WO2021098752A1 - 电动汽车节能方法、装置以及电动汽车 - Google Patents

电动汽车节能方法、装置以及电动汽车 Download PDF

Info

Publication number
WO2021098752A1
WO2021098752A1 PCT/CN2020/129977 CN2020129977W WO2021098752A1 WO 2021098752 A1 WO2021098752 A1 WO 2021098752A1 CN 2020129977 W CN2020129977 W CN 2020129977W WO 2021098752 A1 WO2021098752 A1 WO 2021098752A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
efficiency
vehicle speed
electric vehicle
preset value
Prior art date
Application number
PCT/CN2020/129977
Other languages
English (en)
French (fr)
Inventor
胡志敏
侯文涛
田福刚
陈玉封
高天
刁红宾
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2021098752A1 publication Critical patent/WO2021098752A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present disclosure relates to the technical field of new energy vehicles, and in particular to an energy-saving method and device for electric vehicles, and electric vehicles.
  • New energy vehicles especially electric vehicles, have many advantages such as clean and pollution-free.
  • Current electric vehicles use electric energy stored in battery packs as their power source.
  • energy-saving modes (Ecology, Conservation and Optimization, ECO) have been added, which make the torque output relatively smooth.
  • the improved driving range of the ECO mode is small, and the user is trapped occasionally due to endurance problems, and the endurance of electric vehicles still has major defects.
  • the present disclosure aims to propose an energy-saving method for electric vehicles to further reduce the power consumption of electric vehicles and greatly improve the endurance of electric vehicles.
  • An energy-saving method for an electric vehicle comprising: calculating the electric vehicle's wheel radius, the motor speed range in which the efficiency of the electric vehicle motor is greater than a first preset value, and the transmission ratio of the transmission system according to the wheel radius of the electric vehicle A target vehicle speed range with an efficiency greater than the first preset value; controlling the electric vehicle to run at a vehicle speed in the target vehicle speed range.
  • the motor speed interval in which the efficiency of the motor is greater than the first preset value is obtained from a contour map of the motor efficiency.
  • the motor speed of which the efficiency of the electric vehicle motor is greater than a first preset value, and the transmission ratio of the transmission system the efficiency of the motor is calculated to be greater than the first preset value.
  • the target speed range of the value includes:
  • controlling the electric vehicle to run at the vehicle speed in the target vehicle speed range includes: detecting the current vehicle speed of the electric vehicle; and calculating the current vehicle speed according to any vehicle speed in the target vehicle speed range and the current vehicle speed.
  • the speed difference between any vehicle speed in the target vehicle speed range and the current vehicle speed calculate the required torque difference according to the speed difference; adjust the output torque of the motor according to the required torque difference.
  • the method further includes: detecting the power level of the battery of the electric vehicle; when the power level of the battery is less than a second preset value, executing according to the wheel radius of the electric vehicle and the efficiency of the motor of the electric vehicle.
  • the energy-saving method for electric vehicles described in the present disclosure has the following advantages:
  • the energy-saving method for an electric vehicle described in the present disclosure first calculate the motor's speed based on the wheel radius of the electric vehicle, the motor speed range in which the efficiency of the electric vehicle motor is greater than a first preset value, and the transmission ratio of the transmission system.
  • the target vehicle speed section with an efficiency greater than the first preset value is then controlled to drive the electric vehicle at the vehicle speed in the target vehicle speed section.
  • Another purpose of the present disclosure is to provide an energy-saving device for electric vehicles to further reduce the power consumption of electric vehicles and greatly improve the endurance of electric vehicles.
  • An energy-saving device for an electric vehicle comprising: a processing unit and a control unit, wherein the processing unit is used to determine whether the efficiency of the motor of the electric vehicle is greater than the first preset value based on the wheel radius of the electric vehicle
  • the motor speed range and the transmission ratio of the transmission system are used to calculate the target vehicle speed range in which the efficiency of the motor is greater than the first preset value
  • the control unit is used to control the electric vehicle to run at the vehicle speed in the target vehicle speed range.
  • the motor speed interval in which the efficiency of the motor is greater than the first preset value is obtained from a contour map of the motor efficiency.
  • processing unit is also used for:
  • the device further includes: a detection unit configured to detect the current vehicle speed of the electric vehicle; the processing unit is further configured to: calculate the current vehicle speed according to any vehicle speed in the target vehicle speed range and the current vehicle speed The speed difference between any vehicle speed in the target vehicle speed range and the current vehicle speed; calculate the required torque difference according to the speed difference; the control unit is further configured to adjust the output of the motor according to the required torque difference Torque.
  • a detection unit configured to detect the current vehicle speed of the electric vehicle
  • the processing unit is further configured to: calculate the current vehicle speed according to any vehicle speed in the target vehicle speed range and the current vehicle speed The speed difference between any vehicle speed in the target vehicle speed range and the current vehicle speed; calculate the required torque difference according to the speed difference
  • the control unit is further configured to adjust the output of the motor according to the required torque difference Torque.
  • the device further includes: a detection unit for detecting the power of the battery of the electric vehicle; and the processing unit is also used for: when the power of the battery is less than a second preset value, execute according to the electric The step of calculating the wheel radius of the vehicle, the motor speed range where the efficiency of the electric motor of the electric vehicle is greater than the first preset value, and the transmission ratio of the transmission system, and the step of calculating the target vehicle speed range where the efficiency of the motor is greater than the first preset value.
