WO2021099666A1 - Dispositivo óptico, método y sistema para la detección remota de terminales de red óptica - Google Patents

Dispositivo óptico, método y sistema para la detección remota de terminales de red óptica Download PDF

Info

Publication number
WO2021099666A1
WO2021099666A1 PCT/ES2020/070720 ES2020070720W WO2021099666A1 WO 2021099666 A1 WO2021099666 A1 WO 2021099666A1 ES 2020070720 W ES2020070720 W ES 2020070720W WO 2021099666 A1 WO2021099666 A1 WO 2021099666A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
fiber optic
polarization
signal
port
Prior art date
Application number
PCT/ES2020/070720
Other languages
English (en)
French (fr)
Inventor
Sergio Prieto Anton
Manuel Toca García
Original Assignee
Telefonica, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonica, S.A. filed Critical Telefonica, S.A.
Priority to PE2022000790A priority Critical patent/PE20221199A1/es
Priority to BR112022009159A priority patent/BR112022009159A2/pt
Priority to EP20889326.3A priority patent/EP4064587A4/en
Publication of WO2021099666A1 publication Critical patent/WO2021099666A1/es
Priority to CONC2022/0006258A priority patent/CO2022006258A2/es

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks

Definitions

  • the present invention has application in the technical sector of fiber optic telecommunications and, in particular, it presents a technical solution for the detection of optical network terminals, also called optical network terminals (ONTs).
  • optical network terminals also called optical network terminals (ONTs).
  • Fiber optic data distribution networks are increasingly used to provide broadband data connections to users. This is how passive optical networks (PON) have appeared, which allow the distribution of data through fiber optics.
  • the fiber network is called differently depending on where the PON network ends, so we would have for example: fiber to the building (FTTB, Fiber To The Building) or fiber to the home (FTTH, Fiber To The Home).
  • the latter allow communication via fiber optics with optical network terminals (ONTs) or optical network units (ONUs, Optical Network Unit) located at the user's home (or generally speaking in the place where the user has their equipment of optical network connection) or near it.
  • ONTs optical network terminals
  • ONUs optical network units
  • FTTH fiber optic access networks to the home
  • CTOs optical terminal boxes
  • the deployment is carried out from the operator's central head office (where the OLT optical line terminal is located, from the English Optical Line Terminal, which controls the distribution of operator signals through optical fiber) to the optical terminal box (CTO).
  • CTO optical terminal box
  • those real estate units from which FTTH service could be provided from said CTO are considered in coverage or "past home".
  • this phase is designed with a certain percentage of penetration, foreseeing that the clients will be distributed among the different operators.
  • the last section of fiber optic (fiber optic connection) is laid from the CTO to the interior of the client's home, ending at a termination point of the Optical Network (PTRO) and from there to the ONT Network Optical Terminal.
  • the PTRO can be considered to be the termination point of the passive part of the FTTH optical network that is installed at the customer's home (normally it is present in a home if there has ever been a fiber registration in the address, whether there is a customer with a service currently contracted or not).
  • the PTRO is connected to the ONT optical terminal, which is the active user equipment that communicates with the headend (OLT) to provide the customer's contracted service.
  • ONT optical terminal which is the active user equipment that communicates with the headend (OLT) to provide the customer's contracted service.
  • This last section of the network which goes from the optical terminal box (CTO) to the optical rosette (PTRO), installed inside the customer's home, is capable of being shared by different operators.
  • FIG 1 an example architecture of an FTTH optical network deployment is shown where there is a first level optical splitter (101) to which the optical signal of the OLT located in the central headend arrives and distributes the optical signal to the different optical terminal boxes (CTOs, 102), which would incorporate the second level dividers.
  • the deployment that would correspond to the first phase would reach this point.
  • the fiber is deployed between the CTOs and the optical rosettes (PTROs, 103) and from there to the end user's ONTs (104) that will deliver the signal (already converted to an electrical signal) to the user equipment. for your consumption.
  • each CTO has several ports (8 in figure 1 although this is only an example and can have any other number of ports) which allows it to connect to several user terminals having a fiber optic connection ( fiber optic connection) between each port of the CTO and each user terminal (the maximum number of terminals to which it can be connected will be equal to the number of ports that the CTO has).
  • the fiber optic connections are not disconnected from the CTO when the customer drops the service or changes operator and, therefore, it may occur a mismatch between what is physically installed and what is registered in the operator's systems (between the installed optical connections and the really active users of that operator). That is, there may be one or more fiber optic connections occupying ports in the CTO box without actually those connections being connected to user terminals or ONTs, that is, without actually providing service to any user (client) of the operator. .
  • CTO optical terminal box
  • an optical ONT remote sensing device that solves this problem by being able to detect, from the operator's optical terminal box, which fiber optic connections (connections) actually end in an optical rosette in the customer address that has an optically and physically connected ONT, whether or not it is turned on and synchronized.
  • the problem to be solved is not that of detecting active ONTs, whether or not they are electrically powered, and the element in which the detection device is to be added is in the transmission equipment placed in the central, the OLT.
  • the equipment to be used would be independent of the transmission system and the test point in which it could be used would be different, specifically in the last section of the FTTH network from the OTO to the customer address, where the ONT should be connected.
  • the objective is to detect from the optical terminal box if there is an ONT, connected or not, at the opposite end of an optical drop cable, regardless of whether the ONT is on or off at that moment.
  • the present invention serves to solve the problems mentioned above, by means of a device and method of Remote Detection of client / user optical terminal equipment (for example ONTs, ONUs) that allows to detect from the optical terminal box (CTO) and remotely if there is a physically connected customer terminal equipment (at the customer's home) whether or not the terminal equipment is switched on.
  • client / user optical terminal equipment for example ONTs, ONUs
  • CTO optical terminal box
  • the proposed solution allows, remotely and independent of the transmission system used, to detect and identify from the operator's optical terminal box, which fiber optic connections (connections) actually end in an optical rosette at the customer's home. which has an optically connected ONT, whether or not it is electrically powered, and which are not.
  • This allows the operator to really know which connections are associated with active clients and which are not, being able to disconnect unused connections (freeing up the corresponding ports), thus efficiently using the resources of the distribution network and, specifically, the resources. of the CTOs optical terminal boxes.
  • a method is presented to detect the presence of a user's optical network terminal equipment (normally located at the user's home) optically connected to a fiber optic connection of a fiber optic distribution network, where the method comprises the following steps: a) Transmitting an optical device connected to the fiber optic connection, a first optical signal of a certain wavelength with a first polarization, through the fiber optic connection; b) Measure the optical device, the optical power of the first reflected optical signal received through the fiber optic connection (that is, of the optical signal received through the fiber connection as a result of the reflection of the first signal optics); c) Transmitting the optical device, through the fiber optic connection, a second optical signal of the determined wavelength with a second polarization different from the first polarization; d) Measure the optical device, the optical power of the second reflected optical signal received through the fiber optic connection (that is, of the optical signal received through the fiber connection as a result of the reflection of the second signal optics); e) Compare the difference between the optical
  • Step e) may comprise: if said difference is greater than the threshold value, determining that there is a user optical network terminal equipment optically connected to the fiber optic connection, and otherwise, determining that there is no optical network terminal equipment user connected optically to the fiber optic connection.
  • it comprises a step prior to a), which consists of:
  • Step e) can be performed in a processor of the device and the result of the determination is communicated by means of a message through a communication network and / or is presented by means of a user interface of the device.
  • optical powers measured in steps b) and d) can be communicated by means of a message through a communication network and / or presented by means of a user interface of the device.
  • the first polarization is the polarization where the measured power of the reflected signal is maximum and the second polarization is the polarization where the received signal of the reflected signal is minimal.
  • an optical signal with a certain initial polarization is transmitted and, starting from that initial polarization, the polarization of the transmitted signal is modified until reaching the polarization where the reflected signal has a maximum power, first polarization, (step a)) and the polarization of the transmitted signal is modified until reaching the polarization where the reflected signal has a minimum power, second polarization (step c)).
  • the fiber optic distribution network can be a passive optical network, PON.
  • the optical network termination terminal equipment may be an ONT.
  • the wavelength of the optical signal emitted in steps a) and c) is close to that of the transceiver of an ONT in a passive optical network, for example 1310 nm.
  • the device is connected to a switch connected in turn to a group of several fiber optic connections, and where the switch consecutively connects the device with each of the fiber optic connections of the group and steps a) - e) are carried out for each of the group's fiber optic connections.
  • a detector device for user optical network terminal equipment of a fiber optic distribution network is presented, where the device comprises:
  • An optical circulator that comprises three optical ports and is configured to transmit all the optical signal received by the first port (P1) to the second port (P2) of the circulator and to transmit all the optical signal received by the second port (P2) to the third port (P3); or an optical coupler configured to transmit a first percentage of the power of a signal received by a first port of input / output to a common port and to transmit a second percentage of the signal received by the common port to a third input / output port.
  • An optical meter connected to the third port of the circulator or optical coupler.
  • the output of the device connects to a fiber optic drop. Additionally, the device may comprise a processor configured to cause the following actions to be performed:
  • a system is presented to detect the presence of a user optical network terminal equipment, optically connected to a fiber optic connection of a fiber optic distribution network, where the system comprises a device as described above, at least one fiber optic drop and at least one optic terminal box, CTO.
  • a computer program comprises computer-executable instructions to implement the described method, when executed on a computer (or a digital signal processor, an application-specific integrated circuit, a microprocessor , a microcontroller, or any other form of programmable hardware). Said instructions may be stored on a digital data storage medium.
  • a computer or a digital signal processor, an application-specific integrated circuit, a microprocessor , a microcontroller, or any other form of programmable hardware.
  • Said instructions may be stored on a digital data storage medium.
  • FIGURE 1.- Shows a schematic block diagram of an FTTH fiber optic access network deployment.
  • FIGURE 2.- Shows a schematic block diagram of the last phase of an FTTH fiber optic access network deployment in which the ONT detection device is used, according to an embodiment of the invention.
  • FIGURE 3.- Shows a view of a transceiver used in an ONT or ONU of a passive fiber optic network (PON).
  • PON passive fiber optic network
  • FIGURES 4a and 4b.- They show two schematic block diagrams of an ONT detector device, in the initial state and after modifying the polarization, according to an embodiment of the invention.
  • FIGURE 5.- Shows a schematic block diagram of an ONT detector device according to an embodiment of the invention.
  • FIGURE 6.- Shows a schematic block diagram of an ONT detector device according to an embodiment of the invention.
