WO2021098641A1 - 热管、散热模组及终端设备 - Google Patents

热管、散热模组及终端设备 Download PDF

Info

Publication number
WO2021098641A1
WO2021098641A1 PCT/CN2020/129041 CN2020129041W WO2021098641A1 WO 2021098641 A1 WO2021098641 A1 WO 2021098641A1 CN 2020129041 W CN2020129041 W CN 2020129041W WO 2021098641 A1 WO2021098641 A1 WO 2021098641A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
mounting
heat
pipe body
glue
Prior art date
Application number
PCT/CN2020/129041
Other languages
English (en)
French (fr)
Inventor
魏亚蒙
刘显亮
程光坤
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to US17/426,359 priority Critical patent/US20220104398A1/en
Priority to CN202080005731.9A priority patent/CN113039875B/zh
Publication of WO2021098641A1 publication Critical patent/WO2021098641A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20318Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Definitions

  • This application relates to the technical field of heat dissipation of smart terminal devices, and in particular to a heat pipe, a heat dissipation module and a terminal device.
  • the heat pipe can be regarded as a passive heat transfer element with high thermal conductivity. It utilizes the principle of heat conduction and the rapid heat transfer properties of phase change media. The heat of the heating object is quickly transferred to the outside of the heat source through the heat pipe, and its thermal conductivity exceeds any known The thermal conductivity of metals.
  • the heat pipe is divided into the evaporation section, the adiabatic section and the condensation section according to the operating conditions.
  • Its operating mechanism is to use the phase change transfer process of the working fluid to evaporate and condense at the cold and hot ends to achieve heat transfer.
  • the inside of the heat pipe is in a vacuum state, the evaporation and condensation of the working fluid can occur at a temperature lower than the normal boiling point of the working fluid, and the inner wall of the heat pipe is attached with a porous capillary structure, which can accelerate the circulation speed of the evaporation and condensation of the working fluid.
  • an invalid end ie, invalid portion
  • a porous capillary structure is generally formed integrally at least part of the periphery of the heat pipe body of the heat pipe, and the inner wall of the heat pipe body is attached with a porous capillary structure.
  • the invalid end does not have a porous capillary structure, and it cannot perform the heat conduction or heat transfer effect of evaporative condensation.
  • the heat pipe usually has a heat pipe body and an invalid end integrally formed with the heat pipe body during manufacture.
  • the inner side of the tube wall of the heat pipe body has a porous capillary structure, which is the part of the heat pipe that uses the phase change transfer process of the working fluid to evaporate and condense at the cold and hot ends to achieve heat transfer.
  • the inside of the invalid end does not have a porous capillary structure, and is the part of the heat pipe that does not participate in the heat conduction process of evaporation and condensation, that is, the other part of the heat pipe except the heat pipe body.
  • the outer wall surface of the heat pipe body of the heat pipe is directly bonded to the shell of the heat source assembly through the adhesive, and directly bonded to the terminal device with a lower temperature relative to the temperature at the heat source assembly through the adhesive.
  • the heat at the heat source of the heat source assembly is transferred to other locations with lower temperature through the heat pipe.
  • the purpose of this application is to solve the problems of the heat pipe body in the prior art that the heat pipe body is prone to deformation and failure during the assembly process, and the heat transfer efficiency is low.
  • the embodiments of the present application provide a heat pipe, a heat dissipation module, and terminal equipment.
  • the embodiment of the present application provides a heat pipe, which includes a heat pipe body and an invalid portion integrally formed with the heat pipe body when the heat pipe is made.
  • the inner side of the tube wall of the heat pipe body has a porous capillary structure layer, and the invalid portion is located On at least a part of the circumference of the heat pipe body, and the invalid portion is used as a mounting portion for fixing the heat pipe to other objects.
  • the invalid part integrally formed with the heat pipe body as the installation part for fixing the heat pipe and other objects.
  • the invalid part needs to be loaded, so that it will not have a significant impact on the heat pipe body.
  • the integrity of the porous capillary structure layer inside the heat pipe body is ensured, and the heat conduction capacity of the heat pipe is not significantly lost, thereby reducing the heat conduction capacity loss during the heat pipe assembly process and improving the heat transfer efficiency of the heat pipe.
  • the above structure is particularly suitable for the scene where the heat pipe adopts a thin heat pipe with a small thickness.
  • the mounting portion has a mounting surface facing the other object, and the mounting surface is provided with a glue containing space recessed into the mounting surface for filling with sol.
  • the mounting surface of the mounting part facing other objects is provided with a glue containing space recessed into the mounting surface.
  • the heat pipe will not be lifted up by the glue area of the glue holding space. On the one hand, it avoids the deformation and failure of the heat pipe body, and on the other hand, it avoids the warping of the two ends of the heat pipe, thereby avoiding the problem of the top screen.
  • a side of the mounting portion facing away from the mounting surface has a plurality of heat sinks in a fin heat dissipation manner. This can further improve the heat dissipation effect of the heat pipe.
  • the glue containing space extends on the mounting surface, and at least one end of the glue containing space penetrates the mounting surface.
  • the glue containing space extends along a straight line on the mounting surface, and both ends of the glue containing space penetrate the mounting surface. In this way, when the mounting part is bonded to other objects, it is convenient to perform the glue dispensing operation, the processing technology is simple, and the bonding is firm.
  • the heat pipe has two mounting parts, and the two mounting parts are respectively located at the first end and the second end of the heat pipe body; wherein, the first end and the second end End relative settings. This can ensure that the heat pipe is very firmly mounted on other objects through the two mounting parts, while the structure is simple and the cost is low.
  • the glue containing space on each of the mounting portions extends linearly along the transverse direction of the heat pipe on the mounting surface, and both ends of the glue containing space penetrate the mounting surface.
  • each of the mounting portions has a plurality of the glue containing spaces, and the plurality of glue containing spaces on each of the mounting portions are arranged at intervals along the longitudinal direction of the heat pipe. This can further improve the firmness of the fixing between the mounting part and other objects.
  • the heat pipe has four mounting parts, two of which are located at the first end and the second end of the heat pipe body, and the other two mounting parts are located at the The first side and the second side of the heat pipe body, and the four mounting parts are connected to each other to form a frame-shaped mounting part; wherein, the first end and the second end are arranged opposite to each other, and the first side and The second sides are arranged oppositely, and one end of the first side and one end of the second side are both adjacent to the first end, and the other end of the first side and the other end of the second side are both Adjacent to the second end. This can improve the firmness, stability and reliability of fixing the heat pipe to other objects.
  • the glue containing spaces on the four mounting parts communicate with each other to form a ring-shaped glue space. In this way, a closed glue dispensing circuit can be formed during the dispensing operation.
  • the mounting surface of the frame-shaped mounting portion protrudes from the surface of the heat pipe body facing the other object, and the four mounting portions surround the heat pipe body to form a heat-conducting material filling surface.
  • Housing chamber When the heat pipe is installed on other objects, the accommodating chamber can be filled with thermally conductive materials to reduce the contact thermal resistance between the heat pipe and other objects, improve the heat dissipation capacity of the heat pipe, and seal the heat pipe and the glue path formed by the glue dispensing operation.
  • the thermal conductive material for example, thermal conductive silicone grease coated between other objects including the shielding cover extends the service life of the heat dissipation system, and at the same time avoids the escape of the thermal conductive material during use, so as not to affect the function of electronic components.
  • the heat pipe has two invalid parts, corresponding to the two mounting parts, and the two mounting parts are respectively located at two ends of the heat pipe body.
  • the heat pipe has four invalid parts, corresponding to the four mounting parts, wherein two of the mounting parts are respectively located at both ends of the heat pipe body, and the other two mounting parts They are respectively located on both sides of the heat pipe body, and the four mounting parts are connected to each other to form a frame-shaped mounting part.
  • the embodiment of the present application also provides a heat dissipation module, including a heat pipe and a shell, the shell is used to cover the heat source, and the heat pipe adopts the heat pipe provided in any of the above embodiments.
  • a heat dissipation module including a heat pipe and a shell, the shell is used to cover the heat source, and the heat pipe adopts the heat pipe provided in any of the above embodiments.
  • the other objects mentioned include the housing, at least part of the mounting part is fixed to the housing; the heat pipe body has an evaporation section, and the evaporation section is arranged corresponding to the heat source to absorb heat from the heat source.
  • the mounting surface of the mounting portion is provided with a glue containing space recessed into the mounting surface, and a portion of the casing corresponding to the glue containing space of the mounting portion is provided with a casing containing glue Space, by filling sol in the correspondingly provided housing glue containing space and the glue containing space, and bonding at least part of the mounting portion to the glue containing space through the housing glue containing space and the glue containing space ⁇ Said shell.
  • the heat pipe has two mounting parts, the two mounting parts are respectively located at the first end and the second end of the heat pipe body, and the mounting part is located at one end of the evaporation section. Fixed to the housing; wherein, the first end and the second end are oppositely arranged, and the first end is located in the evaporation section.
  • the heat pipe has four mounting parts, two of which are located at the first end and the second end of the heat pipe body, and the other two mounting parts are located at the The first side and the second side of the heat pipe body, and the four mounting portions are connected to each other to form a frame-shaped mounting portion, and the glue-containing spaces on the four mounting portions are connected to each other to form a frame surrounding the heat pipe body Ring-shaped glue space; wherein, the first end and the second end are disposed oppositely, the first side and the second side are disposed oppositely, and one end of the first side and the second side One end is adjacent to the first end, the other end of the first side and the other end of the second side are both adjacent to the second end, and the first end is located in the evaporation section.
  • the other objects correspond to the ring-shaped glue space of the frame-shaped mounting portion
  • a ring-shaped other-object-adhesive space there is provided a ring-shaped other-object-adhesive space
  • the ring-shaped rubber space and the ring-shaped other-object rubber-accommodating space are provided correspondingly.
  • the frame-shaped mounting part is bonded to other objects, which can improve the heat pipe The firmness of fixing with other objects, simple processing technology and low cost.
  • the mounting surface of the frame-shaped mounting portion protrudes from the surface of the heat pipe body facing the housing, so that the four mounting portions surround the heat pipe body to form a receiving chamber.
  • the receiving cavity is filled with a thermally conductive material to form a thermally conductive layer.
