,当所述第一时域资源配置包括URLLC重复次数时,所述PDSCH聚合系数不用于接收所述至少一个PDSCH。
可选地,当所述第一时域资源配置中的URLLC重复次数等于1时,所述至少一个PDSCH中的每个PDSCH包含一个数据流。
可选地,当所述第一时域资源配置中的URLLC重复次数等于1时,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
装置700执行接收PDSCH的方法的具体方式以及产生的有益效果可以参见方法实施例中的相关描述。
图8是本申请提供的另一种接收PDSCH的装置的结构示意图。该装置800包括处理单元810和接收单元820,接收单元820能够在处理单元810的控制下执行接收步骤。
接收单元820用于:接收用于PDSCH传输的时域资源配置列表,所述时域资源配置列表中的至少一个时域资源配置包括URLLC重复次数;
处理单元810用于:不期望接收PDSCH聚合系数。
可选地,处理单元810用于:当通过接收单元820接收到所述PDSCH聚合系数时,确定不接收PDSCH。
装置800执行接收PDSCH的方法的具体方式以及产生的有益效果可以参见方法实施例中的相关描述。
图9示出了本申请提供的一种接收PDSCH的设备的结构示意图。图9中的虚线表示该单元或该模块为可选的。设备900可用于实现上述方法实施例中描述的方法。设备900可以是终端设备或芯片。
设备900包括一个或多个处理器901,该一个或多个处理器901可支持设备900实现图2至图6所对应方法实施例中的方法。处理器901可以是通用处理器或者专用处理器。例如,处理器901可以是中央处理器(central processing unit,CPU)。CPU可以用于对设备900进行控制,执行软件程序,处理软件程序的数据。设备900还可以包括通信单元905,用以实现信号的输入(接收)和输出(发送)。
例如,设备900可以是芯片,通信单元905可以是该芯片的输入和/或输出电路,或者,通信单元905可以是该芯片的通信接口,该芯片可以作为终端设备或网络设备或其它无线通信设备的组成部分。
又例如,设备900可以是终端设备,通信单元905可以是该终端设备的收发器,或者,通信单元905可以是该终端设备的收发电路。
设备900中可以包括一个或多个存储器902,其上存有程序904,程序904可被处理器901运行,生成指令903,使得处理器901根据指令903执行上述方法实施例中描述的方法。可选地,存储器902中还可以存储有数据。可选地,处理器901还可以读取存储器902中存储的数据,该数据可以与程序904存储在相同的存储地址,该数据也可以与程序904存储在不同的存储地址。
处理器901和存储器902可以单独设置,也可以集成在一起,例如,集成在终端设备的系统级芯片(system on chip,SOC)上。
设备900还可以包括天线906。通信单元905用于通过天线906实现设备900的收发功能。
处理器901执行接收PDSCH的方法的具体方式可以参见方法实施例中的相关描述。
应理解,上述方法实施例的各步骤可以通过处理器901中的硬件形式的逻辑电路或者软件形式的指令完成。处理器901可以是CPU、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件,例如,分立门、晶体管逻辑器件或分立硬件组件。
本申请还提供了一种计算机程序产品,该计算机程序产品被处理器901执行时实现本申请中任一方法实施例所述的方法。
该计算机程序产品可以存储在存储器902中,例如是程序904,程序904经过预处理、编译、汇编和链接等处理过程最终被转换为能够被处理器901执行的可执行目标文件。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被计算机执行时实现本申请中任一方法实施例所述的方法。该计算机程序可以是高级语言程序,也可以是可执行目标程序。
该计算机可读存储介质例如是存储器902。存储器902可以是易失性存储器或非易失性存储器,或者,存储器902可以同时包括易失性存储器和非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和设备的具体工作过程以及产生的技术效果,可以参考前述方法实施例中对应的过程和技术效果,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略,或不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中的术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”, 一般表示前后关联对象是一种“或”的关系。
总之,以上所述仅为本申请技术方案的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (51)