  • devices and methods for remote detection of fiber optic termination user terminal equipment for example, ONTs, ONUs that allow detection in the last section of the network (specifically from the box) will be presented.
  • CTO optical terminal if there is a physically connected user terminal equipment (at the customer's home), whether or not it is turned on.
  • This text will normally refer to the detection of ONTs in FTTH networks but the solution proposed in the present invention can be used for any type of fiber optic termination user terminal (ONT, ONU or any other type) and for any type fiber optic signal distribution network.
  • FIG 2 an example of the architecture of the last section of an optical FTTH network is shown in which the ONT detection device can be used, according to an embodiment of the invention.
  • the optical device (equipment) for remote detection of ONTs (201) would be connected to the different optical connections (205), preferably at the point where the connections are connected to the CTOs (202). To do this, it is necessary to disconnect the connections to be tested from the different ports of the CTO, and connect them to the remote detection device for ONTs.
  • only one detector device is shown, but of course several devices (201) each can be used simultaneously to test a connection to make detection faster or, as we will see later, even a multi-port device that allows testing more of a rush.
  • the device will detect whether an optical network terminal equipment is connected (for example, an ONT (204)) or not (in turn connected to a PTRO (203 )), regardless of whether it is on or off. This detection will be based on the mechanism explained below:
  • An ONU or ONT (and in general, any optical network user terminal equipment) designed for PON networks (with point-multipoint architecture), has an optical transceiver inside it, which allows it to receive (downstream) the optical signal at a given wavelength from the OLT (located at the operator's central head office), and in turn allows it to transmit the optical signal at a different wavelength for the upstream direction, through a single optical fiber.
  • FIG 3 An example of said electro-optical or transceiver element (known from the state of the art) of an ONT is shown in figure 3.
  • This element by allowing the use of the same optical fiber to allow communication in both directions (in different lengths of waves) is also known as Bidirectional Optical Sub-structure or BOSA (Bi-directional Optical Sub-Assembly).
  • Said optical transceiver converts, by means of a photodetector (301), the optical signal from the OLT into an electrical signal and, on the other hand, by means of an optical transmitter (for example, a laser diode (302)) converts the electrical signal generated by the ONT, into an optical signal that is sent to the OLT.
  • a photodetector for example, a laser diode (302)
  • the wavelength used for the downstream is 1490 nm
  • the wavelength used for the upstream direction is 1310 nm (this is just a non-limiting example and other wavelengths can be used for the upstream and downstream directions) .
  • Both optical signals are transmitted through a single optical fiber (303) so lenses (304) are necessary, to orient and confine the light beams, and some coupler / multiplexer element that allows combining the optical signals of the ascending directions. and downstream, from the laser diode to the optical fiber (upstream) and from the optical fiber to the photodetector (downstream).
  • a light beam splitter (305) that will allow the existence of these two optical paths: from the laser diode to the optical fiber (306), and from the optical fiber to the photodetector (307).
  • These transceivers produce a high reflection (2) when, from the optical fiber, they receive an incident optical signal (1) with a wavelength close to that of the laser diode emission, that is to say that used in the upward direction (1310 nm in example above). Additionally, this reflection (2) is strongly affected by the type of polarization of the light beam of this incident signal (1). Reflections also occur in the different passive elements of a fiber optic access network, such as connectors, splitters, splice fusions, fiber optics, etc. however, these reflections are practically insensitive to changes in polarization of the incident light beam.
  • This last section of the network between CTO and PTRO can only consist of an optical connection (a direct cable) from the CTO to the customer's home (as shown in figure 2 ), a general case in outdoor installations or with several cable runs in indoor installations.
  • an optical connection a direct cable
  • FIGS 4a and 4b show in a schematic way with blocks, the elements that make up the detector device according to one embodiment of the invention (this is only an exemplary embodiment and in other embodiments, as will be shown later, the arrangement of the elements may be different).
  • the user fiber optic network terminal equipment (ONTs) detector device would be composed of:
  • Optical source of laser or led type (or any other type).
  • said optical source will emit a signal at the wavelength close to the emission of the laser diode of the ONT transceiver (BOSA).
  • signal attenuators could be additionally used at the output of the optical source.
  • This element makes it possible to vary the polarization of the light beam from the optical source.
  • said polarization controller will be at the output of the optical source, although other locations are possible.
  • Optical circulator (403). Optical element with three input / output ports that routes the optical signal from one input port to the adjacent output port in a single direction. That is, the signal is transmitted from port 1 (P1) to port 2 (P2), from port 2 (P2) to port 3 (P3), and from port 3 (P3) to port 1 (P1).
  • the optical circulator must be insensitive to polarization.
  • said circulator directs the signal received by port 1 (P1) from the optical source (after passing through the polarization controller), towards port 2 (P2), connected with the fiber optic connection from the user's home (to the ONT, if any), and the reflected signal from the ONT, (which enters the circulator through port 2 (P2)), towards the optical detector connected to the port 3 (P3) of the same.
  • an optical coupler could be used.
  • This optical coupler would have a common port and two input / output ports. One of the input / output ports transmits a percentage of the signal power to or from the common port, and the other input / output port transmits another percentage to or from the common port.
  • the coupler will direct the signal received from the optical source (after passing said signal through the controller) delivering it to the fiber optic connection associated with the address of a certain customer (to the ONT if there is one) and will direct the reflected signal from the ONT to the detector optical.
  • Optical detector (404) also called optical meter. It measures, at the wavelength of the optical source, the optical power of the signal received through the fiber optic connection (reflected by the optical transceiver that incorporates the ONT (405) if an ONT is connected).
  • the optical detector must be insensitive to polarization; since if it were sensitive to polarization, the power measured by it could vary when the polarization changes, without this being motivated by the existence of an ONT at the customer's home, thus distorting the ideal operation of the device (which will be explained below). continuation).
  • the operation of the device is based on varying the polarization of the light beam coming from the optical source (401) and measuring the power of the reflected signal (by the electro-optical element of the ONT if there is one).
  • a circulator (403) is used to route the optical signal from the source to the customer's home and the reflected signal (in the electro-optical element of the ONT if there is one) to the detector (404).
  • port 1 is connected to the optical source (after passing through the polarization controller)
  • port 2 is connected to the fiber optic connection that goes to the home of the client under analysis
  • port 3 is connected to the optical detector.
  • the power of the signal reflected by an optical element of an ONT is strongly affected by the type of polarization of the light beam of the incident signal. Therefore, if the optical signal transmitted by the connection reaches an ONT, the signal reflected by it will vary significantly depending on the type of polarization of the optical signal that affects the ONT. Thus, with this device, the existence of an optically connected ONT can be detected at the customer's home if a significant variation is observed in the optical meter, above a certain threshold, in the power of the reflected optical signal when the power is varied. polarization of the signal from the optical source. If the power of the reflected optical signal does not vary with polarization changes (or does so below the threshold), it could be determined that there is no ONT connected.
  • the threshold value in a preferred embodiment would be around 3dB (although other values can of course be used for this threshold).
  • an optical signal with a certain polarization (first polarization) is emitted (figure 4a) and in the optical detector (404) a reflected signal with an optical power A is measured.
  • the polarization is changed (to a second polarization, figure 4b) and in the optical meter (404) a reflected signal with an optical power B is measured.
  • the device indicates to the operator (via a user interface) the received optical power in each case (with each polarization).
  • the device itself may have a processor that performs this calculation and communicates to the operator (through a user interface that may consist of text, lights, sound ...) whether it has been determined that there is an optically connected ONT or not.
  • the device can also send a message (via a telecommunication network, for example a mobile telephone network) the power information and / or the determination made.
  • the device may have an automatic mode in which the device automatically changes polarization. Or in other words, the device automatically establishes a polarization and measures the power of the reflected signal, and after a period of time, it changes the polarization and measures the power of the reflected signal.
  • the elements of the device may be located differently.
  • the location of the polarization controller (502) is changed, placing it behind port 2 of the circulator (503) instead of just at the exit of the optical source (501) (In general, it can be said that the key is that the controller is located in such a way that it can modify the polarization of the signal that affects the possible ONT). In this way, the device will behave in the same way and will detect if there is an ONT (505) connected optically or not, from the optical power measurements made by the optical meter (504).
  • an optical coupler may be used in place of a circulator.
  • the device would have the same structure only where the coupler is located, a coupler would be put whose common port would be the one that delivers / receives the signal to / from the ONT (that is, the common port would correspond to port 2 (P2) of the circulator).
  • the coupler has one common port and two input / output ports, with each port transmitting a percentage of the common port signal. This coupler can be balanced (each port transmits 50% of the common port signal) or unbalanced (each port transmits a different percentage of common port signal).
  • an unbalanced coupler for example, 90/10 or 95/5 (or any other value) , so that the incident signal on the ONT is attenuated, affecting the signal reflected by the ONT as little as possible.
  • a 90/10 coupler that consists of an optical element with a common port, a port that transmits or receives 10% of the signal from the common port, and a port that transmits or receives 90%.
  • the port with the lowest percentage in this case 10%
  • the port with the highest percentage in this case 90%
  • the common port is the one that would be connected to the optical connection to the customer's home.
  • the optical signal transmitted by the optical source would go 10% towards the fiber optic connection (common port) and therefore towards the ONT (if any). The rest of the power is lost.
  • the signal reflected by the ONT re-enters the system through the common port of the coupler directing 90% of the signal to the optical detector.
  • a switch (1xN) can be used to connect the device to several (N) lines. For example, to all the connections of a certain OTO. In figure 6 a device with this switch is shown schematically.
  • the device would still consist of an optical source (601), a polarization controller (602), a coupler (603), and an optical detector (604).
  • the switch (606) would be connected to port 2 of the circulator and in turn the switch would be connected to N fiber optic connections (in other embodiments of the device, such as the one shown in figure 5, the switch would be connected between the bias controller and the optical connections or between the circulator and the bias controller).
  • the operation would be analogous to that explained for the case of a single connection, except that the device, automatically or manually, would switch between the different ports (connections) of the switch and, for each of them, the polarization would vary to determine the existence or not of ONT (605) (in the same way that has been explained before for the case of a single connection). With this switch, the operator would save having to pass the connection device in connection with each CTO, with the consequent saving of time and labor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)