  • the heat-conducting material can fill the gap between the heat pipe body and other objects including the shielding cover, reduce the contact thermal resistance, and improve the heat dissipation capacity of the entire terminal device.
  • the heat pipe has four invalid parts corresponding to the four mounting parts, wherein two of the mounting parts are located at the first end and the second end of the heat pipe body, and the other two The mounting portions are respectively located on the first side and the second side of the heat pipe body, and the four mounting portions are connected to each other to form a frame-shaped mounting portion; wherein, the first end and the second end Oppositely arranged, the first side and the second side are arranged oppositely, and one end of the first side and one end of the second side are both adjacent to the first end, and the other end of the first side and The other end of the second side is adjacent to the second end, and the first end is located in the evaporation section.
  • the mounting portion located at the first end is fixed to the housing by riveting, and the mounting portion located on the first side and the second side of the heat pipe body is fixed to the housing by spot welding.
  • the fixing method of spot welding and riveting is used to fix the heat pipe, which eliminates the time-consuming holding pressure operation, and has obvious advantages in mass production.
  • the housing is a shielding case; the other objects include only the shielding case, or the other objects include the shielding case and the middle frame or rear case of the terminal device.
  • An embodiment of the present application further provides a terminal device, which includes the heat dissipation module provided in any of the above embodiments, the heat pipe body further has a condensation section, and the temperature in the condensation section and the terminal device is lower than The other positions of the temperature at the heat source are correspondingly set.
  • the invalid part integrally formed with the heat pipe body as the installation part for fixing the heat pipe and other objects.
  • the invalid part needs to be loaded, so that it will not have a significant impact on the heat pipe body.
  • the integrity of the porous capillary structure layer inside the heat pipe body is ensured, and the heat conduction capacity of the heat pipe is not significantly lost, thereby reducing the heat conduction capacity loss during the assembly process of the heat pipe, improving the heat transfer efficiency of the heat pipe, and improving the performance of the terminal device.
  • the heat dissipation capacity provides the reliability of the terminal equipment.
  • the surface of the housing facing the corresponding mounting portion is the first mounting surface
  • the surface of the other object other than the housing facing the corresponding mounting portion is the second mounting surface
  • the first mounting surface and the second mounting surface are located on the same plane. In this way, it is convenient to reliably install the mounting part of the heat pipe on the shell and other parts except the shell.
  • FIG. 1 is a schematic diagram of the three-dimensional structure of the heat pipe of Embodiment 1 of the present application.
  • FIG. 2 is a schematic diagram of a partial enlarged structure of the heat pipe of Embodiment 1 of the present application.
  • FIG. 3 is a schematic diagram of a partial structure of the heat dissipation module according to Embodiment 1 of the application.
  • FIG. 4 is a schematic structural diagram of a terminal device according to Embodiment 1 of the application.
  • FIG. 5 is a schematic diagram (1) of the three-dimensional structure of the heat pipe of Embodiment 2 of the present application.
  • FIG. 6 is a schematic diagram (2) of the three-dimensional structure of the heat pipe of Embodiment 2 of the present application.
  • FIG. 7 is a schematic diagram of a partially enlarged structure of the heat pipe of Embodiment 2 of the present application.
  • Fig. 8 is a schematic sectional view of the heat pipe in Fig. 7 along A-A.
  • FIG. 9 is a schematic diagram of a partial structure of a heat dissipation module according to Embodiment 2 of the application.
  • FIG. 10 is a schematic diagram of the three-dimensional structure of the heat pipe of Embodiment 3 of the present application.
  • FIG. 11 is a schematic diagram of a partial enlarged structure of the heat pipe of Embodiment 3 of the present application.
  • FIG. 12 is a schematic diagram of a partial structure of a heat dissipation module according to Embodiment 3 of the application.
  • cooling module 200: cooling module
  • 300 heat pipe; 310: containment chamber; 320: heat conduction layer;
  • 400 heat pipe body; 410: evaporation section; 420: condensation section; 430: front side; 440: back side; 450: first end; 460: second end; 470: first side; 480: second side;
  • 500 invalid part (installation part); 510: front (installation surface); 520: back; 530: rivet; 540: spot welding point;
  • 700 Glue-containing space
  • 710 Ring-shaped glue space
  • 930 middle frame
  • 931 bottom plate
  • 932 outer frame
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in this application can be understood under specific circumstances.
  • FIG. 1 shows a schematic structure of a heat pipe 300 according to Embodiment 1 of the present application.
  • the working principle of the heat pipe 300 is to utilize the phase change process in which the medium evaporates and absorbs heat in the evaporating section 410 and then condenses and dissipates heat in the condensing section 420, so that heat is quickly transferred from a high temperature position to a low temperature position.
  • the heat pipe 300 is applied to a mobile phone. It should be noted that the heat pipe 300 can also be applied to other electronic devices such as tablet computers and smart wearable devices.
  • Embodiment 1 of the present application provides a heat pipe 300, which includes a heat pipe body 400 and two invalid portions 500 integrally formed with the heat pipe body 400 when the heat pipe 300 is manufactured.
  • Two invalid parts 500 are respectively located at two ends of the heat pipe body 400, and each invalid part 500 is used as a mounting part 500 for fixing the heat pipe 300 to other objects. That is to say, the heat pipe 300 has two invalid parts 500 corresponding to the two mounting parts 500.
  • the two mounting parts 500 are respectively located at the two ends of the heat pipe body 400, that is, the two mounting parts 500 are respectively located at the first end of the heat pipe body 400.
  • 450 and the second end 460 wherein the first end 450 and the second end 460 are arranged opposite to each other.
  • the heat pipe 300 of the present application is not limited to having two invalid parts 500 as the mounting part 500, and can also have one invalid part, three invalid parts, four invalid parts and more.
  • the scope of protection applied for has a limiting effect; and, the invalid portion 500 as the mounting portion 500 is not limited to being provided on both ends of the heat pipe body 400, and can also be provided on one, two, three or all sides of the heat pipe body 400. Four sides, this does not limit the scope of protection of this application.
  • other objects may include a shielding cover 900 (see FIG. 3) and a middle frame 930 (see FIG. 4) or a rear shell (not shown in the figure). It should be noted that other objects can also only include the shielding cover 900 of the heat source assembly. At this time, the shielding cover 900 is larger, that is, from the heat source close to the heat source assembly (the heat source may be electronic components with a large amount of heat such as chips). The location extends far away from the heat source.
  • the heat pipe 300 adopts a thin sheet structure, which can be better adapted to the light and thin design requirements of the terminal device. It should be noted that, in other alternative embodiments, the heat pipe 300 may also adopt other shapes such as a cylindrical structure, and is not limited to a thin sheet structure.
  • the inner side of the tube wall of the heat pipe body 400 has a porous capillary structure layer (not shown in the figure).
  • the porous capillary structure layer is a liquid wick, and the liquid wick is composed of a capillary porous material.
  • One end of the heat pipe body 400 is an evaporation section 410, and the evaporation section 410 is arranged corresponding to the heat source (not shown in the figure) of the heat source assembly 910 (see FIG. 4) to absorb heat from the heat source.
  • the other end of the heat pipe body 400 is a condensing section 420, and the condensing section 420 is arranged corresponding to the position of the non-heat source in the terminal device; wherein the temperature at the non-heat source is lower than the temperature at the heat source.
  • the medium evaporates after absorbing heat in the evaporating section 410, and condensing and releasing heat in the condensing section 420 that migrates to the other end, thereby achieving the effect of efficient heat transfer.
  • the first end 450 of the heat pipe body 400 is located in the evaporation section 410, and the second end 460 of the heat pipe body 400 is located in the condensation section 420.
  • the invalid portion 500 located at one end of the heat pipe body 400 is installed as the mounting portion 500 on the shielding cover 900 of the heat source assembly, and the evaporation section 410 of the heat pipe body 400 is arranged corresponding to the heat source of the heat source assembly 910 (see FIG. 4) ,
  • the invalid part 500 at the other end of the heat pipe body 400 is used as the installation part 500 to be installed in the low temperature non-heat source area of the terminal device (such as the middle frame 930 or the back shell), the condensing section 420 of the heat pipe body 400 and the temperature in the terminal device Corresponding to other lower positions, the heat at the heat source of the heat source assembly 910 (see FIG.
  • the heat dissipation area of the middle frame 930 or the rear shell is large and has sufficient contact with the air, which can quickly diffuse the heat of the condensation section 420 of the heat pipe body 400, thereby preventing the local temperature of the heat source of the heat source assembly 910 (see FIG. 4) from overheating. high.
  • the heat pipe body 400 may adopt a structure known in the prior art.
  • the heat pipe body 400 includes a tube shell and a liquid wick as a porous capillary structure layer. All the invalid parts 500 and the tube shell are integrally formed when the heat pipe 300 is manufactured.
  • the inside of the shell is pumped into a negative pressure state and filled with an appropriate liquid, which has a low boiling point and is easy to volatilize.
  • the wick is attached to the inner wall of the tube shell.
  • the liquid in the heat pipe body 400 evaporates quickly, and the vapor flows to the condensation section 420 at the other end under the power of thermal diffusion, and condenses in the condensation section 420 to release heat, and the liquid flows along the porous material. It flows back to the evaporation section 410 by capillary action, and the cycle continues until the temperature at both ends of the heat pipe body 400 is equal.
  • the material of the shell is copper. Copper thin heat pipes have better thermal conductivity and lower weight, and have obvious advantages when used in terminal equipment. It should be noted that in other alternative embodiments, the material of the tube shell may also be stainless steel, aluminum or alloy, etc., which does not limit the scope of protection of the application.
  • the inside of the invalid portion 500 as the mounting portion 500 does not contain a porous capillary structure layer, and does not participate in the heat conduction process of the evaporation and condensation of the heat pipe 300.
  • the deformation and destruction of the invalid portion 500 does not affect the heat transfer efficiency of the heat pipe 300.
  • the heat pipe body 400 is hardly affected, ensuring the integrity of the porous capillary structure layer attached to the inner wall of the heat pipe body 400, thereby ensuring the heat transfer efficiency of the heat pipe 300.
  • the ineffective portion 500 will also function as a cooling fin to enhance the thermal conductivity of the heat pipe 300.