  1. 一种接收物理下行共享信道的方法,其特征在于,包括:
    确定物理下行共享信道PDSCH聚合系数和第一时域资源配置,其中,所述第一时域资源配置为通过高层信令配置的时域资源配置列表,或者,所述第一时域资源配置为根据下行控制信息DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置;
    根据所述PDSCH聚合系数和/或所述第一时域资源配置接收至少一个PDSCH。
  2. 根据权利要求1所述的方法,其特征在于,当所述第一时域资源配置为所述时域资源配置列表时,所述根据所述PDSCH聚合系数和/或所述第一时域资源配置接收至少一个PDSCH,包括:
    当所述时域资源配置列表中的至少一个时域资源配置包括超可靠低时延通信URLLC重复次数时,根据用于调度所述至少一个PDSCH的DCI中的时域资源配置TDRA域,从所述时域资源配置列表中确定第二时域资源配置,并根据所述第二时域资源配置接收所述至少一个PDSCH。
  3. 根据权利要求2所述的方法,其特征在于,当所述第二时域资源配置包含URLLC重复次数时,所述根据所述第二时域资源配置接收所述至少一个PDSCH,包括:
    在N个连续的时隙中接收所述至少一个PDSCH,其中N为所述第二时域资源配置中包含的URLLC重复次数,N为正整数。
  4. 根据权利要求2或3所述的方法,其特征在于,所述至少一个PDSCH中的每个PDSCH包含一个或者两个数据流。
  5. 根据权利要求2至4中任一项所述的方法,其特征在于,用于调度所述至少一个PDSCH的DCI最多指示两个传输配置指示TCI状态。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述PDSCH聚合系数不用于接收所述至少一个PDSCH。
  7. 根据权利要求1所述的方法,其特征在于,当所述第一时域资源配置为所述时域资源配置列表时,所述根据所述PDSCH聚合系数和/或所述第一时域资源配置接收至少一个PDSCH,包括:
    当所述时域资源配置列表中的全部时域资源配置不包括URLLC重复次数时,根据所述PDSCH聚合系数M,在M个连续的时隙中接收所述至少一个PDSCH,其中,M为所述PDSCH聚合系数,并且,M为大于1的整数。
  8. 根据权利要求7所述的方法,其特征在于,所述至少一个PDSCH中的每个PDSCH包含一个数据流。
  9. 根据权利要求7或8所述的方法,其特征在于,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
  10. 根据权利要求1所述的方法,其特征在于,当所述第一时域资源配置为根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置时,所述根据所述PDSCH聚合系数和/或所述第一时域资源配置接收至少一个PDSCH,包括:
    当所述第一时域资源配置包括URLLC重复次数时,在N个连续的时隙内接收所述至少一个PDSCH,其中,N为所述URLLC重复次数,并且,N为正整数;或者,
    当所述第一时域资源配置不包括URLLC重复次数时,在M个连续的时隙内接收所述至少一个PDSCH,其中,M为所述PDSCH聚合系数,并且,M为大于1的整数。
  11. 根据权利要求10所述的方法,其特征在于,当所述第一时域资源配置包括URLLC重复次数时,所述至少一个PDSCH中的每个PDSCH包含一个或者两个数据流。
  12. 根据权利要求10或11所述的方法,其特征在于,当所述第一时域资源配置包括URLLC重复次数时,用于调度所述至少一个PDSCH的DCI最多指示两个TCI状态。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,当所述第一时域资源配置包括URLLC重复次数时,所述PDSCH聚合系数不用于接收所述至少一个PDSCH。
  14. 根据权利要求10所述的方法,其特征在于,当所述第一时域资源配置不包括URLLC重复次数时,所述至少一个PDSCH中的每个PDSCH包含一个数据流。
  15. 根据权利要求10或14所述的方法,其特征在于,当所述第一时域资源不配置包括URLLC重复次数时,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
  16. 根据权利要求1所述的方法,其特征在于,当所述第一时域资源配置为根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置时,所述根据所述PDSCH聚合系数和/或所述第一时域资源配置接收至少一个PDSCH,包括:
    当所述第一时域资源配置中的URLLC重复次数大于1时,在N个连续的时隙内接收所述至少一个PDSCH,其中,N为所述URLLC重复次数,并且,N为正整数;或者,
    当所述第一时域资源配置中的URLLC重复次数等于1时,在M个连续的时隙内接收所述至少一个PDSCH,其中,M为所述PDSCH聚合系数,并且,M为大于1的整数。
  17. 根据权利要求16所述的方法,其特征在于,当所述第一时域资源配置中的URLLC重复次数大于1时,所述至少一个PDSCH中的每个PDSCH包含一个或者两个数据流。
  18. 根据权利要求16或17所述的方法,其特征在于,当所述第一时域资源配置中的URLLC重复次数大于1时,用于调度所述至少一个PDSCH的DCI最多指示两个TCI状态。
