WO2021102726A1 - 一种用于GaN材料生长的线性喷头 - Google Patents

一种用于GaN材料生长的线性喷头 Download PDF

Info

Publication number
WO2021102726A1
WO2021102726A1 PCT/CN2019/121191 CN2019121191W WO2021102726A1 WO 2021102726 A1 WO2021102726 A1 WO 2021102726A1 CN 2019121191 W CN2019121191 W CN 2019121191W WO 2021102726 A1 WO2021102726 A1 WO 2021102726A1
Authority
WO
WIPO (PCT)
Prior art keywords
central
air passage
air
airway
gap
Prior art date
Application number
PCT/CN2019/121191
Other languages
English (en)
French (fr)
Inventor
黄业
刘鹏
王健辉
卢敬权
Original Assignee
东莞市中镓半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市中镓半导体科技有限公司 filed Critical 东莞市中镓半导体科技有限公司
Priority to JP2021551867A priority Critical patent/JP7251842B2/ja
Priority to PCT/CN2019/121191 priority patent/WO2021102726A1/zh
Priority to EP19953754.9A priority patent/EP4067532A4/en
Priority to CN201980088099.6A priority patent/CN113508189B/zh
Priority to US17/310,565 priority patent/US20220282396A1/en
Publication of WO2021102726A1 publication Critical patent/WO2021102726A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/301AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C23C16/303Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the technical field of GaN material growth devices, and in particular to a composite nozzle for multi-gas isolation injection, for example, to a linear nozzle for GaN material growth.
  • GaN Gallium nitride
  • HVPE Hydride vapor phase epitaxy
  • the key lies in the need to obtain a stable laminar flow field in the HVPE reaction chamber, and one or more 2-8 inches of sapphire, SiC, AlN or A uniformly mixed III-V source gas concentration field is obtained on the effective deposition area of the graphite holder of a substrate such as GaN, and it is also necessary to avoid pre-reaction at the nozzle to form a deposition as much as possible. If there is a pre-reaction in the nozzle nozzle, a large amount of GaN polycrystalline will be quickly deposited at the nozzle nozzle.
  • the present application provides a linear shower head for GaN material growth, which can effectively isolate the reaction gas during the process, and prevent the reaction gas from pre-reaction at the nozzle due to pre-mixing.
  • a linear shower head for GaN material growth comprising a first air seat, a second air seat, and a third air seat.
  • a plurality of first central air passages are arranged in the middle of the first air seat, adjacent to the first air seat.
  • a first gap is provided between a central air passage, the bottom of the first central air passage is provided with a first nozzle along its own length;
  • the second air seat is located above the first air seat, and
  • a plurality of second central air passages are provided in the middle of the second air seat, a second gap is provided between adjacent second central air passages, and both sides of the second central air passage are provided with A second nozzle, the first gap is aligned with the second gap;
  • the third air seat includes a plurality of third central air passages, and the third central air passage penetrates the first gap and the second gap,
  • a third nozzle is provided at the bottom of the third central air passage.
  • the second air seat is used to circulate isolation gas, and the isolation gas passes through the second central air passage and enters the second gap from the second nozzle, and sprays from the first gap. Out; isolation gas such as nitrogen.
  • the first gas seat and the third gas seat are both used to circulate reaction gas and carrier gas, one of the reaction gas passes through the first central gas passage and is ejected from the first nozzle, and the other A reactive gas passes through the third central gas passage and is ejected from the third nozzle.
  • the reactive gas in the first gas seat and the third gas seat can be switched; the reactive gas is for example gallium chloride and NH 3 .
  • the first aspect can effectively isolate the reaction gas and prevent the reaction gas from pre-reaction at the nozzle due to pre-mixing; the second aspect can simplify each The structure of the air seat reduces the difficulty of production and provides greater feasibility for actual production and promotion; thirdly, this combined structure can realize the design of increasing the size of the nozzle, which can meet the production of multiple 2-8 inches of GaN at a time.
  • the membrane improves the versatility of the nozzle design, so that the nozzle can meet the needs of HVPE equipment of different sizes, which is conducive to mass production; fourthly, the design of the same direction and parallel ejection of different reaction gases can make the reaction chamber
  • the flow field is uniform and stable, and the III-V reaction gas distribution is more uniform, reducing the deposition of products on the nozzle.
  • HVPE hydride vapor phase epitaxy
  • the main function of the shower head is to isolate and transmit various reactive gases required during the growth process.
  • the structure of the nozzle of the nozzle directly affects the flow field and concentration field formed after each source gas enters the HVPE reaction chamber, as well as the occurrence of parasitic reactions at the nozzle.
  • HVPE equipment grows GaN, in order to prevent the wafer from cracking, the temperature usually cannot be lower than 1000°C; at the same time, the GaN growth process contains HCl gas and cannot be in contact with metal. Therefore, the HVPE equipment of this scheme chooses quartz or ceramics as the material of the nozzle.
  • the nozzle of this scheme adopts a split and combined design, which has a simple structure and is easy to process, and the ejection direction of different reaction gases is consistent. Therefore, the flow field in the reaction chamber is stable, the reaction gas is uniformly mixed in the effective deposition area of the graphite holder below, and the product deposition at the nozzle position of the nozzle is small.
  • the nozzle of this scheme can produce high-quality GaN single crystals in a stable and continuous mass production, which is beneficial to promote GaN single crystals. The industrialization of crystal.
  • the number of the first gap, the second gap, and the third central airway is equal, and each set of aligned first gaps and second gaps is inserted with one third central airway .
  • the thickness of the third central airway is smaller than the first gap and the second gap.
  • the first nozzle and the third nozzle are located on the same horizontal plane.
  • the first nozzle, the second nozzle and the third nozzle are all elongated linear nozzles, or the first nozzle, the second nozzle and the third nozzle are respectively three linearly spaced spray nozzles. hole.
  • all the structures of the linear shower head are made of quartz or ceramics.
  • the first central airway is a straight pipe, and a plurality of the first central airways are parallel;
  • the second central airway is a straight pipe, and a plurality of the second central airways are parallel;
  • the third central air passage is a sheet-like pipe, and a plurality of the third central air passages are parallel.
  • the third central airway runs through the entire length of the first gap and the second gap.
  • the first central airway, the second central airway, and the third central airway are parallel to each other.
  • all the first gaps have the same width
  • all the second gaps have the same width
  • the width of the first gap is equal to the width of the second gap
  • the third central airway is located at The center of the first gap and the second gap.
  • the gas flow passage inside the nozzle can be more regular and consistent in size, so that each The air flow from the position is more uniform and stable.
  • the shape of the first central airway is a circle, an ellipse, a parallelogram, a triangle, a trapezoid, or a pentagon;
  • the shape of the second central airway is a circle, an ellipse, a parallelogram, a triangle, a trapezoid, or a pentagon.
  • the shape of the first central airway is circular or rectangular; the shape of the second central airway is circular or rectangular.
  • the bottom of the first central air passage is provided with a baffle
  • the first nozzle is provided at the first end of the baffle
  • the second end of the baffle is connected to the The first central airway is connected.
  • the deflector is two symmetrically arranged inner arc-shaped baffles.
  • the gas reaches the first nozzle more uniformly and stably.
  • the first air seat includes a first peripheral airway, the first central airway is located inside the first peripheral airway, and the end of the first central airway is connected to the first peripheral airway.
  • a peripheral airway is connected;
  • the second air seat includes a second peripheral airway, the second central airway is located inside the second peripheral airway, and an end of the second central airway communicates with the second peripheral airway.
  • the first peripheral air passage is a circular ring pipe, and the first central air passage is fixed on the inner side wall of the circular pipe;
  • the second outer peripheral air passage is a circular ring pipe, and the second The central airway is fixed on the inner side wall of the circular pipe.
  • the thickness of the first central airway is equal to the thickness of the first peripheral airway; the thickness of the second central airway is equal to the thickness of the second peripheral airway.
  • the cross-sectional area of the internal channel of the first peripheral airway is greater than the cross-sectional area of the internal channel of the first central airway; the cross-sectional area of the internal channel of the second peripheral airway is greater than that of the The cross-sectional area of the internal passage of the second central airway.
  • the first central airway includes a first inner tube and a first outer tube, and the first outer tube is sleeved on the outside of the first inner tube.
  • the end is in communication with the first outer peripheral airway, the top of the first inner tube is provided with a first communication hole, and the first nozzle is provided at the bottom of the first outer tube;
  • the second central airway includes a second inner tube and a second outer tube, the second outer tube is sleeved on the outside of the second inner tube, and both ends of the second inner tube are connected to each other.
  • the second outer peripheral air passage is in communication, the top and bottom of the second inner tube are both provided with second communication holes, and the second nozzles are provided on both sides of the second outer tube.
  • the axis lines of the first inner tube and the first outer tube coincide; the axis lines of the second inner tube and the second outer tube coincide.
  • gas enters the inner pipe from the outer airway, then enters the outer pipe from the inner pipe through the communicating hole, and is ejected from the nozzle on the outer pipe.
  • the design can make the air flow more uniform and stable.
  • a first air inlet pipe is provided on a side wall of the first outer peripheral air passage, and the first air inlet pipe is perpendicular to the first central air passage;
  • a second air inlet pipe is provided on the side wall or the top of the second outer peripheral air passage, the second air inlet pipe is perpendicular to the second central air passage, and the second air inlet pipe is located far away from the second central air passage. The position where the airway communicates with the second peripheral airway.
  • arranging the intake pipe at a position away from the connection between the central air passage and the peripheral air passage can make the air flow entering each central air passage more uniform and stable.
  • the third air seat further includes a uniform air cavity, the first end of the uniform air cavity is in communication with the third central airway, and the second end of the uniform air cavity is provided with a third Intake pipe.
  • the third air inlet pipe and the third central air passage are located on opposite sides of the uniform air cavity.
  • the number of the third intake pipe is one.
  • the third central air passage is located at the bottom of the uniform air cavity, and the third air inlet pipe is arranged on the side wall of the uniform air cavity.
  • the number of the third air inlet pipes is two, which are respectively located on both sides of the uniform air cavity.
  • the gas enters the large cavity from the small cavity and then into the small cavity, so that the pressure of the gas emitted from the third nozzle is more uniform, which is conducive to the formation of a uniform concentration field. Improve crystal quality.
  • the bottom of the uniform air cavity covers the top of the second gap.
  • the gas ejected from the second nozzle can be prevented from being discharged from the top of the second gap, and the external sealing structure can be omitted, thereby simplifying the overall structure of the device .
  • This application provides a linear nozzle for GaN material growth.
  • the first aspect can effectively isolate the reaction gas and prevent the reaction gas from pre-reaction at the nozzle due to pre-mixing.
  • the production of multiple 2-8 inch GaN thick films improves the versatility of the nozzle design, enabling the nozzle to meet the needs of HVPE equipment of different sizes, thereby facilitating mass production and promoting the industrialization of GaN single crystals;
  • the fourth aspect This design of different reaction gases in the same direction and parallel ejection can make the flow field in the reaction chamber uniform and stable, and the reaction gases in the effective deposition area on the surface of the work tray are evenly mixed, reducing the deposition of products on the nozzle.
  • Figure 1 is a schematic diagram of the structure of the spray head described in the first embodiment
  • FIG. 2 is a schematic diagram of the structure of the first air seat according to the first embodiment
  • FIG. 3 is a full cross-sectional view of the first air seat according to the first embodiment
  • FIG. 4 is a schematic diagram of the structure of the second air seat according to the first embodiment
  • FIG. 5 is a full cross-sectional view of the second air seat according to the first embodiment
  • FIG. 6 is a schematic diagram of the structure of the third air seat according to the first embodiment
  • FIG. 8 is a schematic diagram of the structure of the spray head described in the fourth embodiment.
  • FIG. 9 is a schematic diagram of the structure of the first air seat according to the fourth embodiment.
  • FIG. 11 is a schematic structural diagram of the second air seat according to the fourth embodiment.
  • FIG. 13 is a schematic diagram of the structure of the spray head described in the fifth embodiment.
  • FIG. 14 is a schematic diagram of the structure of the first air seat according to the fifth embodiment.
  • 17 is a schematic diagram of the structure of the second air seat according to the fifth embodiment.
  • 21 is a schematic diagram of the structure of the first air seat according to the sixth embodiment.
  • FIG. 22 is a schematic diagram of the structure of the second air seat according to the sixth embodiment.
  • FIG. 23 is a schematic diagram of the structure of the third air seat according to the sixth embodiment.
  • FIG. 24 is a schematic diagram of the planar sheet structure of the first and third central airways according to the sixth embodiment.
  • 25 is a schematic diagram of the arc-shaped sheet structure of the first and third central airways described in the sixth embodiment.
  • a linear spray head for GaN material growth As shown in Figures 1 to 7, a linear spray head for GaN material growth. All the structures of the linear spray head are made of quartz or ceramics.
  • the linear spray head includes a first air seat 1 connected sequentially from bottom to top.
  • the second air seat 2 and the third air seat 3, the top of the first air seat 1 and the bottom of the second air seat 2 are attached to each other.
  • a plurality of first central air passages 11 are provided in the middle of the first air seat 1, a first gap 12 is provided between adjacent first central air passages 11, and the bottom of the first central air passage 11 is provided along its own length.
  • the first nozzle 13; the second air seat 2 is located above the first air seat 1, a plurality of second central air passages 21 are provided in the middle of the second air seat 2, and a second central air passage 21 is provided between adjacent second central air passages 21 There are two gaps 22.
  • the two sides of the second central air passage 21 are provided with second nozzles 23 along its length direction, and the first gap 12 is aligned with the second gap 22;
  • the third air seat 3 includes a plurality of third central air passages 31
  • the third central air passage 31 penetrates the first gap 12 and the second gap 22, and a third nozzle 32 is provided at the bottom of the third central air passage 31.
  • the first nozzle 13 and the third nozzle 32 are located on the same horizontal plane, and the first nozzle 13, the second nozzle 23 and the third nozzle 32 are all elongated linear nozzles.
  • the first nozzle 13, the second nozzle 23, and the third nozzle 32 can also be three linearly spaced spray holes, or the first nozzle 13, the second nozzle 23, and the third nozzle.
  • One or two of the 32 are long linear nozzles, and the remaining two or one are nozzles.
  • the second air seat 2 of this embodiment is used to circulate the isolation gas nitrogen.
  • the isolation gas passes through the second central air passage 21 and enters the second gap 22 from the second nozzle 23 and is ejected from the first gap 12.
  • the first gas seat 1 is used to circulate the reactive gas gallium chloride and the carrier gas.
  • the reactive gas passes through the first central gas passage 11 and is ejected from the first nozzle 13.
  • the third gas seat 3 is used to circulate the reaction gas NH 3 and the carrier gas, and the reaction gas passes through the third central gas passage 31 and is ejected from the third nozzle 32.
  • the reaction gas in the first gas seat 1 and the third gas seat 3 can be switched, that is, the first gas seat 1 is used to circulate the reaction gas NH 3 and carrier gas, and the third gas seat 3 is used to circulate the reaction gas.
  • Gas gallium chloride and carrier gas After the flow channel of the reaction gas is switched, the relative outlets of the two source gases of gallium chloride and NH3 are changed, which can change the flow field and concentration field in the reaction chamber. Therefore, this switching adjustment can increase the control range of the GaN growth process.
  • the nozzle is provided with three mutually independent gas seats combined with each other, and the gas in each gas seat can be individually controlled.
  • the first aspect can effectively isolate the reaction gas and prevent the reaction gas from being mixed in advance. Pre-reaction occurs at the nozzle; second, it can simplify the structure of each air seat, reduce the difficulty of production, and provide greater feasibility for actual production and promotion; third, this combined structure can increase the size of the nozzle
  • the design can meet the production of multiple 2-8 inch GaN thick films at one time, which improves the versatility of the nozzle design, so that the nozzle can meet the needs of HVPE equipment of different sizes, thereby facilitating mass production; the fourth aspect, this difference
  • the design of the reaction gas jetting in the same direction and parallel can make the flow field in the reaction chamber uniform and stable, and reduce the deposition of products on the nozzle.
  • HVPE hydride vapor phase epitaxy
  • the main function of the shower head is to isolate and transmit various reactive gases required during the growth process.
  • the structure of the nozzle of the nozzle directly affects the flow field and concentration field formed after each source gas enters the HVPE reaction chamber, as well as the occurrence of parasitic reactions at the nozzle.
  • HVPE equipment grows GaN, in order to prevent the wafer from cracking, the temperature usually cannot be lower than 1000°C; at the same time, the GaN growth process contains HCl gas and cannot be in contact with metal. Therefore, the HVPE equipment of this scheme chooses quartz or ceramics as the material of the nozzle.
  • the nozzle of this scheme adopts a split and combined design, which has a simple structure and is easy to process, and the ejection direction of different reaction gases is consistent. Therefore, the flow field in the reaction chamber is stable, the reaction gas is uniformly mixed in the effective deposition area of the graphite holder below, and the nozzle position of the nozzle is less deposited.
  • the nozzle of this scheme can stably and continuously produce high-quality GaN single crystals in large quantities, which is beneficial to the promotion of GaN single crystals. Industrialization.
  • the first air seat 1 includes a first peripheral airway 14, the first central airway 11 is located inside the first peripheral airway 14, and the end of the first central airway 11 and the first peripheral airway 14 Connected.
  • the second air seat 2 includes a second peripheral air passage 24, the second central air passage 21 is located inside the second peripheral air passage 24, and the end of the second central air passage 21 is connected to the second peripheral air passage 24.
  • the first peripheral air passage 14 is a circular pipe, the first central air passage 11 is fixed on the inner side wall of the circular pipe; the second outer peripheral air passage 24 is a circular pipe, and the second central air passage 21 is fixed on the inner side of the circular pipe wall.
  • the thickness of the first central airway 11 is equal to the thickness of the first peripheral airway 14; the thickness of the second central airway 21 is equal to the thickness of the second peripheral airway 24.
  • a first air inlet pipe 15 is provided on the side wall of the first outer peripheral air passage 14, and the first air inlet pipe 15 is perpendicular to the first central air passage 11.
  • the side wall of the second outer peripheral air passage 24 is provided with a second air inlet pipe 25, the second air inlet pipe 25 is perpendicular to the second central air passage 21, and the second air inlet pipe 25 is located far away from the second central air passage 21 and the second outer air pipe. The location where the road 24 connects.
  • the air intake pipe is arranged at a position far away from the connection between the central air passage and the peripheral air passage, so that the air flow entering each central air passage can be more uniform and stable.
  • the second air inlet pipe 25 may also be arranged at the top of the second outer peripheral air passage 24.
  • the third air seat 3 further includes a uniform air cavity 33, the bottom of the uniform air cavity 33 is in communication with the third central air passage 31, and the side walls of the uniform air cavity 33 are provided with two third air inlet pipes 34.
  • the third air inlet pipe 34 and the third central air passage 31 may also be arranged on opposite sides of the uniform air cavity 33, that is, the third air inlet pipe 34 is located at the top of the uniform air cavity, and the third central air passage 31 is located at the bottom of the uniform air cavity, and the number of the third air inlet pipe 34 is one.
  • the gas enters the large cavity from the small cavity and then into the small cavity, so that the pressure of the gas emitted from the third nozzle 32 is more uniform, which is conducive to the formation of a uniform concentration field, thereby increasing Crystal quality.
  • the bottom of the uniform air cavity 33 is attached to the second air seat 2, and the bottom of the uniform air cavity 33 covers the top of the second gap 22, which can prevent the gas ejected from the second nozzle 23 from being discharged from the top of the second gap 22, At the same time, the external sealing structure can be omitted, thereby simplifying the overall structure of the device.
  • the number of the first central air passage 11 and the number of the second central air passage 21 are both four, the number of the first gap 12 and the second gap 22 are both three, and the number of the third central air passage 31 There are also three.
  • the double dashed lines are used to isolate the number of the first central air passage 11, the second central air passage 21, and the third central air passage 31, etc., which can be increased or deleted according to actual needs.
  • Each first gap 12 is aligned with a second gap 22, and a third central air passage 31 is inserted into each group of aligned first gap 12 and second gap 22.
  • the first central air passage 11 is a straight pipe, and the multiple first central air passages 11 are parallel;
  • the second central air passage 21 is a straight pipe and the multiple second central air passages 21 are parallel;
  • the third central air passage 31 is a sheet-like pipe ,
  • the plurality of third central air passages 31 are parallel, and the thickness of the third central air passage 31 is smaller than that of the first gap 12 and the second gap 22.
  • Set up a linear air passage which is conducive to the stability of the air flow and helps to improve the uniformity of the emitted gas.
  • the third central air passage 31 of the embodiment runs through the entire length direction of the first gap 12 and the second gap 22. This design can improve the coverage area and uniformity of the distribution of the reactive gas, thereby improving the production efficiency of GaN.
  • the first central air passage 11, the second central air passage 21 and the third central air passage 31 are parallel to each other.
  • the central air passages that are parallel to each other help to reduce the difficulty of assembling the three air seats, and are also beneficial to the regularity of the air flow passage formed by the first gap 12 and the second gap 22, thereby helping to improve the stability of the air flow.
  • the widths of the three first gaps 12 are equal, the widths of the three second gaps 22 are equal, the width of the first gap 12 is equal to the width of the second gap 22, and the third central air passage 31 is located between the first gap 12 and the second gap 22 center of.
  • the gas flow passage inside the nozzle can be more regular and consistent in size, so that each position can be sprayed.
  • the outgoing airflow is more uniform and stable.
  • the shapes of the first central air passage 11 and the second central air passage 21 are both rectangular, the bottom of the first central air passage 11 is provided with a baffle 16 and the first nozzle 13 is provided on the baffle 16 The first end of the baffle 16 and the second end of the baffle 16 are connected to the first central airway 11.
  • the baffle 16 is two symmetrically arranged inner arc-shaped baffles. The baffle 16 is provided to make the gas reach the first nozzle 13 more uniformly and stably.
  • a rotatable tray is installed below the spray head, and the spray head forms a uniform concentration field of reaction gas on the surface of the tray, which can realize high-quality crystallization.
  • the cross-sectional area of the internal passage of the first peripheral airway 14 is greater than the cross-sectional area of the internal passage of the first central airway 11; the cross-sectional area of the internal passage of the second peripheral airway 24 is greater than that of the second central airway 21 The cross-sectional area of the internal passage.
  • the number of the first central air passage 11 and the second central air passage 21 are both five, the number of the first gap 12 and the second gap 22 are both four, and the number of the third central air passage 31 is also four. In other embodiments, the number of the first central air passage 11 and the second central air passage 21 can also be two or three or more than six.
  • the shapes of the first central air passage 11 and the second central air passage 21 are both circular.
  • the double dashed lines are used to isolate the number of the first central air passage 11, the second central air passage 21, and the third central air passage 31, etc., which can be increased or deleted according to actual needs.
  • the shape of the first central air passage 11 and the second central air passage 21 may also be an ellipse, a parallelogram, a triangle, a trapezoid, or a pentagon.
  • the shapes of the first central air passage 11 and the second central air passage 21 may also be different.
  • the shape of the first central air passage 11 is rectangular, and the shape of the second central air passage 21 is circular.
  • the first central airway 11 includes a first inner tube 111 and a first outer tube 112.
  • the first outer tube 112 is sleeved on the outside of the first inner tube 111.
  • An inner tube 111 is a concentric circular tube. Both ends of the first inner tube 111 communicate with the first outer peripheral air passage 14.
  • the top of the first inner tube 111 is provided with a first communication hole 113, and the first nozzle 13 is provided on the first outer tube.
  • the second central airway 21 includes a second inner tube 211 and a second outer tube 212.
  • the second outer tube 212 is sleeved on the outside of the second inner tube 211.
  • the second outer tube 212 and the second inner tube 211 are concentric circular tubes.
  • the first communication hole 113 in this embodiment is a waist-shaped hole extending along the length direction of the first inner tube 111, and the second communication hole 213 is a waist-shaped hole extending along the length direction of the second inner tube 211.
  • the double dashed lines are used to isolate the number of the first central airway 11, the second central airway 21, and the third central airway 31, etc., which can be added or deleted according to actual needs.
  • the first communication hole 113 and the second communication hole 213 may also be three linearly spaced circular holes, or one of the first communication hole 113 and the second communication hole 213 is A waist-shaped hole extending in the length direction, the other is a round hole.
  • This solution uses a composite airway structure with inner and outer pipes. Gas enters the inner pipe from the outer airway, then enters the outer pipe from the inner pipe through the connecting hole, and sprays out from the nozzle on the outer pipe. This design can make the air flow more Uniform and stable.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the first air seat 1 includes a first central airway 11 and a first peripheral airway 14.
  • the first central airway 11 is located inside the first peripheral airway 14, and the first central airway 11 The end of is communicated with the first peripheral airway 14.
  • the first peripheral air passage 14 is a circular pipe, the number of the first central air passage 11 is three, the first end of the first central air passage 11 is fixed on the inner side wall of the circular pipe, and the first central air passage 11 is The two ends are suspended in the air, and the three first central air passages 11 are distributed at equal angles in the circumferential direction inside the first outer peripheral air passage 14.
  • the first central air passage 11 has a sheet-like groove structure, which may be a flat sheet-like structure or a curved sheet-like structure, as shown in FIGS. 24 and 25.
  • the first central air passage may also have a fan-shaped or fan-ring block groove structure, and the number of the first central air passage may not be three.
  • the second air seat 2 includes a second central airway 21 and a second peripheral airway 24.
  • the inner side of the second peripheral airway 24 is provided with six channel grooves.
  • the channels 24 are connected, and the three channel grooves form three second central air channels 21.
  • the other three channel slots are interspersed between the three first central air passages 21 to form a way out for the third central air passage 31.
  • the first central air passage 11 is embedded in the lower end of the inside of the second central air passage 21, and the upper end of the second central air passage 21 is connected with the second peripheral air passage 24.
  • the three relief passages are located in the first gap 12 of the first central airway 11.
  • the second nozzles are arranged on both sides of the upper end of the second central airway 21.
  • the isolation gas After the isolation gas enters the second central airway 21 from the second outer peripheral airway 24, the first central airway 21 is trapped below the second central airway 21. 11 is blocked, and the upper part is blocked by the uniform gas cavity 33 of the third gas seat 3. Therefore, the isolation gas is discharged from the second nozzle to the second gap 22, reaches the first gap 12 and achieves the effect of isolating the reaction gas.
  • the third air seat 3 further includes a uniform air cavity 33 and three third central air passages 31, and the bottom of the uniform air cavity 33 is in communication with the third central air passage 31.
  • the bottom of the uniform air cavity 33 is attached to the second air seat 2, and the bottom of the uniform air cavity 33 covers the top of the second gap 22, which can prevent the gas ejected from the second nozzle from being discharged from the top of the second gap 22, and at the same time
  • the external sealing structure can be omitted, thereby simplifying the overall structure of the device.
  • the third central air passage 31 has a sheet-like groove structure, which may be a flat sheet-like structure or a curved sheet-like structure, as shown in FIGS. 24 and 25.
  • the shape of the three second central air passages 21 is the same as the shape of the first central air passage 11, and the shape of the three relief passages is the same as the shape of the third central air passage 31.
  • the third central airway may also have a fan-shaped or fan-ring block groove structure. Of course, it must be ensured that the third central airway can be inserted into the first gap of the first central airway.
  • the number of third central airways is not three.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种用于GaN材料生长的线性喷头,包括第一气座(1)、第二气座(2)和第三气座(3),第一气座(1)的中部设置有第一中心气道(11),相邻第一中心气道(11)之间设置有第一间隙(12),第一中心气道(11)的底部设置有第一喷嘴(13);第二气座(2)位于第一气座(1)的上方,第二气座(2)的中部设置有第二中心气道(21),相邻第二中心气道(21)之间设置有第二间隙(22),第二中心气道(21)的两侧设置有第二喷嘴(23);第三气座(3)包括多个第三中心气道(31),第三中心气道(31)贯穿第一间隙(12)和第二间隙(22),第三中心气道(31)的底部设置有第三喷嘴(32)。该喷头在工艺过程中能够有效隔离反应气体,避免反应气体因提前混合而在喷嘴处出现预反应;同时能够在生长区域提供稳定的层流流场和均匀分布的反应气体浓度场。

Description

一种用于GaN材料生长的线性喷头 技术领域
本申请涉及GaN材料生长装置技术领域,具体涉及一种多气体隔离喷射的复合喷头,例如涉及一种用于GaN材料生长的线性喷头。
背景技术
氮化镓(以下简称GaN)作为最重要的第三代宽禁带半导体材料,被广泛应用于蓝光LED和高温高频大功率电子器件的制备。氢化物气相外延(Hydride vapor phase epitaxy,HVPE)技术作为生长氮化镓(GaN)厚膜材料方法之一,以其生长速率高(最高可达800μm/h),生产成本低,生长工艺简单的特点,非常适合氮化镓(GaN)厚膜生长技术的推广和应用。要推进GaN厚膜的产业化,大批量生产高质量GaN厚膜,其关键在于HVPE反应室内需要获得稳定的层流流场,并且可放置一片或一片以上2-8英寸蓝宝石、SiC、AlN或GaN等衬底的石墨托有效沉积区域上获得混合均匀的III-V族源气体浓度场,还需要尽可能避免喷头处发生预反应而形成沉积。如果喷头喷口存在预反应,将迅速产生大量GaN多晶在喷口处沉积,由于喷头材料与GaN多晶热膨胀系数不同,必将导致喷头碎裂而损毁,进而使整个设备无法继续生产。上述三点是直接影响GaN厚膜市场竞争力的关键因素,需要重点解决。
以GaN单晶为产品的公司或团队,一般会有自己独特设计的喷头,但这些喷头仅适用于实验室级别生产单片2吋或3片2吋GaN单晶的小机型,产能低,成本高,不适用于市场批量生产和推广;或能用于多片大机型,但预反应十分严重,且单晶均匀性差,落点多,导致晶片质量差,不能满足用户的质量需求。以上现状都是制约GaN单晶产业化的难题。
发明内容
本申请提供一种用于GaN材料生长的线性喷头,在工艺过程中能够有效隔离反应气体,避免反应气体因提前混合而在喷嘴处出现预反应。
本申请采用以下技术方案:
一种用于GaN材料生长的线性喷头,包括第一气座、第二气座和第三气座,所述第一气座的中部设置有多个第一中心气道,相邻所述第一中心气道之间设 置有第一间隙,所述第一中心气道的底部沿自身的长度方向设置有第一喷嘴;所述第二气座位于所述第一气座的上方,所述第二气座的中部设置有多个第二中心气道,相邻所述第二中心气道之间设置有第二间隙,所述第二中心气道的两侧沿自身的长度方向设置有第二喷嘴,所述第一间隙与所述第二间隙对齐;所述第三气座包括多个第三中心气道,所述第三中心气道贯穿所述第一间隙和第二间隙,所述第三中心气道的底部设置有第三喷嘴。
在一些实施例中,所述第二气座用于流通隔离气体,隔离气体通过所述第二中心气道并从所述第二喷嘴进入所述第二间隙,并从所述第一间隙喷出;隔离气体例如氮气。
在一些实施例中,所述第一气座和第三气座均用于流通反应气体和载气,其中一种反应气体通过所述第一中心气道并从所述第一喷嘴射出,另一种反应气体通过所述第三中心气道并从所述第三喷嘴射出,所述第一气座和第三气座内的反应气体可以切换;反应气体例如氯化镓、NH 3
需要说明的是,通过设置三个相互独立的相互组合的气座,第一方面,能够有效隔离反应气体,避免反应气体因提前混合而在喷嘴处出现预反应;第二方面,能够简化每个气座的结构,降低生产难度,为实际生产与推广提供更大的可行性;第三方面,这种组合结构能够实现喷头的体积增大设计,能够满足一次生产多片2-8英寸GaN厚膜,提高了该喷头设计的通用性,使喷头能够满足不同尺寸的HVPE设备的需求,从而利于大批量生产;第四方面,这种不同反应气体同向平行喷出的设计能够使反应室内的流场均匀稳定,III-V族反应气体分布更加均匀,减少产物在喷头的沉积。
在氢化物气相外延(以下简称HVPE)生长GaN厚膜时,该喷头的主要作用在于隔离和传输生长过程中需要的各种反应气体。在此过程中,喷头喷嘴处的结构直接影响各源气体进入HVPE反应室后形成的流场及浓度场,还有喷嘴处寄生反应的发生。另外,HVPE设备生长GaN时,为防止晶片开裂,温度通常不能低于1000℃;同时,生长GaN过程中含有HCl气体,不能与金属接触。因此,本方案的HVPE设备选择石英或陶瓷作为制作喷头的材料。石英和陶瓷属于易碎材料,不论加工、运输或使用过程中都存在极大损坏风险,本方案的喷头采用分体组合式设计,结构简单易于加工,且使不同的反应气体的喷出方向一致,从而使反应室内流场稳定、下方的石墨托有效沉积区域反应气体混合均匀、喷头的喷嘴位置的产物沉积少,本方案的喷头能够稳定持续大批量生产 高质量GaN单晶,利于推进GaN单晶的产业化。
在一些实施例中,所述第一间隙、第二间隙和第三中心气道的数量相等,每组对齐的所述第一间隙和第二间隙中插设有一个所述第三中心气道。
在一些实施例中,所述第三中心气道的厚度小于所述第一间隙和第二间隙。
在一些实施例中,所述第一喷嘴与所述第三喷嘴位于同一水平面。
在一些实施例中,所述第一喷嘴、第二喷嘴和第三喷嘴均是长条状线性喷嘴,或所述第一喷嘴、第二喷嘴和第三喷嘴分别是三个线性间隔分布的喷孔。
在一些实施例中,该线性喷头的全部结构均采用石英或陶瓷制成。
在一些实施例中,所述第一中心气道是直线管道,多个所述第一中心气道平行;所述第二中心气道是直线管道,多个所述第二中心气道平行;所述第三中心气道是片状管道,多个所述第三中心气道平行。
需要说明的是,设置直线状的气道,利于气流的稳定性,协助提高射出气体的均匀性。
在一些实施例中,所述第三中心气道贯穿所述第一间隙和第二间隙的整个长度方向。通过设置贯穿第一间隙和第二间隙整个长度的第三中心气道,能够提高反应气体的覆盖区域和分布均匀性,进而提高GaN生产效率。
在一些实施例中,所述第一中心气道、第二中心气道和第三中心气道相互平行。
需要说明的是,设置三组相互平行的中心气道,有利于降低三个气座的组装难度,也有利于第一间隙和第二间隙形成的气流通道的规整性,从而有助于提高气流的稳定性。
在一些实施例中,全部所述第一间隙的宽度相等,全部所述第二间隙的宽度相等,所述第一间隙的宽度等于所述第二间隙的宽度,所述第三中心气道位于所述第一间隙和第二间隙的中心。
需要说明的是,通过设置宽度相等的第一间隙和第二间隙,以及将第三中心气道安装在间隙的中心位置,能够使该喷头内部的气体流道更加规整和大小一致,进而使各个位置喷出的气流更加均匀和稳定。
在一些实施例中,所述第一中心气道的形状是圆形或椭圆形或平行四边形或三角形或梯形或五边形;
所述第二中心气道的形状是圆形或椭圆形或平行四边形或三角形或梯形或五边形。
在一些实施例中,所述第一中心气道的形状是圆形或矩形;所述第二中心气道的形状是圆形或矩形。
在一些实施例中,所述第一中心气道的底部设置有导流板,所述第一喷嘴设置在所述导流板的第一端,所述导流板的第二端与所述第一中心气道连接。
在一些实施例中,所述导流板为两片对称设置的内弧形挡片。
需要说明的是,通过设置导流板,使气体到达第一喷嘴时更加均匀稳定。
在一些实施例中,所述第一气座包括第一外周气道,所述第一中心气道位于所述第一外周气道内侧,所述第一中心气道的端部与所述第一外周气道连通;
所述第二气座包括第二外周气道,所述第二中心气道位于所述第二外周气道内侧,所述第二中心气道的端部与所述第二外周气道连通。
在一些实施例中,所述第一外周气道为圆环管道,所述第一中心气道固定在圆环管道的内侧壁;所述第二外周气道为圆环管道,所述第二中心气道固定在圆环管道的内侧壁。
在一些实施例中,所述第一中心气道的厚度与所述第一外周气道的厚度相等;所述第二中心气道的厚度与所述第二外周气道的厚度相等。
在一些实施例中,所述第一外周气道的内部通道的截面积大于所述第一中心气道的内部通道的截面积;所述第二外周气道的内部通道的截面积大于所述第二中心气道的内部通道的截面积。通过设置截面积较大的第一外周气道和第二外周气道,使气体从大腔体进入小腔体,从而使从所述第一喷嘴和第二喷嘴射出的气体压力更加均匀,利于形成均匀浓度场,进而提高结晶质量。
在一些实施例中,所述第一中心气道包括第一内管和第一外管,所述第一外管套设在所述第一内管的外侧,所述第一内管的两端与所述第一外周气道连通,所述第一内管的顶部设置有第一连通孔,所述第一喷嘴设置于所述第一外管的底部;
和/或,所述第二中心气道包括第二内管和第二外管,所述第二外管套设在所述第二内管的外侧,所述第二内管的两端与所述第二外周气道连通,所述第二内管的顶部和底部均设置有第二连通孔,所述第二喷嘴设置于所述第二外管的两侧。
在一些实施例中,所述第一内管和第一外管的轴心线重合;所述第二内管和第二外管的轴心线重合。
需要说明的是,通过设置内、外管的复合气道结构,气体从外周气道进入 内管,再从内管经所述连通孔进入外管,从外管上的喷嘴喷出,这种设计能够使气流更加均匀稳定。
在一些实施例中,所述第一外周气道上的侧壁设置有第一进气管,所述第一进气管垂直于所述第一中心气道;
所述第二外周气道的侧壁或顶部设置有第二进气管,所述第二进气管垂直于所述第二中心气道,且所述第二进气管位于远离所述第二中心气道与第二外周气道连通处的位置。
需要说明的是,将进气管设置在远离中心气道与外周气道连通处的位置,能够使进入各个中心气道的气流更加均匀和稳定。
在一些实施例中,所述第三气座还包括匀气腔,所述匀气腔的第一端与所述第三中心气道连通,所述匀气腔的第二端设置有第三进气管。
在一些实施例中,所述第三进气管与所述第三中心气道位于所述匀气腔相对的两侧。
在一些实施例中,所述第三进气管的数量是一个。
在一些实施例中,所述第三中心气道位于所述匀气腔的底部,所述第三进气管设置在所述匀气腔的侧壁。
在一些实施例中,所述第三进气管的数量是两个,分别位于所述匀气腔的两侧。
需要说明的是,通过设置所述匀气腔,使气体从小腔体进入大腔体再进入小腔体,从而使从所述第三喷嘴射出的气体压力更加均匀,利于形成均匀浓度场,进而提高结晶质量。
在一些实施例中,所述匀气腔的底部覆盖所述第二间隙的顶部。
需要说明的是,通过匀气腔覆盖所述第二间隙的顶部,能够避免从第二喷嘴喷出的气体从第二间隙的顶部排出,同时能够省略外部的密封结构,从而简化装置的整体结构。
本申请提供一种用于GaN材料生长的线性喷头,通过设置三个相互独立的相互组合的气座,第一方面,能够有效隔离反应气体,避免反应气体因提前混合而在喷嘴处出现预反应;第二方面,能够简化每个气座的结构,降低生产难度,为实际生产与推广提供更大的可行性;第三方面,这种组合结构能够实现喷头的体积增大设计,能够满足一次生产多片2-8英寸GaN厚膜,提高了该喷头设计的通用性,使喷头能够满足不同尺寸的HVPE设备的需求,从而利于大 批量生产和推进GaN单晶的产业化;第四方面,这种不同反应气体同向平行喷出的设计能够使反应室内的流场均匀稳定,作业托盘表面的有效沉积区域反应气体混合均匀,减少产物在喷头的沉积。
附图说明
下面根据附图和实施例对本申请作进一步详细说明。
图1为实施例一所述的喷头的结构示意图;
图2为实施例一所述的第一气座的结构示意图;
图3为实施例一所述的第一气座的全剖视图;
图4为实施例一所述的第二气座的结构示意图;
图5为实施例一所述的第二气座的全剖视图;
图6为实施例一所述的第三气座的结构示意图;
图7为实施例一所述的第三气座的全剖视图;
图8为实施例四所述的喷头的结构示意图;
图9为实施例四所述的第一气座的结构示意图;
图10为实施例四所述的第一气座的全剖视图;
图11为实施例四所述的第二气座的结构示意图;
图12为实施例四所述的第二气座的全剖视图;
图13为实施例五所述的喷头的结构示意图;
图14为实施例五所述的第一气座的结构示意图;
图15为实施例五所述的第一气座的全剖视图;
图16为实施例五所述的第一中心气道的全剖视图;
图17为实施例五所述的第二气座的结构示意图;
图18为实施例五所述的第二气座的全剖视图;
图19为实施例五所述的第二中心气道的全剖视图;
图20为实施例六所述的喷头的结构示意图;
图21为实施例六所述的第一气座的结构示意图;
图22为实施例六所述的第二气座的结构示意图;
图23为实施例六所述的第三气座的结构示意图;
图24为实施例六所述的第一、三中心气道的平面片状结构示意图;
图25为实施例六所述的第一、三中心气道的弧面片状结构示意图。
图1至图25中:
1、第一气座;11、第一中心气道;111、第一内管;112、第一外管;113、第一连通孔;12、第一间隙;13、第一喷嘴;14、第一外周气道;15、第一进气管;16、导流板;
2、第二气座;21、第二中心气道;211、第二内管;212、第二外管;213、第二连通孔;22、第二间隙;23、第二喷嘴;24、第二外周气道;25、第二进气管;
3、第三气座;31、第三中心气道;32、第三喷嘴;33、匀气腔;34、第三进气管。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本申请的技术方案。
实施例一:
如图1至7所示,一种用于GaN材料生长的线性喷头,该线性喷头的全部结构均采用石英或陶瓷制成,该线性喷头包括从下往上依次连接的第一气座1、第二气座2和第三气座3,第一气座1的顶部与第二气座2的底部贴合。第一气座1的中部设置有多个第一中心气道11,相邻第一中心气道11之间设置有第一间隙12,第一中心气道11的底部沿自身的长度方向设置有第一喷嘴13;第二气座2位于第一气座1的上方,第二气座2的中部设置有多个第二中心气道21,相邻第二中心气道21之间设置有第二间隙22,第二中心气道21的两侧沿自身的长度方向设置有第二喷嘴23,第一间隙12与第二间隙22对齐;第三气座3包括多个第三中心气道31,第三中心气道31贯穿第一间隙12和第二间隙22,第三中心气道31的底部设置有第三喷嘴32。第一喷嘴13与第三喷嘴32位于同一水平面,第一喷嘴13、第二喷嘴23和第三喷嘴32均是长条状线性喷嘴。当然,于其它实施例中,第一喷嘴13、第二喷嘴23和第三喷嘴32也可以分别是三个线性间隔分布的喷孔,或者,第一喷嘴13、第二喷嘴23和第三喷嘴32中的其中一个或两个是长条状线性喷嘴,剩下的两个或一个是喷孔。
本实施例的第二气座2用于流通隔离气体氮气,隔离气体通过第二中心气道21并从第二喷嘴23进入第二间隙22,并从第一间隙12喷出。第一气座1用于流通反应气体氯化镓和载气,反应气体通过第一中心气道11并从第一喷嘴13射出。第三气座3用于流通反应气体NH 3和载气,反应气体通过第三中心气道 31并从第三喷嘴32射出。于其它实施例中,第一气座1和第三气座3内的反应气体可以切换,即第一气座1用于流通反应气体NH 3和载气,第三气座3用于流通反应气体氯化镓和载气。反应气体的流道切换后,氯化镓与NH3两种源气体相对出口发生变换,能够使反应室内流场、浓度场均发生变化,因此这种切换调整能够增加GaN生长工艺的调控范围。
于本实施例中,喷头通过设置三个相互独立的相互组合的气座,且每个气座内的气体可以单独控制,第一方面,能够有效隔离反应气体,避免反应气体因提前混合而在喷嘴处出现预反应;第二方面,能够简化每个气座的结构,降低生产难度,为实际生产与推广提供更大的可行性;第三方面,这种组合结构能够实现喷头的体积增大设计,能够满足一次生产多片2-8英寸GaN厚膜,提高了该喷头设计的通用性,使喷头能够满足不同尺寸的HVPE设备的需求,从而利于大批量生产;第四方面,这种不同反应气体同向平行喷出的设计能够使反应室内的流场均匀稳定,减少产物在喷头的沉积。
在氢化物气相外延(以下简称HVPE)生长GaN厚膜时,该喷头的主要作用在于隔离和传输生长过程中需要的各种反应气体。在此过程中,喷头喷嘴处的结构直接影响各源气体进入HVPE反应室后形成的流场及浓度场,还有喷嘴处寄生反应的发生。另外,HVPE设备生长GaN时,为防止晶片开裂,温度通常不能低于1000℃;同时,生长GaN过程中含有HCl气体,不能与金属接触。因此,本方案的HVPE设备选择石英或陶瓷作为制作喷头的材料。石英和陶瓷属于易碎材料,不论加工、运输或使用过程中都存在极大损坏风险,本方案的喷头采用分体组合式设计,结构简单易于加工,且使不同的反应气体的喷出方向一致,从而使反应室内流场稳定、下方的石墨托有效沉积区域反应气体混合均匀、喷头的喷嘴位置的沉积少,本方案的喷头能够稳定持续大批量生产高质量GaN单晶,利于推进GaN单晶的产业化。
于本实施例中,第一气座1包括第一外周气道14,第一中心气道11位于第一外周气道14内侧,第一中心气道11的端部与第一外周气道14连通。第二气座2包括第二外周气道24,第二中心气道21位于第二外周气道24内侧,第二中心气道21的端部与第二外周气道24连通。第一外周气道14为圆环管道,第一中心气道11固定在圆环管道的内侧壁;第二外周气道24为圆环管道,第二中心气道21固定在圆环管道的内侧壁。第一中心气道11的厚度与第一外周气道14的厚度相等;第二中心气道21的厚度与第二外周气道24的厚度相等。
第一外周气道14上的侧壁设置有第一进气管15,第一进气管15垂直于第一中心气道11。第二外周气道24的侧壁设置有第二进气管25,第二进气管25垂直于第二中心气道21,且第二进气管25位于远离第二中心气道21与第二外周气道24连通处的位置。将进气管设置在远离中心气道与外周气道连通处的位置,能够使进入各个中心气道的气流更加均匀和稳定。于其它实施例中,第二进气管25也可以设置在第二外周气道24的顶部。
于本实施例中,第三气座3还包括匀气腔33,匀气腔33的底部与第三中心气道31连通,匀气腔33的侧壁设置有两个第三进气管34。于其它实施例中,也可以将第三进气管34与第三中心气道31设置于匀气腔33相对的两侧,即第三进气管34位于匀气腔的顶部,第三中心气道31位于匀气腔的底部,且第三进气管34的数量是一个。于本实施例中,通过设置匀气腔33,使气体从小腔体进入大腔体再进入小腔体,从而使从第三喷嘴32射出的气体压力更加均匀,利于形成均匀浓度场,进而提高结晶质量。
匀气腔33的底部与第二气座2贴合,匀气腔33的底部覆盖第二间隙22的顶部,既能够避免从第二喷嘴23喷出的气体从第二间隙22的顶部排出,同时又能够省略外部的密封结构,从而简化装置的整体结构。
于本实施例中,第一中心气道11和第二中心气道21的数量均为四根,第一间隙12和第二间隙22的数量均为三个,第三中心气道31的数量也为三个。附图中使用双虚线隔离表示第一中心气道11、第二中心气道21和第三中心气道31等的数量,可以根据实际需求进行增加或删减。每一个第一间隙12与一个第二间隙22对齐,每组对齐的第一间隙12和第二间隙22中插设有一个第三中心气道31。第一中心气道11是直线管道,多个第一中心气道11平行;第二中心气道21是直线管道,多个第二中心气道21平行;第三中心气道31是片状管道,多个第三中心气道31平行,第三中心气道31的厚度小于第一间隙12和第二间隙22。设置直线状的气道,利于气流的稳定性,协助提高射出气体的均匀性。实施例的第三中心气道31贯穿第一间隙12和第二间隙22的整个长度方向,这种设计能够提高反应气体的覆盖区域和分布均匀性,进而提高GaN生产效率。
于本实施例中,第一中心气道11、第二中心气道21和第三中心气道31相互平行。相互平行的中心气道有利于降低三个气座的组装难度,也有利于第一间隙12和第二间隙22形成的气流通道的规整性,从而有助于提高气流的稳定性。三个第一间隙12的宽度相等,三个第二间隙22的宽度相等,第一间隙12 的宽度等于第二间隙22的宽度,第三中心气道31位于第一间隙12和第二间隙22的中心。通过设置宽度相等的第一间隙12和第二间隙22,以及将第三中心气道31安装在间隙的中心位置,能够使该喷头内部的气体流道更加规整和大小一致,进而使各个位置喷出的气流更加均匀和稳定。
于本实施例中,第一中心气道11和第二中心气道21的形状均是矩形,第一中心气道11的底部设置有导流板16,第一喷嘴13设置在导流板16的第一端,导流板16的第二端与第一中心气道11连接。导流板16为两片对称设置的内弧形挡片,通过设置导流板16,使气体到达第一喷嘴13时更加均匀稳定。
可旋转的托盘安装在该喷头的下方,该喷头在托盘的表面形成反应气体的均匀浓度场,能够实现高质量结晶。
实施例二:
本实施例与实施例一的区别在于:
本实施例的第一外周气道14的内部通道的截面积大于第一中心气道11的内部通道的截面积;第二外周气道24的内部通道的截面积大于第二中心气道21的内部通道的截面积。通过设置截面积较大的第一外周气道14和第二外周气道24,使气体从大腔体进入小腔体,从而使从第一喷嘴13和第二喷嘴23射出的气体压力更加均匀,利于形成均匀浓度场,进而提高结晶质量。
实施例三:
本实施例与实施例一的区别在于:
第一中心气道11和第二中心气道21的数量均为五根,第一间隙12和第二间隙22的数量均为四个,第三中心气道31的数量也为四个。在其它实施例中,第一中心气道11和第二中心气道21的数量也可以两根或者三根或者六根以上。
实施例四:
本实施例与实施例一的区别在于:
如图8至12所示,第一中心气道11和第二中心气道21的形状均是圆形。附图中使用双虚线隔离表示第一中心气道11、第二中心气道21和第三中心气道31等的数量,可以根据实际需求进行增加或删减。于其它实施例中,第一中心气道11和第二中心气道21的形状也可以是椭圆形或平行四边形或三角形或梯 形或五边形。于其它实施例中,第一中心气道11和第二中心气道21的形状也可以不同,如第一中心气道11的形状是矩形,第二中心气道21的形状是圆形。
实施例五:
本实施例与实施例四的区别在于:
如图13至19所示,第一中心气道11包括第一内管111和第一外管112,第一外管112套设在第一内管111的外侧,第一外管112与第一内管111为同心圆管,第一内管111的两端与第一外周气道14连通,第一内管111的顶部设置有第一连通孔113,第一喷嘴13设置于第一外管112的底部。第二中心气道21包括第二内管211和第二外管212,第二外管212套设在第二内管211的外侧,第二外管212与第二内管211为同心圆管,第二内管211的两端与第二外周气道24连通,第二内管211的顶部和底部均设置有第二连通孔213,第二喷嘴23设置于第二外管212的两侧。本实施例中的第一连通孔113是沿第一内管111的长度方向延伸的腰形孔,第二连通孔213是沿第二内管211的长度方向延伸的腰形孔。附图中使用双虚线隔离表示第一中心气道11、第二中心气道21和第三中心气道31等的数量,可以根据实际需求进行增加或删减。当然,于其它实施例中,第一连通孔113和第二连通孔213也可以分别是三个线性间隔分布的圆孔,或者,第一连通孔113和第二连通孔213中的其中一个是沿长度方向延伸的腰形孔,另一个是圆孔。本方案通过设置内、外管的复合气道结构,气体从外周气道进入内管,再从内管经连通孔进入外管,从外管上的喷嘴喷出,这种设计能够使气流更加均匀稳定。
实施例六:
本实施例与实施例一的区别在于:
如图20至图25所示,第一气座1包括第一中心气道11和第一外周气道14,第一中心气道11位于第一外周气道14内侧,第一中心气道11的端部与第一外周气道14连通。第一外周气道14为圆环管道,第一中心气道11的数量为三个,第一中心气道11的第一端固定在圆环管道的内侧壁,第一中心气道11的第二端悬空,三个第一中心气道11在圆周方向等角度分布在第一外周气道14的内部。在本实施例中,第一中心气道11是片状槽结构,可以是平面片状结构或弧面片状结构,如图24和图25所示。于其它实施例中,第一中心气道也可以是 扇形或扇环块状槽结构,第一中心气道的数量也可以不为三个。
第二气座2包括第二中心气道21和第二外周气道24,第二外周气道24的内侧设置有六个通道槽,该通道槽的其中间隔设置的三个与第二外周气道24连通,这三个通道槽形成三个第二中心气道21。另外的三个通道槽穿插在三个第一中心气道21之间,形成第三中心气道31的让位通道。其中,第一中心气道11嵌装在第二中心气道21的内部的下端,第二中心气道21的上端与第二外周气道24连接。三个所述让位通道位于第一中心气道11的第一间隙12内。第二喷嘴设置在第二中心气道21的上端的两侧,隔离气体从第二外周气道24进入第二中心气道21后,由于第二中心气道21的下方被第一中心气道11阻塞,上方被第三气座3的匀气腔33阻塞,因此,隔离气体从第二喷嘴排出至第二间隙22,到达第一间隙12并实现隔离反应气体的效果。
第三气座3还包括匀气腔33和三个第三中心气道31,匀气腔33的底部与第三中心气道31连通。匀气腔33的底部与第二气座2贴合,匀气腔33的底部覆盖第二间隙22的顶部,既能够避免从第二喷嘴喷出的气体从第二间隙22的顶部排出,同时又能够省略外部的密封结构,从而简化装置的整体结构。在本实施例中,第三中心气道31是片状槽结构,可以是平面片状结构或弧面片状结构,如图24和图25所示。三个第二中心气道21的形状与第一中心气道11的形状相同,三个所述让位通道的形状与第三中心气道31的形状相同。于其它实施例中,第三中心气道也可以是扇形或扇环块状槽结构,当然,必须保证第三中心气道能够插入第一中心气道的第一间隙内。另外,第三中心气道的数量也不为三个。
本文中的“第一”、“第二”、“第三”仅仅是为了在描述上加以区分,并没有特殊的含义。

Claims (10)

  1. 一种用于GaN材料生长的线性喷头,包括第一气座、第二气座和第三气座,所述第一气座的中部设置有多个第一中心气道,相邻所述第一中心气道之间设置有第一间隙,所述第一中心气道的底部沿自身的长度方向设置有第一喷嘴;所述第二气座位于所述第一气座的上方,所述第二气座的中部设置有多个第二中心气道,相邻所述第二中心气道之间设置有第二间隙,所述第二中心气道的两侧沿自身的长度方向设置有第二喷嘴,所述第一间隙与所述第二间隙对齐;所述第三气座包括多个第三中心气道,所述第三中心气道贯穿所述第一间隙和第二间隙,所述第三中心气道的底部设置有第三喷嘴。
  2. 根据权利要求1所述的用于GaN材料生长的线性喷头,其中,所述第一中心气道是直线管道,多个所述第一中心气道平行;所述第二中心气道是直线管道,多个所述第二中心气道平行;所述第三中心气道是片状管道,多个所述第三中心气道平行。
  3. 根据权利要求2所述的用于GaN材料生长的线性喷头,其中,全部所述第一间隙的宽度相等,全部所述第二间隙的宽度相等,所述第一间隙的宽度等于所述第二间隙的宽度,所述第三中心气道位于所述第一间隙和第二间隙的中心。
  4. 根据权利要求1所述的一种用于GaN材料生长的线性喷头,其中,所述第一中心气道的形状是圆形或椭圆形或平行四边形或三角形或梯形或五边形;
    所述第二中心气道的形状是圆形或椭圆形或平行四边形或三角形或梯形或五边形。
  5. 根据权利要求1所述的用于GaN材料生长的线性喷头,其中,所述第一中心气道的底部设置有导流板,所述第一喷嘴设置在所述导流板的第一端,所述导流板的第二端与所述第一中心气道连接。
  6. 根据权利要求1所述的用于GaN材料生长的线性喷头,其中,所述第一气座包括第一外周气道,所述第一中心气道位于所述第一外周气道内侧,所述第一中心气道的端部与所述第一外周气道连通;
    所述第二气座包括第二外周气道,所述第二中心气道位于所述第二外周气道内侧,所述第二中心气道的端部与所述第二外周气道连通。
  7. 根据权利要求6所述的用于GaN材料生长的线性喷头,其中,所述第一中心气道包括第一内管和第一外管,所述第一外管套设在所述第一内管的外侧,所述第一内管的两端与所述第一外周气道连通,所述第一内管的顶部设置有第 一连通孔,所述第一喷嘴设置于所述第一外管的底部;
    和/或,所述第二中心气道包括第二内管和第二外管,所述第二外管套设在所述第二内管的外侧,所述第二内管的两端与所述第二外周气道连通,所述第二内管的顶部和底部均设置有第二连通孔,所述第二喷嘴设置于所述第二外管的两侧。
  8. 根据权利要求6所述的用于GaN材料生长的线性喷头,其中,所述第一外周气道上的侧壁设置有第一进气管,所述第一进气管垂直于所述第一中心气道;
    所述第二外周气道的侧壁或顶部设置有第二进气管,所述第二进气管垂直于所述第二中心气道,且所述第二进气管位于远离所述第二中心气道与第二外周气道连通处的位置。
  9. 根据权利要求1所述的用于GaN材料生长的线性喷头,其中,所述第三气座还包括匀气腔,所述匀气腔的第一端与所述第三中心气道连通,所述匀气腔的第二端设置有第三进气管。
  10. 根据权利要求9所述的用于GaN材料生长的线性喷头,其中,所述匀气腔的底部覆盖所述第二间隙的顶部。
PCT/CN2019/121191 2019-11-27 2019-11-27 一种用于GaN材料生长的线性喷头 WO2021102726A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021551867A JP7251842B2 (ja) 2019-11-27 2019-11-27 GaN材料の成長に用いられるリニア噴射ヘッド
PCT/CN2019/121191 WO2021102726A1 (zh) 2019-11-27 2019-11-27 一种用于GaN材料生长的线性喷头
EP19953754.9A EP4067532A4 (en) 2019-11-27 2019-11-27 GAN MATERIAL GROWTH LINEAR SPRAY HEAD
CN201980088099.6A CN113508189B (zh) 2019-11-27 2019-11-27 一种用于GaN材料生长的线性喷头
US17/310,565 US20220282396A1 (en) 2019-11-27 2019-11-27 Linear showerhead for growing gan

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/121191 WO2021102726A1 (zh) 2019-11-27 2019-11-27 一种用于GaN材料生长的线性喷头

Publications (1)

Publication Number Publication Date
WO2021102726A1 true WO2021102726A1 (zh) 2021-06-03

Family

ID=76128988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121191 WO2021102726A1 (zh) 2019-11-27 2019-11-27 一种用于GaN材料生长的线性喷头

Country Status (5)

Country Link
US (1) US20220282396A1 (zh)
EP (1) EP4067532A4 (zh)
JP (1) JP7251842B2 (zh)
CN (1) CN113508189B (zh)
WO (1) WO2021102726A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142391A1 (en) * 2001-07-06 2005-06-30 Technologies And Devices International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US20110143463A1 (en) * 2009-12-14 2011-06-16 Kabushiki Kaisha Toshiba Vapor deposition method and vapor deposition apparatus
KR20120080975A (ko) * 2011-01-10 2012-07-18 엘아이지에이디피 주식회사 샤워헤드용 토출관, 이를 이용한 샤워헤드 및 화학기상 증착장치
CN102971449A (zh) * 2010-07-12 2013-03-13 株式会社爱发科 成膜装置
DE102014201554A1 (de) * 2013-01-30 2014-07-31 Nuflare Technology, Inc. Dampfphasenepitaxievorrichtung und Dampfphasenepitaxieverfahren
US20140370691A1 (en) * 2013-06-13 2014-12-18 Nuflare Technology, Inc. Vapor phase growth apparatus and vapor phase growth method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG125069A1 (en) * 2001-05-17 2006-09-29 Sumitomo Chemical Co Method and system for manufacturing III-V group compound semiconductor and III-V group compound semiconductor
US20070071896A1 (en) * 2003-08-20 2007-03-29 Veeco Instruments Inc. Alkyl push flow for vertical flow rotating disk reactors
KR101309334B1 (ko) * 2004-08-02 2013-09-16 비코 인스트루먼츠 인코포레이티드 화학적 기상 증착 반응기용 멀티 가스 분배 인젝터
US7976631B2 (en) * 2007-10-16 2011-07-12 Applied Materials, Inc. Multi-gas straight channel showerhead
JP4865672B2 (ja) * 2007-10-22 2012-02-01 シャープ株式会社 気相成長装置及び半導体素子の製造方法
KR20090078538A (ko) * 2008-01-15 2009-07-20 삼성전기주식회사 샤워 헤드와 이를 구비하는 화학 기상 증착 장치
JP4840832B2 (ja) * 2010-04-28 2011-12-21 シャープ株式会社 気相成長装置、気相成長方法、および半導体素子の製造方法
CN101921996B (zh) * 2010-08-17 2012-02-15 彭继忠 一种mocvd设备喷淋头装置
JP6664993B2 (ja) * 2016-03-01 2020-03-13 株式会社ニューフレアテクノロジー 成膜装置
JP7365761B2 (ja) * 2018-08-24 2023-10-20 株式会社ニューフレアテクノロジー 気相成長装置
CN109306458A (zh) * 2018-12-16 2019-02-05 湖南玉丰真空科学技术有限公司 一种溅射阴极匀气装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142391A1 (en) * 2001-07-06 2005-06-30 Technologies And Devices International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US20110143463A1 (en) * 2009-12-14 2011-06-16 Kabushiki Kaisha Toshiba Vapor deposition method and vapor deposition apparatus
CN102971449A (zh) * 2010-07-12 2013-03-13 株式会社爱发科 成膜装置
KR20120080975A (ko) * 2011-01-10 2012-07-18 엘아이지에이디피 주식회사 샤워헤드용 토출관, 이를 이용한 샤워헤드 및 화학기상 증착장치
DE102014201554A1 (de) * 2013-01-30 2014-07-31 Nuflare Technology, Inc. Dampfphasenepitaxievorrichtung und Dampfphasenepitaxieverfahren
US20140370691A1 (en) * 2013-06-13 2014-12-18 Nuflare Technology, Inc. Vapor phase growth apparatus and vapor phase growth method

Also Published As

Publication number Publication date
JP7251842B2 (ja) 2023-04-04
EP4067532A1 (en) 2022-10-05
CN113508189B (zh) 2023-07-28
EP4067532A4 (en) 2023-08-16
CN113508189A (zh) 2021-10-15
JP2022522307A (ja) 2022-04-15
US20220282396A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
US9644267B2 (en) Multi-gas straight channel showerhead
JP6134522B2 (ja) 気相成長装置および気相成長方法
TWI590300B (zh) Wafer tray for MOCVD reaction system
US20100263588A1 (en) Methods and apparatus for epitaxial growth of semiconductor materials
CN106498368B (zh) 一种用于mocvd设备的喷淋头
US20140239091A1 (en) Gas Injector and Cover Plate Assembly for Semiconductor Equipment
CN102108547B (zh) 一种多片大尺寸氢化物气相外延方法和装置
CN103060906B (zh) 一种材料气相外延用方形喷头结构
EP4194584A1 (en) Semiconductor growth device and working method thereof
CN103103501A (zh) 一种材料气相外延用扇形喷头结构
CN104264128B (zh) 一种用于mocvd反应器的格栅式气体分布装置
WO2021102726A1 (zh) 一种用于GaN材料生长的线性喷头
TW201600634A (zh) 用於mocvd設備的進氣及冷卻裝置
TW201108305A (en) Gas phase growing apparatus for group III nitride semiconductor
CN116695242A (zh) 一种气体喷淋头及气相外延装置
CN106011793B (zh) 气盘及气体反应设备
CN101281864A (zh) 一种改进氢化物气相外延生长GaN材料均匀性的方法和装置
CN218756159U (zh) 一种用于半导体材料生长的喷淋装置
CN106086818A (zh) 一种h型喷头的mocvd匀气上下盘组件
WO2022133943A1 (zh) 反应器及生长装置
CN205907398U (zh) 一种金属有机化学气相沉积装置
CN218321745U (zh) 外延片反应室的喷淋结构及包括其的外延片反应装置
CN115522259A (zh) 喷淋结构、反应装置、外延片、其制备方法及用途
KR102001911B1 (ko) 태양 전지용 수직형 유기 금속 화학 기상 증착 장치
CN219260188U (zh) 一种金属有机化学气相沉淀反应腔的气体喷淋分配装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953754

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021551867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019953754

Country of ref document: EP

Effective date: 20220627