  • the length of the invalid portion 500 is 1 to 10 mm. It should be noted that in other alternative embodiments, the invalid portion 500 can also be set to other suitable sizes according to actual needs, and it only needs to be able to be used as the mounting portion 500 to be fixedly installed with other objects. It has a limiting effect on the protection scope of this application.
  • one or more of the following fixing methods can be selected from the group consisting of gluing, riveting, welding, and clamping to connect the invalid portion 500 of the installation portion 500 with other objects (for example, the shielding cover 900). , The middle frame 930 or the rear shell, etc.) are fixed. The external disturbances during the connection are all applied to the invalid portion 500 to avoid affecting the heat pipe body 400.
  • the invalid part 500 formed integrally with the heat pipe body 400 is used as the mounting part 500 for fixing the heat pipe 300 to other objects.
  • the heat pipe body 400 will not be significantly affected.
  • the integrity of the porous capillary structure layer inside the heat pipe body 400 is ensured, and the thermal conductivity of the heat pipe 300 is not significantly lost, so that the heat pipe 300 can be reduced.
  • the thermal conductivity loss during the assembly process improves the heat transfer efficiency of the heat pipe 300, thereby improving the heat dissipation capability of the terminal device, and improving the reliability of the terminal device.
  • the above-mentioned structure is particularly suitable for the scene where the heat pipe 300 adopts a thin heat pipe with a small thickness.
  • the mounting portion 500 corresponding to each invalid portion 500 may adopt any of the following implementation manners and the mounting portion 500 corresponding to the invalid portion 500 provided in the possible implementation manners.
  • the two mounting parts 500 corresponding to the two invalid parts 500 adopt a symmetrical design and structure. It should be noted that the structures of the two mounting parts 500 may be the same or different.
  • FIG. 2 shows the schematic structure of the part of the mounting part 500 corresponding to the invalid part 500 located at one end of the evaporation section 410 of the heat pipe 300 of the first embodiment of the present application.
  • the mounting surface 510 of the mounting portion 500 facing other objects is provided with a glue containing space 700 recessed into the mounting surface 510 and used for filling the sol 920 (see FIG. 3 ).
  • the heat pipe 300 will not be lifted up by the glue dispensing area when the mounting part 500 is under pressure. On the one hand, it prevents the heat pipe body 400 from deforming and failing, and on the other hand, it prevents the two ends of the heat pipe 300 from being lifted up, thereby avoiding the problem of the top screen.
  • the pressure holding means that after the injection of the injection molding machine is completed, the screw continues to maintain a certain pressure for a period of time to obtain a full product without shrinkage.
  • the heat pipe body 400 has a front surface 430 and a back surface 440 disposed opposite to each other along the thickness direction H of the heat pipe.
  • the mounting portion 500 has a front surface 510 and a back surface 520 disposed opposite to each other along the thickness direction H of the heat pipe, and the mounting surface of the mounting portion 500 is the front surface 510 of the mounting portion 500.
  • the front surface 510 of the mounting portion 500 is located between the front surface 430 of the heat pipe body 400 and the back surface 440 of the heat pipe body 400 in the thickness direction H of the heat pipe, that is, the front surface 510 of the mounting portion 500 faces the mounting portion 500 with respect to the front surface 430 of the heat pipe body 400
  • the back 520 sinks.
  • the front 510 of the mounting part 500 is the side of the mounting part 500 close to the display screen (not shown in the figure), and the back 520 of the mounting part 500 is the side of the mounting part 500 facing away from the display screen; the heat pipe body
  • the front 430 of the heat pipe body 400 is the side of the heat pipe body 400 close to the display screen, and the back 440 of the heat pipe body 400 is the side of the heat pipe body 400 facing away from the display screen.
  • the front surface of the evaporation section 410 of the heat pipe body 400 is in contact with the shielding cover 900, and the evaporation section 410 is located at a position corresponding to the heat source of the heat source assembly 910 ( That is, a position close to the heat source, such as a position facing the heat source, so that the heat at the heat source can be more effectively transferred through the evaporation section 410 of the heat pipe body 400 to other lower temperature locations.
  • the glue containing space 700 extends linearly along the transverse direction T of the heat pipe on the mounting surface 510, and both ends of the glue containing space 700 penetrate the mounting surface 510. It should be noted that in other alternative embodiments, the glue-containing space 700 may also extend along a curve on the mounting surface 510; or, one end of the glue-containing space 700 penetrates the mounting surface 510 and the other end does not penetrate.
  • the two glue containing spaces 700 are arranged at intervals along the longitudinal direction L of the heat pipe. In this way, the invalid portion 500 and the shielding cover 900 can be adhered more firmly.
  • Those skilled in the art can understand that there may be only one glue holding space 700, or there may be three or more than three.
  • the cross section of the glue containing space 700 is rectangular. It should be noted that, in other alternative embodiments, the cross section of the glue containing space 700 may also be polygonal, arcuate, or other shapes.
  • the glue containing space 700 can be used in conjunction with the glue containing space of the mating surface of the shielding cover 900 of the heat source assembly 910.
  • the indenter for pressing and holding the heat pipe matches the shape of the mounting part 500 of the heat pipe. During the pressing process, the indenter only contacts the mounting part 500 and does not directly interact with the heat pipe body 400 to avoid damaging the inside of the tube wall of the heat pipe body 400 The attached porous capillary structure layer.
  • the mounting portion 500 may not have a space for holding glue.
  • riveting, electric welding, and clamping are used to fix the heat pipe.
  • the opposite side of the mounting surface 510 of the mounting portion 500 (ie, the back surface 520 of the mounting portion 500) is formed with a plurality of heat sinks (not shown in the figure) in a fin heat dissipation manner. This can further improve the heat dissipation effect of the heat pipe.
  • the current heat pipe industry has been committed to reducing the length of the ineffective portion 500 to increase the ratio of the effective portion of the heat pipe (ie, the heat pipe body 400) and enhance the thermal conductivity.
  • this application goes the other way, deliberately increasing the length of the invalid portion 500 of the heat pipe, so that it can be used for the installation portion 500 where the heat pipe 300 is fixed to other objects, so as to achieve the purpose of installing the heat pipe 300 without damage.
  • the integrity of the porous capillary structure layer inside the heat pipe body 400 is ensured, and the thermal conductivity of the heat pipe 300 is not significantly lost, thereby reducing the thermal conductivity loss during the assembly process of the heat pipe, improving the heat transfer efficiency of the heat pipe 300, and the manufacturing cost is relatively high. low.
  • FIG. 3 shows a schematic structure of a heat dissipation module 200 according to Embodiment 1 of the present application.
  • Embodiment 1 of the present application also provides a heat dissipation module 200, which includes a heat pipe 300 and a shielding cover 900 (that is, the shell of the heat source assembly 910).
  • the shielding cover 900 is used to cover the heat source assembly 910.
  • Heat source The heat pipe 300 adopts the heat pipe 300 provided in any of the foregoing embodiments or possible embodiments.
  • one mounting portion 500 located at one end of the evaporation section 410 is fixed to the shielding cover 900, and another mounting portion 500 located at one end of the condensing section 420 is connected to the middle frame 930 (see FIG. 4) or rear housing (FIG. 4) of the terminal device. Not shown in) fixed.
  • the heat pipe body 400 has an evaporation section 410, and the evaporation section 410 is arranged corresponding to a heat source (not shown in the figure) to absorb heat from the heat source.
  • the two mounting parts 500 respectively located at one end of the evaporation section 410 and the condensation section 420 may both be fixed on the same shielding cover 900.
  • the overall size of the shielding cover 900 is relatively larger. Long, where one mounting part 500 at one end of the evaporating section 410 is located near the heat source, and the other mounting part 500 at one end of the condensing section 420 is located at other locations where the temperature is lower than the heat source.
  • a portion of the shielding cover 900 corresponding to the glue containing space 700 of the mounting portion 500 is provided with a glue containing space 902, by filling the corresponding glue containing space 902 and the glue containing space 700 with sol 920, and passing the glue containing space 902 (Namely, the glue containing space of the shell) is connected to the glue containing space 700, and the mounting part 500 located at one end of the evaporation section 410 is bonded to the shielding cover 900.
  • the sol 920 can be hot melt glue, thermal conductive gel, or quick-drying glue.
  • the mating surface of the shielding cover 900 of the heat source assembly and the mounting portion 500 of the heat pipe 300 may not be provided with an adhesive space.
  • the position and shape of the glue containing space 902 opened on the shielding cover 900 of the heat source assembly match the glue containing space 700 on the mounting part 500 of the heat pipe 300.
  • hot melt adhesive is selected for the sol 920, and the hot melt adhesive is located between the corresponding glue containing space 902 and the glue containing space 700.
  • the method for fixing the heat pipe 300 includes the following steps:
  • a glue dispensing operation is performed on the glue containing space 902 on the mating surface of the shielding cover 900 of the heat source assembly.
  • the shape of the glue containing space 902 and the glue containing space 700 are the same, and the number of the glue containing spaces 700 is the same.
  • the sol 920 used in the dispensing operation can be hot melt glue, thermal conductive gel, or quick-drying glue.
  • a jig is used to accurately position the heat pipe 300 on the shielding cover 900 of the heat source assembly.
  • the heat pipe 300 is fixed with a pressurizing and pressure holding jig corresponding to the shape of the mounting part 500 of the heat pipe 300.
  • the mounting part 500 of the heat pipe 300 is pressurized to completely disperse the sol 920, and the mounting part 500 of the heat pipe 300 is kept under pressure until the sol 920 is fully effective, and finally the shielding cover 900 of the heat pipe 300 and the heat source assembly 910 is realized Secure connection and close contact.
  • the pressure head for pressing and holding the heat pipe 300 matches the shape of the mounting part 500 of the heat pipe 300. During the pressing process, the pressure head only contacts the mounting part 500 and does not directly interact with the heat pipe body 400 to avoid damaging the heat pipe body 400. Porous capillary structure layer on the inside of the wall.
  • FIG. 4 is a schematic structural diagram of an implementation manner of a terminal device 100 according to Embodiment 1 of the present application.
  • Embodiment 1 of the present application also provides a terminal device 100, which includes a middle frame 930, a circuit board 940, two heat sources (for example, chips), and two heat dissipation modules 200 arranged corresponding to the two heat sources.
  • the circuit board 940 is fixed to the back of the bottom plate 931 of the middle frame 930, and two heat sources are soldered to the circuit board 940 to be electrically connected to the circuit board 940.