  19. 根据权利要求16至18中任一项所述的方法,其特征在于,当所述第一时域资源配置包括URLLC重复次数时,所述PDSCH聚合系数不用于接收所述至少一个PDSCH。
  20. 根据权利要求16所述的方法,其特征在于,当所述第一时域资源配置中的URLLC重复次数等于1时,所述至少一个PDSCH中的每个PDSCH包含一个数据流。
  21. 根据权利要求16或20所述的方法,其特征在于,当所述第一时域资源配置中的URLLC重复次数等于1时,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
  22. 一种接收物理下行共享信道的方法,其特征在于,包括:
    接收用于物理下行共享信道PDSCH传输的时域资源配置列表,所述时域资源配置列表中的至少一个时域资源配置包括超可靠低时延通信URLLC重复次数;
    不期望接收PDSCH聚合系数。
  23. 根据权利要求22所述的方法,其特征在于,所述不期望接收PDSCH聚合系数,包括:
    当接收到所述PDSCH聚合系数时,确定不接收PDSCH。
  24. 一种接收物理下行共享信道的装置,其特征在于,包括处理单元和接收单元,
    所述处理单元用于:确定物理下行共享信道PDSCH聚合系数和第一时域资源配置,其中,所述第一时域资源配置为通过高层信令配置的时域资源配置列表,或者,所述第一时域资源配置为根据下行控制信息DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置;
    所述接收单元用于:根据所述PDSCH聚合系数和/或所述第一时域资源配置接收至少一个PDSCH。
  25. 根据权利要求24所述的装置,其特征在于,当所述第一时域资源配置为所述时域资源配置列表时,
    所述处理单元还用于:当所述时域资源配置列表中的至少一个时域资源配置包括超可靠低时延通信URLLC重复次数时,根据用于调度所述至少一个PDSCH的DCI中的时域资源配置TDRA域,从所述时域资源配置列表中确定第二时域资源配置;
    所述接收单元具体用于:根据所述第二时域资源配置接收所述至少一个PDSCH。
  26. 根据权利要求25所述的装置,其特征在于,当所述第二时域资源配置包含URLLC重复次数时,所述接收单元具体用于:
    在N个连续的时隙中接收所述至少一个PDSCH,其中N为所述第二时域资源配置中包含的URLLC重复次数,N为正整数。
  27. 根据权利要求25或26所述的装置,其特征在于,所述至少一个PDSCH中的每个PDSCH包含一个或者两个数据流。
  28. 根据权利要求25至27中任一项所述的装置,其特征在于,用于调度所述至少一个PDSCH的DCI最多指示两个传输配置指示TCI状态。
  29. 根据权利要求25至28中任一项所述的装置,其特征在于,所述PDSCH聚合系数不用于接收所述至少一个PDSCH。
  30. 根据权利要求24所述的装置,其特征在于,当所述第一时域资源配置为所述时域资源配置列表时,所述接收单元具体用于:
    当所述时域资源配置列表中的全部时域资源配置不包括URLLC重复次数时,根据所述PDSCH聚合系数在M个连续的时隙中接收所述至少一个PDSCH,其中,M为所述PDSCH聚合系数,并且,M为大于1的整数。
  31. 根据权利要求30所述的装置,其特征在于,所述至少一个PDSCH中的每个PDSCH包含一个数据流。
  32. 根据权利要求30或31所述的装置,其特征在于,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
  33. 根据权利要求24所述的装置,其特征在于,当所述第一时域资源配置为根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置时,所述接收单元具体用于:
    当所述第一时域资源配置包括URLLC重复次数时,在N个连续的时隙内接收所述至少一个PDSCH,其中,N为所述URLLC重复次数,并且,N为正整数;或者,
    当所述第一时域资源配置不包括URLLC重复次数时,在M个连续的时隙内接收所述至少一个PDSCH,其中,M为所述PDSCH聚合系数,并且,M为大于1的整数。
  34. 根据权利要求33所述的装置,其特征在于,当所述第一时域资源配置包括URLLC重复次数时,所述至少一个PDSCH中的每个PDSCH包含一个或者两个数据流。
  35. 根据权利要求33或34所述的装置,其特征在于,当所述第一时域资源配置包括URLLC重复次数时,用于调度所述至少一个PDSCH的DCI最多指示两个TCI状态。
  36. 根据权利要求33至35中任一项所述的装置,其特征在于,当所述第一时域资源配置包括URLLC重复次数时,所述PDSCH聚合系数不用于接收所述至少一个PDSCH。
  37. 根据权利要求33所述的装置,其特征在于,当所述第一时域资源配置不包括URLLC重复次数时,所述至少一个PDSCH中的每个PDSCH包含一个数据流。
  38. 根据权利要求33或37所述的装置,其特征在于,当所述第一时域资源不配置包括URLLC重复次数时,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
  39. 根据权利要求24所述的装置,其特征在于,当所述第一时域资源配置为根据DCI从高层信令配置的时域资源配置列表中确定的一个时域资源配置时,所述接收单元具体用于:
    当所述第一时域资源配置中的URLLC重复次数大于1时,在N个连续的时隙内接收所述至少一个PDSCH,其中,N为所述URLLC重复次数,并且,N为正整数;或者,
    当所述第一时域资源配置中的URLLC重复次数等于1时,在M个连续的时隙内内接收所述至少一个PDSCH,其中,M为所述PDSCH聚合系数,并且,M为大于1的整数。
  40. 根据权利要求39所述的装置,其特征在于,当所述第一时域资源配置中的URLLC重复次数大于1时,所述至少一个PDSCH中的每个PDSCH包含一个或者两个数据流。
  41. 根据权利要求39或40所述的装置,其特征在于,当所述第一时域资源配置中的URLLC重复次数大于1时,用于调度所述至少一个PDSCH的DCI最多指示两个TCI状态。
  42. 根据权利要求39至41中任一项所述的装置,其特征在于,当所述第一时域资源配置包括URLLC重复次数时,所述PDSCH聚合系数不用于接收所述至少一个PDSCH。
  43. 根据权利要求39所述的装置,其特征在于,当所述第一时域资源配置中的URLLC重复次数等于1时,所述至少一个PDSCH中的每个PDSCH包含一个数据流。
  44. 根据权利要求39或43所述的装置,其特征在于,当所述第一时域资源配置中的URLLC重复次数等于1时,用于调度所述至少一个PDSCH的DCI最多指示一个TCI状态。
  45. 一种接收物理下行共享信道的装置,其特征在于,包括处理单元和接收单元,
    所述接收单元用于:接收用于物理下行共享信道PDSCH传输的时域资源配置列表,所述时域资源配置列表中的至少一个时域资源配置包括超可靠低时延通信URLLC重复次数;
    所述处理单元用于:不期望接收PDSCH聚合系数。
  46. 根据权利要求45所述的装置,其特征在于,所述处理单元具体用于:
    当接收到所述PDSCH聚合系数时,确定不接收PDSCH。
  47. 一种终端设备,其特征在于,包括:处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行:如权利 要求1至21中任一项所述的方法,或者,如权利要求22或23所述的方法。
  48. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行:如权利要求1至21中任一项所述的方法,或者,如权利要求22或23所述的方法。
  49. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序使得计算机执行:如权利要求1至21中任一项所述的方法,或者,如权利要求22或23所述的方法。
  50. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行:如权利要求1至21中任一项所述的方法,或者,如权利要求22或23所述的方法。
  51. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行:如权利要求1至21中任一项所述的方法,或者,如权利要求22或23所述的方法。
PCT/CN2019/121376 2019-11-27 2019-11-27 接收物理下行共享信道的方法和装置 WO2021102763A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202110975953.XA CN113708906B (zh) 2019-11-27 2019-11-27 接收物理下行共享信道的方法和装置
KR1020227018370A KR20220104727A (ko) 2019-11-27 2019-11-27 물리 하향 공유 채널을 수신하는 방법 및 장치
CN201980082042.5A CN113261358A (zh) 2019-11-27 2019-11-27 接收物理下行共享信道的方法和装置
EP19954463.6A EP4044723A4 (en) 2019-11-27 2019-11-27 PHYSICAL DOWNLINK SHARED CHANNEL RECEPTION METHOD AND APPARATUS
PCT/CN2019/121376 WO2021102763A1 (zh) 2019-11-27 2019-11-27 接收物理下行共享信道的方法和装置
JP2022529707A JP2023509286A (ja) 2019-11-27 2019-11-27 物理下り共有チャネルの受信方法及び装置
US17/735,059 US20220264627A1 (en) 2019-11-27 2022-05-02 Method and apparatus for receiving physical downlink shared channel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121376 WO2021102763A1 (zh) 2019-11-27 2019-11-27 接收物理下行共享信道的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/735,059 Continuation US20220264627A1 (en) 2019-11-27 2022-05-02 Method and apparatus for receiving physical downlink shared channel