Abstract

Dispositivo, método y sistema para la detección de equipos terminales ópticos de usuario (por ejemplo ONTs) de una red de distribución de fibra óptica cliente que permite detectar, desde la caja terminal óptica (CTO), de manera remota si existe un equipo terminal en el domicilio del usuario conectado ópticamente, esté o no encendido. Es decir, la solución propuesta permite, de manera remota e independiente del sistema de transmisión usado, detectar e identificar desde la caja terminal óptica del operador, qué acometidas (conexiones) de fibra óptica terminan realmente en una roseta óptica en el domicilio de cliente que tiene conectada ópticamente una ONT, esté o no alimentada eléctricamente.

Description

DISPOSITIVO ÓPTICO, MÉTODO Y SISTEMA PARA LA DETECCIÓN REMOTA
DE TERMINALES DE RED ÓPTICA
DESCRIPCIÓN
Objeto de la invención
La presente invención tiene aplicación en el sector técnico de las telecomunicaciones por fibra óptica y, particularmente presenta, una solución técnica para la detección de terminales ópticos de red, también llamados terminales de red óptica (ONTs, del inglés Optical Network Termináis).
Antecedentes de la invención
Las redes de distribución de datos por fibra óptica son cada vez más usadas para proveer de conexiones de datos de banda ancha a los usuarios. Así han aparecido las redes ópticas pasivas (PON, del inglés Passive Optical Network) que permiten la distribución de datos a través de fibra óptica. La red de fibra se denomina de diferente forma según dónde termine la red PON, así tendríamos por ejemplo: fibra hasta el edificio (FTTB, del inglés Fiber To The Building) o fibra al hogar (FTTH, del inglés Fiber To The Home). Éstas últimas permiten la comunicación mediante fibra óptica con terminales ópticos de red (ONTs) o unidades ópticas de red (ONUs, del inglés Optical Network Unit) situados en el domicilio del usuario (o generalmente hablando en el lugar donde el usuario tiene sus equipos de conexión de red óptica) o cerca de él.
En las redes de acceso de fibra óptica hasta el hogar (FTTH), los sistemas operadores de telecomunicaciones que dan servicio de fibra óptica despliegan su propia red de fibra y la llevan hasta las cajas terminales ópticas (CTOs) instaladas en las fachadas o en el interior de los edificios, las cuales dan cobijo a los elementos necesarios para dividir los recursos existentes entre los clientes (usuarios) conectados. Es común que los despliegues de fibra óptica FTTH se realicen por fases o tramos. En una primera fase se realiza el despliegue desde la central cabecera del operador (donde se encuentra el terminal de línea óptica OLT, del inglés Optical Line Terminal, que controla la distribución de señales del operador a través de fibra óptica) hasta la caja terminal óptica (CTO). En esta primera fase se consideran en cobertura u “hogar pasado” aquellas unidades inmobiliarias desde las que podría darse servicio FTTH desde dicha CTO. En entornos en los que existen varios operadores con sus propias redes desplegadas en paralelo, se diseña esta fase con un determinado porcentaje de penetración, previendo que los clientes se repartirán entre los diferentes operadores.
En una segunda fase, ya en el momento de alta de una unidad inmobiliaria, se realiza el tendido del último tramo de fibra óptica (acometida de fibra óptica) desde la CTO hasta el interior del domicilio de cliente terminando en un punto de terminación de la red óptica (PTRO) y de ahí a la terminal óptica de red ONT. El PTRO (roseta) se puede considerar que es el punto de terminación de la parte pasiva de la red óptica FTTH que se instala en el domicilio del cliente (normalmente está presente en un domicilio si alguna vez se ha dado un alta de fibra en el domicilio, haya cliente con servicio contratado en la actualidad o no). Mediante un cordón de fibra óptica (normalmente con conectores SC/APC) se conecta el PTRO con la terminal óptica ONT, que es el equipo activo de usuario que se comunica con la cabecera (OLT) para dar servicio contratado al cliente. Este último tramo de la red, que va desde la caja terminal óptica (CTO) hasta la roseta óptica (PTRO), instalada en el interior del domicilio del cliente, es susceptible de ser compartido por diferentes operadores.
En la figura 1, se muestra una arquitectura de ejemplo de un despliegue de red óptica FTTH donde existe un divisor óptico de primer nivel (101) al que llega la señal óptica de la OLT situada en la central cabecera y distribuye la señal óptica a las distintas cajas terminales ópticas (CTOs, 102), que incorporarían los divisores de segundo nivel. Hasta este punto llegaría el despliegue que se correspondería con la primera fase. En la segunda fase se realiza el despliegue de fibra entre las CTOs y las rosetas ópticas (PTROs, 103) y de ahí a los ONTs (104) del usuario final que entregarán la señal (ya convertida a señal eléctrica) al equipo de usuario para su consumo. Como se ve en la figura, cada CTO tiene varios puertos (8 en la figura 1 aunque esto es solo un ejemplo y puede tener cualquier otro número de puertos) lo que le permite conectarse a varios terminales de usuarios teniendo una conexión de fibra óptica (acometida de fibra óptica) entre cada puerto del CTO y cada terminal del usuario (el máximo de terminales a los que puede conectarse será igual al número de puertos que posee el CTO).
Debido a las características mencionadas de los despliegues de las redes FTTH, es posible que en algunos casos las acometidas de fibra óptica no se desconecten de la CTO cuando el cliente realiza una baja del servicio o cambia de operador y, por tanto, se puede producir un desajuste entre lo instalado físicamente y lo registrado en los sistemas del operador (entre las acometidas ópticas instaladas y los usuarios realmente activos de ese operador). Es decir, puede que haya una o más acometidas de fibra óptica ocupando puertos en la caja CTO sin que realmente esas acometidas estén conectadas a terminales de usuario u ONTs, es decir, sin que realmente estén dando servicio a ningún usuario (cliente) del operador. Por ejemplo, en una situación real, se puede tener una caja terminal óptica (CTO) con todos sus puertos ocupados por acometidas de fibra óptica, aunque en realidad, en algunos casos, ya no haya cliente conectado debido, por ejemplo, a que éste haya cambiado de operador y el nuevo operador haya decidido tender una nueva acometida sin desconectar la acometida instalada previamente por el primer operador.
Estas circunstancias, obligan a los operadores, a comprobar de forma reiterada, in- situ y físicamente, si el inventariado registrado en sus sistemas, se corresponde con lo que realmente hay instalado en la red. Estas comprobaciones, se pueden hacer de una manera más o menos rápida y fiable, comprobando la identificación y etiquetado de las acometidas de cliente, y si no estuvieran etiquetadas (por haber desaparecido las etiquetas) desconectando las acometidas de cada cliente y comprobando si la ONT que le correspondería se mantiene activa o no. Esto, se puede realizar siempre y cuando todas las ONT con servicio activo se encuentren sincronizadas en el momento de la comprobación, y podría permitir identificar cuáles son las acometidas de fibra óptica que no están conectadas a un cliente activo y cuáles sí. Sin embargo, suele producirse que, por ejemplo, durante periodos de ausencia en el domicilio, el cliente desconecta la ONT de la alimentación eléctrica y esta pierde el sincronismo con la cabecera del operador (con la OLT). En estos casos se hace imposible, con los métodos actuales, la identificación de las acometidas de fibra óptica sin cliente activo.
Por ello, existe la necesidad de disponer de un dispositivo óptico de detección remota de ONT que resuelva este problema siendo capaz de detectar, desde la caja terminal óptica del operador, qué acometidas (conexiones) de fibra óptica terminan realmente en una roseta óptica en el domicilio de cliente que tiene conectada óptica y físicamente una ONT, esté o no encendida y sincronizada.
En el estado de la técnica existen propuestas para detectar e identificar ONTs, pero no para detectar ONTs activas como la presente invención. Así en algunas patentes del estado de la técnica, se presentan soluciones para resolver problemas relacionados con ONTs problemáticas, que por una razón u otra transmiten en instantes de tiempo que no le corresponden, interfiriendo con las señales ópticas de otras ONTs y haciendo que el sistema funcione de forma incorrecta (como, por ejemplo, la patente US7468958 B2 o las solicitudes de patente US2007/0242954 A1 o US2008/0138064). En otros casos, se trata de introducir en los puertos de las OLTs un equipamiento adicional que proporcione la funcionalidad de detección de reflexiones en la red de fibra óptica para detectar posibles fallos o roturas en la red y determinar la distancia a la que el problema se ha producido (como por ejemplo la US2005/0201761).
Sin embargo, en todos los casos anteriores, el problema que se pretende resolver no es el de detectar ONTs activas, estén o no alimentadas eléctricamente, y el elemento en el que se pretende añadir el dispositivo detector es en el equipo de transmisión colocado en la central, la OLT. En las realizaciones propuestas en el presente texto por el contrario, el equipo a utilizar sería independiente al sistema de transmisión y el punto de prueba en el que se podría utilizar sería diferente, concretamente en el último tramo de la red FTTH desde la OTO hasta el domicilio de cliente, donde debería estar conectada la ONT. Además, a diferencias del estado de la técnica citado, el objetivo es detectar desde la caja terminal óptica si hay una ONT, conectada o no, en el extremo contrario de un cable óptico de acometida, independientemente de si la ONT está encendida o apagada en ese momento.
Descripción de la invención