  • the electric vehicle energy-saving device has the same advantages as the above-mentioned electric vehicle energy-saving method over the prior art, and will not be repeated here.
  • Another purpose of the present disclosure is to provide an electric vehicle to further reduce the power consumption of the electric vehicle and greatly improve the endurance of the electric vehicle.
  • An electric vehicle includes the energy-saving device for the electric vehicle described above.
  • the electric vehicle has the same advantages as the above-mentioned energy-saving method for electric vehicles over the prior art, which will not be repeated here.
  • Another purpose of the present disclosure is to provide a machine-readable storage medium to further reduce the power consumption of electric vehicles and greatly improve the endurance of electric vehicles.
  • a machine-readable storage medium includes a memory, and instructions are stored on the memory, and the instructions are used to enable a machine to execute the above-mentioned energy-saving method for an electric vehicle.
  • the machine-readable storage medium has the same advantages as the above-mentioned energy-saving method for electric vehicles over the prior art, and will not be repeated here.
  • FIG. 1 is a flowchart of an energy-saving method for an electric vehicle provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the relationship between motor efficiency and vehicle speed provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of the relationship between driving resistance and vehicle speed provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of the relationship between driving power consumption and vehicle speed provided by an embodiment of the present disclosure
  • Fig. 5 is a contour map of motor efficiency provided by an embodiment of the present disclosure.
  • Fig. 6 is a flowchart of an electric vehicle driving method provided by an embodiment of the present disclosure.
  • FIG. 7 is a flowchart of an electric vehicle energy saving method provided by another embodiment of the present disclosure.
  • Fig. 8 is a structural block diagram of an energy-saving device for an electric vehicle provided by an embodiment of the present disclosure.
  • FIG. 1 is a flowchart of an energy-saving method for an electric vehicle provided by an embodiment of the present disclosure. As shown in Figure 1, the method includes:
  • Step S11 Calculate the efficiency of the motor to be greater than the first preset value based on the wheel radius of the electric vehicle, the motor speed range in which the efficiency of the motor of the electric vehicle is greater than a first preset value, and the transmission ratio of the transmission system Target speed range;
  • the electric vehicle converts the electrical energy of the battery pack into mechanical energy by driving the motor. Therefore, the efficiency of the motor directly affects the power consumption of the entire vehicle. The higher the efficiency of the motor, the lower the power consumption of the entire vehicle. Therefore, in order to reduce the power consumption of the entire vehicle, the efficiency of the motor needs to be maintained at an extremely high level, for example, the efficiency of the motor is greater than the first preset value.
  • the relationship between the efficiency of the motor and the vehicle speed is shown in Figure 2.
  • the efficiency of the motor gradually increases with the increase of the vehicle speed, and when the maximum efficiency is reached, the efficiency of the motor decreases sharply with the increase of the vehicle speed. Therefore, in order to improve the efficiency of the motor, the vehicle speed can be maintained in an appropriate range.
  • the higher the vehicle speed the greater the driving resistance.
  • the relationship between the driving resistance and the vehicle speed is shown in Figure 3.
  • Figure 4 After comprehensively considering the efficiency of the motor and the driving resistance, the relationship between the driving power consumption of the vehicle and the vehicle speed is shown in Figure 4. According to Figure 4, it can be seen that the driving power consumption of the vehicle is related to the vehicle speed. Therefore, if the vehicle speed is maintained within an appropriate range, the power consumption of the vehicle will be reduced.
  • the vehicle speed cannot be stabilized in a proper interval, so the vehicle speed can be controlled (for example, through adaptive cruise control (Adaptive Cruise Control, ACC)) to maintain the vehicle speed in a proper interval.
  • the appropriate interval may be represented by a target vehicle speed interval.
  • the efficiency of the motor should be greater than the first preset value. Therefore, the target vehicle speed section where the efficiency of the motor is greater than the first preset value is calculated as follows:
  • the motor speed range where the motor efficiency is greater than the first preset value is obtained by the motor efficiency contour map (also called the motor efficiency MAP map), as shown in Figure 5, in Figure 5, the motor efficiency is greater than 95% ( When it can be the first preset value), the motor speed range is approximately 3300-5500 rpm.
  • the motor efficiency contour map is only an example, and the motor efficiency contour map will be different depending on the motor, and it needs to be analyzed according to the motor.
  • Step S12 controlling the electric vehicle to run at the vehicle speed in the target vehicle speed range.
  • the method of controlling the electric vehicle to run under the above conditions is as follows:
  • Step S61 detecting the current speed of the electric vehicle
  • a vehicle speed sensor for detection
  • Step S62 Calculate the speed difference between any vehicle speed in the target vehicle speed section and the current vehicle speed according to any vehicle speed in the target vehicle speed section and the current vehicle speed;
  • any vehicle speed in the target vehicle speed range can be used for calculation.
  • Step S63 Calculate the required torque difference according to the speed difference
  • the speed difference can be used to calculate the difference between the current torque output by the motor and the required torque (even if the vehicle speed reaches the required torque value for the vehicle speed in the target vehicle speed range).
  • the specific calculation method is more common. I won’t repeat it here;