  • Each heat dissipation module 200 adopts the heat dissipation module 200 provided in any of the above-mentioned embodiments or possible embodiments.
  • each heat dissipation module 200 is disposed on a corresponding heat source, and forms a heat source assembly 910 with the corresponding heat source.
  • the positions of the evaporation sections 410 of the two heat dissipation modules 200 correspond to the heat sources of the two heat source assemblies 910 to absorb heat from the heat sources.
  • the mounting part 500 (that is, the mounting part 500 located at the second end 460 of the heat pipe body 400) in the heat pipe 300 of one of the heat dissipation modules 200 is bonded to the bottom plate 931 of the middle frame 930 and located below the circuit board 940 Area.
  • the heat generated by the heat source of the heat source assembly 910 corresponding to one of the heat dissipation modules 200 can be effectively transferred to the bottom plate 931 of the middle frame 930 through the evaporation section 410 and the condensation section 420 of the heat pipe body 400.
  • the mounting part 500 of the heat pipe 300 of the other heat dissipation module 200 at one end of the condensation section 420 is bonded to the outer frame 932 of the middle frame 930.
  • the heat generated by the heat source of the heat source assembly 910 corresponding to the other heat dissipation module 200 can be effectively transferred to the outer frame 932 of the middle frame 930 through the evaporation section 410 and the condensation section 420 of the heat pipe body 400.
  • the mounting part 500 located at one end of the condensing section 420 of the heat pipes 300 of the two heat dissipation modules 200 can be installed on the outer frame 932 of the middle frame 930 at the same time, or can be installed on the bottom plate 931 of the middle frame 930 at the same time. They are installed separately or simultaneously at other locations in the terminal device 100 that are lower than the temperature of the heat source component 910.
  • the structure of the heat pipe 300 adopted by the two heat dissipation modules 200 used herein may be the same or different.
  • the fixing structure between the mounting part 500 at one end of the evaporation section 410 and the shielding cover 900 in the heat pipe 300 and the fixing structure between the mounting part 500 at one end of the condensing section 420 and other components except the shielding cover 900 may be the same.
  • the surface of the shielding cover 900 of one of the heat dissipation modules 200 facing the corresponding mounting portion 500 and the surface of the bottom plate 931 of the middle frame 930 facing the corresponding mounting portion 500 are located on the same plane. It is convenient to reliably install the two mounting parts 500 of the heat pipe 300 of one of the heat dissipation modules 200 on the shielding cover 900 and the bottom plate 931 of the middle frame 930 respectively.
  • the surface of the shielding cover 900 of the other heat dissipation module 200 facing the corresponding mounting portion 500 and the surface of the outer frame 932 of the middle frame 930 facing the corresponding mounting portion 500 are located on the same plane. It is convenient to reliably install the two mounting parts 500 of the heat pipe 300 of the other heat dissipation module 200 on the shielding cover 900 of the other heat dissipation module 200 and the outer frame 932 of the middle frame 930 respectively.
  • the ineffective portion 500 is used as the mounting portion 500 for fixing the heat pipe 300 and other objects.
  • only a load is applied to the ineffective portion 500, which will not significantly affect the heat pipe body 400.
  • the integrity of the porous capillary structure inside the heat pipe body 400 is ensured, and the thermal conductivity of the heat pipe 300 is not significantly lost, thereby reducing the thermal conductivity loss during the assembly process of the heat pipe 300, improving the heat transfer efficiency of the heat pipe 300, and thereby improving
  • the heat dissipation capability of the terminal device 100 provides the reliability of the terminal device 100 in use.
  • the middle frame 930 has oppositely arranged front and back sides, wherein a display assembly (not shown in the figure) is arranged on the front side, and components such as a circuit board 940 and a battery (not shown in the figure) are arranged on the back side, and then the front and The front shell is connected, and the back is connected with the rear shell to form the main body of the terminal device.
  • the middle frame 930 is made of metal alloy materials, such as steel plates, magnesium aluminum alloys, and the like.
  • the shielding cover 900 is arranged on the heat source, and the shielding cover 900 is made of a metal material, which can act as an electrostatic shield for the heat source, thereby preventing the heat source from causing electrostatic interference to the outside world.
  • the shielding cover 900 can be made of nickel silver, which has good thermal conductivity.
  • FIG. 5 to 6 are schematic diagrams of the three-dimensional structure of the heat pipe 300 according to Embodiment 2 of the present application.
  • the viewing angle shown in FIG. 5 is the back viewing angle of the heat pipe 300
  • the viewing angle shown in FIG. 6 is the front viewing angle of the heat pipe 300.
  • FIG. 7 is a partial enlarged view of FIG. 6, which shows the structure of the invalid portion 500 of the evaporation section 410 close to the heat pipe body 400.
  • FIG. 8 is a cross-sectional view of the heat pipe 300 in FIG. 7 along A-A, which shows the structure of the part of the heat pipe 300 corresponding to the evaporation section 410.
  • the structure of the ineffective portion 500 near the condensation section 420 is the same as the structure of the ineffective portion 500 near the evaporation section 410.
  • the structure of the invalid portion 500 near the condensation section 420 and the structure of the invalid portion 500 near the evaporation section 410 may also be different. The scope of protection has a limiting effect.
  • Embodiment 2 of the present application provides a heat pipe 300.
  • the structure of the heat pipe 300 is basically the same as the structure of the heat pipe 300 of the embodiment 1, except for the two ends of the heat pipe body 400 (that is, the two ends in the longitudinal direction L of the heat pipe) as provided in the embodiment 1.
  • the two ends of the heat pipe body 400 that is, the two ends in the longitudinal direction L of the heat pipe
  • there are also two installations on both sides of the heat pipe body 400 that is, the two sides in the transverse direction T of the heat pipe and the two sides parallel to the longitudinal direction L of the heat pipe.
  • the invalid part 500 of the part 500 In the heat dissipation process, the invalid portion 500 can also function as a heat dissipation rib.
  • the heat pipe 300 has four invalid portions 500, so as to correspond to the four mounting portions 500.
  • Two of the mounting parts 500 are respectively located at the first end 450 and the second end 460 of the heat pipe body 400, and the other two mounting parts 500 are respectively located at the first side 470 and the second side 480 of the heat pipe body 400, and the four mounting parts 500 are They are connected to each other to form a frame-shaped mounting portion 600.
  • the structure of the two mounting parts 500 located at the two ends of the heat pipe body 400 may adopt the structure of the two mounting parts provided in any of the embodiments and possible implementations in the first embodiment.
  • first end 450 is opposite to the second end 460
  • first side 470 is opposite to the second side 480
  • one end of the first side 470 and one end of the second side 480 are both adjacent to the first end 450.
  • the other end of the 470 and the other end of the second side 480 are both adjacent to the second end 460
  • the first end 450 is located in the evaporation section
  • the second end 460 is located in the condensation section.
  • each mounting portion 500 is provided with a glue containing space 700 recessed into the mounting surface 510 and used for filling the sol 920.
  • the corresponding glue-containing spaces 700 on the four mounting parts 500 communicate with each other to form a ring-shaped glue space 710.
  • the ring describes the glue space 710 surrounding the outer periphery of the heat pipe body 400.
  • the glue containing space 700 of each mounting portion 500 extends along a straight line on the mounting surface 510.
  • the glue containing spaces 700 of the two mounting parts 500 located at the two ends of the heat pipe body 400 extend along a straight line in the transverse direction T of the heat pipe; the glue containing spaces 700 of the two mounting parts 500 located on both sides of the heat pipe body 400 are in the heat pipe
  • the longitudinal direction L extends along a straight line.
  • the glue containing spaces 700 of the two mounting parts 500 located at both ends of the heat pipe body 400 may also extend along a curve in the transverse direction T of the heat pipe;
  • the glue containing spaces 700 of the two mounting parts 500 can also extend along a curve in the longitudinal direction L of the heat pipe, which does not limit the protection scope of the present application here.
  • the mounting surface 510 of the frame-shaped mounting portion 600 protrudes from the surface of the heat pipe body 400 facing other objects (in this embodiment, this surface is the front surface 430 of the heat pipe body 400), so that the four mounting portions 500 surround the heat pipe body 400 is formed with a receiving chamber 310 for filling a thermally conductive material.
  • the thermally conductive material is thermally conductive silicone grease.
  • the thermally conductive material may also be other thermally conductive materials such as gold powder.
  • each mounting part 500 is provided with a glue containing space 700, so that the glue containing spaces 700 of the four mounting parts 500 form a ring-shaped glue space 710 correspondingly.
  • the mounting portion 500 around the heat pipe body 400 sinks relative to the heat pipe body 400 as a whole, forming the accommodating chamber 310.
  • the glue containing space 700 provided on each mounting portion 500 can also have two or more than two, so that the corresponding ring-shaped glue space 710 can also be two or more. Two or more, this does not limit the scope of protection of this application.
  • FIG. 9 shows a schematic structure of a heat dissipation module 200 according to Embodiment 2 of the present application.
  • Embodiment 2 of the present application also provides a heat dissipation module 200.
  • the structure of the heat dissipation module 200 of this embodiment is basically the same as the structure of the heat dissipation module 200 of Embodiment 1. The difference lies in The heat pipe of the heat dissipation module 200 of this embodiment adopts the heat pipe provided in the second embodiment.
  • the shielding cover 900 (see FIG. 9) is provided with a glue containing space 902 at a position corresponding to the glue containing space 700 of the mounting part 500.
  • a glue containing space 902 is filled with sol 920, and passing The glue containing space 902 is butted with the glue containing space 700, and at least part of the mounting portion 500 is bonded to the shielding cover 900.
  • a ring-shaped rubber space 800 at positions corresponding to the ring-shaped rubber space 710 of the frame-shaped mounting portion 600.
  • the sol 920 is filled in the correspondingly provided ring-shaped adhesive space 710 and the ring-shaped adhesive space 800, and the ring-shaped adhesive space 710 and the ring-shaped adhesive space 800 are connected to each other to bond the frame-shaped mounting portion 600 (see FIG. 6) to Other objects, and the ring-shaped glue space 800 includes a glue-containing space 902.
  • other objects include the shielding cover 900 and the bottom plate 931 of the middle frame 930 (see FIG. 4), and the shielding cover 900 and the bottom plate 931 of the middle frame 930 are connected and located on the same plane. That is, the surface of the shielding cover 900 facing the corresponding mounting portion 500 is the first mounting surface, and the surface of other objects facing the corresponding mounting portion 500 except the shielding cover 900 is the second mounting surface. The second mounting surface is located on the same plane.
  • the mounting surface 510 of the frame-shaped mounting portion 600 protrudes from the surface of the heat pipe body 400 facing other objects including the shielding cover 900, so that the four mounting portions 500 form a receiving chamber 310 around the heat pipe body 400.
  • the receiving cavity 310 is filled with a thermally conductive material to form the thermally conductive layer 320.
  • the thermally conductive material is thermally conductive silicone grease. This can reduce the contact thermal resistance between the shielding cover 900 of the heat source assembly 910 and the heat pipe body 400, thereby increasing the thermal conductivity between the shielding cover 900 and the heat pipe body 400, thereby increasing the heat transfer between the shielding cover 900 and the heat pipe body 400.
  • the continuous glue dispensing path (in this embodiment, the ring-shaped glue space 710 and the ring-shaped glue space 800 are filled with sol 920 and butt, thereby forming a glue path) can also be sealed and coated on the heat pipe body 400
  • the thermal conductive silicone grease that is, the dispensing glue path completely seals the thermal conductive silicone grease, and the thermal conductive silicone grease will not escape during use, so as to avoid affecting the complex electronic components inside the terminal device.
  • the aforementioned thermally conductive silicone grease has good thermal conductivity, temperature resistance, and insulation properties. It is an ideal dielectric material for heat-resistant devices, and has stable performance. It will not generate corrosive gas during use and will not affect the metal in contact. Smear on the assembly surface of the heat pipe body 400 and other objects to help eliminate the air gap of the contact surface to increase heat circulation, reduce thermal resistance, reduce the working temperature of power devices, improve reliability and extend service life.
  • the method for fixing the heat pipe 300 includes the following steps:
  • a glue dispensing operation is performed on the glue containing space 902 on the mating surface of the shielding cover 900 of the heat source assembly 910.
  • the glue containing space 902 has the same shape and the glue containing space 700 in the same shape and the same number.
  • a thermal conductive silicone grease coating operation is performed on the mating surface of the heat pipe body 400 and other objects including the shielding cover 900.
  • the sol 920 used in the dispensing operation can be hot melt glue, thermal conductive gel, or quick-drying glue.
  • a jig is used to accurately position the heat pipe 300 on the shielding cover 900 of the heat source assembly 910.
  • the heat pipe 300 is fixed using a pressurizing and pressure holding jig corresponding to the shape of the mounting portion of the heat pipe 300.
  • the mounting part 500 of the heat pipe 300 is pressurized to completely disperse the sol 920, and the mounting part 500 of the heat pipe 300 is kept under pressure until the sol 920 is fully effective, and finally the shielding cover 900 of the heat pipe 300 and the heat source assembly 910 is realized Secure connection and close contact.
  • the pressure head for pressing and holding the heat pipe 300 matches the shape of the mounting part 500 of the heat pipe 300. During the pressing process, the pressure head only contacts the mounting part 500 and does not directly interact with the heat pipe body 400 to avoid damaging the heat pipe body 400. Porous capillary structure layer on the inside of the wall.
  • Embodiment 2 of the present application also provides a terminal device.
  • the structure of the terminal device in this embodiment is basically the same as the structure of the terminal device in Embodiment 1. The difference is that the heat dissipation module included in the terminal device in this embodiment is different.
  • the group 200 uses the heat dissipation module 200 provided in the second embodiment.
  • FIG. 10 is a schematic diagram of the three-dimensional structure of the heat pipe 300 according to Embodiment 3 of the application.
  • FIG. 11 is a partial enlarged structural diagram of FIG. 10, which shows the structure of the invalid portion 500 of the evaporation section 410 close to the heat pipe body 400.
  • Embodiment 3 of the present application provides a heat pipe 300.
  • the structure of the heat pipe is basically the same as the structure of the heat pipe of the second embodiment.
  • the difference is that the two mounting parts 500 located at the two ends of the heat pipe body 400 (that is, the first end 450 and the second end 460 of the heat pipe body 400) are provided There are rivets 530, so that the two mounting parts 500 can be fixed to other objects through the rivets 530.
  • the two mounting parts 500 located on both sides of the heat pipe body 400 ie, the first side 470 and the second side 480 of the heat pipe body 400
  • This fixing method of the heat pipe has higher reliability, and does not require pressure holding operation, which has obvious advantages in mass production.
  • the heat pipe body 400 has an ineffective portion 500 as the mounting portion 500 on all sides, that is, the four mounting portions 500 corresponding to the ineffective portions 500 on the surrounding sides are connected to each other to form a frame-shaped mounting portion 600.
  • the installation part 500 corresponding to the invalid part 500 does not have a glue-holding space, and the heat pipe does not rely on the sol 920 for fixing, but uses the method of riveting and spot welding to fix the heat pipe.
  • the mounting parts 500 at both ends of the heat pipe body 400 are relatively wide, and can be connected by riveting (or screw connection).
  • the mounting parts 500 on both sides of the heat pipe body 400 are narrow and can be connected by laser spot welding.
  • the heat pipe 300 can also be fixed to other objects only by riveting, for example, located at the first end 450 and the second end 460 of the heat pipe body 400.
  • the two mounting parts 500 are respectively fixed to other objects by riveting, or the two mounting parts 500 on the first side 470 and the second side 480 of the heat pipe body 400 are respectively fixed to other objects by riveting; the heat pipe 300 can also be fixed to other objects by riveting.
  • It is fixed to other objects only by welding for example, the two mounting parts 500 located at the first end 450 and the second end 460 of the heat pipe body 400 are respectively fixed to other objects by welding, or they are located at the second end of the heat pipe body 400.
  • the two mounting parts 500 on one side 470 and the second side 480 are respectively fixed to other objects by welding.
  • FIG. 12 is a schematic diagram of a partial structure of a heat dissipation module 200 according to Embodiment 3 of the present application.
  • Embodiment 3 of the present application also provides a heat dissipation module 200.
  • the structure of the heat dissipation module 200 of this embodiment is basically the same as the structure of the heat dissipation module of Embodiment 2. The difference lies in:
  • the heat pipe 300 of the heat dissipation module 200 of this embodiment adopts the heat pipe provided in the third embodiment.
  • the mounting portion 500 located at one end of the evaporation section 410 is fixed to the shielding cover 900 by riveting, and the portions of the mounting portions 500 located on both sides of the heat pipe body 400 near the evaporation section 410 are fixed to the shielding cover 900 by spot welding.
  • the mounting part 500 located at one end of the condensing section 420 is fixed to other components (such as the middle frame 930, the rear shell, etc.) except the shielding cover 900 by riveting.
  • the mounting parts located on both sides of the heat pipe body 400 are near the passing point of the condensing section 420 Weld and fix to this other part.
  • the two mounting parts 500 located at both ends of the heat pipe body 400 are fixed to the corresponding positions of other objects by rivets 530, and the two mounting parts 500 located on both sides of the heat pipe body 400 are welded to the corresponding positions of other objects by spot welding points 540. .
  • the present application provides a new type of heat pipe 300, in particular, actively expanding the invalid portion 500 that is traditionally considered harmful, using the invalid portion 500 as a mounting portion 500 for fixing the heat pipe 300 to other objects, and providing a container for the mounting portion 500. Glue space. Therefore, this application has at least the following advantages:
  • the ineffective portion 500 integrally formed with the heat pipe body 400 as the mounting portion 500 for fixing the heat pipe 300 to other objects, during the assembly process of the heat pipe 300, only a load is applied to the ineffective portion 500. It has a significant impact on the heat pipe body 400. While completing the fixation of the heat pipe 300, the integrity of the porous capillary structure layer inside the heat pipe body 400 is ensured, and the thermal conductivity of the heat pipe 300 is not significantly lost, thereby reducing the heat conduction during the assembly process of the heat pipe 300 The capacity loss improves the heat transfer efficiency of the heat pipe 300, thereby improving the heat dissipation capacity of the terminal device, and improving the reliability of the terminal device.
  • the mounting portion 500 will not be dispensed by the heat pipe 300 when the pressure is maintained. Jacking up, on the one hand, avoids the deformation and failure of the heat pipe body 400, and on the other hand, prevents the two ends of the heat pipe 300 from lifting, thereby avoiding the problem of the top screen.
  • the heat pipe 300 is firmly connected to other objects including the shielding cover 900, and the pulling force is relatively large.
  • thermal conductive silicone grease coated between the heat pipe 300 and other objects including the shielding cover 900 can be sealed by a glue dispensing operation, which prolongs the service life of the heat dissipation system and at the same time avoids the escape of thermal conductive silicone grease during use, so as to avoid damage.
  • thermal conductive silicone grease is used to fill the gap between the heat pipe body 400 and other objects including the shielding cover 900, so as to reduce the contact thermal resistance and improve the heat dissipation capacity of the entire terminal device.
  • the heat pipe 300 can be fixed by spot welding, riveting, etc., which eliminates the time-consuming pressure holding operation and has obvious advantages in mass production.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请公开了一种热管、散热模组及终端设备。该热管包括热管本体和制作热管时与热管本体一体形成的无效部,热管本体的管壁的内侧具有多孔毛细结构层,无效部位于热管本体的四周的至少一部分上,且无效部用作热管与其它物体固定用的安装部。散热模组包括如上热管。终端设备包括散热模组。本申请利用无效部作为固定热管的安装区,在热管的装配过程中,仅需对无效部施加载荷,从而并不会对热管本体造成明显影响,在完成热管固定的同时,保证了热管本体内部多孔毛细结构层的完整,热管的导热能力未受到明显损失,从而可以减小热管装配过程中的导热能力损失,提高热管的传热效率,进而提高了终端设备的散热能力,提供了终端设备的使用可靠性。

Description

热管、散热模组及终端设备
本申请要求2019年11月20日递交的申请号为CN201911142288.5、发明名称为“热管、散热模组及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及智能终端设备散热技术领域,尤其是涉及一种热管、散热模组及终端设备。
背景技术
随着电子产品的快速发展,智能终端设备集成化程度越来越高,散热需求随之凸显。目前通常使用的石墨片散热、铜片散热等常规散热手段已经难以满足当前智能终端设备对散热能力的要求。
为了加强智能终端设备的散热,及时实现热量传递,消除热点,高效利用能源,减少能量在传输过程中的损失,使电子产品更稳定有效、长久的工作,利用相变实现高效传热的热管技术应运而生。热管可视为一个具有高热传导率的被动热传元件,利用了热传导原理与相变介质的快速热传递性质,透过热管将发热物体的热量迅速传递到热源外,其导热能力超过任何已知金属的导热能力。热管按运行工况分为蒸发段、绝热段及冷凝段,其运行机理是利用工质在冷热两端蒸发冷凝的相变传递过程实现热量传递。另外,由于热管内部处于真空状态,使得工质的蒸发冷凝可以发生在低于工质常规沸点的温度下,且热管内壁附有多孔毛细结构,其作用可以加速工质蒸发冷凝的循环速度。
现有技术中,在热管的制作工艺中,通常会在热管的热管本体的四周的至少部分一体形成不具有多孔毛细结构的无效端(即无效部),热管本体的内壁附有多孔毛细结构。也就是说,无效端不具有多孔毛细结构,是无法进行蒸发冷凝的导热或传热功效的,此无效端的存在会降低热管的导热效率,且因热管为了要留下足够可在缩口后封闭的长度而不会外泄的情况,其需要保留一定的长度,这样将占用热管有效的导热长度,且将会降低热管的导热效率。对此,目前热管行业一直致力于减小无效端的长度,以增加热管有效部分的比例,增强导热性能。
为此,热管通常具有热管本体和制作时与热管本体一体形成的无效端。热管本体的管壁的内侧具有多孔毛细结构,是热管中利用工质在冷热两端蒸发冷凝的相变传递过程实现热量传递的部分。无效端的内部不具有多孔毛细结构,是热管中不参与蒸发冷凝的导热过程的部分,即热管中除热管本体外的其他部分。针对热管的安装方式,通常将热管的热管本体的外壁面直接通过背胶粘接于热源组件的外壳,并直接通过背胶粘接于终端设备中相对于热源组件处的温度具有较低温度的其他位置处,从而通过热管将热源组件的热源处的热量传递至其它温度较低的位置处。
然而,采用上述结构形式,需要直接对热管本体加压以激活背胶实现粘接作用,这样在装配过程中使得热管本体容易产生变形失效,从而容易损坏热管本体内部的多孔毛细结构,从而降低热管的传热效率。
发明内容
本申请的目的在于解决现有技术中的热管在装配过程中热管本体易产生变形失效、传热效率较低的问题。本申请实施例提供了一种热管、散热模组及终端设备。
本申请实施例提供了一种热管,包括热管本体和制作所述热管时与所述热管本体一体形成的无效部,所述热管本体的管壁的内侧具有多孔毛细结构层,所述无效部位于所述热管本体的四周的至少一部分上,且所述无效部用作所述热管与其它物体固定用的安装部。
利用与热管本体一体形成的无效部作为热管与其它物体固定用的安装部,在热管的装配过程中,仅需对无效部施加载荷,从而并不会对热管本体造成明显影响,在完成热管固定的同时,保证了热管本体内部多孔毛细结构层的完整,热管的导热能力未受到明显损失,从而可以减小热管装配过程中的导热能力损失,提高热管的传热效率。特别地,上述结构尤其适用于热管采用厚度较小的薄型热管的场景。
在一些实施例中,所述安装部具有面向所述其它物体的安装面,所述安装面上设有向所述安装面内凹陷的、用于填充溶胶的容胶空间。
安装部面向其它物体的安装面上设有向安装面内凹陷的容胶空间。该安装部在保压时热管不会被容胶空间的点胶区域顶起,一方面避免了热管本体的变形失效,另一方面避免了热管两端的翘起,从而规避了顶屏问题。
在一些实施例中,所述安装部上背离所述安装面的一侧具有鳍片散热方式的多个散热片。这样能够进一步提高热管的散热效果。
在一些实施例中,所述容胶空间在所述安装面上延伸,且所述容胶空间的至少一端贯穿所述安装面。
在一些实施例中,所述容胶空间在所述安装面上沿一直线延伸,且所述容胶空间的两端均贯穿所述安装面。这样在将安装部粘接于其它物体时,便于进行点胶操作,加工工艺简单,且粘接牢固。
在一些实施例中,所述热管具有两个所述安装部,两个所述安装部分别位于所述热管本体的第一端和第二端;其中,所述第一端和所述第二端相对设置。这样能够确保热管通过两个安装部非常牢固地安装在其它物体上的同时,结构简单,成本较低。
在一些实施例中,每一所述安装部上的所述容胶空间在所述安装面沿所述热管的横向直线延伸,且所述容胶空间的两端贯穿所述安装面。
在一些实施例中,每一所述安装部上具有多个所述容胶空间,每一所述安装部上的多个所述容胶空间沿所述热管的纵向间隔设置。这样能够进一步提高安装部与其它物体的固定的牢固性。
在一些实施例中,所述热管具有四个所述安装部,其中两个所述安装部分别位于所 述热管本体的第一端和第二端,另外两个所述安装部分别位于所述热管本体的第一侧和第二侧,且四个所述安装部之间相互连接形成框形安装部;其中,所述第一端与所述第二端相对设置,所述第一侧与所述第二侧相对设置,且所述第一侧的一端和所述第二侧的一端均邻接所述第一端,所述第一侧的另一端和所述第二侧的另一端均邻接所述第二端。这样能够提高热管与其它物体固定的牢固性、稳定性和可靠性。
在一些实施例中,四个所述安装部上的所述容胶空间之间相互连通形成环形容胶空间。这样在进行点胶操作时,能形成封闭的点胶胶路。
在一些实施例中,所述框形安装部的所述安装面突出于所述热管本体面对所述其它物体的面,四个所述安装部围绕所述热管本体形成用于填充导热材料的容纳腔室。在将热管安装于其它物体时,容纳腔室能够填充导热材料,降低热管与其它物体的接触热阻,提高热管的散热能力,且在通过点胶操作所形成的点胶胶路能够密封热管与包括屏蔽罩的其它物体之间涂覆的导热材料(比如,导热硅脂),延长散热系统的使用寿命,同时避免了导热材料使用过程中的逸出,以免对电子元件功能造成影响。
在一些实施例中,所述热管具有两个所述无效部,从而对应两个所述安装部,两个所述安装部分别位于所述热管本体的两端。
在一些实施例中,所述热管具有四个所述无效部,从而对应四个所述安装部,其中两个所述安装部分别位于所述热管本体的两端,另外两个所述安装部分别位于所述热管本体的两侧,且四个所述安装部之间相互连接形成框形安装部。
本申请实施例还提供了一种散热模组,包括热管和外壳,所述外壳用于罩设于热源,所述热管采用如以上任一种实施例提供的热管,以上任一种实施例中所提及的其它物体包括所述外壳,至少部分所述安装部与所述外壳固定;所述热管本体具有蒸发段,所述蒸发段与所述热源对应设置,以吸收所述热源的热量。
在一些实施例中,所述安装部的安装面上设有向所述安装面内凹陷的容胶空间,所述外壳与所述安装部的所述容胶空间对应的部位设有外壳容胶空间,通过在对应设置的所述外壳容胶空间和所述容胶空间内填充溶胶,并通过所述外壳容胶空间与所述容胶空间对接,将至少部分所述安装部粘接于所述外壳。
在一些实施例中,所述热管具有两个所述安装部,两个所述安装部分别位于所述热管本体的第一端和第二端,位于所述蒸发段的一端的所述安装部固定于所述外壳;其中,所述第一端和所述第二端相对设置,所述第一端位于所述蒸发段。
在一些实施例中,所述热管具四个所述安装部,其中两个所述安装部分别位于所述热管本体的第一端和第二端,另外两个所述安装部分别位于所述热管本体的第一侧和第二侧,且四个所述安装部之间相互连接形成框形安装部,四个所述安装部上的容胶空间之间相互连通形成环绕所述热管本体的环形容胶空间;其中,所述第一端与所述第二端相对设置,所述第一侧与所述第二侧相对设置,且所述第一侧的一端和所述第二侧的一端均邻接所述第一端,所述第一侧的另一端和所述第二侧的另一端均邻接所述第二端,所述第一端位于所述蒸发段。所述其它物体与所述框形安装部的所述环形容胶空间对应的部位设有环形其它物体容胶空间,通过在对应设置的所述环形容胶空间和所述环形其它物体容胶空间内填充溶胶,并通过所述环形容胶空间和所述环形其它物体容胶空间对接,将所述框形安装部粘接于所述其它物体,且所述环形其它物体容胶空间至少包括所 述外壳容胶空间。
通过在对应设置的环形容胶空间和环形其它物体容胶空间内填充溶胶,并通过环形容胶空间和环形其它物体容胶空间对接,将框形安装部粘接于其它物体,这样能够提高热管与其它物体固定的牢固性,且加工工艺简单,成本低。
在一些实施例中,所述框形安装部的安装面突出于所述热管本体面对所述外壳的面,使得四个所述安装部围绕所述热管本体绕形成有容纳腔室。当所述框形安装部粘接于所述其它物体时,所述容纳腔室内填充有导热材料,以形成导热层。导热材料能够填充热管本体与包括屏蔽罩的其它物体之间的缝隙,降低接触热阻,提高整个终端设备的散热能力。
在一些实施例中,所述热管具有四个所述无效部,从而对应四个所述安装部,其中两个所述安装部分别位于所述热管本体的第一端和第二端,另外两个所述安装部分别位于所述热管本体的第一侧和第二侧,且四个所述安装部之间相互连接形成框形安装部;其中,所述第一端与所述第二端相对设置,所述第一侧与所述第二侧相对设置,且所述第一侧的一端和所述第二侧的一端均邻接所述第一端,所述第一侧的另一端和所述第二侧的另一端均邻接所述第二端,所述第一端位于所述蒸发段。位于所述第一端的所述安装部通过铆接固定于所述外壳,位于所述热管本体的所述第一侧和所述第二侧的所述安装部通过点焊固定于所述外壳。采用点焊和铆接的固定方式进行热管的固定,免除了耗时的保压操作,在批量化生产时具有明显优势。
在一些实施例中,所述外壳为屏蔽罩;所述其它物体仅包括所述屏蔽罩,或者,所述其它物体包括所述屏蔽罩和终端设备的中框或后壳。
本申请实施例还提供了一种终端设备,其包括如以上任一种实施例所提供的散热模组,所述热管本体还具有冷凝段,所述冷凝段与所述终端设备中温度低于所述热源处的温度的其它位置对应设置。
利用与热管本体一体形成的无效部作为热管与其它物体固定用的安装部,在热管的装配过程中,仅需对无效部施加载荷,从而并不会对热管本体造成明显影响,在完成热管固定的同时,保证了热管本体内部多孔毛细结构层的完整,热管的导热能力未受到明显损失,从而可以减小热管装配过程中的导热能力损失,提高热管的传热效率,进而提高了终端设备的散热能力,提供了终端设备的使用可靠性。
在一些实施例中,所述外壳面向对应的所述安装部的面为第一安装面,所述其它物体除所述外壳外的其它部件面向对应的所述安装部的面为第二安装面,所述第一安装面和所述第二安装面位于同一平面上。这样便于可靠地将热管的安装部分别安装于外壳和除外壳之外的其它部件上。
附图说明
图1为本申请实施例1的热管的立体结构示意图。
图2为本申请实施例1的热管的局部放大结构示意图。
图3为本申请实施例1的散热模组的局部结构示意图。
图4为本申请实施例1的终端设备的结构示意图。
图5为本申请实施例2的热管的立体结构示意图(一)。
图6为本申请实施例2的热管的立体结构示意图(二)。
图7为本申请实施例2的热管的局部放大结构示意图。
图8为图7中热管沿A-A的剖视结构示意图。
图9为本申请实施例2的散热模组的局部结构示意图。
图10为本申请实施例3的热管的立体结构示意图。
图11为本申请实施例3的热管的局部放大结构示意图。
图12为本申请实施例3的散热模组的局部结构示意图。
附图标记说明:
100:终端设备;
200:散热模组;
300:热管;310:容纳腔室;320:导热层;
400:热管本体;410:蒸发段;420:冷凝段;430:正面;440:背面;450:第一端;460:第二端;470:第一侧;480:第二侧;
500:无效部(安装部);510:正面(安装面);520:背面;530:铆钉;540:点焊点;
600:框形安装部;
700:容胶空间;710:环形容胶空间;
800:环形容胶空间;
900:屏蔽罩;902:容胶空间;
910:热源组件;
920:溶胶;
930:中框;931:底板;932:外边框;
940:电路板;
H:热管的厚度方向;
T:热管的横向;
L:热管的纵向。
具体实施方式
应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
实施例1
请参见图1,图1示出了本申请实施例1的热管300的示意性结构。热管300的工作原理是利用介质在蒸发段410蒸发吸热后在冷凝段420冷凝散热的相变过程,从而使热量快速从温度高的位置传导至温度低的位置。在本实施方式中,热管300应用于手机。需要说明的是,热管300也可应用于平板电脑、智能穿戴设备等其他电子设备。
如图1所示,本申请实施例1提供了一种热管300,其包括热管本体400和制作热管300时与热管本体400一体形成的两个无效部500。两个无效部500分别位于热管本体400的两端,且每一无效部500用作热管300与其它物体固定用的安装部500。也就是说,热管300具有两个无效部500,从而对应两个安装部500,两个安装部500分别位于热管本体400的两端,即两个安装部500分别位于热管本体400的第一端450和第二端460,其中,第一端450和第二端460相对设置。需要说明的是,本申请的热管300并不局限于具有作为安装部500的两个无效部500,也可以具有一个无效部、三个无效部、四个无效部及以上,在此并不对本申请的保护范围产生限定作用;并且,作为安装部500的无效部500并不局限于设置于热管本体400的两端,也可以设置于热管本体400的四周的一侧、两侧、三侧或四侧,在此并不对本申请的保护范围产生限定作用。
在本实施方式中,其它物体可以包括屏蔽罩900(参见图3)以及中框930(参见图4)或后壳(图中未示出)等。需要说明的是,其它物体也可以仅包括热源组件的屏蔽罩900,此时,屏蔽罩900较大,即从靠近热源组件的热源(热源可以为芯片等发热量较大的电子元器件)的位置延伸至远离热源的位置。
在本实施方式中,热管300采用薄型片状结构,这样能够更好地适用于终端设备的轻薄化设计需求。需要说明的是,在可替代的其它实施方式中,热管300也可以采用筒状结构等其他形状热管,并不局限于薄型片状结构。
热管本体400的管壁的内侧具有多孔毛细结构层(图中未示出)。在本实施方式中,多孔毛细结构层为吸液芯,该吸液芯由毛细多孔材料构成。热管本体400的一端部为蒸发段410,蒸发段410与热源组件910(参见图4)的热源(图中未示出)对应设置,以吸收热源的热量。热管本体400的另一端部为冷凝段420,冷凝段420与终端设备中非热源的位置对应设置;其中,非热源处的温度低于热源处的温度。介质在蒸发段410吸热后蒸发,迁移到另一端的冷凝段420发生冷凝放热,从而实现高效传热的效果。在本实施方式中,热管本体400的第一端450位于蒸发段410,热管本体400的第二端460位于冷凝段420。
一种具体的实现方式,位于热管本体400的一端的无效部500作为安装部500安装于热源组件的屏蔽罩900,热管本体400的蒸发段410与热源组件910(参见图4)的热源对应设置,位于热管本体400的另一端的无效部500作为安装部500安装于终端设备中温度较低的非热源区(比如中框930或后壳),热管本体400的冷凝段420与终端设备 中温度较低的其他位置对应,热源组件910(参见图4)的热源处的热量通过屏蔽罩900、热管本体400的蒸发段410、冷凝段420传递至终端设备中温度较低的其它位置处。其中,中框930或者后壳的散热面积大且与空气有充分的接触可以迅速地将热管本体400的冷凝段420的热量扩散开,从而防止热源组件910(参见图4)的热源局部温度过高。
在本实施方式中,热管本体400可采用现有技术中已知的结构。具体可以为,热管本体400包括管壳和作为多孔毛细结构层的吸液芯。所有无效部500与管壳在热管300制作时一体成型。管壳内部是被抽成负压状态,充入适当的液体,这种液体沸点低,容易挥发。吸液芯附于管壳的内壁。当热管本体400的蒸发段410受热时,热管本体400中的液体迅速汽化,蒸气在热扩散的动力下流向另一端的冷凝段420,并在冷凝段420冷凝释放出热量,液体再沿多孔材料靠毛细作用流回蒸发段410,如此循环不止,直到热管本体400两端温度相等。
为了便于传热,在本实施方式中,管壳的材质为铜。铜质薄型热管的导热性能更好、重量更低,在终端设备中应用时,具有明显优势。需要说明的是,在可替代的其它实施方式中,管壳的材质也可为不锈钢、铝或者合金等材质,在此并不对申请的保护范围产生限定作用。
作为安装部500的无效部500的内部不含有多孔毛细结构层,不参与热管300的蒸发冷凝的导热过程。该无效部500的变形破坏并不影响热管300的传热效率。在对作为安装部500的无效部500施加局部载荷时,热管本体400几乎不受到影响,保证了热管本体400的内壁附有的多孔毛细结构层的完整,从而保证热管300的传热效率。并且,在实际的传热过程中该无效部500还将起到冷却肋片的作用,增强热管300的导热能力。
在本实施方式中,无效部500的长度在1~10mm。需要说明的是,在可替代的其它实施方式中,无效部500也可以根据实际的需要设置成其它合适大小的尺寸,只需能够作为安装部500与其它物体固定安装即可,在此并不对本申请的保护范围产生限定作用。
在将热管300固定安装于其它物体上时,可选用胶接、铆接、焊接、夹持中的一者或多者固定方式将作为安装部500的无效部500与其它物体(比如,屏蔽罩900、中框930或后壳等)固定。在连接时的外部扰动均施加在无效部500上,避免对热管本体400造成影响。
在本申请所提供的热管300中,利用与热管本体400一体形成的无效部500作为热管300与其它物体固定用的安装部500,在热管300的装配过程中,仅需对无效部500施加载荷,从而并不会对热管本体400造成明显影响,在完成热管300固定的同时,保证了热管本体400内部多孔毛细结构层的完整,热管300的导热能力未受到明显损失,从而可以减小热管300装配过程中的导热能力损失,提高热管300的传热效率,进而提高了终端设备的散热能力,提供了终端设备的使用可靠性。特别地,上述结构尤其适用于热管300采用厚度较小的薄型热管的场景。
每一无效部500所对应的安装部500可采用下述任一种实施方式以及可能的实施方式所提供的无效部500对应的安装部500。另外,两个无效部500对应的两个安装部500采用对称的设计和构造。需要说明的是,该两个安装部500的结构可以相同,也可以不同。
以下结合图2主要对位于热管本体400的蒸发段410的一端的一个无效部500的结 构作介绍。
图2示出了本申请实施例1的热管300的位于蒸发段410的一端的无效部500所对应的安装部500部分的示意性结构。如图2所示,安装部500面向其它物体的安装面510上设有向安装面510内凹陷的并用于填充溶胶920(参见图3)的容胶空间700。该安装部500在保压时热管300不会被点胶区域顶起,一方面避免了热管本体400的变形失效,另一方面避免了热管300两端的翘起,从而规避了顶屏问题。本领域技术人员可以理解的是,保压是指注塑机操作中,射胶动作完成后,螺杆继续保持一定的压力保持不变一段时间,以得到饱满没有收缩现象的产品。
其中,热管本体400具有沿热管的厚度方向H相对设置的正面430和背面440。安装部500具有沿热管的厚度方向H相对设置的正面510和背面520,安装部500的安装面为安装部500的正面510。安装部500的正面510在热管的厚度方向H上位于热管本体400的正面430与热管本体400的背面440之间,即安装部500的正面510相对于热管本体400的正面430朝向安装部500的背面520下沉。在将热管安装于终端设备时,安装部500的正面510为安装部500靠近显示屏(图中未示出)的一面,安装部500的背面520为安装部500背离显示屏的一面;热管本体400的正面430为热管本体400靠近显示屏的一面,热管本体400的背面440为热管本体400背离显示屏的一面。当安装部500粘接于热源组件的屏蔽罩900(参见图3)时,热管本体400的蒸发段410的正面与屏蔽罩900接触,且蒸发段410位于与热源组件910的热源对应的位置(即靠近热源的位置,比如正对热源的位置),这样能够更有效地将热源处的热量通过热管本体400的蒸发段410传递至其它温度较低的位置处。