La presente invención sirve para solucionar los problemas mencionados anteriormente, mediante un dispositivo y método de Detección Remota de equipos terminales ópticos de cliente/usuario (por ejemplo ONTs, ONUs) que permite detectar desde la caja terminal óptica (CTO) y de manera remota si existe un equipo terminal del cliente conectado físicamente (en el domicilio del cliente) esté o no encendido el equipo terminal.
En otras palabras, la solución propuesta permite, de manera remota e independiente del sistema de transmisión usado, detectar e identificar desde la caja terminal óptica del operador, cuáles acometidas (conexiones) de fibra óptica terminan realmente en una roseta óptica en el domicilio de cliente que tiene conectada ópticamente una ONT, esté o no alimentada eléctricamente, y cuáles no. Esto permite que el operador sepa realmente cuáles acometidas están asociadas a clientes activos y cuáles no, pudiendo desconectar las acometidas no usadas (liberando los puertos correspondientes), utilizando así de manera eficiente los recursos de la red de distribución y, en concreto, los recursos de las cajas terminales ópticas CTOs.
En concreto, en un primer aspecto se presenta un método para detectar la presencia de un equipo terminal de red óptica de usuario (normalmente localizado en el domicilio del usuario) conectado ópticamente a una acometida de fibra óptica de una red de distribución por fibra óptica, donde el método comprende los siguientes pasos: a) Transmitir un dispositivo óptico conectado a la acometida de fibra óptica, una primera señal óptica de una determinada longitud de onda con una primera polarización, a través de la acometida de fibra óptica; b) Medir el dispositivo óptico, la potencia óptica de la primera señal óptica reflejada recibida a través de la acometida de fibra óptica (es decir, de la señal óptica recibida a través de la acometida de fibra como resultado de la reflexión de la primera señal óptica); c) Transmitir el dispositivo óptico, a través de la acometida de fibra óptica, una segunda señal óptica de la determinada longitud de onda con una segunda polarización distinta a la primera polarización; d) Medir el dispositivo óptico, la potencia óptica de la segunda señal óptica reflejada recibida a través de la acometida de fibra óptica (es decir, de la señal óptica recibida a través de la acometida de fibra como resultado de la reflexión de la segunda señal óptica); e) Comparar la diferencia entre la potencia óptica medida en el paso b) y el paso d) con un valor umbral y determinar la presencia del equipo terminal de red óptica de usuario basándose en el resultado de dicha comparación.
El paso e) puede comprender: si dicha diferencia es mayor que el valor umbral, determinar que existe un equipo terminal de red óptica de usuario conectado ópticamente a la acometida de fibra óptica y en caso contrario, determinar que no existe equipo terminal de red óptica de usuario conectado ópticamente a la acometida de fibra óptica.
En una realización, comprende un paso previo a a), que consiste en:
- desconectar la acometida de fibra óptica de una caja terminal óptica, CTO, y conectar la acometida de fibra óptica al dispositivo.
El paso e) se puede realizar en un procesador del dispositivo y el resultado de la determinación se comunica mediante un mensaje a través de una red de comunicación y/o se presenta mediante un interfaz de usuario del dispositivo.
Las potencias ópticas medidas en los pasos b) y d) se pueden comunicar mediante un mensaje a través de una red de comunicación y/o se presentan mediante un interfaz de usuario del dispositivo.
En una realización, la primera polarización es la polarización donde la potencia medida de la señal reflejada es máxima y la segunda polarización es la polarización donde la señal recibida de la señal reflejada es mínima. Por ejemplo, previo al paso a) se transmite una señal óptica con una determinada polarización inicial y, partiendo de esa polarización inicial se modifica la polarización de la señal transmitida hasta llegar a la polarización donde la señal reflejada tiene una potencia máxima, primera polarización, (paso a)) y se modifica la polarización de la señal transmitida hasta llegar a la polarización donde la señal reflejada tiene una potencia mínima, segunda polarización (paso c)).
La red de distribución por fibra óptica puede ser una red óptica pasiva, PON.
El equipo terminal de terminación de red óptica puede ser una ONT.
En una realización, la longitud de onda de la señal óptica emitida en los pasos a) y c) es próxima a la de emisión del transceptor de una ONT en una red óptica pasiva, por ejemplo, 1310 nm.
En una realización, el dispositivo está conectado a un conmutador conectado a su vez a un grupo de varias acometidas de fibra óptica, y donde el conmutador conecta consecutivamente al dispositivo con cada una de las acometidas de fibra óptica del grupo y los pasos a)-e) se realizan para cada una de las acometidas de fibra óptica del grupo.
En un segundo aspecto se presentan dispositivos para llevar a cabo cualquiera de los métodos descritos anteriormente. En concreto, se presenta un dispositivo detector de equipos terminales de red óptica de usuario de una red de distribución por fibra óptica, donde el dispositivo comprende:
- Una fuente óptica emisora de una señal óptica a una cierta longitud de onda;
- Un controlador de polarización de la señal óptica;
- Un circulador óptico que comprende tres puertos ópticos y está configurado para transmitir toda la señal óptica recibida por el primer puerto (P1) al segundo puerto (P2) del circulador y para transmitir toda la señal óptica recibida por el segundo puerto (P2) al tercer puerto (P3); o un acoplador óptico configurado para transmitir un primer porcentaje de la potencia de una señal recibida por un primer puerto de entrada/salida hacia un puerto común y para transmitir un segundo porcentaje de la señal recibida por el puerto común hacia un tercer puerto de entrada/salida.
- Un medidor óptico conectado al tercer puerto del circulador o acoplador óptico.
La salida del dispositivo se conecta a una acometida de fibra óptica. Además, el dispositivo puede comprender un procesador configurado para hacer que se realicen las siguientes acciones:
- Establecer una primera polarización por el controlador de polarización y transmitir una primera señal óptica a la cierta longitud de onda, emitida por la fuente óptica, con la primera polarización a través de la acometida de fibra óptica;
- Medir en el medidor óptico la potencia óptica de la primera señal óptica reflejada, recibida a través de la acometida de fibra óptica y del acoplador o del circulador óptico;
- Establecer una segunda polarización por el controlador de polarización y transmitir una segunda señal óptica a la cierta longitud de onda, emitida por la fuente óptica, con la segunda polarización a través de la acometida de fibra óptica;
- Medir en el medidor óptico la potencia óptica de la segunda señal óptica reflejada, recibida a través de la acometida de fibra óptica y del acoplador o del circulador óptico.
En un tercer aspecto se presenta un sistema para detectar la presencia de un equipo terminal de red óptica de usuario, conectado ópticamente a una acometida de fibra óptica de una red de distribución por fibra óptica, donde el sistema comprende un dispositivo según lo descrito anteriormente, al menos una acometida de fibra óptica y al menos una caja terminal óptica, CTO.
Finalmente, en otro aspecto de la invención se presenta un programa de ordenador que comprende instrucciones ejecutables por ordenador para implementar el método descrito, al ejecutarse en un ordenador (o un procesador digital de la señal, un circuito integrado específico de la aplicación, un microprocesador, un microcontrolador o cualquier otra forma de hardware programable). Dichas instrucciones pueden estar almacenadas en un medio de almacenamiento de datos digitales. El alcance de la presente invención está definido por las reivindicaciones independientes y dependientes que se anexan. Para un entendimiento más completo de la invención, sus objetos y ventajas, puede tenerse referencia a la siguiente memoria descriptiva y a los dibujos adjuntos.
Breve descripción de las figuras
A continuación, se pasa a describir de manera muy breve una serie de dibujos que ayudan a comprender mejor la invención y que se relacionan expresamente con una realización de dicha invención que se presenta como un ejemplo no limitativo de ésta.
FIGURA 1.- Muestra un diagrama de bloques esquemático de un despliegue de red de acceso de fibra óptica FTTH.
FIGURA 2.- Muestra un diagrama de bloques esquemático de la última fase de un despliegue de red de acceso de fibra óptica FTTH en el que se usa el dispositivo de detección de ONTs, según una realización de la invención.
FIGURA 3.- Muestra una vista de un transceptor usado en una ONT o ONU de una red pasiva de fibra óptica (PON).
FIGURAS 4a y 4b.- Muestran dos diagramas de bloques esquemático de un dispositivo detector de ONTs, en el estado inicial y tras modificar la polarización, según una realización de la invención.
FIGURA 5.- Muestra un diagrama de bloques esquemático de un dispositivo detector de ONTs según una realización de la invención.
FIGURA 6.- Muestra un diagrama de bloques esquemático de un dispositivo detector de ONTs según una realización de la invención.
Descripción detallada de la invención Se describe a continuación de manera detallada, ejemplos de realización de la invención, haciendo mención cuando sea necesario a las figuras arriba citadas, sin que ello limite o reduzca el ámbito de protección de la presente invención.
En las realizaciones descritas a continuación, se presentarán dispositivos y métodos para la detección remota de equipos terminales de usuario de terminación de fibra óptica (por ejemplo, ONTs, ONUs) que permiten detectar en el último tramo de la red (en concreto desde la caja terminal óptica CTO) si existe un equipo terminal de usuario conectado físicamente (en el domicilio del cliente) esté o no encendido. El presente texto normalmente se referirá a la detección de ONTs en redes FTTH pero la solución propuesta en la presente invención se puede usar para cualquier tipo de terminal de usuario de terminación de fibra óptica (ONT, ONU o cualquier otro tipo) y para cualquier tipo de red de distribución de señal por fibra óptica.
En la figura 2, se muestra un ejemplo de la arquitectura del último tramo de una red óptica FTTH en la que se puede usar el dispositivo de detección de ONTs, según una realización de la invención. Como se ve en la figura, el dispositivo (equipo) óptico de detección remota de ONTs (201) se conectaría a las diferentes acometidas ópticas (205), preferiblemente en el punto en el que las acometidas se conectan a las CTOs (202). Para ello, es necesario desconectar las acometidas a testar de los diferentes puertos de la CTO, y conectarlas al dispositivo de detección remota de ONTs. En la figura 2, se muestra solo un dispositivo detector, pero por supuesto se pueden usar simultáneamente varios dispositivos (201) cada uno para testar una acometida para hacer más rápidamente la detección o, como veremos más adelante, incluso un dispositivo multipuerto que permite testar más de una acometida.
Desde ese punto (en planta externa), el dispositivo detectará si en el extremo opuesto de la acometida hay conectada un equipo terminal de red óptica (por ejemplo, una ONT (204)) o no (a su vez conectada a un PTRO (203)), independientemente de si la misma está encendida o apagada. Dicha detección estará basada en el mecanismo que se explica a continuación: Una ONU u ONT (y en general, cualquier equipo terminal de usuario de redes ópticas) diseñada para redes PON (con arquitectura punto-multipunto), dispone en su interior de un transceptor óptico, que le permite recibir (sentido descendente) la señal óptica en una longitud de onda determinada proveniente de la OLT (situada en la central cabecera del operador), y a su vez le permite transmitir la señal óptica en una longitud de onda diferente para el sentido ascendente, a través de una sola fibra óptica. Un ejemplo de dicho elemento electroóptico o transceptor (conocido del estado de la técnica) de una ONT se muestra en la figura 3. Este elemento, al permitir el uso de la misma fibra óptica para permitir la comunicación en ambos sentidos (en distintas longitudes de ondas) se conoce también como Sub-estructura Óptica Bidireccional o BOSA (del inglés Bi-directional Optical Sub-Assembly).
Dicho transceptor óptico convierte, mediante un fotodetector (301), la señal óptica procedente de la OLT en una señal eléctrica y, por otro lado, mediante un transmisor óptico (por ejemplo, un diodo láser (302)) convierte la señal eléctrica generada por la ONT, en una señal óptica que se envía al OLT.
En el caso de una red FTTH en la que se utiliza la tecnología actual GPON (del inglés Gigabif-capabie Passive Optica! Network, Red Óptica Pasiva con Capacidad de Gigabít), la longitud de onda empleada para el sentido descendente (OLT-^ONT) es la de 1490 nm, y la longitud de onda empleada para el sentido ascendente (ONT-^OLT) es de 1310 nm (esto es solo un ejemplo no limitativo y otras longitudes de onda se pueden usar para los sentidos ascendente y descendente).
Ambas señales ópticas se transmiten a través de una única fibra óptica (303) por lo que son necesarias lentes (304), para orientar y confinar los haces de luz, y algún elemento acoplador/multiplexador que permita combinar las señales ópticas de los sentidos ascendentes y descendentes, del diodo láser hacia la fibra óptica (ascendente) y de la fibra óptica al fotodetector (descendente). Así por ejemplo habrá un divisor de haz de luz (305) que permitirá la existencia de estos dos caminos ópticos: del diodo láser hacia la fibra óptica (306), y de la fibra óptica al fotodetector (307). Estos transceptores producen una elevada reflexión (2) cuando, desde la fibra óptica reciben una señal óptica incidente (1) con una longitud de onda próxima a la de emisión del diodo láser, es decir a la empleada en el sentido ascendente (1310 nm en ejemplo expuesto anteriormente). Adicionalmente, esta reflexión (2) se ve afectada de manera acentuada por el tipo de polarización del haz de luz de esta señal incidente (1). También se producen reflexiones en los diferentes elementos pasivos de una red de acceso de fibra óptica, como son conectores, divisores, fusiones de empalme, fibra óptica, etc. sin embargo, estas reflexiones son prácticamente insensibles a los cambios de polarización del haz de luz incidente.
Por lo tanto, en el elemento electroóptico o transceptor de la ONT (BOSA) se produce una elevada reflexión sensible a la polarización del haz de luz a longitudes de onda próximas a la que emite su transmisor. Sin embargo, el resto de la red pasiva se comporta prácticamente insensible a estos cambios de la polarización. Aprovechando esta circunstancia, desde la caja terminal de fibra óptica, con un dispositivo detector que acceda directamente a la acometida de fibra óptica (último tramo de la red óptica) se podría detectar si hay un equipo activo con un elemento electroóptico (transceptor) en su interior. Este último tramo de red comprendido entre CTO y PTRO (y de ahí a la ONT si la hay) puede estar formado solamente por una acometida óptica (un cable directo) desde la CTO hasta el domicilio del cliente (como se muestra en la figura 2), caso general en instalaciones de exterior o con varios tramos de cables en instalaciones de interior. En las instalaciones de interior puede haber un tramo con cable tipo riser (vertical del edificio, o vertical estructurada) comprendido entre la CTO y cajas de derivación (CD) y un tramo final de acometida desde las CD hasta el PTRO en el interior del domicilio de los clientes (las CD suelen colocarse en registros en los rellanos de diferentes plantas de los edificios).
En las figuras 4a y 4b se muestra de manera esquemática con bloques, los elementos que componen el dispositivo detector de acuerdo a una realización de la invención (esto es solo una realización a modo de ejemplo y en otras realizaciones, como se mostrará más adelante, la disposición de los elementos puede ser otra). Así en esta realización, el dispositivo detector de equipos terminales de red de fibra óptica de usuario (ONTs) estaría compuesto por:
- Fuente óptica (401). Fuente óptica de tipo láser o led (o de cualquier otro tipo). Preferiblemente, dicha fuente óptica emitirá una señal en la longitud de onda próxima a la de emisión del diodo láser del transceptor de la ONT (BOSA).
Opcionalmente, en caso de que la fuente óptica tenga una potencia excesiva que pueda dañar los componentes ópticos que integra la ONT, se podrían emplear adicionalmente atenuadores de señal a la salida de la fuente óptica.
- Controlador Polarización (402). Este elemento permite variar la polarización del haz de luz procedente de la fuente óptica. En la realización mostrada en las figuras 4a y 4b, dicho controlador de polarización estará a la salida de la fuente óptica, aunque otras ubicaciones son posibles.
- Circulador óptico (403). Elemento óptico con tres puertos de entrada/salida que encamina la señal óptica de un puerto de entrada al puerto de salida adyacente en un único sentido. Es decir, la señal se transmite del puerto 1 (P1) al puerto 2 (P2), del puerto 2 (P2) al puerto 3 (P3), y del puerto 3 (P3) al puerto 1 (P1). El circulador óptico, debe ser insensible a la polarización. En la realización mostrada en las figuras 4a y 4b, dicho circulador dirige la señal recibida por el puerto 1 (P1) proveniente de la fuente óptica (tras su paso por el controlador de polarización), hacia el puerto 2 (P2), conectado con la acometida de fibra óptica del domicilio del usuario (a la ONT, si la hay), y la señal reflejada procedente de la ONT, (que entra al circulador por el puerto 2 (P2)), hacia el detector óptico conectado en el puerto 3 (P3) del mismo.
Opcionalmente, en lugar de emplear un circulador óptico, se podría utilizar un acoplador óptico. Este acoplador óptico dispondría de un puerto común y dos puertos de entrada/salida. Uno de los puertos de entrada/salida transmite un porcentaje de la potencia de la señal hacia o desde el puerto común, y el otro puerto de entrada/salida transmite otro porcentaje hacia o desde el puerto común. En una posible realización, el acoplador dirigirá la señal recibida de la fuente óptica (tras pasar dicha señal por el controlador) entregándola hacia la acometida de fibra óptica asociada al domicilio de un determinado cliente (a la ONT si la hay) y, dirigirá la señal reflejada procedente de la ONT hacia el detector óptico.
- Detector óptico (404), también llamado medidor óptico. Mide, a la longitud de onda de la fuente óptica, la potencia óptica de la señal recibida a través de la acometida de fibra óptica (reflejada por el transceptor óptico que incorpora la ONT (405) si hay una ONT conectada). El detector óptico, debe ser insensible a la polarización; ya que si fuera sensible a la polarización podría variar la potencia medida por el mismo al cambiar de polarización, sin que ello estuviera motivado por la existencia de una ONT en el domicilio del cliente, desvirtuando así el funcionamiento idóneo del dispositivo (que se explicará a continuación).
El funcionamiento del dispositivo está basado en variar la polarización del haz de luz procedente de la fuente óptica (401) y medir la potencia de la señal reflejada (por el elemento electroóptico del ONT si lo hay). Se emplea un circulador (403) para encaminar la señal óptica procedente de la fuente hacia el domicilio de cliente y la señal reflejada (en el elemento electroóptico de la ONT si lo hay) hasta el detector (404). En esta realización, el puerto 1 se conecta a la fuente óptica (tras su paso por el controlador de polarización), el puerto 2 se conecta a la acometida de fibra óptica que va al domicilio del cliente objeto de análisis y el puerto 3 se conecta al detector óptico.