Publications (1)

Publication Number Publication Date
WO2021102763A1 true WO2021102763A1 (zh) 2021-06-03

Family

ID=76129771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121376 WO2021102763A1 (zh) 2019-11-27 2019-11-27 接收物理下行共享信道的方法和装置

Country Status (6)

Country Link
US (1) US20220264627A1 (zh)
EP (1) EP4044723A4 (zh)
JP (1) JP2023509286A (zh)
KR (1) KR20220104727A (zh)
CN (2) CN113261358A (zh)
WO (1) WO2021102763A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167170A (zh) * 2018-02-13 2019-08-23 华为技术有限公司 通信方法、装置和系统
US20190306856A1 (en) * 2018-03-30 2019-10-03 Apple Inc. Self-Contained Slot and Slot Duration Configuration in NR Systems
US20190313433A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Scheduling and time-domain configuration in integrated access and backhaul
CN110351027A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种反馈信息的传输方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110267948A1 (en) * 2010-05-03 2011-11-03 Koc Ali T Techniques for communicating and managing congestion in a wireless network
JP2017528980A (ja) * 2014-09-25 2017-09-28 インテル アイピー コーポレイション 低減した帯域幅を有する機械型通信(mrc)ユーザ機器のための共通制御メッセージの送信
CN109152050B (zh) * 2017-06-15 2021-03-23 华为技术有限公司 下行控制信道参数的配置方法、网络设备和终端设备
CN110391890A (zh) * 2018-04-16 2019-10-29 中兴通讯股份有限公司 一种确定准共址参考信号集合的方法和装置
EP4057731A4 (en) * 2019-11-07 2022-11-02 Fujitsu Limited METHOD AND DEVICE FOR DETERMINING TRANSMISSION PARAMETERS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110167170A (zh) * 2018-02-13 2019-08-23 华为技术有限公司 通信方法、装置和系统
US20190306856A1 (en) * 2018-03-30 2019-10-03 Apple Inc. Self-Contained Slot and Slot Duration Configuration in NR Systems
CN110351027A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 一种反馈信息的传输方法和装置
US20190313433A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Scheduling and time-domain configuration in integrated access and backhaul

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "3GPP TSG RAN WG1 #99 R1-1912176", REMAINING ISSUES ON MULTI-TRP/PANEL TRANSMISSION, 9 November 2019 (2019-11-09), XP051823254 *
KDDI: "3GPP TSG RAN WG1 Meeting #98bis R1-1911209", ENHANCEMENTS ON MULTI-TRP/PANEL TRANSMISSION, 4 October 2019 (2019-10-04), XP051789980 *

Also Published As

Publication number Publication date
KR20220104727A (ko) 2022-07-26
JP2023509286A (ja) 2023-03-08
EP4044723A4 (en) 2023-01-04
US20220264627A1 (en) 2022-08-18
CN113708906A (zh) 2021-11-26
CN113261358A (zh) 2021-08-13
CN113708906B (zh) 2023-09-01
EP4044723A1 (en) 2022-08-17

Similar Documents

Publication Publication Date Title
CN110830151B (zh) 反馈信息的传输方法和装置
CN110495114A (zh) 用于码块分组的方法和设备
WO2020221271A1 (zh) 传输混合自动重传请求harq反馈信息的方法和通信装置
CN110999153B (zh) 数据传输方法和装置
EP4120606A1 (en) Harq information transmission method and apparatus
WO2020244599A1 (zh) 一种反馈指示方法及通信装置
WO2021016774A1 (zh) 无线通信方法和设备
WO2020011109A1 (zh) 信息传输方法、终端及基站
WO2021155554A1 (zh) 信息接收的方法、发送的方法、装置和设备
WO2021062609A1 (zh) 通信方法和通信装置
WO2020200012A1 (zh) 通信方法和通信装置
WO2019191966A1 (zh) 可靠性传输方法及相关产品
EP3926869A1 (en) Method and device for sending feedback information, and method and device for receiving feedback information
WO2020177680A1 (zh) 通信方法和通信装置
WO2020220316A1 (zh) 一种反馈信息的确定方法及装置、终端
US20220123905A1 (en) Method and device for feeding back sidelink transmission state
WO2021102763A1 (zh) 接收物理下行共享信道的方法和装置
CN114365438B (zh) 通信方法和通信装置
US20220086806A1 (en) Sidelink Transmission Method and Sidelink Transmission Apparatus
WO2022027605A1 (zh) 信息传输方法和通信装置
WO2021000954A1 (zh) 一种数据传输方法及通信装置
WO2021073446A1 (zh) 时域资源的确定方法和设备
WO2021027904A1 (zh) 无线通信的方法和装置以及通信设备
WO2021035450A1 (zh) 一种数据传输方法和通信设备
WO2020164631A1 (zh) 发送反馈信息的方法和装置和接收反馈信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19954463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529707

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019954463

Country of ref document: EP

Effective date: 20220512

ENP Entry into the national phase

Ref document number: 20227018370

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE