WO2021100361A1 - 光制御装置及び照明装置 - Google Patents

光制御装置及び照明装置 Download PDF

Info

Publication number
WO2021100361A1
WO2021100361A1 PCT/JP2020/038684 JP2020038684W WO2021100361A1 WO 2021100361 A1 WO2021100361 A1 WO 2021100361A1 JP 2020038684 W JP2020038684 W JP 2020038684W WO 2021100361 A1 WO2021100361 A1 WO 2021100361A1
Authority
WO
WIPO (PCT)
Prior art keywords
segment
angle
liquid crystal
intersects
control electrode
Prior art date
Application number
PCT/JP2020/038684
Other languages
English (en)
French (fr)
Inventor
健夫 小糸
三井 雅志
多惠 黒川
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to CN202080081082.0A priority Critical patent/CN114730107B/zh
Priority to DE112020004935.3T priority patent/DE112020004935T5/de
Publication of WO2021100361A1 publication Critical patent/WO2021100361A1/ja
Priority to US17/659,394 priority patent/US11934082B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the embodiment of the present invention relates to an optical control device and a lighting device.
  • a liquid crystal lens including a plurality of arc electrodes and a drawing electrode connected to the arc electrodes is disclosed.
  • a technique is known in which a plurality of liquid crystal lenses are overlapped, and the band-shaped electrode of one liquid crystal lens and the band-shaped electrode of the other liquid crystal lens are displaced and overlapped, and a pseudo band-shaped electrode is finely arranged.
  • the extraction electrode connected to each band-shaped electrode is provided in the effective region where the liquid crystal lens is formed, and can contribute to disturbing the electric field for forming the liquid crystal lens.
  • An object of the present embodiment is to provide an optical control device and a lighting device capable of reducing an invalid area.
  • the optical control device of this embodiment is A first substrate having a plurality of first control electrodes provided in an effective region and a plurality of feeding lines provided in a peripheral region, a second substrate, and the first substrate and the second substrate.
  • a first liquid crystal layer held between them, the first control electrode is a transparent electrode, and the first control electrode intersects a first direction at a first angle in the effective region.
  • the first control electrode includes a first segment, a second segment that intersects the first direction at a second angle, and a third segment that intersects the first direction at a third angle. , Extending to the peripheral region and electrically connected to the feeding line, the first to third angles are different from each other.
  • the optical control device of this embodiment is A first liquid crystal cell provided with a first control electrode and a second liquid crystal cell provided with a second control electrode are provided, and the second liquid crystal cell is superimposed on the first liquid crystal cell, and the first control electrode is provided.
  • the second control electrode is a transparent electrode, and the first control electrode intersects a first segment that intersects the first direction at a first angle with a second angle with respect to the first direction.
  • the second segment includes a second segment and a third segment that intersects the first direction at a third angle, and the second control electrode has a fourth segment that intersects the first direction at a fourth angle.
  • a fifth segment that intersects the first direction at a fifth angle and a sixth segment that intersects the first direction at a sixth angle are provided, and the first to sixth angles are mutual. Different angles.
  • the optical control device of this embodiment is A first substrate including a plurality of first control electrodes provided in the first effective region and a plurality of second control electrodes provided in a second effective region adjacent to the first effective region, and a second.
  • a substrate and a first liquid crystal layer held between the first substrate and the second substrate are provided, and the first control electrode and the second control electrode are transparent electrodes, and the first control The electrode is separated from the second control electrode, and the first control electrode intersects the first segment that intersects the first direction at a first angle and the first segment that intersects the first direction at a second angle.
  • the second control electrode includes a second segment and a third segment that intersects the first direction at a third angle, and the second control electrode includes a fourth segment that intersects the first direction at a fourth angle.
  • a fifth segment that intersects the first direction at a fifth angle and a sixth segment that intersects the first direction at a sixth angle are provided, and the first to sixth angles are different from each other. The angle.
  • the lighting device of this embodiment is A light source and an optical control device configured to control the light emitted from the light source are provided, and the optical control device is provided in a plurality of first control electrodes provided in an effective region and in a peripheral region.
  • the first control is provided with a first substrate including the plurality of power supply lines provided, a second substrate, and a first liquid crystal layer held between the first substrate and the second substrate.
  • the electrode is a transparent electrode, and the first control electrode intersects a first segment that intersects with a first direction at a first angle in the effective region at a second angle with respect to the first direction.
  • a second segment and a third segment that intersects the first direction at a third angle are provided, and the first control electrode extends to the peripheral region and is electrically connected to the feeding line.
  • the first to third angles are different from each other.
  • the lighting device of this embodiment is The light source includes a light source and an optical control device configured to control the light emitted from the light source, and the optical control device includes a first liquid crystal cell provided with a first control electrode and a second control electrode.
  • the second liquid crystal cell is provided, and the second liquid crystal cell is superposed on the first liquid crystal cell, and the first control electrode and the second control electrode are transparent electrodes, and the first control electrode is provided. Intersects a first segment that intersects the first direction at a first angle, a second segment that intersects the first direction at a second angle, and a third segment that intersects the first direction at a third angle.
  • a third segment is provided, and the second control electrode includes a fourth segment that intersects the first direction at a fourth angle, and a fifth segment that intersects the first direction at a fifth angle.
  • a sixth segment that intersects the first direction at a sixth angle, and the first to sixth angles are different from each other.
  • the lighting device of this embodiment is The optical control device includes a light source and an optical control device configured to control the light emitted from the light source, and the optical control device includes a plurality of first control electrodes provided in a first effective region and the first control electrode.
  • a first substrate including a plurality of second control electrodes provided in a second effective region adjacent to one effective region, a second substrate, and held between the first substrate and the second substrate.
  • the first control electrode and the second control electrode are transparent electrodes, the first control electrode is separated from the second control electrode, and the first control electrode is separated from the second control electrode.
  • the second control electrode includes three segments, a fourth segment that intersects the first direction at a fourth angle, and a fifth segment that intersects the first direction at a fifth angle.
  • a sixth segment that intersects the first direction at a sixth angle is provided, and the first to sixth angles are different angles from each other.
  • FIG. 1 is a diagram showing a configuration example of the lighting device 100 of the present embodiment.
  • FIG. 2 is a cross-sectional view showing a configuration example of the first liquid crystal cell 10.
  • FIG. 3 is a diagram for explaining the liquid crystal lens LL1 formed in the first liquid crystal cell 10.
  • FIG. 4 is a plan view showing a configuration example of the first liquid crystal cell 10.
  • FIG. 5 is a diagram for explaining the light modulation action in each segment of the first control electrode E1.
  • FIG. 6 is a diagram showing a configuration example of the optical control device 200.
  • FIG. 7 is a diagram showing another configuration example of the optical control device 200.
  • FIG. 8 is a diagram showing another configuration example of the optical control device 200.
  • FIG. 1 is a diagram showing a configuration example of the lighting device 100 of the present embodiment.
  • FIG. 2 is a cross-sectional view showing a configuration example of the first liquid crystal cell 10.
  • FIG. 3 is a diagram for explaining the liquid crystal lens LL1 formed in the first liquid
  • FIG. 9 is a cross-sectional view showing another configuration example of the first liquid crystal cell 10 and the second liquid crystal cell 20 constituting the optical control device 200.
  • FIG. 10 is a plan view showing another configuration example of the second control electrode E2.
  • FIG. 11 is a diagram showing another configuration example of the optical control device 200.
  • FIG. 12 is a diagram showing another configuration example of the optical control device 200.
  • FIG. 13 is a diagram showing another configuration example of the optical control device 200.
  • FIG. 14 is a diagram showing another configuration example of the optical control device 200.
  • FIG. 1 is a diagram showing a configuration example of the lighting device 100 of the present embodiment.
  • the first direction X, the second direction Y, and the third direction Z are orthogonal to each other, but may intersect at an angle other than 90 degrees.
  • viewing the XY plane defined by the first direction X and the second direction Y is referred to as a plan view.
  • the lighting device 100 includes a light source LS, an optical control device 200 configured to control the light emitted from the light source LS, and a control unit CT.
  • the light source LS emits light in the third direction Z.
  • the light emitted from the light source LS is, for example, natural light.
  • the optical control device 200 is superimposed on the light source LS in the third direction Z.
  • the optical control device 200 includes a first liquid crystal cell 10 and a second liquid crystal cell 20.
  • the first liquid crystal cell 10 and the second liquid crystal cell 20 may have substantially the same components, or may have different components.
  • the first liquid crystal cell 10 includes a first substrate SUB1, a second substrate SUB2, and a first liquid crystal layer LC1.
  • the first substrate SUB1 includes an insulating substrate 11, a plurality of first control electrodes E1 provided on the insulating substrate 11, and an alignment film AL1 that covers the first control electrode E1.
  • the second substrate SUB2 includes an insulating substrate 12, a first common electrode C1 provided on the insulating substrate 12, and an alignment film AL2 covering the first common electrode C1.
  • the first common electrode C1 faces a plurality of first control electrodes E1.
  • the second liquid crystal cell 20 includes a third substrate SUB3, a fourth substrate SUB4, and a second liquid crystal layer LC2.
  • the third substrate SUB3 includes an insulating substrate 21, a plurality of second control electrodes E2 provided on the insulating substrate 21, and an alignment film AL3 that covers the second control electrode E2.
  • the fourth substrate SUB4 includes an insulating substrate 22, a second common electrode C2 provided on the insulating substrate 22, and an alignment film AL4 covering the second common electrode C2.
  • the second common electrode C2 faces a plurality of second control electrodes E2.
  • the insulating substrates 11 and 12 and the insulating substrates 21 and 22 are transparent substrates such as a glass substrate and a resin substrate.
  • the first control electrode E1, the second control electrode E2, the first common electrode C1, and the second common electrode C2 are formed of a transparent conductive material such as indium tin oxide (ITO) or indium zinc oxide (IZO). It is a transparent electrode.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the alignment films AL1 to AL4 are horizontal alignment films having an orientation regulating force substantially parallel to the XY plane.
  • the alignment treatment direction AD1 of the alignment film AL1 and the alignment treatment direction AD2 of the alignment film AL2 are both parallel to the first direction X and opposite to each other.
  • the alignment treatment direction AD3 of the alignment film AL3 and the alignment treatment direction AD4 of the alignment film AL4 are both parallel to the second direction Y and opposite to each other.
  • the alignment treatment may be a rubbing treatment or a photo-alignment treatment.
  • the first liquid crystal layer LC1 is held by the alignment films AL1 and AL2 between the first substrate SUB1 and the second substrate SUB2, and has a liquid crystal molecule LM1 initially oriented along the first direction X.
  • the second liquid crystal layer LC2 is held by the alignment films AL3 and AL4 between the third substrate SUB3 and the fourth substrate SUB4, and has a liquid crystal molecule LM2 initially oriented along the second direction Y. That is, the initial orientation direction of the liquid crystal molecule LM1 intersects the initial orientation direction of the liquid crystal molecule LM2.
  • the initial orientation corresponds to the orientation of the liquid crystal molecules when no voltage is applied to the liquid crystal layer, or corresponds to the orientation of the liquid crystal molecules due to the orientation regulating force of the pair of alignment films sandwiching the liquid crystal layer. ..
  • These first liquid crystal layer LC1 and second liquid crystal layer LC2 have, for example, positive permittivity anisotropy, but may have negative permittivity anisotropy.
  • the second liquid crystal cell 20 is superimposed on the first liquid crystal cell 10 in the third direction Z.
  • the insulating substrate 12 and the insulating substrate 21 are adhered to each other by a transparent adhesive layer AD.
  • the refractive index of the adhesive layer AD is equivalent to the refractive index of the insulating substrates 12 and 21.
  • the outer surface 11A of the insulating substrate 11 and the outer surface 22A of the insulating substrate 22 are in contact with the air layer, respectively.
  • the outer surface 22A may be provided with an ultraviolet ray blocking layer that suppresses deterioration of the liquid crystal layer due to external light, or may be provided with a diffusion layer for alleviating the influence of uneven orientation of the liquid crystal molecules.
  • the outer surface 22A may be matted.
  • the control unit CT includes a light source control unit LCT and voltage control units DCT1 and DCT2.
  • the light source control unit LCT controls, for example, the current value for driving the light source LS.
  • the voltage control unit DCT1 controls the voltage to be applied to the first control electrode E1 and the first common electrode C1 in the first liquid crystal cell 10.
  • the voltage control unit DCT2 controls the voltage to be applied to the second control electrode E2 and the second common electrode C2 in the second liquid crystal cell 20.
  • Such an optical control device 200 is provided so that the light source LS faces the outer surface 11A of the insulating substrate 11. That is, the outer surface 11A is an incident surface of natural light.
  • the first liquid crystal cell 10 mainly modulates the first polarized light component (P-polarized light) POL1 of the incident natural light.
  • the first polarized light component POL1 is linearly polarized light having a vibration plane in the first direction X.
  • the second liquid crystal cell 20 mainly modulates the second polarized light component (S-polarized light) POL2 that has passed through the first liquid crystal cell 10.
  • the second polarized light component POL2 is linearly polarized light having a vibration plane in the second direction Y.
  • Modulation here means refraction, focusing, or divergence of the polarized light component transmitted through the liquid crystal layer by a refractive index distribution type lens (hereinafter referred to as a liquid crystal lens) formed on the liquid crystal layer.
  • the degree of focusing or divergence (modulation rate) is controlled by the voltage applied to the liquid crystal layer. That is, the modulation rate of the first polarization component in the first liquid crystal cell 10 is controlled by the voltage control unit DCT1, and the modulation rate of the second polarization component in the second liquid crystal cell 20 is controlled by the voltage control unit DCT2.
  • the voltage control unit DCT1 and the voltage control unit DCT2 may be controlled under the same voltage condition or may be controlled under different voltage conditions. Further, each of the voltage control unit DCT1 and the voltage control unit DCT2 may be controlled under voltage conditions that form a convex lens type liquid crystal lens, a concave lens type liquid crystal lens, or a liquid crystal lens having another shape.
  • FIG. 2 is a cross-sectional view showing a configuration example of the first liquid crystal cell 10.
  • the first liquid crystal cell 10 has an effective region A11 that modulates a transmitted polarized light component, and a peripheral region A12 outside the effective region A11.
  • the plurality of first feeder lines PL1 and the common wiring CL1 are provided in the peripheral region A12 and are covered with the insulating film IL.
  • the plurality of first control electrodes E1 are provided in the effective region A11, are located on the insulating film IL, and are covered with the alignment film AL1.
  • the first control electrode E1, the feeder line PL1, and the common wiring CL1 are electrically connected to the voltage control unit DCT1 shown in FIG.
  • the light-shielding layer BM is provided in the peripheral region A12.
  • the inner region surrounded by the light-shielding layer BM corresponds to the effective region A11.
  • the first common electrode C1 is a single flat plate electrode located on substantially the entire surface of the effective region A11 and a part of which extends to the peripheral region A12.
  • the first common electrode C1 faces a plurality of first control electrodes E1 in the effective region A11 via the first liquid crystal layer LC1.
  • the first common electrode C1 faces a plurality of feeder lines PL1 and common wiring CL1 in the peripheral region A12.
  • the first substrate SUB1 and the second substrate SUB2 are adhered by the seal SE in the peripheral region A12.
  • the seal SE includes a conductive material CD.
  • the conductive material CD is interposed between the common wiring CL1 and the first common electrode C1, and electrically connects the common wiring CL1 and the first common electrode C1.
  • FIG. 3 is a diagram for explaining the liquid crystal lens LL1 formed in the first liquid crystal cell 10.
  • the second liquid crystal cell 20 can also form a liquid crystal lens LL2 similar to the liquid crystal lens LL1 described with reference to FIG.
  • FIG. 3A shows an OFF state in which no potential difference is generated between the first control electrodes E11 to E15 and the first common electrode C1.
  • the liquid crystal molecule LM1 contained in the first liquid crystal layer LC1 is initially oriented due to the orientation restricting force of the alignment films AL1 and AL2.
  • FIG. 3B shows an ON state (ON) in which a potential difference is formed between the first control electrodes E11 to E15 and the first common electrode C1.
  • the voltage control unit DCT1 supplies predetermined voltages to the first control electrodes E11 to E15 and the first common electrode C1, respectively.
  • the first liquid crystal layer LC1 has a positive dielectric anisotropy. Therefore, in the state where the electric field is formed, the liquid crystal molecule LM1 is oriented so that its long axis is along the electric field.
  • the major axis of the liquid crystal molecule LM1 is the third direction Z. Oriented along. Almost no electric field is formed in the region where the first control electrode E13 and the first common electrode C1 face each other, and the liquid crystal molecule LM1 is maintained in the initial orientation state. In the region where the first control electrode E12 and the first common electrode C1 face each other, the region where the first control electrode E11 and the first common electrode C1 face each other, and the first control electrode E13 and the first common electrode C1 are located. An intermediate orientation state with the opposing regions is formed.
  • the liquid crystal molecule LM1 has a refractive index anisotropy ⁇ n. Therefore, the first liquid crystal layer LC1 has a refractive index distribution according to the orientation state of the liquid crystal molecule LM1. Alternatively, the first liquid crystal layer LC1 has a retardation distribution represented by ⁇ n ⁇ d, where d is the thickness of the first liquid crystal layer LC1 along the third direction Z.
  • the liquid crystal lens LL1 shown by the dotted line in the figure is formed by such a refractive index distribution or a retardation distribution.
  • the first liquid crystal layer LC1 has a substantially uniform refractive index distribution, and a liquid crystal lens is not formed. Therefore, the first polarization component POL1 passes through the first liquid crystal layer LC1 without being modulated.
  • the first liquid crystal layer LC1 has a liquid crystal lens LL1 as described above. Therefore, the first polarization component POL1 is modulated when it passes through the first liquid crystal layer LC1.
  • FIG. 4 is a plan view showing a configuration example of the first liquid crystal cell 10.
  • the plurality of feeder lines PL1 are arranged in the first direction X in the peripheral region A12. Each of these feeder lines PL1 extends to the terminal portion A13.
  • the terminal portion A13 includes a plurality of terminals connected to each of the feeder lines PL1 and is electrically connected to a flexible wiring board or the like.
  • the plurality of first control electrodes E1 have substantially the same shape and are aligned in the second direction Y in the effective region A11. Each of the plurality of first control electrodes E1 extends to the peripheral region A12 and is electrically connected to any one of the feeder lines PL1.
  • the first control electrode E1 when the first direction X parallel to the extending direction of one side of the first liquid crystal cell 10 is used as a reference, the first control electrode E1 includes a plurality of segments intersecting the first direction X at different angles. ing. The angle ⁇ formed by each segment with respect to the first direction X is defined as a counterclockwise angle with respect to the first direction X in the XY plane.
  • the first control electrode E1 includes a first segment SG1, a second segment SG2, and a third segment SG3 in the effective region A11.
  • the first segment SG1 extends in a direction intersecting the first direction X at a first angle ⁇ 1.
  • the second segment SG2 extends in a direction intersecting the first direction X at a second angle ⁇ 2.
  • the third segment SG3 extends in a direction intersecting the first direction X at a third angle ⁇ 3.
  • the first angle ⁇ 1, the second angle ⁇ 2, and the third angle ⁇ 3 are different angles from each other.
  • the first angle ⁇ 1 is 60 °
  • the second angle ⁇ 2 is 0 °
  • the third angle ⁇ 3 is 120 °.
  • the first angle ⁇ 1 is 30 °
  • the second angle ⁇ 2 is 0 °
  • the third angle ⁇ 3 is 150 °.
  • first angle ⁇ 1, second angle ⁇ 2, and third angle ⁇ 3 include at least one acute angle and at least one obtuse angle.
  • first angle ⁇ 1 is an acute angle
  • third angle ⁇ 3 is an obtuse angle.
  • the obtuse angle is an integral multiple of the acute angle.
  • the total length L1 of the first segment SG1, the total length L2 of the second segment SG2, and the total length L3 of the third segment SG3 are substantially the same.
  • the lengths L1 to L3 are equal, the number of the first segment SG1, the number of the second segment SG2, and the number of the third segment SG3 included in the first control electrode E1 are equal.
  • FIG. 5 is a diagram for explaining the light modulation action in each segment of the first control electrode E1.
  • FIG. 5A shows the modulation action of the segment group GP1 in which a plurality of first segment SG1s are arranged side by side at substantially equal pitches.
  • FIG. 5B shows the modulation action of the segment group GP2 in which a plurality of second segment SG2s are arranged side by side at substantially equal pitches.
  • FIG. 5C shows the modulation action of the segment group GP3 in which a plurality of third segment SG3s are arranged side by side at substantially equal pitches.
  • the first polarization component POL1 transmits each of the segment groups GP1 to GP3. At that time, it diverges in a direction substantially orthogonal to the extending direction of each segment. For example, as shown in FIG. 5A, when the first segment SG1 extends in the direction of the first angle ⁇ 1 at 60 ° with respect to the first direction X, the first polarized light transmitted through the segment group GP1. The component POL1 diverges in the 150 ° -330 ° orientation in the XY plane. As shown in FIG.
  • FIG. 6 is a diagram showing a configuration example of the optical control device 200.
  • the first liquid crystal cell 10 and the second liquid crystal cell 20 are superimposed in the third direction Z.
  • the configuration of the first liquid crystal cell 10 is as described with reference to FIG.
  • the second liquid crystal cell 20 is substantially the same as the first liquid crystal cell 10.
  • the second liquid crystal cell 20 has an effective region A21 that modulates a transmitted polarized light component, and a peripheral region A22 outside the effective region A21.
  • the effective region A21 is superimposed on the effective region A11, and the peripheral region A22 is superimposed on the peripheral region A12.
  • the plurality of feeder lines PL2 are arranged in the first direction X in the peripheral region A22. Each of these feeder lines PL2 extends to the terminal portion A23 and is electrically connected to a flexible wiring board or the like.
  • the plurality of second control electrodes E2 have substantially the same shape and are aligned in the second direction Y in the effective region A21. Each of the plurality of second control electrodes E2 extends to the peripheral region A22 and is electrically connected to any of the feeder lines PL2.
  • the shape of the second control electrode E2 is the same as the shape of the first control electrode E1, and the description thereof will be omitted. In one example, such a second control electrode E2 is superimposed on the first control electrode E1 in a plan view.
  • the second control electrode E2 may be arranged so as to be offset from the first control electrode E1 in at least one direction of the first direction X and the second direction Y in the plan view, or the first control electrode E2 in the plan view. It may be arranged so as to be offset in the ⁇ direction with respect to E1.
  • the alignment treatment direction AD1 of the alignment film AL1 and the alignment treatment direction AD2 of the alignment film AL2 in the first liquid crystal cell 10 are mutually aligned with the alignment treatment direction AD3 of the alignment film AL3 and the alignment treatment direction AD4 of the alignment film AL4 in the second liquid crystal cell 20. It is almost orthogonal.
  • the orientation processing directions AD1 to AD4 are not limited to the illustrated examples.
  • the natural light incident on the light control device 200 includes a first polarization component POL1 and a second polarization component POL2.
  • One of the first polarization component POL1 and the second polarization component POL2 is modulated in a plurality of directions mainly in the first liquid crystal cell 10 as described with reference to FIG. 5, and similarly, the other The polarization component is modulated in a plurality of directions mainly in the second liquid crystal cell 20.
  • a first liquid crystal cell 10 for mainly modulating one polarization component of natural light and a second liquid crystal for mainly modulating the other polarization component of natural light can be configured with the same specifications except for the orientation processing direction. Therefore, by superimposing the first liquid crystal cell 10 and the second liquid crystal cell 20, it is possible to provide an optical control device 200 that modulates (focuses or diverges) natural light.
  • the first control electrode E1 of the first liquid crystal cell 10 is electrically connected to the feeder line PL1 in the peripheral region A12
  • the second control electrode E2 of the second liquid crystal cell 20 is connected to the feeder line PL2 in the peripheral region A22. It is electrically connected. Therefore, neither the feeder lines PL1 and PL2 are provided in the effective regions A11 and A12, and there are no missing portions of the first control electrode E1 and the second control electrode E2. Therefore, in the effective regions A11 and A12, the invalid region that does not contribute to the formation of the liquid crystal lens can be reduced.
  • each of the first control electrode E1 and the second control electrode E2 is composed of a plurality of linearly extending segments, and the polarization component can be modulated in a direction substantially orthogonal to the extending direction of each segment. .. Thereby, a desired liquid crystal lens can be formed.
  • the angle formed by each segment with respect to the first direction X is (180 ° / N). It is desirable to set the pitch to. As a result, uniform light distribution can be realized in a plurality of directions.
  • each segment group since the total length of each segment is almost the same, the degree of modulation of the polarization component by each segment group can be made the same.
  • FIG. 7 is a diagram showing another configuration example of the optical control device 200.
  • the configuration example shown in FIG. 7 is different from the configuration example shown in FIG. 6 in that the second control electrode E2 is provided so as to intersect with the first control electrode E1.
  • the plurality of feeder lines PL2 are lined up in the second direction Y in the peripheral region A22.
  • the plurality of second control electrodes E2 have substantially the same shape and are aligned in the first direction X in the effective region A21.
  • Each of the plurality of second control electrodes E2 extends to the peripheral region A22 and is electrically connected to any of the feeder lines PL2.
  • the second control electrode E2 includes a plurality of segments that intersect the first direction X at different angles.
  • the second control electrode E2 includes a fourth segment SG4, a fifth segment SG5, and a sixth segment SG6 in the effective region A21.
  • the fourth segment SG4 extends in a direction intersecting the first direction X at a fourth angle ⁇ 4.
  • the fifth segment SG5 extends in a direction intersecting the first direction X at a fifth angle ⁇ 5.
  • the sixth segment SG6 extends in a direction intersecting the first direction X at a sixth angle ⁇ 6.
  • the fourth angle ⁇ 4, the fifth angle ⁇ 5, and the sixth angle ⁇ 6 are different angles from each other.
  • first angle ⁇ 1, the second angle ⁇ 2, and the third angle ⁇ 3 in the first control electrode E1 described with reference to FIG. 4 are the fourth angle ⁇ 4, the fifth angle ⁇ 5, and the sixth angle ⁇ 6.
  • the angle is different from any of the above.
  • the fourth angle ⁇ 4 is 120 °
  • the fifth angle ⁇ 5 is 90 °
  • the sixth angle ⁇ 6 is 60 °.
  • the difference between the first angle ⁇ 1 and the fourth angle ⁇ 4 is almost the same.
  • the difference between the second angle ⁇ 2 is 0 °
  • the first liquid crystal cell 10 and the second liquid crystal cell 20 can be configured with substantially the same specifications, and one cell is rotated by 90 ° with respect to the other cell.
  • the optical control device 200 can be provided by superimposing with.
  • Such an example corresponds to the case where the first control electrode E1 and the second control electrode E2 are provided with six segments intersecting at a total of six types of angles, and each segment is formed with respect to the first direction X.
  • the fourth angle ⁇ 4, the fifth angle ⁇ 5, and the sixth angle ⁇ 6 include at least one acute angle and at least one obtuse angle.
  • the sixth angle ⁇ 6 is an acute angle and the fourth angle ⁇ 4 is an obtuse angle.
  • the obtuse angle is an integral multiple of the acute angle.
  • the total length L4 of the fourth segment SG4, the total length L5 of the fifth segment SG5, and the total length L6 of the sixth segment SG6 are substantially the same.
  • the number of the fourth segment SG4, the number of the fifth segment SG5, and the number of the sixth segment SG6 included in the second control electrode E2 are equal.
  • the alignment treatment direction AD1 of the alignment film AL1 and the alignment treatment direction AD2 of the alignment film AL2 in the first liquid crystal cell 10 are aligned with the alignment treatment direction AD3 of the alignment film AL3 and the alignment treatment direction AD4 of the alignment film AL4 in the second liquid crystal cell 20. It is almost orthogonal.
  • FIG. 8 is a diagram showing another configuration example of the optical control device 200.
  • the first liquid crystal cell 10 constituting the optical control device 200 will be described, but the second liquid crystal cell 20 has the same specifications as the illustrated first liquid crystal cell 10.
  • the orientation processing directions AD1 and AD2 in the first liquid crystal cell 10 are different from the orientation processing directions AD3 and AD4 in the second liquid crystal cell 20 as in the above configuration example.
  • the first liquid crystal cell 10 has a first effective region A111 and a second effective region A112.
  • the first effective region A111 and the second effective region A112 are adjacent to, for example, the first direction X.
  • the plurality of first control electrodes E1 are provided in the first effective region A111 and are arranged in the second direction Y.
  • the plurality of second control electrodes E2 are provided in the second effective region A112 and are arranged in the first direction X.
  • Each of the first control electrodes E1 is separated from the second control electrode E2.
  • the boundary line B between the first effective region A111 and the second effective region A112 is formed in a non-linear manner along the second control electrode E2 as shown by the dotted line.
  • the first control electrode E1 includes a first segment SG1, a second segment SG2, and a third segment SG3, as in the configuration example described with reference to FIG.
  • the second control electrode E2 includes a fourth segment SG4, a fifth segment SG5, and a sixth segment SG6, as in the configuration example described with reference to FIG. 7.
  • Each of these segments SG1 to SG6 extends in different directions from each other.
  • the plurality of first feeder lines PL1 are lined up in the first direction X in the peripheral region A12.
  • Each of the first control electrodes E1 extends to the peripheral region A12 and is electrically connected to any one of the first feeder lines PL1.
  • the plurality of second feeder lines PL2 are arranged in the second direction Y in the peripheral region A12.
  • Each of the second control electrodes E2 extends to the peripheral region A12 and is electrically connected to any of the second feeder lines PL2.
  • the first liquid crystal cell 10 includes a first control electrode E1 having three segments SG1 to SG3 and a second control electrode E2 having three segments SG4 to SG6. Therefore, the polarized light component transmitted through the first liquid crystal cell 10 and the second liquid crystal cell 20 is diverged in 12 directions in the XY plane. As a result, uniform light distribution can be realized in more directions.
  • FIG. 9 is a cross-sectional view showing another configuration example of the first liquid crystal cell 10 and the second liquid crystal cell 20 constituting the optical control device 200.
  • the first liquid crystal cell 10 and the second liquid crystal cell 20 are configured with the same specifications, while the second control electrode E2 is displaced with respect to the first control electrode E1. It is superimposed in the state.
  • the first common electrode C1 of the first liquid crystal cell 10 is omitted, and the second common electrode C2 of the second liquid crystal cell 20 is omitted.
  • the liquid crystal lens is formed by a so-called horizontal electric field method in which an electric field is formed between the adjacent first control electrodes E1 in the first liquid crystal cell 10, and similarly, the second liquid crystal cell 20 is also adjacent.
  • a liquid crystal lens is formed by the electric field between the second control electrodes E2.
  • the first common electrode C1 of the first liquid crystal cell 10 is patterned so as to have the same shape as the first control electrode E1
  • the second liquid crystal cell 20 is second.
  • the common electrode C2 is patterned so as to have the same shape as the second control electrode E2.
  • FIG. 10 is a plan view showing another configuration example of the second control electrode E2.
  • the fourth segment SG4, the fifth segment SG5, and the sixth segment SG6 are arranged in this order to form a repeating unit of the second control electrode E2, but the second control electrode E2
  • the shape of is not limited to this.
  • the fifth segment SG5, the fifth segment SG5, the fourth segment SG4, the sixth segment SG6, the fourth segment SG4, and the sixth segment SG6 are arranged in this order, and the second It constitutes a repeating unit of the control electrode E2.
  • the fifth segment SG5, the fourth segment SG4, the sixth segment SG6, the fifth segment SG5, the sixth segment SG6, and the fourth segment SG4 are arranged in this order, and the second It constitutes a repeating unit of the control electrode E2.
  • the configuration example shown in FIG. 10A the fifth segment SG5, the fifth segment SG5, the fourth segment SG4, the sixth segment SG6, the fourth segment SG4, and the sixth segment SG6 are arranged in this order, and the second It constitutes a repeating unit of the control electrode E2.
  • the sixth segment SG6, the fourth segment SG4, the fifth segment SG5, the fifth segment SG5, the fourth segment SG4, and the sixth segment SG6 are arranged in this order, and the second segment It constitutes a repeating unit of the control electrode E2.
  • the fourth segment SG4, the fifth segment SG5, and the sixth segment SG6 are arranged in this order to form a repeating unit of the second control electrode E2.
  • the fourth segment SG4 extends in a direction intersecting the first direction X at a fourth angle ( ⁇ 4 ⁇ ⁇ ).
  • the fifth segment SG5 extends in a direction intersecting the first direction X at a fifth angle ( ⁇ 5 ⁇ ⁇ ).
  • the sixth segment SG6 extends in a direction intersecting the first direction X at a sixth angle ( ⁇ 6 ⁇ ⁇ ).
  • is given at (90 ° / N) when the first control electrode E1 and the second control electrode E2 have N segments intersecting at an angle formed by N types.
  • is set to 5 ° in the first repeating unit
  • is set to 10 ° in the second repeating unit
  • is set to 15 ° in the third repeating unit, and the like.
  • the repeating unit is formed so that the total length of each segment is the same.
  • the second control electrode E2 may be configured by combining the above configuration examples.
  • the configuration example of the second control electrode E2 described here can also be applied to the first control electrode E1.
  • FIG. 11 is a diagram showing another configuration example of the optical control device 200.
  • 11A and 11B show a plurality of segments of the first control electrode E1 provided in the first liquid crystal cell 10 and a plurality of segments of the second control electrode E2 provided in the second liquid crystal cell 20. The combination with and is shown.
  • the angle in FIG. 11 indicates an angle that intersects the first direction X.
  • the first control electrode E1 has a segment extending in the direction of 15 °, a segment extending in the direction of 45 °, and a segment extending in the direction of 75 °. It has.
  • the directional pitch of each segment on the first control electrode E1 is 30 °.
  • the second control electrode E2 includes a segment extending in the 0 ° direction, a segment extending in the 30 ° direction, a segment extending in the 60 ° direction, and a segment extending in the 90 ° direction. ing.
  • the pitch of the orientation of each segment on the second control electrode E2 is also 30 °.
  • the first control electrode E1 has a segment extending in the direction of 30 °, a segment extending in the direction of 60 °, and a segment extending in the direction of 90 °. It has.
  • the second control electrode E2 includes a segment extending in the 0 ° direction, a segment extending in the 30 ° direction, a segment extending in the 60 ° direction, and a segment extending in the 90 ° direction. ing. In these configuration examples, the same effect as the above configuration example can be obtained.
  • FIG. 12 is a diagram showing another configuration example of the optical control device 200.
  • the optical control device 200 includes a first liquid crystal cell 10 and a second liquid crystal cell 20.
  • the effective region A11 and the first control electrode E1 of the first liquid crystal cell 10 and the effective region A21 and the second control electrode E2 of the second liquid crystal cell 20 are shown, respectively.
  • the effective region A11 is substantially the same as the effective region A21. That is, the effective regions A11 and A21 have the same contour, and the shape of the first control electrode E1 matches the shape of the second control electrode E2.
  • the effective regions A11 and A21 have a regular dodecagonal contour.
  • the first control electrode E1 includes a first segment SG1, a second segment SG2, and a third segment SG3.
  • the second control electrode E2 includes a fourth segment SG4 that matches the first segment SG1, a fifth segment SG5 that matches the second segment SG2, and a sixth segment SG6 that matches the third segment SG3.
  • one side parallel to the second segment SG2 is represented as the reference line BL1.
  • the reference line BL1 is parallel to the first direction X.
  • one side parallel to the fifth segment SG5 is represented as the reference line BL2.
  • the reference line BL2 intersects the first direction X at an angle of 30 °. That is, the effective region A21 corresponds to the effective region A11 rotated by 30 ° in the XY plane.
  • the contour of the effective region A21 includes one side OS2 parallel to the first direction X.
  • One side OS2 is adjacent to the reference line BL2.
  • the first liquid crystal cell 10 and the second liquid crystal cell 20 are arranged so that one side OS2 of the effective region A21 overlaps the reference line BL1 of the effective region A11.
  • the orientation processing directions AD1 and AD2 in the effective region A11 are orthogonal to the first direction X, and the orientation processing directions AD3 and AD4 in the effective region A21 are parallel to the first direction X.
  • the same effect as the above configuration example can be obtained.
  • the effective regions A11 and A21 can be formed by patterning with the same photomask. Therefore, the manufacturing cost can be reduced as compared with the case where separate photomasks are prepared when manufacturing the first liquid crystal cell 10 and the second liquid crystal cell 20.
  • FIG. 13 is a diagram showing another configuration example of the optical control device 200.
  • the optical control device 200 includes a first liquid crystal cell 10, a second liquid crystal cell 20, a third liquid crystal cell 30, and a fourth liquid crystal cell 40.
  • the third liquid crystal cell 30 and the fourth liquid crystal cell 40 are configured in the same manner as the first liquid crystal cell 10 and the second liquid crystal cell 20 described above.
  • the effective area A11 of the first liquid crystal cell 10 the effective area A21 of the second liquid crystal cell 20, the effective area A31 of the third liquid crystal cell 30, and the effective area A41 of the fourth liquid crystal cell 40 are shown, respectively.
  • the effective regions A11, A21, A31, and A41 are substantially the same and have the same contour.
  • the shapes are consistent.
  • the effective region A21 corresponds to the effective region A11 rotated by 90 ° in the XY plane.
  • the effective region A31 corresponds to the effective region A11 rotated by 180 ° in the XY plane.
  • the effective region A41 corresponds to the effective region A11 rotated by 270 ° in the XY plane.
  • the orientation treatment directions AD1 and AD2 in the effective region A11 and the orientation treatment directions AD3 and AD4 in the effective region A21 are parallel to the first direction X.
  • the orientation processing directions AD5 and AD6 in the effective region A31 and the orientation processing directions AD7 and AD8 in the effective region A41 are orthogonal to the first direction X.
  • one of the first polarization component POL1 and the second polarization component POL2 is mainly modulated by the first liquid crystal cell 10 and the second liquid crystal cell 20, and the other polarization component is , Mainly modulated by the third liquid crystal cell 30 and the fourth liquid crystal cell 40.
  • the same effect as the above configuration example can be obtained.
  • FIG. 14 is a diagram showing another configuration example of the optical control device 200.
  • the optical control device 200 includes a first liquid crystal cell 10, a second liquid crystal cell 20, and a third liquid crystal cell 30.
  • the effective region A11 of the first liquid crystal cell 10 the effective region A21 of the second liquid crystal cell 20, and the effective region A31 of the third liquid crystal cell 30 are shown, respectively.
  • the effective regions A11, A21, and A31 are substantially the same and have the same contour.
  • the shape of the first control electrode E1 in the effective region A11, the shape of the second control electrode E2 in the effective region A21, and the shape of the third control electrode E3 in the effective region A31 are the same.
  • the effective region A21 corresponds to the effective region A11 rotated by 30 ° in the XY plane.
  • the effective region A31 corresponds to the effective region A11 rotated by 60 ° in the XY plane.
  • the orientation processing directions AD1 and AD2 in the effective region A11 are parallel to the first direction X.
  • the orientation processing directions AD3 and AD4 in the effective region A21 are orthogonal to the first direction X.
  • the orientation treatment directions AD5 and AD6 in the effective region A31 intersect the first direction X at 135 °.
  • one of the first polarization component POL1 and the second polarization component POL2 is mainly modulated by the first liquid crystal cell 10, and the other polarization component is mainly the second liquid crystal cell.
  • both polarization components are also modulated by the third liquid crystal cell 30.
  • the effective area is a polygon
  • it may be circular.
  • the effective region is formed in a polygonal or circular shape, which facilitates the alignment.
  • the pair of alignment films sandwiching the liquid crystal layer are oriented in the same direction and in opposite directions, but the orientation treatment is not limited to this, and the alignment treatment may be performed so as to intersect each other.
  • the liquid crystal mode may be any of a horizontal alignment mode, a vertical alignment mode, a twist alignment mode, and the like.
  • the present invention is not limited to the above-described embodiment itself, and at the stage of its implementation, the components can be modified and embodied within a range that does not deviate from the gist thereof.
  • various inventions can be formed by an appropriate combination of the plurality of components disclosed in the above-described embodiment. For example, some components may be removed from all the components shown in the embodiments. In addition, components from different embodiments may be combined as appropriate.
  • Optical control device 10 ... 1st liquid crystal cell 20 ... 2nd liquid crystal cell SUB1 ... 1st substrate PL1 ... Feed line E1 ... 1st control electrode SG1 ... 1st segment SG2 ... 2nd segment SG3 ... 3rd Segment SUB2 ... 2nd substrate LC1 ... 1st liquid crystal layer SUB3 ... 3rd substrate PL2 ... Feed line E2 ... 2nd control electrode SG4 ... 4th segment SG5 ... 5th segment SG6 ... 6th segment SUB4 ... 4th substrate LC2 ... 4th 2 liquid crystal layer

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Planar Illumination Modules (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

本実施形態の目的は、無効領域を縮小することが可能な光制御装置及び照明装置を提供することにある。 本実施形態の光制御装置は、有効領域に設けられた複数の第1制御電極と、周辺領域に設けられた複数の給電線と、を備えた第1基板と、第2基板と、前記第1基板と前記第2基板との間に保持された第1液晶層と、を備え、前記第1制御電極は、透明電極であり、前記第1制御電極は、前記有効領域において、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、前記第1制御電極は、前記周辺領域に延出し、前記給電線と電気的に接続され、前記第1乃至第3角度は、互いに異なる角度である。

Description

光制御装置及び照明装置
 本発明の実施形態は、光制御装置及び照明装置に関する。
 近年、光源から出射された光の経路を制御する液晶レンズが種々提案されている。一例では、複数の円弧電極と、円弧電極に接続された引出電極とを備える液晶レンズが開示されている。また、他の例では、複数の液晶レンズが重なり、一方の液晶レンズの帯状電極と、他方の液晶レンズの帯状電極とがずれて重なり、疑似的に帯状電極を微細配置する技術が知られている。それぞれの帯状電極に接続される引出電極は、液晶レンズが形成される有効領域に設けられ、液晶レンズを形成するための電界を乱す一因となりうる。
特開2005-317879号公報 特開2010-230887号公報
 本実施形態の目的は、無効領域を縮小することが可能な光制御装置及び照明装置を提供することにある。
 本実施形態の光制御装置は、 
 有効領域に設けられた複数の第1制御電極と、周辺領域に設けられた複数の給電線と、を備えた第1基板と、第2基板と、前記第1基板と前記第2基板との間に保持された第1液晶層と、を備え、前記第1制御電極は、透明電極であり、前記第1制御電極は、前記有効領域において、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、前記第1制御電極は、前記周辺領域に延出し、前記給電線と電気的に接続され、前記第1乃至第3角度は、互いに異なる角度である。
 本実施形態の光制御装置は、 
 第1制御電極を備えた第1液晶セルと、第2制御電極を備えた第2液晶セルと、を備え、前記第2液晶セルは、前記第1液晶セルに重畳し、前記第1制御電極及び前記第2制御電極は、透明電極であり、前記第1制御電極は、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、前記第2制御電極は、前記第1方向に対して第4角度で交差する第4セグメントと、前記第1方向に対して第5角度で交差する第5セグメントと、前記第1方向に対して第6角度で交差する第6セグメントと、を備え、前記第1乃至第6角度は、互いに異なる角度である。
 本実施形態の光制御装置は、 
 第1有効領域に設けられた複数の第1制御電極と、前記第1有効領域に隣接する第2有効領域に設けられた複数の第2制御電極と、を備えた第1基板と、第2基板と、前記第1基板と前記第2基板との間に保持された第1液晶層と、を備え、前記第1制御電極及び前記第2制御電極は、透明電極であり、前記第1制御電極は、前記第2制御電極から離間し、前記第1制御電極は、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、前記第2制御電極は、前記第1方向に対して第4角度で交差する第4セグメントと、前記第1方向に対して第5角度で交差する第5セグメントと、前記第1方向に対して第6角度で交差する第6セグメントと、を備え、前記第1乃至第6角度は、互いに異なる角度である。
 本実施形態の照明装置は、 
 光源と、前記光源から出射された光を制御するように構成された光制御装置と、を備え、前記光制御装置は、有効領域に設けられた複数の第1制御電極と、周辺領域に設けられた複数の給電線と、を備えた第1基板と、第2基板と、前記第1基板と前記第2基板との間に保持された第1液晶層と、を備え、前記第1制御電極は、透明電極であり、前記第1制御電極は、前記有効領域において、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、前記第1制御電極は、前記周辺領域に延出し、前記給電線と電気的に接続され、前記第1乃至第3角度は、互いに異なる角度である。
 本実施形態の照明装置は、 
 光源と、前記光源から出射された光を制御するように構成された光制御装置と、を備え、前記光制御装置は、第1制御電極を備えた第1液晶セルと、第2制御電極を備えた第2液晶セルと、を備え、前記第2液晶セルは、前記第1液晶セルに重畳し、前記第1制御電極及び前記第2制御電極は、透明電極であり、前記第1制御電極は、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、前記第2制御電極は、前記第1方向に対して第4角度で交差する第4セグメントと、前記第1方向に対して第5角度で交差する第5セグメントと、前記第1方向に対して第6角度で交差する第6セグメントと、を備え、前記第1乃至第6角度は、互いに異なる角度である。
 本実施形態の照明装置は、 
 光源と、前記光源から出射された光を制御するように構成された光制御装置と、を備え、前記光制御装置は、第1有効領域に設けられた複数の第1制御電極と、前記第1有効領域に隣接する第2有効領域に設けられた複数の第2制御電極と、を備えた第1基板と、第2基板と、前記第1基板と前記第2基板との間に保持された第1液晶層と、を備え、前記第1制御電極及び前記第2制御電極は、透明電極であり、前記第1制御電極は、前記第2制御電極から離間し、前記第1制御電極は、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、前記第2制御電極は、前記第1方向に対して第4角度で交差する第4セグメントと、前記第1方向に対して第5角度で交差する第5セグメントと、前記第1方向に対して第6角度で交差する第6セグメントと、を備え、前記第1乃至第6角度は、互いに異なる角度である。
 本実施形態によれば、無効領域を縮小することが可能な光制御装置及び照明装置を提供することができる。
図1は、本実施形態の照明装置100の一構成例を示す図である。 図2は、第1液晶セル10の一構成例を示す断面図である。 図3は、第1液晶セル10に形成される液晶レンズLL1を説明するための図である。 図4は、第1液晶セル10の一構成例を示す平面図である。 図5は、第1制御電極E1の各セグメントにおける光の変調作用を説明するための図である。 図6は、光制御装置200の一構成例を示す図である。 図7は、光制御装置200の他の構成例を示す図である。 図8は、光制御装置200の他の構成例を示す図である。 図9は、光制御装置200を構成する第1液晶セル10及び第2液晶セル20の他の構成例を示す断面図である。 図10は、第2制御電極E2の他の構成例を示す平面図である。 図11は、光制御装置200の他の構成例を示す図である。 図12は、光制御装置200の他の構成例を示す図である。 図13は、光制御装置200の他の構成例を示す図である。 図14は、光制御装置200の他の構成例を示す図である。
 以下、本実施形態について、図面を参照しながら説明する。なお、開示はあくまで一例に過ぎず、当業者において、発明の主旨を保っての適宜変更について容易に想到し得るものについては、当然に本発明の範囲に含有されるものである。また、図面は、説明をより明確にするため、実際の態様に比べて、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同一又は類似した機能を発揮する構成要素には同一の参照符号を付し、重複する詳細な説明を適宜省略することがある。
 図1は、本実施形態の照明装置100の一構成例を示す図である。一例では、第1方向X、第2方向Y、及び、第3方向Zは、互いに直交しているが、90度以外の角度で交差していてもよい。本実施形態においては、第1方向X及び第2方向Yで規定されるX-Y平面を見ることを平面視という。
 照明装置100は、光源LSと、光源LSから出射された光を制御するように構成された光制御装置200と、制御部CTと、を備えている。光源LSは、第3方向Zに向かって光を出射する。光源LSから出射される光は、例えば、自然光である。光制御装置200は、第3方向Zにおいて光源LSに重畳している。光制御装置200は、第1液晶セル10と、第2液晶セル20と、を備えている。第1液晶セル10及び第2液晶セル20は、実質的に同一の構成要素を有するものであってもよいし、異なる構成要素を有するものであってもよい。
 第1液晶セル10は、第1基板SUB1と、第2基板SUB2と、第1液晶層LC1と、を備えている。第1基板SUB1は、絶縁基板11と、絶縁基板11上に設けられた複数の第1制御電極E1と、第1制御電極E1を覆う配向膜AL1と、を備えている。第2基板SUB2は、絶縁基板12と、絶縁基板12上に設けられた第1共通電極C1と、第1共通電極C1を覆う配向膜AL2と、を備えている。第1共通電極C1は、複数の第1制御電極E1に対向している。
 第2液晶セル20は、第3基板SUB3と、第4基板SUB4と、第2液晶層LC2と、を備えている。第3基板SUB3は、絶縁基板21と、絶縁基板21上に設けられた複数の第2制御電極E2と、第2制御電極E2を覆う配向膜AL3と、を備えている。第4基板SUB4は、絶縁基板22と、絶縁基板22上に設けられた第2共通電極C2と、第2共通電極C2を覆う配向膜AL4と、を備えている。第2共通電極C2は、複数の第2制御電極E2に対向している。
 絶縁基板11及び12、及び、絶縁基板21及び22は、例えばガラス基板や樹脂基板などの透明基板である。
 第1制御電極E1、第2制御電極E2、第1共通電極C1、及び、第2共通電極C2は、インジウム錫酸化物(ITO)やインジウム亜鉛酸化物(IZO)などの透明導電材料によって形成された透明電極である。第1制御電極E1及び第2制御電極E2の具体的な形状等については、後述する。
 配向膜AL1乃至AL4は、X-Y平面に略平行な配向規制力を有する水平配向膜である。例えば、配向膜AL1の配向処理方向AD1及び配向膜AL2の配向処理方向AD2は、いずれも第1方向Xに平行であり、互いに逆向きである。また、配向膜AL3の配向処理方向AD3及び配向膜AL4の配向処理方向AD4は、いずれも第2方向Yに平行であり、互いに逆向きである。なお、配向処理とは、ラビング処理であってもよいし、光配向処理であってもよい。
 第1液晶層LC1は、第1基板SUB1と第2基板SUB2との間において配向膜AL1及びAL2によって保持され、第1方向Xに沿って初期配向した液晶分子LM1を有している。第2液晶層LC2は、第3基板SUB3と第4基板SUB4との間において配向膜AL3及びAL4によって保持され、第2方向Yに沿って初期配向した液晶分子LM2を有している。つまり、液晶分子LM1の初期配向方向は、液晶分子LM2の初期配向方向に交差している。なお、初期配向とは、液晶層に電圧が印加されていない状態での液晶分子の配向に相当し、あるいは、液晶層を挟持する一対の配向膜による配向規制力による液晶分子の配向に相当する。これらの第1液晶層LC1及び第2液晶層LC2は、例えば、正の誘電率異方性を有しているが、負の誘電率異方性を有していてもよい。
 第2液晶セル20は、第3方向Zにおいて第1液晶セル10の上に重畳している。絶縁基板12と絶縁基板21とは、透明な接着層ADによって互いに接着されている。接着層ADの屈折率は、絶縁基板12及び21の屈折率と同等である。一方で、絶縁基板11の外面11A及び絶縁基板22の外面22Aは、それぞれ空気層に接している。外面22Aには、必要に応じて、外光による液晶層の劣化を抑制する紫外線カット層が設けられてもよいし、液晶分子の配向ムラの影響を緩和するための拡散層が設けられてもよいし、外面22Aが艶消し処理されてもよい。
 制御部CTは、光源制御部LCTと、電圧制御部DCT1及びDCT2と、を備えている。光源制御部LCTは、例えば光源LSを駆動する電流値を制御する。電圧制御部DCT1は、第1液晶セル10において第1制御電極E1及び第1共通電極C1に印加すべき電圧を制御する。電圧制御部DCT2は、第2液晶セル20において第2制御電極E2及び第2共通電極C2に印加すべき電圧を制御する。
 このような光制御装置200は、光源LSが絶縁基板11の外面11Aと向かい合うように設けられる。つまり、外面11Aは、自然光の入射面となる。第1液晶セル10は、主として、入射した自然光のうちの第1偏光成分(P偏光)POL1を変調するものである。図1に示す座標系において、第1偏光成分POL1とは、第1方向Xに振動面を有する直線偏光である。第2液晶セル20は、主として、第1液晶セル10を透過した第2偏光成分(S偏光)POL2を変調するものである。第2偏光成分POL2とは、第2方向Yに振動面を有する直線偏光である。
 ここでの変調とは、液晶層に形成される屈折率分布型レンズ(以下、液晶レンズと称する)により、液晶層を透過する偏光成分を屈折、集束または発散することをいう。集束または発散の度合い(変調率)は、液晶層に印加される電圧によって制御される。つまり、第1液晶セル10における第1偏光成分の変調率は、電圧制御部DCT1によって制御され、第2液晶セル20における第2偏光成分の変調率は、電圧制御部DCT2によって制御される。電圧制御部DCT1及び電圧制御部DCT2は、同一の電圧条件で制御してもよいし、異なる電圧条件で制御してもよい。また、電圧制御部DCT1及び電圧制御部DCT2の各々は、凸レンズ型の液晶レンズ、凹レンズ型の液晶レンズ、あるいは、その他の形状の液晶レンズを形成するような電圧条件で制御してもよい。
 図2は、第1液晶セル10の一構成例を示す断面図である。ここでは、第1液晶セル10について説明するが、第2液晶セル20も第1液晶セル10と同様の断面構造を有しており、その説明については省略する。
 第1液晶セル10は、透過する偏光成分を変調する有効領域A11と、有効領域A11の外側の周辺領域A12と、を有している。第1基板SUB1において、複数の第1給電線PL1、及び、コモン配線CL1は、周辺領域A12に設けられ、絶縁膜ILによって覆われている。複数の第1制御電極E1は、有効領域A11に設けられ、絶縁膜ILの上に位置し、配向膜AL1によって覆われている。第1制御電極E1、給電線PL1、及び、コモン配線CL1は、図1に示した電圧制御部DCT1に電気的に接続されている。
 第2基板SUB2において、遮光層BMは、周辺領域A12に設けられている。遮光層BMで囲まれた内側の領域が有効領域A11に相当する。第1共通電極C1は、有効領域A11の略全面に位置するとともにその一部が周辺領域A12にも延在した単一の平板電極である。第1共通電極C1は、有効領域A11において、第1液晶層LC1を介して複数の第1制御電極E1と対向している。第1共通電極C1は、周辺領域A12において、複数の給電線PL1及びコモン配線CL1と対向している。
 第1基板SUB1及び第2基板SUB2は、周辺領域A12において、シールSEによって接着されている。シールSEは、導通材CDを備えている。導通材CDは、コモン配線CL1と第1共通電極C1との間に介在し、コモン配線CL1と第1共通電極C1とを電気的に接続している。
 図3は、第1液晶セル10に形成される液晶レンズLL1を説明するための図である。図3においては、説明に必要な構成のみを図示している。なお、説明を省略するが、第2液晶セル20においても、図3を参照して説明する液晶レンズLL1と同様の液晶レンズLL2を形成することができる。
 図3の(A)は、第1制御電極E11乃至E15と、第1共通電極C1との間に電位差が生じていないオフ状態(OFF)を示している。第1液晶層LC1に含まれる液晶分子LM1は、配向膜AL1及びAL2の配向規制力により、初期配向している。
 図3の(B)は、第1制御電極E11乃至E15と、第1共通電極C1との間に電位差が形成されたオン状態(ON)を示している。電圧制御部DCT1は、第1制御電極E11乃至E15、及び、第1共通電極C1にそれぞれ所定の電圧を供給する。第1液晶層LC1は、上記の通り、正の誘電率異方性を有している。このため、液晶分子LM1は、電界が形成された状態ではその長軸が電界に沿うように配向する。
 第1制御電極E11及びE15の各々と第1共通電極C1とが対向する領域には、第3方向Zに沿った電界が形成されるため、液晶分子LM1は、その長軸が第3方向Zに沿うように配向する。第1制御電極E13と第1共通電極C1とが対向する領域には、ほとんど電界が形成されず、液晶分子LM1は、初期配向状態に維持される。第1制御電極E12と第1共通電極C1とが対向する領域には、第1制御電極E11と第1共通電極C1とが対向する領域と、第1制御電極E13と第1共通電極C1とが対向する領域との中間の配向状態が形成される。第1制御電極E14と第1共通電極C1とが対向する領域には、第1制御電極E15と第1共通電極C1とが対向する領域と、第1制御電極E13と第1共通電極C1とが対向する領域との中間の配向状態が形成される。
 液晶分子LM1は、屈折率異方性Δnを有している。このため、第1液晶層LC1は、液晶分子LM1の配向状態に応じた屈折率分布を有する。あるいは、第1液晶層LC1は、第1液晶層LC1の第3方向Zに沿った厚さをdとしたとき、Δn・dで表されるリタデーションの分布を有する。図中に点線で示した液晶レンズLL1は、このような屈折率分布、または、リタデーションの分布によって形成されるものである。
 図3の(A)に示すオフ状態では、第1液晶層LC1は、ほぼ均一な屈折率分布を有し、液晶レンズが形成されていない。このため、第1偏光成分POL1は、変調されることなく第1液晶層LC1を透過する。
 図3の(B)に示すオン状態では、上記の通り、第1液晶層LC1は、液晶レンズLL1を有する。このため、第1偏光成分POL1は、第1液晶層LC1を透過する際に変調される。
 図4は、第1液晶セル10の一構成例を示す平面図である。なお、図4においては、第1液晶セル10の主要部のみを図示している。
 複数の給電線PL1は、周辺領域A12において、第1方向Xに並んでいる。これらの給電線PL1の各々は、端子部A13に延出している。端子部A13は、詳述しないが、給電線PL1の各々と接続された複数の端子を備え、フレキシブル配線基板などと電気的に接続される。
 複数の第1制御電極E1は、ほぼ同一の形状を有し、有効領域A11において、第2方向Yに並んでいる。複数の第1制御電極E1の各々は、周辺領域A12に延出し、給電線PL1のいずれかと電気的に接続されている。
 第1制御電極E1の形状について説明する。例えば、第1液晶セル10の一辺の延出方向に平行な第1方向Xを基準としたとき、第1制御電極E1は、第1方向Xに対して異なる角度で交差する複数のセグメントを備えている。なお、第1方向Xに対する各セグメントのなす角度θは、X-Y平面において、第1方向Xを基準として反時計回りの角度として定義する。
 図4において拡大して示す例では、第1制御電極E1は、有効領域A11において、第1セグメントSG1と、第2セグメントSG2と、第3セグメントSG3と、を備えている。第1セグメントSG1は、第1方向Xに対して第1角度θ1で交差する方向に延出している。第2セグメントSG2は、第1方向Xに対して第2角度θ2で交差する方向に延出している。第3セグメントSG3は、第1方向Xに対して第3角度θ3で交差する方向に延出している。第1角度θ1、第2角度θ2、及び、第3角度θ3は、互いに異なる角度である。一例では、第1角度θ1は60°であり、第2角度θ2は0°であり、第3角度θ3は120°である。他の例では、第1角度θ1は30°であり、第2角度θ2は0°であり、第3角度θ3は150°である。
 これらの第1角度θ1、第2角度θ2、及び、第3角度θ3は、少なくとも1つの鋭角と、少なくとも1つの鈍角とを含んでいる。上記の例では、第1角度θ1は鋭角であり、第3角度θ3は鈍角である。
 また、鈍角は、鋭角の整数倍である。上記の一例では、第3角度θ3(=120°)は、第1角度θ1(60°)の2倍に相当し、上記の他の例では、第3角度θ3(=150°)は、第1角度θ1(30°)の5倍に相当する。
 有効領域A11において、第1セグメントSG1の長さL1の総和、第2セグメントSG2の長さL2の総和、及び、第3セグメントSG3の長さL3の総和は、ほぼ同等であることが望ましい。例えば、長さL1乃至L3が等しい場合、第1制御電極E1が備える第1セグメントSG1の個数、第2セグメントSG2の個数、及び、第3セグメントSG3の個数は、等しい。
 図5は、第1制御電極E1の各セグメントにおける光の変調作用を説明するための図である。図5の(A)は、複数の第1セグメントSG1が略等ピッチで並んで構成されるセグメント群GP1の変調作用を示している。図5の(B)は、複数の第2セグメントSG2が略等ピッチで並んで構成されるセグメント群GP2の変調作用を示している。図5の(C)は、複数の第3セグメントSG3が略等ピッチで並んで構成されるセグメント群GP3の変調作用を示している。
 図4に示した第1液晶セル10において、第1液晶層LC1の液晶分子LM1が第1方向Xに初期配向している場合、第1偏光成分POL1は、セグメント群GP1乃至GP3の各々を透過した際に、各セグメントの延出方向に対してほぼ直交する方向に発散される。
 例えば、図5の(A)に示すように、第1セグメントSG1が第1方向Xに対して60°の第1角度θ1の方向に延出している場合、セグメント群GP1を透過する第1偏光成分POL1は、X-Y平面において、150°-330°方位に発散される。
 図5の(B)に示すように、第2セグメントSG2が第1方向Xに対して0°の第2角度θ2の方向に延出している場合、セグメント群GP2を透過する第1偏光成分POL1は、X-Y平面において、90°-270°方位に発散される。
 図5の(C)に示すように、第3セグメントSG3が第1方向Xに対して120°の第3角度θ3の方向に延出している場合、セグメント群GP3を透過する第1偏光成分POL1は、X-Y平面において、30°-210°方位に発散される。
 したがって、図5の(D)に示すように、第1偏光成分POL1は、X-Y平面において6方位に発散される。
 図6は、光制御装置200の一構成例を示す図である。なお、図6においては、説明に必要な主要部のみを図示している。第1液晶セル10及び第2液晶セル20は、第3方向Zにおいて重畳している。 
 第1液晶セル10の構成については、図4を参照して説明した通りである。
 第2液晶セル20は、実質的に第1液晶セル10と同様に構成されている。第2液晶セル20は、透過する偏光成分を変調する有効領域A21と、有効領域A21の外側の周辺領域A22と、を有している。第3方向Zにおいて、有効領域A21は有効領域A11に重畳し、周辺領域A22は周辺領域A12に重畳している。
 複数の給電線PL2は、周辺領域A22において、第1方向Xに並んでいる。これらの給電線PL2の各々は、端子部A23に延出し、フレキシブル配線基板などと電気的に接続される。複数の第2制御電極E2は、ほぼ同一の形状を有し、有効領域A21において、第2方向Yに並んでいる。複数の第2制御電極E2の各々は、周辺領域A22に延出し、給電線PL2のいずれかと電気的に接続されている。第2制御電極E2の形状は、第1制御電極E1の形状と同一であり、説明を省略する。このような第2制御電極E2は、一例では、平面視において第1制御電極E1に重畳している。
 なお、第2制御電極E2は、平面視において第1制御電極E1に対して第1方向X及び第2方向Yの少なくとも一方向にずれて配置されてもよいし、平面視において第1制御電極E1に対してθ方向にずれて配置されてもよい。
 第1液晶セル10における配向膜AL1の配向処理方向AD1及び配向膜AL2の配向処理方向AD2は、第2液晶セル20における配向膜AL3の配向処理方向AD3及び配向膜AL4の配向処理方向AD4と互いにほぼ直交している。但し、配向処理方向AD1乃至AD4は、図示した例に限らない。
 光制御装置200に入射する自然光は、第1偏光成分POL1及び第2偏光成分POL2を含んでいる。第1偏光成分POL1及び第2偏光成分POL2のうちの一方の偏光成分は、図5を参照して説明したように、主として第1液晶セル10で複数の方位に変調され、同様に、他方の偏光成分は、主として第2液晶セル20で複数の方位に変調される。
 このような光制御装置200によれば、自然光のうちの一方の偏光成分を主として変調するための第1液晶セル10、及び、自然光のうちの他方の偏光成分を主として変調するための第2液晶セル20は、配向処理方向以外は、同一仕様で構成することができる。このため、第1液晶セル10及び第2液晶セル20を重畳することで、自然光を変調(集束または発散)する光制御装置200を提供することができる。
 また、第1液晶セル10の第1制御電極E1は周辺領域A12において給電線PL1と電気的に接続され、また、第2液晶セル20の第2制御電極E2は周辺領域A22において給電線PL2と電気的に接続されている。このため、有効領域A11及びA12には、給電線PL1及びPL2のいずれも設けられず、第1制御電極E1及び第2制御電極E2の欠損部が存在しない。したがって、有効領域A11及びA12において、液晶レンズの形成に寄与しない無効領域を縮小することができる。
 また、第1制御電極E1及び第2制御電極E2の各々は、直線状に延出した複数のセグメントによって構成され、各セグメントの延出方向にほぼ直交する方向に偏光成分を変調することができる。これにより、所望の液晶レンズを形成することができる。一例では、第1制御電極E1及び第2制御電極E2がN種類のなす角度で交差するN個のセグメントを備えている場合、各セグメントの第1方向Xに対するなす角度は(180°/N)のピッチに設定されることが望ましい。これにより、複数の方位において均一な配光が実現できる。
 また、各セグメントの長さの総和がほぼ同等であるため、各セグメント群による偏光成分の変調度合を同等に揃えることができる。
 図7は、光制御装置200の他の構成例を示す図である。図7に示す構成例は、図6に示した構成例と比較して、第2制御電極E2が第1制御電極E1と交差するように設けられた点で相違している。
 複数の給電線PL2は、周辺領域A22において、第2方向Yに並んでいる。複数の第2制御電極E2は、ほぼ同一の形状を有し、有効領域A21において、第1方向Xに並んでいる。複数の第2制御電極E2の各々は、周辺領域A22に延出し、給電線PL2のいずれかと電気的に接続されている。
 第2制御電極E2の形状について説明する。第2制御電極E2は、第1方向Xに対して異なる角度で交差する複数のセグメントを備えている。図7において拡大して示す例では、第2制御電極E2は、有効領域A21において、第4セグメントSG4と、第5セグメントSG5と、第6セグメントSG6と、を備えている。第4セグメントSG4は、第1方向Xに対して第4角度θ4で交差する方向に延出している。第5セグメントSG5は、第1方向Xに対して第5角度θ5で交差する方向に延出している。第6セグメントSG6は、第1方向Xに対して第6角度θ6で交差する方向に延出している。第4角度θ4、第5角度θ5、及び、第6角度θ6は、互いに異なる角度である。また、図4を参照して説明した第1制御電極E1における第1角度θ1、第2角度θ2、及び、第3角度θ3は、第4角度θ4、第5角度θ5、及び、第6角度θ6のいずれとも異なる角度である。
 一例では、第4角度θ4は120°であり、第5角度θ5は90°であり、第6角度θ6は60°である。
 また、第1制御電極E1と第2制御電極E2との関係に着目すると、第1角度θ1と第4角度θ4との差分、第2角度θ2と第5角度θ5との差分、及び、第3角度θ3と第6角度θ6との差分は、ほぼ同等である。例えば、第1角度θ1(=30°)と第4角度θ4(=120°)との差分、第2角度θ2(=0°)と第5角度θ5(=90°)との差分、及び、第3角度θ3(=150°)と第6角度θ6(=60°)との差分は、いずれも90°である。また、これらの角度の組み合わせの場合、第1液晶セル10及び第2液晶セル20は実質的に同一仕様で構成することができ、一方のセルを他方のセルに対して90°回転させた状態で重畳することで光制御装置200を提供することができる。 
 このような例は、第1制御電極E1及び第2制御電極E2が合わせて6種類のなす角度で交差する6個のセグメントを備えている場合に相当し、各セグメントの第1方向Xに対するなす角度は(180°/6=30°)のピッチに設定されている。
 また、第4角度θ4、第5角度θ5、及び、第6角度θ6は、少なくとも1つの鋭角と、少なくとも1つの鈍角とを含んでいる。上記の例では、第6角度θ6は鋭角であり、第4角度θ4は鈍角である。 
 また、鈍角は、鋭角の整数倍である。上記の一例では、第4角度θ4(=120°)は、第5角度θ5(60°)の2倍に相当する。
 有効領域A21において、第4セグメントSG4の長さL4の総和、第5セグメントSG5の長さL5の総和、及び、第6セグメントSG6の長さL6の総和は、ほぼ同等であることが望ましい。例えば、長さL4乃至L6が等しい場合、第2制御電極E2が備える第4セグメントSG4の個数、第5セグメントSG5の個数、及び、第6セグメントSG6の個数は、等しい。
 第1液晶セル10における配向膜AL1の配向処理方向AD1及び配向膜AL2の配向処理方向AD2は、第2液晶セル20における配向膜AL3の配向処理方向AD3及び配向膜AL4の配向処理方向AD4と互いにほぼ直交している。
 このような構成例においても、上記の構成例と同様の効果が得られる。
 図8は、光制御装置200の他の構成例を示す図である。
 ここでは、光制御装置200を構成する第1液晶セル10について説明するが、第2液晶セル20は、図示した第1液晶セル10と同一仕様で構成されている。但し、第1液晶セル10における配向処理方向AD1及びAD2は、上記の構成例と同様に、第2液晶セル20における配向処理方向AD3及びAD4とは異なる。
 第1液晶セル10は、第1有効領域A111と、第2有効領域A112と、を有している。第1有効領域A111及び第2有効領域A112は、例えば第1方向Xに隣接している。複数の第1制御電極E1は、第1有効領域A111に設けられ、第2方向Yに並んでいる。複数の第2制御電極E2は、第2有効領域A112に設けられ、第1方向Xに並んでいる。第1制御電極E1の各々は、第2制御電極E2から離間している。図8に示す例では、第1有効領域A111と第2有効領域A112との境界線Bは、点線で示すように、第2制御電極E2に沿って非直線状に形成されている。
 第1制御電極E1は、図4を参照して説明した構成例と同様に、第1セグメントSG1と、第2セグメントSG2と、第3セグメントSG3と、を備えている。第2制御電極E2は、図7を参照して説明した構成例と同様に、第4セグメントSG4と、第5セグメントSG5と、第6セグメントSG6と、を備えている。これらの各セグメントSG1乃至SG6は、互いに異なる方向に延出している。
 複数の第1給電線PL1は、周辺領域A12において第1方向Xに並んでいる。第1制御電極E1の各々は、周辺領域A12に延出し、第1給電線PL1のいずれかと電気的に接続されている。複数の第2給電線PL2は、周辺領域A12において第2方向Yに並んでいる。第2制御電極E2の各々は、周辺領域A12に延出し、第2給電線PL2のいずれかと電気的に接続されている。
 このように、第1液晶セル10は、3個のセグメントSG1乃至SG3を備えた第1制御電極E1と、3個のセグメントSG4乃至SG6を備えた第2制御電極E2とをそなえている。このため、第1液晶セル10および第2液晶セル20を透過する偏光成分は、X-Y平面において、12方位に発散される。これにより、より多くの方位において均一な配光が実現できる。
 図9は、光制御装置200を構成する第1液晶セル10及び第2液晶セル20の他の構成例を示す断面図である。
 図9の(A)に示す構成例では、第1液晶セル10及び第2液晶セル20は、同一仕様で構成される一方で、第2制御電極E2が第1制御電極E1に対してずれた状態で重畳している。 
 図9の(B)に示す構成例では、第1液晶セル10の第1共通電極C1が省略され、第2液晶セル20の第2共通電極C2が省略されている。このような構成例では、第1液晶セル10において隣接する第1制御電極E1の間に電界を形成するいわゆる横電界方式で液晶レンズを形成し、同様に、第2液晶セル20においても隣接する第2制御電極E2の間の電界によって液晶レンズを形成する。 
 図9の(C)に示す構成例では、第1液晶セル10の第1共通電極C1が第1制御電極E1と同様の形状を有するようにパターニングされ、また、第2液晶セル20の第2共通電極C2が第2制御電極E2と同様の形状を有するようにパターニングされている。
 これらの構成例においても、上記の構成例と同様の効果が得られる。
 図10は、第2制御電極E2の他の構成例を示す平面図である。図7に示した構成例では、第4セグメントSG4、第5セグメントSG5、及び、第6セグメントSG6がこの順に並び、第2制御電極E2の繰り返し単位を構成しているが、第2制御電極E2の形状はこれに限定されない。
 図10の(A)に示す構成例では、第5セグメントSG5、第5セグメントSG5、第4セグメントSG4、第6セグメントSG6、第4セグメントSG4、及び、第6セグメントSG6がこの順に並び、第2制御電極E2の繰り返し単位を構成している。
 図10の(B)に示す構成例では、第5セグメントSG5、第4セグメントSG4、第6セグメントSG6、第5セグメントSG5、第6セグメントSG6、及び、第4セグメントSG4がこの順に並び、第2制御電極E2の繰り返し単位を構成している。
 図10の(C)に示す構成例では、第6セグメントSG6、第4セグメントSG4、第5セグメントSG5、第5セグメントSG5、第4セグメントSG4、及び、第6セグメントSG6がこの順に並び、第2制御電極E2の繰り返し単位を構成している。
 図10の(D)に示す構成例では、第4セグメントSG4、第5セグメントSG5、及び、第6セグメントSG6がこの順に並び、第2制御電極E2の繰り返し単位を構成している。但し、第4セグメントSG4は、第1方向Xに対して第4角度(θ4±Δθ)で交差する方向に延出している。第5セグメントSG5は、第1方向Xに対して第5角度(θ5±Δθ)で交差する方向に延出している。第6セグメントSG6は、第1方向Xに対して第6角度(θ6±Δθ)で交差する方向に延出している。一例では、Δθは、第1制御電極E1及び第2制御電極E2がN種類のなす角度で交差するN個のセグメントを備えている場合、(90°/N)で与えられる。 
 そして、例えば、第1の繰り返し単位においてはΔθが5°に設定され、第2の繰り返し単位においてはΔθが10°に設定され、第3の繰り返し単位においてはΔθが15°に設定されるなどして、X-Y平面におけるより多くの方位において均一な配向を実現することができる。
 いずれの構成例においても、繰り返し単位は、各セグメントの長さの総和が同等となるように形成されている。第2制御電極E2は、上記の構成例を組み合わせて構成されてもよい。なお、ここで説明した第2制御電極E2の構成例については、第1制御電極E1にも適用可能である。
 図11は、光制御装置200の他の構成例を示す図である。図11の(A)及び(B)は、第1液晶セル10に設けられた第1制御電極E1の複数のセグメントと、第2液晶セル20に設けられた第2制御電極E2の複数のセグメントとの組み合わせを示している。図11における角度は、第1方向Xに対して交差する角度を示している。
 図11の(A)に示す構成例では、第1制御電極E1は、15°の方位に延出したセグメント、45°の方位に延出したセグメント、及び、75°の方位に延出したセグメントを備えている。第1制御電極E1における各セグメントの方位のピッチは、30°である。第2制御電極E2は、0°の方位に延出したセグメント、30°の方位に延出したセグメント、60°の方位に延出したセグメント、及び、90°の方位に延出したセグメントを備えている。第2制御電極E2における各セグメントの方位のピッチも、30°である。
 図11の(B)に示す構成例では、第1制御電極E1は、30°の方位に延出したセグメント、60°の方位に延出したセグメント、及び、90°の方位に延出したセグメントを備えている。第2制御電極E2は、0°の方位に延出したセグメント、30°の方位に延出したセグメント、60°の方位に延出したセグメント、及び、90°の方位に延出したセグメントを備えている。 
 これらの構成例においても、上記の構成例と同様の効果が得られる。
 図12は、光制御装置200の他の構成例を示す図である。図12に示す構成例では、光制御装置200は、第1液晶セル10及び第2液晶セル20を備えている。ここでは、第1液晶セル10の有効領域A11及び第1制御電極E1と、第2液晶セル20の有効領域A21及び第2制御電極E2とをそれぞれ示している。
 有効領域A11は、有効領域A21と実質的に同一である。つまり、有効領域A11及びA21は、同一の輪郭を有しており、また、第1制御電極E1の形状が第2制御電極E2の形状に一致している。例えば有効領域A11及びA21は、正12角形の輪郭を有している。第1制御電極E1は、第1セグメントSG1、第2セグメントSG2、及び、第3セグメントSG3を備えている。第2制御電極E2は、第1セグメントSG1に一致する第4セグメントSG4、第2セグメントSG2に一致する第5セグメントSG5、及び、第3セグメントSG3に一致する第6セグメントSG6を備えている。
 有効領域A11の輪郭のうち、第2セグメントSG2と平行な一辺を基準線BL1として表記する。基準線BL1は、第1方向Xに平行である。有効領域A21の輪郭のうち、第5セグメントSG5と平行な一辺を基準線BL2として表記する。基準線BL2は、第1方向Xに対して30°の角度で交差している。つまり、有効領域A21は、X-Y平面において、有効領域A11を30°回転させたものに相当する。有効領域A21の輪郭は、第1方向Xに平行な一辺OS2を含んでいる。一辺OS2は、基準線BL2に隣接している。
 第1液晶セル10及び第2液晶セル20は、有効領域A21の一辺OS2が有効領域A11の基準線BL1に重畳するように配置される。なお、有効領域A11における配向処理方向AD1及びAD2は第1方向Xに対して直交し、有効領域A21における配向処理方向AD3及びAD4は第1方向Xに平行である。
 このような構成例においても、上記の構成例と同様の効果が得られる。加えて、有効領域A11及びA21は、同一のフォトマスクを用いたパターニングによって形成することができる。このため、第1液晶セル10及び第2液晶セル20を製造するのに際して別々のフォトマスクを用意する場合と比較して、製造コストを削減することができる。
 図13は、光制御装置200の他の構成例を示す図である。図13に示す構成例では、光制御装置200は、第1液晶セル10、第2液晶セル20、第3液晶セル30、及び、第4液晶セル40を備えている。第3液晶セル30及び第4液晶セル40は、上記の第1液晶セル10及び第2液晶セル20と同様に構成されている。ここでは、第1液晶セル10の有効領域A11と、第2液晶セル20の有効領域A21と、第3液晶セル30の有効領域A31と、第4液晶セル40の有効領域A41とをそれぞれ示している。
 有効領域A11、A21、A31、A41は、実質的に同一であり、同一の輪郭を有している。また、有効領域A11の第1制御電極E1の形状、有効領域A21の第2制御電極E2の形状、有効領域A31の第3制御電極E3の形状、及び、有効領域A41の第4制御電極E4の形状は、一致している。
 ここで、有効領域A11の基準線BL1、有効領域A21の基準線BL2、有効領域A31の基準線BL3、及び、有効領域A41の基準線BL4に着目する。有効領域A21は、X-Y平面において、有効領域A11を90°回転させたものに相当する。有効領域A31は、X-Y平面において、有効領域A11を180°回転させたものに相当する。有効領域A41は、X-Y平面において、有効領域A11を270°回転させたものに相当する。 
 有効領域A11における配向処理方向AD1及びAD2、及び、有効領域A21における配向処理方向AD3及びAD4は、第1方向Xに平行である。有効領域A31における配向処理方向AD5及びAD6、及び、有効領域A41における配向処理方向AD7及びAD8は、第1方向Xに対して直交している。
 このような光制御装置200において、第1偏光成分POL1及び第2偏光成分POL2のうちの一方の偏光成分は、主として第1液晶セル10及び第2液晶セル20によって変調され、他方の偏光成分は、主として第3液晶セル30及び第4液晶セル40によって変調される。
 このような構成例においても、上記の構成例と同様の効果が得られる。
 図14は、光制御装置200の他の構成例を示す図である。図14に示す構成例では、光制御装置200は、第1液晶セル10、第2液晶セル20、及び、第3液晶セル30を備えている。ここでは、第1液晶セル10の有効領域A11と、第2液晶セル20の有効領域A21と、第3液晶セル30の有効領域A31とをそれぞれ示している。
 有効領域A11、A21、A31は、実質的に同一であり、同一の輪郭を有している。また、有効領域A11の第1制御電極E1の形状、有効領域A21の第2制御電極E2の形状、及び、有効領域A31の第3制御電極E3の形状は、一致している。
 ここで、有効領域A11の基準線BL1、有効領域A21の基準線BL2、及び、有効領域A31の基準線BL3に着目する。有効領域A21は、X-Y平面において、有効領域A11を30°回転させたものに相当する。有効領域A31は、X-Y平面において、有効領域A11を60°回転させたものに相当する。
 有効領域A11における配向処理方向AD1及びAD2は、第1方向Xに平行である。有効領域A21における配向処理方向AD3及びAD4は、第1方向Xに対して直交している。有効領域A31における配向処理方向AD5及びAD6は、第1方向Xに対して135°で交差している。
 このような光制御装置200において、第1偏光成分POL1及び第2偏光成分POL2のうちの一方の偏光成分は、主として第1液晶セル10によって変調され、他方の偏光成分は、主として第2液晶セル20によって変調されるとともに、双方の偏光成分は、第3液晶セル30でも変調される。
 このような構成例においても、上記の構成例と同様の効果が得られる。
 上記の各構成例では、有効領域が多角形の場合について説明したが、円形であってもよい。複数の液晶セルを重ねて位置合わせする際、有効領域が多角形あるいは円形に形成されていることで、位置合わせが容易となる。
 また、各液晶セルにおいて、液晶層を挟持する一対の配向膜は、同一方向で且つ逆向きに配向処理されているが、これに限らず、互いに交差するように配向処理されてもよい。液晶モードとしては、水平配向モード、垂直配向モード、ツイスト配向モードなど、いずれでもよい。
 以上説明したように、本実施形態によれば、無効領域を縮小することが可能な光制御装置及び照明装置を提供することができる。
 なお、この発明は、上記実施形態そのものに限定されるものではなく、その実施の段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
 100…照明装置 200…光制御装置
 10…第1液晶セル 20…第2液晶セル
 SUB1…第1基板 PL1…給電線 E1…第1制御電極
 SG1…第1セグメント SG2…第2セグメント SG3…第3セグメント
 SUB2…第2基板 LC1…第1液晶層
 SUB3…第3基板 PL2…給電線 E2…第2制御電極
 SG4…第4セグメント SG5…第5セグメント SG6…第6セグメント
 SUB4…第4基板 LC2…第2液晶層

Claims (17)

  1.  有効領域に設けられた複数の第1制御電極と、周辺領域に設けられた複数の給電線と、を備えた第1基板と、
     第2基板と、
     前記第1基板と前記第2基板との間に保持された第1液晶層と、を備え、
     前記第1制御電極は、透明電極であり、
     前記第1制御電極は、前記有効領域において、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、
     前記第1制御電極は、前記周辺領域に延出し、前記給電線と電気的に接続され、
     前記第1乃至第3角度は、互いに異なる角度である、光制御装置。
  2.  前記第1乃至第3角度は、少なくとも1つの鋭角と、少なくとも1つの鈍角とを含んでいる、請求項1に記載の光制御装置。
  3.  前記鈍角は、前記鋭角の整数倍である、請求項2に記載の光制御装置。
  4.  前記有効領域において、前記第1セグメントの長さの総和、前記第2セグメントの長さの総和、及び、前記第3セグメントの長さの総和は、ほぼ同等である、請求項1に記載の光制御装置。
  5.  前記複数の給電線は、前記周辺領域において、前記第1方向に並び、
     前記複数の第1制御電極は、前記有効領域において、前記第1方向に交差する第2方向に並んでいる、請求項1に記載の光制御装置。
  6.  第1制御電極を備えた第1液晶セルと、
     第2制御電極を備えた第2液晶セルと、を備え、
     前記第2液晶セルは、前記第1液晶セルに重畳し、
     前記第1制御電極及び前記第2制御電極は、透明電極であり、
     前記第1制御電極は、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、
     前記第2制御電極は、前記第1方向に対して第4角度で交差する第4セグメントと、前記第1方向に対して第5角度で交差する第5セグメントと、前記第1方向に対して第6角度で交差する第6セグメントと、を備え、
     前記第1乃至第6角度は、互いに異なる角度である、光制御装置。
  7.  前記第1角度と前記第4角度との差分、前記第2角度と前記第5角度との差分、及び、前記第3角度と前記第6角度との差分は、ほぼ同等である、請求項6に記載の光制御装置。
  8.  前記第1乃至第3角度は、少なくとも1つの第1鋭角と、少なくとも1つの第1鈍角とを含み、
     前記第4乃至第6角度は、少なくとも1つの第2鋭角と、少なくとも1つの第2鈍角とを含んでいる、請求項7に記載の光制御装置。
  9.  前記第1鈍角は、前記第1鋭角の整数倍であり、
     前記第2鈍角は、前記第2鋭角の整数倍である、請求項8に記載の光制御装置。
  10.  前記第1液晶セルにおいて、前記第1セグメントの長さの総和、前記第2セグメントの長さの総和、及び、前記第3セグメントの長さの総和は、ほぼ同等であり、
     前記第2液晶セルにおいて、前記第4セグメントの長さの総和、前記第5セグメントの長さの総和、及び、前記第6セグメントの長さの総和は、ほぼ同等である、請求項6に記載の光制御装置。
  11.  さらに、前記第1液晶セルと前記第2液晶セルとを接着する透明な接着層を備えている、請求項6に記載の光制御装置。
  12.  前記第1液晶セルは第1液晶層を備え、前記第2液晶セルは第2液晶層を備え、
     前記第1液晶層における初期配向方向は、前記第2液晶層における初期配向方向と交差している、請求項6に記載の光制御装置。
  13.  第1有効領域に設けられた複数の第1制御電極と、前記第1有効領域に隣接する第2有効領域に設けられた複数の第2制御電極と、を備えた第1基板と、
     第2基板と、
     前記第1基板と前記第2基板との間に保持された第1液晶層と、を備え、
     前記第1制御電極及び前記第2制御電極は、透明電極であり、
     前記第1制御電極は、前記第2制御電極から離間し、
     前記第1制御電極は、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、
     前記第2制御電極は、前記第1方向に対して第4角度で交差する第4セグメントと、前記第1方向に対して第5角度で交差する第5セグメントと、前記第1方向に対して第6角度で交差する第6セグメントと、を備え、
     前記第1乃至第6角度は、互いに異なる角度である、光制御装置。
  14.  前記第1基板は、さらに、
     周辺領域において前記第1方向に並んだ複数の第1給電線と、
     前記周辺領域において第2方向に並んだ複数の第2給電線と、を備え、
     前記第1制御電極は、前記周辺領域に延出し、前記第1給電線と電気的に接続され、
     前記第2制御電極は、前記周辺領域に延出し、前記第2給電線と電気的に接続されている、請求項13に記載の光制御装置。
  15.  光源と、
     前記光源から出射された光を制御するように構成された光制御装置と、
     を備え、
     前記光制御装置は、
     有効領域に設けられた複数の第1制御電極と、周辺領域に設けられた複数の給電線と、を備えた第1基板と、
     第2基板と、
     前記第1基板と前記第2基板との間に保持された第1液晶層と、を備え、
     前記第1制御電極は、透明電極であり、
     前記第1制御電極は、前記有効領域において、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、
     前記第1制御電極は、前記周辺領域に延出し、前記給電線と電気的に接続され、
     前記第1乃至第3角度は、互いに異なる角度である、照明装置。
  16.  光源と、
     前記光源から出射された光を制御するように構成された光制御装置と、
     を備え、
     前記光制御装置は、
     第1制御電極を備えた第1液晶セルと、
     第2制御電極を備えた第2液晶セルと、を備え、
     前記第2液晶セルは、前記第1液晶セルに重畳し、
     前記第1制御電極及び前記第2制御電極は、透明電極であり、
     前記第1制御電極は、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、
     前記第2制御電極は、前記第1方向に対して第4角度で交差する第4セグメントと、前記第1方向に対して第5角度で交差する第5セグメントと、前記第1方向に対して第6角度で交差する第6セグメントと、を備え、
     前記第1乃至第6角度は、互いに異なる角度である、照明装置。
  17.  光源と、
     前記光源から出射された光を制御するように構成された光制御装置と、
     を備え、
     前記光制御装置は、
     第1有効領域に設けられた複数の第1制御電極と、前記第1有効領域に隣接する第2有効領域に設けられた複数の第2制御電極と、を備えた第1基板と、
     第2基板と、
     前記第1基板と前記第2基板との間に保持された第1液晶層と、を備え、
     前記第1制御電極及び前記第2制御電極は、透明電極であり、
     前記第1制御電極は、前記第2制御電極から離間し、
     前記第1制御電極は、第1方向に対して第1角度で交差する第1セグメントと、前記第1方向に対して第2角度で交差する第2セグメントと、前記第1方向に対して第3角度で交差する第3セグメントと、を備え、
     前記第2制御電極は、前記第1方向に対して第4角度で交差する第4セグメントと、前記第1方向に対して第5角度で交差する第5セグメントと、前記第1方向に対して第6角度で交差する第6セグメントと、を備え、
     前記第1乃至第6角度は、互いに異なる角度である、照明装置。
PCT/JP2020/038684 2019-11-21 2020-10-13 光制御装置及び照明装置 WO2021100361A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080081082.0A CN114730107B (zh) 2019-11-21 2020-10-13 光控制装置以及照明装置
DE112020004935.3T DE112020004935T5 (de) 2019-11-21 2020-10-13 Lichtsteuergerät und Beleuchtungseinrichtung
US17/659,394 US11934082B2 (en) 2019-11-21 2022-04-15 Light control device and illumination device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019210699A JP7366705B2 (ja) 2019-11-21 2019-11-21 光制御装置及び照明装置
JP2019-210699 2019-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/659,394 Continuation US11934082B2 (en) 2019-11-21 2022-04-15 Light control device and illumination device

Publications (1)

Publication Number Publication Date
WO2021100361A1 true WO2021100361A1 (ja) 2021-05-27

Family

ID=75965103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038684 WO2021100361A1 (ja) 2019-11-21 2020-10-13 光制御装置及び照明装置

Country Status (5)

Country Link
US (1) US11934082B2 (ja)
JP (1) JP7366705B2 (ja)
CN (1) CN114730107B (ja)
DE (1) DE112020004935T5 (ja)
WO (1) WO2021100361A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234109A1 (ja) * 2022-06-03 2023-12-07 株式会社ジャパンディスプレイ 光学素子および光学素子を含む照明装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7504748B2 (ja) 2020-10-13 2024-06-24 株式会社ジャパンディスプレイ 液晶デバイス
CN115453786A (zh) * 2021-06-08 2022-12-09 群创光电股份有限公司 电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113224A (ja) * 1988-10-24 1990-04-25 Olympus Optical Co Ltd 電気光学絞り装置
JP2007264321A (ja) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd 映像表示装置
JP2010230887A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置
JP2019086539A (ja) * 2017-11-01 2019-06-06 株式会社ジャパンディスプレイ 表示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471729B2 (ja) 2004-04-30 2010-06-02 シチズン電子株式会社 液晶レンズ付き発光装置
KR101500969B1 (ko) * 2007-04-17 2015-03-10 코닌클리케 필립스 엔.브이. 빔 형상화 디바이스
CN102253563A (zh) * 2011-08-15 2011-11-23 南京中电熊猫液晶显示科技有限公司 一种视角优化的电驱动液晶透镜及其立体显示装置
CN102809868A (zh) * 2012-08-14 2012-12-05 深圳超多维光电子有限公司 一种液晶透镜
JP6266899B2 (ja) 2013-05-28 2018-01-24 スタンレー電気株式会社 液晶表示装置
WO2018191823A1 (en) * 2017-04-20 2018-10-25 Lensvector Inc. Lc beam broadening device with improved beam symmetry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02113224A (ja) * 1988-10-24 1990-04-25 Olympus Optical Co Ltd 電気光学絞り装置
JP2007264321A (ja) * 2006-03-28 2007-10-11 Sanyo Electric Co Ltd 映像表示装置
JP2010230887A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 照明装置
JP2019086539A (ja) * 2017-11-01 2019-06-06 株式会社ジャパンディスプレイ 表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023234109A1 (ja) * 2022-06-03 2023-12-07 株式会社ジャパンディスプレイ 光学素子および光学素子を含む照明装置

Also Published As

Publication number Publication date
JP2021081656A (ja) 2021-05-27
JP7366705B2 (ja) 2023-10-23
CN114730107A (zh) 2022-07-08
CN114730107B (zh) 2023-12-12
DE112020004935T5 (de) 2022-07-28
US11934082B2 (en) 2024-03-19
US20220235918A1 (en) 2022-07-28

Similar Documents

Publication Publication Date Title
WO2021100361A1 (ja) 光制御装置及び照明装置
TWI493263B (zh) Liquid crystal display device
US11586078B2 (en) Liquid crystal device
WO2021157225A1 (ja) 光制御装置及び照明装置
CN115004087B (zh) 光控制装置以及照明装置
US12044939B2 (en) Liquid crystal device
JP7527472B2 (ja) 液晶光制御装置
WO2022190786A1 (ja) 液晶デバイス
JP2017032812A (ja) 液晶表示装置
US11774812B2 (en) Optical control device
US11754904B2 (en) Light control device and illumination device
JP2021018261A (ja) 光学素子および液晶表示装置
JP2023039204A (ja) 液晶デバイス及び表示装置
JP7504748B2 (ja) 液晶デバイス
TW201426107A (zh) 觸控顯示裝置
US12050372B2 (en) Polarization conversion element
US11656527B2 (en) Light control device and illumination device
US20240361645A1 (en) Liquid crystal device
JP2020505622A (ja) 表示基板及びその製造方法、表示パネル
JP2021060448A (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889190

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20889190

Country of ref document: EP

Kind code of ref document: A1