Como se ha explicado anteriormente, la potencia de la señal reflejada por un elemento óptico de una ONT se ve afectada de manera acentuada por el tipo de polarización del haz de luz de la señal incidente. Por lo que, si la señal óptica transmitida por la acometida llega a una ONT, la señal reflejada por éste variará de forma notable según el tipo de polarización de la señal óptica que incide sobre la ONT. Así, con este dispositivo se puede detectar la existencia de una ONT conectada ópticamente en el domicilio de cliente si se observa en el medidor óptico una variación significativa, por encima de un determinado umbral, de la potencia de la señal óptica reflejada cuando se varía la polarización de la señal procedente de la fuente óptica. Si la potencia de la señal óptica reflejada no varía con los cambios de la polarización (o lo realiza por debajo del umbral), se podría determinar que no hay una ONT conectada.
El valor umbral en una realización preferente estaría en torno a 3dB (aunque por supuesto se pueden usar otros valores para este umbral).
Es decir, se emite (figura 4a) una señal óptica con una determinada polarización (primera polarización) y en el detector óptico (404) se mide una señal reflejada con una potencia óptica A. Se cambia la polarización (a una segunda polarización, figura 4b) y en el medidor óptico (404) se mide una señal reflejada con una potencia óptica B.
En una realización esto se haría de la siguiente manera: Inicialmente, el sistema emite una señal óptica con una determinada polarización inicial (a priori, ésta puede ser no controlada). Partiendo de esa polarización inicial, y modificando la polarización de la señal mediante el controlador de polarización, hasta una polarización determinada (polarización A) se llegará a una situación en la que el detector óptico (404) medirá una señal reflejada con un valor máximo, potencia A. Esta situación se muestra en la figura 4a. Cambiando la polarización, hasta una determinada polarización (polarización B) se llegará a una situación en la que el detector óptico (404) medirá una señal reflejada con un valor mínimo, potencia B. Esta situación se muestra en la figura 4B. Es decir, se haría un barrido de modo que se puedan detectar el valor máximo y mínimo de la potencia de la señal reflejada.
Entonces si, en valor absoluto, Potencia recibida B - Potencia recibida A >= Umbral Se determina que hay ONT conectada y si, en valor absoluto, Potencia recibida B - Potencia recibida A < Umbral
Figure imgf000017_0001
Se determina que no hay ONT conectada (ya que no hay un cambio significativo en la potencia de la señal reflejada al cambiar la polarización).
En una realización, el dispositivo indica al operario (mediante un interfaz de usuario) la potencia óptica recibida en cada caso (con cada polarización). En otra realización, el propio dispositivo puede tener un procesador que realiza este cálculo y le comunica al operario (mediante un interfaz de usuario que puede consistir en texto, luces, sonido...) si se ha determinado que existe una ONT ópticamente conectada o no. El dispositivo también puede enviar un mensaje (mediante una red de telecomunicación, por ejemplo una red de telefonía móvil) la información de potencia y/o la determinación realizada.
El cambio de la polarización de la luz lo puede ordenar el operario (mediante un interfaz de usuario o cualquier mando que le permita operar el controlador de polarización). También en una realización, el dispositivo puede tener un modo automático en el que el dispositivo automáticamente cambie la polarización. O en otras palabras, el dispositivo automáticamente establece una polarización y mide la potencia de la señal reflejada, y después pasado un intervalo de tiempo, cambia la polarización y mide la potencia de la señal reflejada.
En otras realizaciones, los elementos del dispositivo pueden estar ubicados de distinta forma. Así, en una realización alternativa (mostrada en la figura 5), se cambia la ubicación del controlador de polarización (502), situándolo tras el puerto 2 del circulador (503) en vez de justo a la salida de la fuente óptica (501) (en general, se puede decir que la clave es que el controlador esté situado de tal manera que pueda modificar la polarización de la señal que incide sobre la posible ONT). De este modo, el dispositivo se comportará de igual forma y detectará si hay una ONT (505) conectada ópticamente o no, a partir de las mediciones de potencia óptica realizadas por el medidor óptico (504).
En otras realizaciones, se puede emplear un acoplador óptico en lugar de un circulador. Por ejemplo, en las configuraciones mostradas en las figuras 4a, 4b y 5, el dispositivo tendría la misma estructura solo que donde se encuentra el acoplador, se pondría un acoplador cuyo puerto común sería el que entrega/recibe la señal hacia/desde la ONT (es decir, el puerto común correspondería al puerto 2 (P2) del circulador). Como se ha indicado anteriormente, el acoplador tiene un puerto común y dos puertos de salida/entrada, y cada puerto transmite un porcentaje de la señal del puerto común. Este acoplador puede ser balanceado (cada puerto transmite un 50% de la señal del puerto común) o desbalanceado (cada puerto transmite un porcentaje distinto de la señal del puerto común). Con objeto de proteger la óptica de la ONT y que no reciba una señal de elevada potencia que pueda producir daños en la misma, es preferible emplear un acoplador desbalanceado, por ejemplo, 90/10 o 95/5 (o de cualquier otro valor), de forma que se atenúa la señal incidente en la ONT, afectando lo mínimo posible a la señal reflejada por la ONT.
Por ejemplo, en un acoplador 90/10 que consiste en un elemento óptico con un puerto común, un puerto que transmite o recibe un 10% de la señal del puerto común y un puerto que transmite o recibe el 90%. Conectando a la salida de la fuente de luz (o del controlador de polarización) el puerto de menor porcentaje (en este caso 10%) protegería la ONT de posibles daños por una elevada potencia; el puerto de mayor porcentaje (en este caso 90%) se conecta al detector/medidor para minimizar la atenuación de la señal reflejada y el puerto común es el que se conectaría a la acometida óptica hacia el domicilio de cliente. Así, en este ejemplo, la señal óptica transmitida por la fuente óptica iría un 10% hacia la acometida de fibra óptica (puerto común) y por tanto hacia la ONT (si la hay). El resto de la potencia se pierde. La señal reflejada por la ONT vuelve a entrar al sistema por el puerto común del acoplador dirigiendo el 90% de la señal al detector óptico.
En una realización, se puede emplear un conmutador (1xN) para conectar el dispositivo a varias (N) acometidas. Por ejemplo, a todas las acometidas de una determinada OTO. En la figura 6 se muestra de manera esquemática un dispositivo con este conmutador.
El dispositivo seguiría constando de una fuente óptica (601) un controlador de polarización (602), un acoplador (603) y un detector óptico (604). En el ejemplo de la figura 6, al puerto 2 del circulador se conectaría el conmutador (606) y a su vez el conmutador se conectaría a N acometidas de fibra óptica (en otras realizaciones del dispositivo, como la que se muestra en la figura 5, el conmutador se conectaría entre el controlador de polarización y las acometidas ópticas o entre el circulador y el controlador de polarización).
El funcionamiento sería análogo al explicado para el caso de una sola acometida sólo que el dispositivo, de modo automático o manual, conmutaría entre los diferentes puertos (acometidas) del conmutador y, para cada uno de ellos, variaría la polarización para determinar la existencia o no de ONT (605) (de la misma manera que se ha explicado antes para el caso de una sola acometida). Con este conmutador, el operario se ahorraría tener que ir pasando el dispositivo de acometida en acometida de cada CTO, con el consiguiente ahorro de tiempo y de mano de obra.
En este texto, la palabra “comprende” y sus variantes (como “comprendiendo”, etc.) no deben interpretarse de forma excluyente, es decir, no excluyen la posibilidad de que lo descrito incluya otros elementos, pasos, etc. Asimismo, en las reivindicaciones, la expresión “que comprende/comprendiendo” no excluye otros elementos o etapas, y el artículo indefinido “un” o “una” no excluye una pluralidad. Ningún símbolo de referencia en las reivindicaciones debe interpretarse como limitativo del alcance.
El diseño concreto de cada elemento y componente mostrado en las figuras es sólo a modo ilustrativo y de ejemplo; en ningún caso se quiere limitar el diseño de cada componente sólo al mostrado en dichas figuras
Los aspectos definidos en esta descripción detallada se proporcionan para ayudar a un entendimiento exhaustivo de la invención. Por consiguiente, los expertos en la técnica reconocerán que pueden realizarse variaciones, cambios y modificaciones de las realizaciones descritas en el presente documento sin apartarse del alcance de la invención. Asimismo, la descripción de funciones y elementos muy conocidos se omiten por motivos de claridad y concisión.
Descrita suficientemente la naturaleza de la invención, así como la manera de realizarse en la práctica, hay que hacer constar la posibilidad de que sus diferentes partes podrán fabricarse en variedad de materiales, tamaños y formas, pudiendo igualmente introducirse en su constitución o procedimiento, aquellas variaciones que la práctica aconseje, siempre y cuando las mismas, no alteren el principio fundamental de la presente invención.