  • Step S64 Adjust the output torque of the motor according to the required torque difference.
  • the motor is caused to reduce the torque of the torque difference; if the vehicle speed in the target vehicle speed range is lower than the current vehicle speed, the motor is caused to increase the torque of the torque difference. Or, directly use the current torque and the torque difference to calculate the required torque, thereby controlling the motor to output the required torque.
  • the present disclosure performs torque output control as above, if it is detected (for example, by radar) that the vehicle ahead is close, the torque can still be automatically adjusted to decelerate, so as to maintain a proper distance from the vehicle ahead.
  • Fig. 7 is a flowchart of an electric vehicle energy saving method provided by another embodiment of the present disclosure. As shown in Figure 7, the method includes:
  • Step S71 detecting the power of the battery of the electric vehicle
  • Step S72 judging whether the power amount is less than a second preset value
  • the energy-saving method for electric vehicles in the embodiments of the present disclosure can be used only when certain conditions are met, such as automatically determining that the battery level is too low or manually operating by the user (for example, by pressing a button).
  • step S73 when the power of the battery is less than a second preset value, according to the wheel radius of the electric vehicle, the motor speed range in which the efficiency of the electric motor of the electric vehicle is greater than the first preset value, and the transmission ratio of the transmission system, Calculating a target vehicle speed interval in which the efficiency of the motor is greater than the first preset value;
  • Step S74 Control the electric vehicle to run at the vehicle speed in the target vehicle speed range.
  • Steps S72 to S73 in this embodiment are similar to the above steps S11 to S12, and will not be repeated here.
  • Fig. 8 is a structural block diagram of an energy-saving device for an electric vehicle provided by an embodiment of the present disclosure.
  • the device includes: a processing unit 1 and a control unit 2, wherein the processing unit 1 is used to determine whether the efficiency of the motor of the electric vehicle is greater than the first preset according to the wheel radius of the electric vehicle. Value of the motor speed range and the transmission ratio of the transmission system, calculate the target vehicle speed range in which the efficiency of the motor is greater than the first preset value; the control unit 2 is used to control the electric vehicle to operate in the target vehicle speed range Driving at speed.
  • the rotation speed interval in which the efficiency of the motor is greater than the first preset value is obtained through a contour map of the motor efficiency.
  • processing unit 1 is also used for:
  • the device further includes: a detection unit 3 for detecting the current vehicle speed of the electric vehicle; the processing unit 1 is also used for: calculating according to any vehicle speed in the target vehicle speed range and the current vehicle speed The speed difference between any vehicle speed in the target vehicle speed range and the current vehicle speed; calculate the required torque difference according to the speed difference; the control unit 2 is further configured to adjust the required torque difference according to the required torque difference The output torque of the motor.
  • a detection unit 3 for detecting the current vehicle speed of the electric vehicle
  • the processing unit 1 is also used for: calculating according to any vehicle speed in the target vehicle speed range and the current vehicle speed The speed difference between any vehicle speed in the target vehicle speed range and the current vehicle speed; calculate the required torque difference according to the speed difference
  • the control unit 2 is further configured to adjust the required torque difference according to the required torque difference The output torque of the motor.
  • the device further includes: a detection unit 3 for detecting the power of the battery of the electric vehicle; the processing unit 1 is also used for: when the power of the battery is less than a second preset value, execute The wheel radius of the electric vehicle, the motor speed range in which the efficiency of the electric motor of the electric vehicle is greater than a first preset value, and the transmission ratio of the transmission system are calculated, and the target vehicle speed range in which the efficiency of the motor is greater than the first preset value is calculated step.
  • a detection unit 3 for detecting the power of the battery of the electric vehicle
  • the processing unit 1 is also used for: when the power of the battery is less than a second preset value, execute The wheel radius of the electric vehicle, the motor speed range in which the efficiency of the electric motor of the electric vehicle is greater than a first preset value, and the transmission ratio of the transmission system are calculated, and the target vehicle speed range in which the efficiency of the motor is greater than the first preset value is calculated step.
  • the embodiment of the energy-saving device for an electric vehicle is similar to the embodiment of the energy-saving method for an electric vehicle described above, and will not be repeated here.
  • the embodiments of the present disclosure also provide an electric vehicle, which includes the energy-saving device for the electric vehicle described above.
  • the embodiments of the present disclosure also provide a machine-readable storage medium, the machine-readable storage medium includes a memory, and instructions are stored on the memory, and the instructions are used to enable a machine to execute the above-mentioned energy-saving method for an electric vehicle.
  • the energy-saving method for an electric vehicle described in the present disclosure first calculate the motor's speed based on the wheel radius of the electric vehicle, the motor speed range in which the efficiency of the electric vehicle motor is greater than a first preset value, and the transmission ratio of the transmission system.
  • the target vehicle speed section with an efficiency greater than the first preset value is then controlled to drive the electric vehicle at the vehicle speed in the target vehicle speed section.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电动汽车节能方法,包括:根据电动汽车的车轮半径、电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算电机的效率大于第一预设值的目标车速区间;控制电动汽车以目标车速区间中的车速行驶。还涉及一种电动汽车节能装置、电动汽车和机器可读存储介质。此方法可以将电动汽车的电耗进一步降低,极大的改善电动汽车的续航能力。

Description

电动汽车节能方法、装置以及电动汽车
相关申请的交叉引用
本申请要求在2019年11月19日提交的、申请号为201911134363.3、名称为“电动汽车节能方法、装置以及电动汽车”的中国发明专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及新能源汽车技术领域,特别涉及一种电动汽车节能方法、装置以及电动汽车。
背景技术
新能源汽车,尤其电动汽车具有清洁无污染等众多优点。现在的电动汽车以电池包存储的电能为动力源,为了提高纯电动车的续驶里程,加入了节能模式(Ecology、Conservation和Optimization,ECO),此模式使扭矩输出较为平缓。但是ECO模式提高的续驶里程较小,由于续航问题造成用户被困的事件时有发生,电动汽车的续航仍存在较大缺陷。
概述
有鉴于此,本公开旨在提出一种电动汽车节能方法,以将电动汽车的电耗进一步降低,极大的改善电动汽车的续航能力。
为达到上述目的,本公开的技术方案是这样实现的:
一种电动汽车节能方法,所述方法包括:根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间;控制所述电动汽车以所述目标车速区间中的车速行驶。
进一步的,所述电机的效率大于所述第一预设值的电机转速区间通过电机效率等高线图得到。
进一步的,所述根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速以及传动系统传动比,计算所述电机的效率大于所述第一预设值 的目标车速区间包括:
采用公式
Figure PCTCN2020129977-appb-000001
计算所述电机的效率大于所述第一预设值的目标车速区间中的最大车速,其中v 1是所述电机的效率大于第一预设值的目标车速区间中的最大车速,r是车辆的车轮半径,n 1是所述电机的效率大于第一预设值的电机转速区间中的最大转速,N是传动系统传动比;
采用公式
Figure PCTCN2020129977-appb-000002
计算所述电机的效率大于所述第一预设值的目标车速区间中的最小车速,其中v 2是所述电机的效率大于第一预设值的目标车速区间中的最小车速,r是车辆的车轮半径,n 2是所述电机的效率大于第一预设值的电机转速区间中的最小转速,N是传动系统传动比。
进一步的,所述控制所述电动汽车以所述目标车速区间中的车速行驶包括:检测所述电动汽车的当前车速;根据所述目标车速区间中的任一车速和所述当前车速,计算所述目标车速区间中的任一车速与所述当前车速的速度差;根据所述速度差,计算需求的扭矩差;根据所述需求的扭矩差,调整所述电机的输出扭矩。
进一步的,该方法还包括:检测所述电动汽车的电池的电量;在所述电池的电量小于第二预设值时,执行根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间的步骤。
相对于现有技术,本公开所述的电动汽车节能方法具有以下优势:
采用本公开所述的电动汽车节能方法,首先根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于第一预设值的目标车速区间,然后控制所述电动汽车以所述目标车速区间中的车速行驶。通过使电动汽车以使电机的效率大于第一预设值的车速行驶,可以将电动汽车的电耗进一步降低,极大的改善电动汽车的续航能力。
本公开的另一目的在于提出一种电动汽车节能装置,以将电动汽车的电耗进一步降低,极大的改善电动汽车的续航能力。
为达到上述目的,本公开的技术方案是这样实现的:
一种电动汽车节能装置,所述装置包括:处理单元以及控制单元,其中,所述处理单元用于根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值 的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间;所述控制单元用于控制所述电动汽车以所述目标车速区间中的车速行驶。
进一步的,所述电机的效率大于所述第一预设值的电机转速区间通过电机效率等高线图得到。
进一步的,所述处理单元还用于:
采用公式
Figure PCTCN2020129977-appb-000003
计算所述电机的效率大于所述第一预设值的目标车速区间中的最大车速,其中v 1是所述电机的效率大于第一预设值的目标车速区间中的最大车速,r是车辆的车轮半径,n 1是所述电机的效率大于第一预设值的电机转速区间中的最大转速,N是传动系统传动比;
采用公式
Figure PCTCN2020129977-appb-000004
计算所述电机的效率大于所述第一预设值的目标车速区间中的最小车速,其中v 2是所述电机的效率大于第一预设值的目标车速区间中的最小车速,r是车辆的车轮半径,n 2是所述电机的效率大于第一预设值的电机转速区间中的最小转速,N是传动系统传动比。
进一步的,该装置还包括:检测单元,用于检测所述电动汽车的当前车速;所述处理单元还用于:根据所述目标车速区间中的任一车速和所述当前车速,计算所述目标车速区间中的任一车速与所述当前车速的速度差;根据所述速度差,计算需求的扭矩差;所述控制单元还用于根据所述需求的扭矩差,调整所述电机的输出扭矩。
进一步的,该装置还包括:检测单元,用于检测所述电动汽车的电池的电量;所述处理单元还用于:在所述电池的电量小于第二预设值时,执行根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间的步骤。
所述电动汽车节能装置与上述电动汽车节能方法相对于现有技术所具有的优势相同,在此不再赘述。
本公开的另一目的在于提出一种电动汽车,以将电动汽车的电耗进一步降低,极大的改善电动汽车的续航能力。
为达到上述目的,本公开的技术方案是这样实现的:
一种电动汽车,该电动汽车包括上文所述的电动汽车节能装置。
所述电动汽车与上述电动汽车节能方法相对于现有技术所具有的优势相同,在此 不再赘述。
本公开的另一目的在于提出一种机器可读存储介质,以将电动汽车的电耗进一步降低,极大的改善电动汽车的续航能力。
为达到上述目的,本公开的技术方案是这样实现的:
一种机器可读存储介质,所述机器可读存储介质包括存储器,所述存储器上存储有指令,所述指令用于使得机器能够执行上述的电动汽车节能方法。
所述机器可读存储介质与上述电动汽车节能方法相对于现有技术所具有的优势相同,在此不再赘述。
本公开的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本公开的示意性实施方式及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开一实施例提供的电动汽车节能方法的流程图;
图2是本公开一实施例提供的电机效率与车速的关系示意图;
图3是本公开一实施例提供的行驶阻力与车速的关系示意图;
图4是本公开一实施例提供的驱动电耗与车速的关系示意图;
图5是本公开一实施例提供的电机效率等高线图;
图6是本公开一实施例提供的电动汽车行驶方法的流程图;
图7是本公开另一实施例提供的电动汽车节能方法的流程图;
图8是本公开一实施例提供的电动汽车节能装置的结构框图。
附图标记说明:
1    处理单元     2    控制单元
3    检测单元
具体实施方式
需要说明的是,在不冲突的情况下,本公开中的实施方式及实施方式中的特征可以相互组合。
下面将参考附图并结合实施方式来详细说明本公开。
图1是本公开一实施例提供的电动汽车节能方法的流程图。如图1所示,所述方法包括:
步骤S11,根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间;
具体地,对于电动汽车来说,电动汽车通过驱动电机将电池包的电能转化为机械能,因此电机的效率直接影响整车电耗,电机的效率越高,则整车电耗越小。所以为了使整车电耗降低,需要让电机的效率保持一个极高的水平,例如使电机的效率大于第一预设值。
电机的效率与车速的关系如图2所示。根据图2可知,电机的效率先随着车速的增大逐渐增大,当到达最大效率后随车速的增加而急剧下降,因此为了提高电机的效率,可以将车速保持在合适的区间。另外,车速越高行驶阻力越大,行驶阻力与车速的关系如图3所示。综合考虑电机的效率与行驶阻力之后,整车的驱动电耗同车速的关系如图4所示。根据图4可知整车的驱动电耗同车速有关,因此如果将车速保持在合适的区间内,整车电耗将会降低。
但是,用户驾驶车辆时,是无法将车速稳定在合适的区间内的,所以可以控制(例如通过自适应巡航控制(Adaptive Cruise Control,ACC))车速保持在一个合适的区间内。该合适的区间可以用目标车速区间表示,在电动汽车以目标车速区间的车速行驶时,电机的效率应大于第一预设值。因此,电机的效率大于第一预设值的目标车速区间采用如下方式计算:
采用公式
Figure PCTCN2020129977-appb-000005
计算所述电机的效率大于所述第一预设值的目标车速区间中的最大车速,其中v 1是所述电机的效率大于第一预设值的目标车速区间中的最大车速,r是车辆的车轮半径,n 1是所述电机的效率大于第一预设值的电机转速区间中的最大转速,N是传动系统传动比;
采用公式
Figure PCTCN2020129977-appb-000006
计算所述电机的效率大于所述第一预设值的目标车速区间中的最小车速,其中v 2是所述电机的效率大于第一预设值的目标车速区间中的最小车速,r是车辆的车轮半径,n 2是所述电机的效率大于第一预设值的电机转速区间中的最小转速,N是传动系统传动比。
其中,电机的效率大于第一预设值的电机转速区间通过电机效率等高线图(也称电机效率MAP图)得到,如图5所示,在图5中,电机的效率大于95%(在此可以为第一预设值)时,电机转速区间大致为3300-5500rpm。当然,本领域技术人员可以理解的是,该电机效率等高线图仅为示例,随电机的不同,该电机效率等高线图也会不同,需具体根据电机进行分析。
步骤S12,控制所述电动汽车以所述目标车速区间中的车速行驶。
具体地,如图6所示,控制电动汽车以以上条件行驶的方法如下:
步骤S61,检测所述电动汽车的当前车速;
例如,使用车速传感器进行检测;
步骤S62,根据所述目标车速区间中的任一车速和所述当前车速,计算所述目标车速区间中的任一车速与所述当前车速的速度差;
具体地,如上文所述,由于目标车速区间对应的电机转速区间都可以使电机的效率大于第一预设值,因此可以使用目标车速区间内的任一车速来计算。
步骤S63,根据所述速度差,计算需求的扭矩差;
具体地,在计算出速度差之后,可以使用速度差计算出当前电机输出的扭矩与需求的扭矩(即使车速达到目标车速区间的车速所需求的扭矩值)的差,具体计算方式较为常见,在此不再赘述;
步骤S64,根据所述需求的扭矩差,调整所述电机的输出扭矩。
具体地,如果目标车速区间的车速比当前车速大,则使电机减小扭矩差的扭矩;如果目标车速区间的车速比当前车速小,则使电机增大扭矩差的扭矩。或者,直接使用当前扭矩和扭矩差计算出需求的扭矩,从而控制电机输出需求的扭矩。
本公开虽然如上文进行扭矩输出控制,但是如果检测(例如通过雷达)到离前方车辆距离较近时,仍然可以自动调整扭矩以减速,从而与前车保持合适的车距。
另外,在控制扭矩以控制车速的同时,可以关闭与驾驶无关的功能,例如影音功能、空调功能以及车内的灯光,以使电动汽车更加节能。
图7是本公开另一实施例提供的电动汽车节能方法的流程图。如图7所示,该方法包括:
步骤S71,检测所述电动汽车的电池的电量;
步骤S72,判断所述电量是否小于第二预设值;
具体地,本公开实施例的电动汽车节能方法可以在达到一定条件时才会使用,例 如自动判断电池电量过低或用户手动操作(例如可以通过按按钮等方式)。对于自动判断来说,首先检测电动汽车的电池的电量,判断电量是否小于第二预设值,在电量小于第二预设值时,说明电动汽车电量不足,需要进进行节能,即可以执行步骤S72,在电量大于等于第二预设值时,继续重新检测电动汽车的电池的电量。
步骤S73,在所述电池的电量小于第二预设值时,根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间;
步骤S74,控制所述电动汽车以所述目标车速区间中的车速行驶。
本实施例中步骤S72-步骤S73与上文步骤S11-步骤S12类似,在此不再赘述。
图8是本公开一实施例提供的电动汽车节能装置的结构框图。如图8所示,所述装置包括:处理单元1以及控制单元2,其中,所述处理单元1用于根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间;所述控制单元2用于控制所述电动汽车以所述目标车速区间中的车速行驶。
进一步的,所述电机的效率大于所述第一预设值的转速区间通过电机效率等高线图得到。
进一步的,所述处理单元1还用于:
采用公式
Figure PCTCN2020129977-appb-000007
计算所述电机的效率大于所述第一预设值的目标车速区间中的最大车速,其中v 1是所述电机的效率大于第一预设值的目标车速区间中的最大车速,r是车辆的车轮半径,n 1是所述电机的效率大于第一预设值的电机转速区间中的最大转速,N是传动系统传动比;
采用公式
Figure PCTCN2020129977-appb-000008
计算所述电机的效率大于所述第一预设值的目标车速区间中的最小车速,其中v 2是所述电机的效率大于第一预设值的目标车速区间中的最小车速,r是车辆的车轮半径,n 2是所述电机的效率大于第一预设值的电机转速区间中的最小转速,N是传动系统传动比。
进一步的,该装置还包括:检测单元3,用于检测所述电动汽车的当前车速;所述处理单元1还用于:根据所述目标车速区间中的任一车速和所述当前车速,计算所述目标车速区间中的任一车速与所述当前车速的速度差;根据所述速度差,计算需求的扭矩 差;所述控制单元2还用于根据所述需求的扭矩差,调整所述电机的输出扭矩。
进一步的,该装置还包括:检测单元3,用于检测所述电动汽车的电池的电量;所述处理单元1还用于:在所述电池的电量小于第二预设值时,执行根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间的步骤。
上述电动汽车节能装置的实施例与上文所述的电动汽车节能方法的实施例类似,在此不再赘述。
本公开实施例还提供一种电动汽车,该电动汽车包括上文所述的电动汽车节能装置。
本公开实施例还提供一种机器可读存储介质,所述机器可读存储介质包括存储器,所述存储器上存储有指令,所述指令用于使得机器能够执行上述的电动汽车节能方法。
采用本公开所述的电动汽车节能方法,首先根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于第一预设值的目标车速区间,然后控制所述电动汽车以所述目标车速区间中的车速行驶。通过使电动汽车以使电机的效率大于第一预设值的车速行驶,可以将电动汽车的电耗进一步降低,极大的改善电动汽车的续航能力。
以上所述仅为本公开的较佳实施方式而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种电动汽车节能方法,其特征在于,所述方法包括:
    根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间;
    控制所述电动汽车以所述目标车速区间中的车速行驶。
  2. 根据权利要求1所述的电动汽车节能方法,其特征在于,所述电机的效率大于所述第一预设值的电机转速区间通过电机效率等高线图得到。
  3. 根据权利要求1所述的电动汽车节能方法,其特征在于,所述根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间包括:
    采用公式
    Figure PCTCN2020129977-appb-100001
    计算所述电机的效率大于所述第一预设值的目标车速区间中的最大车速,其中v 1是所述电机的效率大于第一预设值的目标车速区间中的最大车速,r是车辆的车轮半径,n 1是所述电机的效率大于第一预设值的电机转速区间中的最大转速,N是传动系统传动比;
    采用公式
    Figure PCTCN2020129977-appb-100002
    计算所述电机的效率大于所述第一预设值的目标车速区间中的最小车速,其中v 2是所述电机的效率大于第一预设值的目标车速区间中的最小车速,r是车辆的车轮半径,n 2是所述电机的效率大于第一预设值的电机转速区间中的最小转速,N是传动系统传动比。
  4. 根据权利要求1所述的电动汽车节能方法,其特征在于,所述控制所述电动汽车以所述目标车速区间中的车速行驶包括:
    检测所述电动汽车的当前车速;
    根据所述目标车速区间中的任一车速和所述当前车速,计算所述目标车速区间中的任一车速与所述当前车速的速度差;
    根据所述速度差,计算需求的扭矩差;
    根据所述需求的扭矩差,调整所述电机的输出扭矩。
  5. 根据权利要求1所述的电动汽车节能方法,其特征在于,该方法还包括:
    检测所述电动汽车的电池的电量;
    在所述电池的电量小于第二预设值时,执行根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间的步骤。
  6. 一种电动汽车节能装置,其特征在于,所述装置包括:
    处理单元以及控制单元,其中,
    所述处理单元用于根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间;
    所述控制单元用于控制所述电动汽车以所述目标车速区间中的车速行驶。
  7. 根据权利要求6所述的电动汽车节能装置,其特征在于,所述电机的效率大于所述第一预设值的电机转速区间通过电机效率等高线图得到。
  8. 根据权利要求6所述的电动汽车节能装置,其特征在于,所述处理单元还用于:
    采用公式
    Figure PCTCN2020129977-appb-100003
    计算所述电机的效率大于所述第一预设值的目标车速区间中的最大车速,其中v 1是所述电机的效率大于第一预设值的目标车速区间中的最大车速,r是车辆的车轮半径,n 1是所述电机的效率大于第一预设值的电机转速区间中的最大转速,N是传动系统传动比;
    采用公式
    Figure PCTCN2020129977-appb-100004
    计算所述电机的效率大于所述第一预设值的目标车速区间中的最小车速,其中v 2是所述电机的效率大于第一预设值的目标车速区间中的最小车速,r是车辆的车轮半径,n 2是所述电机的效率大于第一预设值的电机转速区间中的最小转速,N是传动系统传动比。
  9. 根据权利要求6所述的电动汽车节能装置,其特征在于,该装置还包括:
    检测单元,用于检测所述电动汽车的当前车速;
    所述处理单元还用于:
    根据所述目标车速区间中的任一车速和所述当前车速,计算所述目标车速区间中的任一车速与所述当前车速的速度差;
    根据所述速度差,计算需求的扭矩差;
    所述控制单元还用于根据所述需求的扭矩差,调整所述电机的输出扭矩。
  10. 根据权利要求6所述的电动汽车节能装置,其特征在于,该装置还包括:
    检测单元,用于检测所述电动汽车的电池的电量;
    所述处理单元还用于:
    在所述电池的电量小于第二预设值时,执行根据所述电动汽车的车轮半径、所述电动汽车的电机的效率大于第一预设值的电机转速区间以及传动系统传动比,计算所述电机的效率大于所述第一预设值的目标车速区间的步骤。
  11. 一种电动汽车,其特征在于,该电动汽车包括权利要求6-10中任一项权利要求所述的电动汽车节能装置。
  12. 一种机器可读存储介质,其特征在于,所述机器可读存储介质包括存储器,所述存储器上存储有指令,所述指令用于使得机器能够执行根据权利要求1至5中任一项所述的电动汽车节能方法。
PCT/CN2020/129977 2019-11-19 2020-11-19 电动汽车节能方法、装置以及电动汽车 WO2021098752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911134363.3A CN112026530A (zh) 2019-11-19 2019-11-19 电动汽车节能方法、装置以及电动汽车
CN201911134363.3 2019-11-19

Publications (1)

Publication Number Publication Date
WO2021098752A1 true WO2021098752A1 (zh) 2021-05-27

Family

ID=73576284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129977 WO2021098752A1 (zh) 2019-11-19 2020-11-19 电动汽车节能方法、装置以及电动汽车

Country Status (2)

Country Link
CN (1) CN112026530A (zh)
WO (1) WO2021098752A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113361835B (zh) * 2020-03-03 2023-07-07 中车时代电动汽车股份有限公司 电驱动产品综合效率评价方法及装置
CN112677777B (zh) * 2021-01-21 2022-10-14 广州橙行智动汽车科技有限公司 一种数据处理方法、装置和车辆
CN113177291B (zh) * 2021-03-29 2022-07-26 浙江中车电车有限公司 一种基于云数据平台的电动车功效分析方法与系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442221A (zh) * 2010-10-11 2012-05-09 北汽福田汽车股份有限公司 选择电机系统的方法和装置
JP2012191832A (ja) * 2011-12-28 2012-10-04 Pioneer Electronic Corp 効率マップ生成装置および効率マップ生成方法
CN104175905A (zh) * 2014-08-22 2014-12-03 江苏大学 一种纯电动汽车匀速行驶时动力需求匹配和优化的方法
CN105059136A (zh) * 2015-09-18 2015-11-18 重庆长安汽车股份有限公司 车辆控制数据的处理方法、装置和控制器
CN109466338A (zh) * 2018-09-29 2019-03-15 同济大学 一种六轮独立驱动车辆的电机力矩能耗优化控制分配方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202623905U (zh) * 2011-12-21 2012-12-26 浙江吉利汽车研究院有限公司 一种串联混合动力增程系统
CN105811670B (zh) * 2014-12-29 2019-07-30 上海大郡动力控制技术有限公司 电动汽车牵引电机设计参数的校验方法
CN106218442B (zh) * 2016-07-29 2018-12-21 北京现代汽车有限公司 一种电动汽车最高车速控制方法及整车控制器
CN106357189B (zh) * 2016-10-10 2019-04-16 金龙联合汽车工业(苏州)有限公司 一种车用驱动电机系统效率分布的设计方法
CN106828500A (zh) * 2017-01-19 2017-06-13 西华大学 电动汽车有级自动变速器换挡规律优化方法
CN109849933B (zh) * 2017-11-30 2020-08-21 长城汽车股份有限公司 确定驾驶员需求扭矩的方法、装置、车辆及可读存储介质
CN210083140U (zh) * 2019-01-22 2020-02-18 淮安信息职业技术学院 一种缓冲效果好的车辆防撞前唇
CN110696833B (zh) * 2019-06-27 2021-05-07 江铃汽车股份有限公司 一种车辆自适应限速控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102442221A (zh) * 2010-10-11 2012-05-09 北汽福田汽车股份有限公司 选择电机系统的方法和装置
JP2012191832A (ja) * 2011-12-28 2012-10-04 Pioneer Electronic Corp 効率マップ生成装置および効率マップ生成方法
CN104175905A (zh) * 2014-08-22 2014-12-03 江苏大学 一种纯电动汽车匀速行驶时动力需求匹配和优化的方法
CN105059136A (zh) * 2015-09-18 2015-11-18 重庆长安汽车股份有限公司 车辆控制数据的处理方法、装置和控制器
CN109466338A (zh) * 2018-09-29 2019-03-15 同济大学 一种六轮独立驱动车辆的电机力矩能耗优化控制分配方法

Also Published As

Publication number Publication date
CN112026530A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2021098752A1 (zh) 电动汽车节能方法、装置以及电动汽车
US10017055B2 (en) Method for controlling air conditioner based on energy flow mode of vehicle
JP3163560B2 (ja) ソーラーカーの複合制御装置及びその方法
JP2006117234A (ja) ベルト型ハイブリッド車両の回生制動制御方法
KR101684507B1 (ko) 하이브리드 차량의 제어 시스템 및 방법
JP2002152909A (ja) 前後輪駆動車両の制御装置
US10913364B2 (en) Electric vehicle and electric vehicle power switch method
KR101655567B1 (ko) 하이브리드 차량의 구동 제어 장치
CN111942367A (zh) 混合动力车辆的动力系统的扭矩分配的方法
CN111998514A (zh) 空调器的控制方法、空调器及计算机可读存储介质
CN108116271B (zh) 一种电机系统及其控制方法
CN109484158B (zh) 车辆的电机冷却控制方法、装置及电机冷却系统
JP2009275783A (ja) 油圧式走行車両の制御装置
CN105593092A (zh) 混合动力车辆的控制装置以及控制方法
WO2023222095A1 (zh) 一种车辆扭矩控制方法、装置、电子设备和存储介质
CN112031917A (zh) 一种发动机水温控制方法及发动机水温控制器
US10850592B2 (en) Engine control method for heating of hybrid electric vehicle
KR102439628B1 (ko) 하이브리드 차량의 주행 제어 방법
JP2004120877A (ja) オルタネータ制御装置
TW201401761A (zh) 馬達電源控制系統
KR20160136725A (ko) 하이브리드 차량 시동토크 제어 시스템 및 그 방법
US10930958B2 (en) Fuel cell system
KR20210077078A (ko) 차량의 모터 출력 제어 방법 및 시스템
CN115771500B (zh) 一种混合动力系统发动机启动条件判定的控制方法
CN112092639A (zh) 一种双电机车辆的扭矩分配控制方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890939

Country of ref document: EP

Kind code of ref document: A1