Claims

REIVINDICACIONES
1. Método para detectar la presencia de un equipo terminal de red óptica de usuario conectado ópticamente a una acometida de fibra óptica de una red de distribución por fibra óptica, donde el método comprende los siguientes pasos: a) Transmitir un dispositivo óptico (201) conectado a la acometida de fibra óptica, una primera señal óptica de una determinada longitud de onda con una primera polarización, a través de la acometida de fibra óptica; b) Medir el dispositivo óptico (201), la potencia óptica de la primera señal óptica reflejada recibida a través de la acometida de fibra óptica; c) Transmitir el dispositivo óptico (201), a través de la acometida de fibra óptica, una segunda señal óptica de la determinada longitud de onda con una segunda polarización distinta a la primera polarización; d) Medir el dispositivo óptico (201), la potencia óptica de la segunda señal óptica reflejada recibida a través de la acometida de fibra óptica; e) Comparar la diferencia entre la potencia óptica medida en el paso b) y el paso d) con un valor umbral y determinar la presencia del equipo terminal de red óptica de usuario basándose en el resultado de dicha comparación.
2. Método según la reivindicación 1 donde el paso e) comprende: si dicha diferencia es mayor que el valor umbral, determinar que existe un equipo terminal de red óptica de usuario conectado ópticamente a la acometida de fibra óptica y en caso contrario, determinar que no existe equipo terminal de red óptica de usuario conectado ópticamente a la acometida de fibra óptica.
3. Método según cualquiera de las reivindicaciones anteriores donde el método comprende un paso previo a a), que consiste en:
- desconectar la acometida de fibra óptica de una caja terminal óptica, CTO, (202) y conectar la acometida de fibra óptica al dispositivo (201).
4. Método según cualquiera de las reivindicaciones anteriores donde el paso e) se realiza en un procesador del dispositivo (201) y el resultado de la determinación se comunica mediante un mensaje a través de una red de comunicación y/o se presenta mediante un interfaz de usuario del dispositivo (201).
5. Método según cualquiera de las reivindicaciones anteriores, donde las potencias ópticas medidas en los pasos b) y d) se comunican mediante un mensaje a través de una red de comunicación y/o se presentan mediante un interfaz de usuario del dispositivo (201).
6. Método según cualquiera de las reivindicaciones anteriores donde la primera polarización es la polarización donde la potencia medida de la señal reflejada es máxima y la segunda polarización es la polarización donde la señal recibida de la señal reflejada es mínima.
7. Método según cualquiera de las reivindicaciones anteriores donde, previo al paso a) se transmite una señal óptica con una determinada polarización inicial y, partiendo de esa polarización inicial se modifica la polarización de la señal transmitida hasta llegar a la polarización donde la señal reflejada tiene una potencia máxima, primera polarización, y se modifica la polarización de la señal transmitida hasta llegar a la polarización donde la señal reflejada tiene una potencia mínima, segunda polarización.
8. Método según cualquiera de las reivindicaciones anteriores, donde la red de distribución por fibra óptica es una red óptica pasiva, PON.
9. Método según cualquiera de las reivindicaciones anteriores, donde el equipo terminal de red óptica de usuario es una ONT.
10. Método según cualquiera de las reivindicaciones anteriores, donde la longitud de onda de la señal óptica emitida en los pasos a) y c) es próxima a la de emisión del transceptor de una ONT en una red óptica pasiva.
11. Método según cualquiera de las reivindicaciones anteriores, donde la longitud de onda de la señal óptica emitida en los pasos a) y c) es 1310 nm.
12. Método según cualquiera de las reivindicaciones anteriores, donde el dispositivo (201) está conectado a un conmutador (606) conectado a su vez a un grupo de varias acometidas de fibra óptica, y donde el conmutador (606) conecta consecutivamente al dispositivo con cada una de las acometidas de fibra óptica del grupo y los pasos a)-e) se realizan para cada una de las acometidas de fibra óptica del grupo.
13. Dispositivo detector de equipos terminales de red óptica de usuario de una red de distribución por fibra óptica, donde el dispositivo (201) comprende:
- Una fuente óptica (401, 501, 601) emisora de una señal óptica a una cierta longitud de onda;
- Un controlador de polarización (402, 502, 602) de la señal óptica;
- Un circulador óptico (403, 503, 603) que comprende tres puertos ópticos y está configurado para transmitir toda la señal óptica recibida por el primer puerto (P1) al segundo puerto (P2) del circulador y para transmitir toda la señal óptica recibida por el segundo puerto (P2) al tercer puerto (P3); o un acoplador óptico (403, 503, 603) configurado para transmitir un primer porcentaje de la potencia de una señal recibida por un primer puerto de entrada/salida hacia un puerto común y para transmitir un segundo porcentaje de la señal recibida por el puerto común hacia un tercer puerto de entrada/salida.
- Un medidor óptico (404, 504, 604) conectado al tercer puerto del circulador o acoplador óptico (403, 503, 603).
14. Dispositivo según la reivindicación 13, donde la salida del dispositivo se conecta a una acometida de fibra óptica.
15. Dispositivo según la reivindicación 14, donde el dispositivo (201) comprende un procesador configurado para hacer que se realicen las siguientes acciones:
- Establecer una primera polarización por el controlador de polarización (402, 502, 602) y transmitir una primera señal óptica a la cierta longitud de onda, emitida por la fuente óptica (401, 501, 601), con la primera polarización a través de la acometida de fibra óptica;
- Medir en el medidor óptico (404, 504, 604) la potencia óptica de la primera señal óptica reflejada, recibida a través de la acometida de fibra óptica y del acoplador o del circulador óptico (403, 503, 603);
- Establecer una segunda polarización por el controlador de polarización (402, 502, 602) y transmitir una segunda señal óptica a la cierta longitud de onda, emitida por la fuente óptica (410, 501, 601), con la segunda polarización a través de la acometida de fibra óptica;
- Medir en el medidor óptico (404, 504, 604) la potencia óptica de la segunda señal óptica reflejada, recibida a través de la acometida de fibra óptica y del acoplador o del circulador óptico (403, 503, 603).
16. Dispositivo según la reivindicación 15 donde el procesador además está configurado para: comparar la diferencia entre las potencias ópticas medidas de la primera y segunda señales ópticas reflejadas, con un valor umbral; determinar la presencia de un equipo terminal de red óptica de usuario conectado ópticamente a la acometida de fibra óptica, basándose en el resultado de dicha comparación; y comunicar el resultado de la determinación mediante un mensaje a través de una red de comunicación y/o presentar el resultado mediante un interfaz de usuario del dispositivo (201).
17. Dispositivo según cualquiera de las reivindicaciones 13-16, donde las potencias ópticas medidas se comunican mediante un mensaje a través de una red de comunicación y/o mediante un interfaz de usuario del dispositivo (201).
18. Dispositivo según cualquiera de las reivindicaciones 13-17, donde la red de distribución por fibra óptica es una red óptica pasiva, PON.
19. Dispositivo según cualquiera de las reivindicaciones 13-18, donde los equipos terminales de red óptica de usuario son ONTs.
20. Dispositivo según cualquiera de las reivindicaciones 13-19, donde la longitud de onda de la señal óptica emitida por la fuente óptica es próxima a la de emisión del transceptor de una ONT en una red óptica pasiva.
21. Dispositivo según cualquiera de las reivindicaciones 13-20, donde la longitud de onda de la señal óptica emitida por la fuente óptica es 1310 nm.
22. Dispositivo según cualquiera de las reivindicaciones 13-21 donde la fuente óptica es de tipo láser o led
23. Dispositivo según cualquiera de las reivindicaciones anteriores 13-22, donde el controlador de polarización se encuentra a la salida de la fuente óptica, conectado al primer puerto del acoplador o del circulador óptico o donde el controlador de polarización se encuentra a la salida del puerto común del acoplador o a la salida del segundo puerto del circulador óptico, conectado a la acometida de fibra óptica.
24. Dispositivo según cualquiera de las reivindicaciones anteriores 13-23, donde el dispositivo (201) está conectado a un grupo de varias acometidas de fibra óptica mediante un conmutador.
25. Dispositivo según cualquiera de las reivindicaciones anteriores 13-24, donde el primer porcentaje es 10% y el segundo porcentaje es el 90%.
26. Dispositivo según cualquiera de las reivindicaciones anteriores 13-24, donde el primer porcentaje es 5% y el segundo porcentaje es el 95%.
27. Sistema para detectar la presencia de un equipo terminal de red óptica de usuario, conectado ópticamente a una acometida de fibra óptica de una red de distribución por fibra óptica, donde el sistema comprende un dispositivo según cualquiera de las reivindicaciones 13-26, al menos una acometida de fibra óptica y al menos una caja terminal óptica, CTO.
28. Programa de ordenador que comprende instrucciones ejecutables por ordenador para implementar el método según cualquiera de las reivindicaciones 1- 12, al ejecutarse en un ordenador, un microprocesador, un microcontrolador o cualquier otra forma de hardware programable.
PCT/ES2020/070720 2019-11-20 2020-11-19 Dispositivo óptico, método y sistema para la detección remota de terminales de red óptica WO2021099666A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PE2022000790A PE20221199A1 (es) 2019-11-20 2020-11-19 Dispositivo optico, metodo y sistema para la deteccion remota de terminales de red optica
BR112022009159A BR112022009159A2 (pt) 2019-11-20 2020-11-19 Dispositivo óptico, método e sistema para detecção remota de terminais de rede óptica
EP20889326.3A EP4064587A4 (en) 2019-11-20 2020-11-19 OPTICAL DEVICE, METHOD AND SYSTEM FOR OFF-SITE DETECTION OF OPTICAL NETWORK TERMINALS
CONC2022/0006258A CO2022006258A2 (es) 2019-11-20 2022-05-12 Dispositivo óptico, método y sistema para la detección remota de terminales de red óptica

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201931016A ES2827373B2 (es) 2019-11-20 2019-11-20 Dispositivo óptico, método y sistema para la detección remota de terminales de red óptica
ESP201931016 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021099666A1 true WO2021099666A1 (es) 2021-05-27

Family

ID=75908287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/070720 WO2021099666A1 (es) 2019-11-20 2020-11-19 Dispositivo óptico, método y sistema para la detección remota de terminales de red óptica

Country Status (8)

Country Link
EP (1) EP4064587A4 (es)
AR (1) AR123821A1 (es)
BR (1) BR112022009159A2 (es)
CL (1) CL2022001322A1 (es)
CO (1) CO2022006258A2 (es)
ES (1) ES2827373B2 (es)
PE (1) PE20221199A1 (es)
WO (1) WO2021099666A1 (es)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022600A (ja) * 2000-07-04 2002-01-23 Sumitomo Electric Ind Ltd 光線路試験装置および光線路試験方法
US20050201761A1 (en) 2003-09-05 2005-09-15 Optical Zonu Corporation SINGLE FIBER TRANSCEIVER with FAULT LOCALIZATION
US20070242954A1 (en) 2006-04-14 2007-10-18 Tellabs Petaluma, Inc. System and method for monitoring transmissions within a passive optical network
US20080138064A1 (en) 2006-12-12 2008-06-12 Verizon Services Organization Inc. Optical network terminal agent
US7468958B2 (en) 2005-05-06 2008-12-23 Tellabs Petaluma, Inc. Optical line terminal that detects and identifies a rogue ONT
US20130188947A1 (en) * 2012-01-20 2013-07-25 Electronics And Telecommunications Research Institute Apparatus and method for monitoring optical line
CN103297125A (zh) * 2013-03-21 2013-09-11 镇江奥菲特光电科技有限公司 光纤分路器自动测试系统
US20190280768A1 (en) * 2018-03-12 2019-09-12 Electronics And Telecommunications Research Institute Method and device for determining state of optical network terminal line

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1969748B1 (fr) * 2005-12-21 2010-10-20 France Telecom Transmission optique entre un terminal central et une pluralite de terminaux clients via un reseau optique
US20080002718A1 (en) * 2006-06-30 2008-01-03 Bernard Marc R Method and apparatus to restore default settings in an Optical Network Terminal (ONT)

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022600A (ja) * 2000-07-04 2002-01-23 Sumitomo Electric Ind Ltd 光線路試験装置および光線路試験方法
US20050201761A1 (en) 2003-09-05 2005-09-15 Optical Zonu Corporation SINGLE FIBER TRANSCEIVER with FAULT LOCALIZATION
US7468958B2 (en) 2005-05-06 2008-12-23 Tellabs Petaluma, Inc. Optical line terminal that detects and identifies a rogue ONT
US20070242954A1 (en) 2006-04-14 2007-10-18 Tellabs Petaluma, Inc. System and method for monitoring transmissions within a passive optical network
US20080138064A1 (en) 2006-12-12 2008-06-12 Verizon Services Organization Inc. Optical network terminal agent
US20130188947A1 (en) * 2012-01-20 2013-07-25 Electronics And Telecommunications Research Institute Apparatus and method for monitoring optical line
CN103297125A (zh) * 2013-03-21 2013-09-11 镇江奥菲特光电科技有限公司 光纤分路器自动测试系统
US20190280768A1 (en) * 2018-03-12 2019-09-12 Electronics And Telecommunications Research Institute Method and device for determining state of optical network terminal line

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4064587A4

Also Published As

Publication number Publication date
ES2827373A1 (es) 2021-05-20
PE20221199A1 (es) 2022-08-09
CO2022006258A2 (es) 2022-07-29
EP4064587A1 (en) 2022-09-28
AR123821A1 (es) 2023-01-18
EP4064587A4 (en) 2023-12-20
BR112022009159A2 (pt) 2022-07-26
CL2022001322A1 (es) 2023-02-03
ES2827373B2 (es) 2021-09-21

Similar Documents

Publication Publication Date Title
ES2599164T3 (es) Red de fibra que comprende sensores
US8655167B1 (en) Fiber diagnosis system for point-to-point optical access networks
ES2584984T3 (es) Método y sistemas de detección de fibras ópticas de bifurcación, red óptica pasiva y divisor óptico
ES2351936T3 (es) Pcb de monitorización de red óptica.
ES2397024B1 (es) Método y sistema para la monitorización de capa física en redes ópticas pasivas
CN105451840B (zh) 一种光时域反射仪实现装置及系统
WO2012126403A2 (zh) 光收发模块、无源光网络系统、光纤检测方法和系统
WO2021135244A1 (zh) 一种光分配装置和光通信检测系统以及光通信检测方法
ES2383984T3 (es) Procedimiento para la localización de una terminación de red óptica en una red de acceso óptico
ES2827373B2 (es) Dispositivo óptico, método y sistema para la detección remota de terminales de red óptica
JP5291908B2 (ja) 光線路試験システムおよび光線路試験方法
CN107078793B (zh) 一种光纤故障诊断方法、装置及系统
KR20090124437A (ko) Otdr용 고정 반사기 및 이를 이용한 광선로 감시장치
JP7318705B2 (ja) 判定装置及び判定方法
KR102106948B1 (ko) 광학적 시간 영역 반사 측정기를 이용한 광선로 원거리 노드 식별 시스템 및 그 식별용 소자
KR102491712B1 (ko) 광섬유 연결성 측정기
WO2015055864A1 (es) Procedimiento, sistema y dispositivo para la supervision de fibras ópticas
JP2010019591A (ja) 光パルス試験器
JP2005192138A (ja) 光分岐線路監視システム
ES2576748B1 (es) Método y sistema para la monitorización de redes de fibras ópticas
CN106209217B (zh) 波长选择性反射器和光网络单元光模块
KR20190019236A (ko) 반사 손실 측정을 이용한 광통신 회선 검사기 및 검사 방법
KR100817495B1 (ko) 감시광 루핑 방법을 이용한 피오엔 원격 광선로망 감시장치
CN203385902U (zh) 带有运维接口的光收发次组件
KR102143133B1 (ko) 광학적 시간 영역 반사 측정기를 이용한 광선로 원거리 노드 식별 시스템 및 그 식별용 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889326

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022009159

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020889326

Country of ref document: EP

Effective date: 20220620

ENP Entry into the national phase

Ref document number: 112022009159

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220511