如图2所示,容胶空间700在安装面510上沿热管的横向T直线延伸,且容胶空间700的两端贯穿安装面510。需要说明的是,在可替代的其它实施方式中,容胶空间700也可以在安装面510上沿一曲线延伸;或者,容胶空间700的一端贯穿安装面510,另一端不贯穿。
具体地,安装部500上的容胶空间700具有两个,两个容胶空间700沿热管的纵向L间隔设置。这样能够使得无效部500与屏蔽罩900粘接得更牢固。本领域技术人员可以理解的是,容胶空间700也可以仅有一个,或者有三个或三个以上。
在本实施方式中,容胶空间700的横截面为矩形。需要说明的是,在可替代的其它实施方式中,容胶空间700的横截面也可为多边形、弧面等其他形状。容胶空间700可与热源组件910的屏蔽罩900的配合面的容胶空间配合使用。进行热管压合与保压的压头与热管的安装部500形状匹配,压合过程中压头仅与安装部500接触,不与热管本体400发生直接作用,避免损伤热管本体400的管壁内侧附上的多孔毛细结构层。
在可替代的其它实施方式中,安装部500也可不具有容胶空间,此时采用铆接、电焊、夹持的方式进行热管的固定。
具体地,安装部500的安装面510的相反侧(即安装部500的背面520)形成有鳍片散热方式的多个散热片(图中未示出)。这样能够进一步提高热管的散热效果。
总的来说,目前热管行业一直致力于减小无效部500的长度,以增加热管有效部分(即热管本体400)的比例,增强导热性能。但本申请反其道而行,刻意增加热管的无效部500的长度,使其能够用于热管300与其它物体固定的安装部500,以达到无损安装热 管300的目的,在完成热管300固定的同时,保证了热管本体400内部多孔毛细结构层的完整,热管300的导热能力未受到明显损失,从而可以减小热管装配过程中的导热能力损失,提高热管300的传热效率,且制造成本较低。
请参见图3,图3示出了本申请实施例1的散热模组200的示意性结构。如图3所示,本申请实施例1还提供了一种散热模组200,其包括热管300和屏蔽罩900(即热源组件910的外壳),屏蔽罩900用于罩设于热源组件910的热源。热管300采用上述任一实施方式或可能的实施方式所提供的热管300。在本实施方式中,位于蒸发段410一端的一个安装部500与屏蔽罩900固定,位于冷凝段420一端的另一个安装部500与终端设备的中框930(参见图4)或后壳(图中未示出)固定。热管本体400具有蒸发段410,蒸发段410与热源(图中未示出)对应设置,以吸收热源的热量。
需要说明的是,在可替代的其它实施方式中,分别位于蒸发段410和冷凝段420一端的两个安装部500可均固定在同一个屏蔽罩900上,此时,屏蔽罩900整体尺寸较长,其中,位于蒸发段410一端的一个安装部500位于靠近热源的位置处,位于冷凝段420一端的另一个安装部500位于温度低于热源处的其它位置处。
具体地,屏蔽罩900与安装部500的容胶空间700对应的部位设有容胶空间902,通过在对应设置的容胶空间902和容胶空间700内填充溶胶920,并通过容胶空间902(即外壳容胶空间)与容胶空间700对接,将位于蒸发段410一端的安装部500粘接于屏蔽罩900。该溶胶920可为热熔胶、导热凝胶、快干胶。安装部500与屏蔽罩900之间具有间隙,热管本体400的蒸发段410的正面430与屏蔽罩900接触。
需要说明的是,在可替代的其它实施方式中,热源组件的屏蔽罩900与热管300的安装部500的配合面上也可不开容胶空间。本实施例中热源组件的屏蔽罩900上开设的容胶空间902的位置和形状与热管300的安装部500上的容胶空间700相匹配。
在本实施方式中,溶胶920选用热熔胶,热熔胶处于对应的容胶空间902和容胶空间700之间。通过对热管300的安装部500的局部加压和保压,确保热熔胶被散开、实现良好的粘结效果,同时安装部500的局部变形不会对热管本体400造成影响。
在本实施方式中,该热管300的固定方法包括以下步骤:
首先,在热源组件的屏蔽罩900的配合面上的容胶空间902进行点胶操作,容胶空间902形状和容胶空间700的形状一致、设置的数量一致。点胶操作所用溶胶920可为热熔胶、导热凝胶、快干胶。
随后,使用治具将热管300准确定位在热源组件的屏蔽罩900上。点胶操作后固定热管300时,采用与热管300的安装部500形状对应的加压、保压治具进行热管300的固定。
最后,对热管300的安装部500进行加压操作以完全压散溶胶920,对热管300的安装部500进行保压操作直至溶胶920完全生效,最终实现热管300与热源组件910的屏蔽罩900的牢固连接和紧密接触。进行热管300压合与保压的压头与热管300的安装部500形状匹配,压合过程中压头仅与安装部500接触,不与热管本体400发生直接作用,避免损伤热管本体400的管壁内侧的多孔毛细结构层。
请参见图4,图4为本申请实施例1的终端设备100的一实施方式的结构示意图。如图4所示,本申请实施例1还提供了一种终端设备100,其包括中框930、电路板940、 两热源(比如,芯片)和对应两热源设置的两散热模组200。电路板940固定于中框930的底板931的背面,两热源焊接于电路板940以与电路板940电性连接。每一散热模组200采用上述任一实施方式或可能的实施方式所提供的散热模组200。
如图1-图4所示,每一散热模组200的屏蔽罩900罩设于相对应的热源,并与相对应的热源形成热源组件910。且两散热模组200的蒸发段410的位置对应于两热源组件910的热源,以吸收热源的热量。其中一个散热模组200的热管300中位于冷凝段420一端的安装部500(即位于热管本体400的第二端460的安装部500)粘接于中框930的底板931中位于电路板940下方的区域。这样能够有效地将该其中一个散热模组200所对应的热源组件910的热源所产生的热量经热管本体400的蒸发段410、冷凝段420传递至中框930的底板931。另一个散热模组200的热管300中位于冷凝段420一端的安装部500粘接于中框930的外边框932。这样能够有效地将该另一个散热模组200所对应的热源组件910的热源所产生的热量经热管本体400的蒸发段410、冷凝段420传递至中框930的外边框932。
需要说明的是,两个散热模组200的热管300中位于冷凝段420一端的安装部500可同时安装于中框930的外边框932,也可同时安装于中框930的底板931,也可分别或同时安装于终端设备100中低于热源组件910温度的其他位置处。
本领域技术人员可以理解,在此所使用的两个散热模组200所采用的热管300的结构可以相同,也可以不同。并且,热管300中位于蒸发段410一端的安装部500与屏蔽罩900之间的固定结构以及位于冷凝段420一端的安装部500与除屏蔽罩900之外的其它部件之间的固定结构可以相同,也可以不同。需要说明的是,终端设备100中所采用的热管300可以为一个,也可以为两个或两个以上。
在本实施方式中,其中一个散热模组200的屏蔽罩900面向对应的安装部500的面与中框930的底板931面向对应的安装部500的面位于同一平面上。便于可靠地将其中一个散热模组200的热管300的两安装部500分别安装于屏蔽罩900和中框930的底板931。另一个散热模组200的屏蔽罩900面向对应的安装部500的面与中框930的外边框932面向对应的安装部500的面位于同一平面上。便于可靠地将另一个散热模组200的热管300的两安装部500分别安装于另一个散热模组200的屏蔽罩900和中框930的外边框932。
利用无效部500作为固定热管300与其它物体的安装部500,在热管300的装配过程中,仅需对无效部500施加载荷,从而并不会对热管本体400造成明显影响,在完成热管300固定的同时,保证了热管本体400内部多孔毛细结构的完整,热管300的导热能力未受到明显损失,从而可以减小热管300装配过程中的导热能力损失,提高热管300的传热效率,进而提高了终端设备100的散热能力,提供了终端设备100的使用可靠性。
其中,中框930具有相对设置的正面和背面,其中正面上设置显示屏组件(图中未示出),背面上设置电路板940、电池(图中未示出)等元器件,然后正面与前壳连接,背面与后壳连接形成终端设备主体。一般中框930为金属合金材料制作,例如,钢板、镁铝合金等。
屏蔽罩900罩设在热源上,屏蔽罩900为金属材质,可以对热源起到静电屏蔽的作用,从而防止外界对热源或者热源对外界造成静电干扰。屏蔽罩900可以用洋白铜材质 制作,洋白铜有良好的导热性。
实施例2
请参见图5-图8。图5-图6为本申请实施例2的热管300的立体结构示意图。其中,图5所示的视角为热管300的背面视角,图6所示的视角为热管300的正面视角。图7为图6的局部放大图,其示出了靠近热管本体400的蒸发段410的无效部500的结构。图8为图7中热管300沿A-A的剖视图,其示出了热管300对应蒸发段410的部分的结构。在本实施方式中,靠近冷凝段420的无效部500的结构与靠近蒸发段410的无效部500的结构相同。本领域技术人员可以理解的是,在可替代的其它实施方式中,靠近冷凝段420的无效部500的结构与靠近蒸发段410的无效部500的结构也可以不同,在此并不对本申请的保护范围产生限定作用。
如图5所示,本申请实施例2提供了一种热管300。该热管300的结构与实施例1的热管300结构基本相同,其不同之处在于,除了如实施例1中所提供的在热管本体400的两端(即在热管的纵向L上的两端)具有两个作为安装部500的无效部500之外,还在热管本体400的两侧(即在热管的横向T上的两侧,平行于热管的纵向L的两侧)也具有两个作为安装部500的无效部500。在散热过程中该无效部500还可以起到散热肋板的作用。
也就是说,在本实施方式中,热管300具有四个无效部500,从而对应四个安装部500。其中两个安装部500分别位于热管本体400的第一端450和第二端460,另外两个安装部500分别位于热管本体400的第一侧470和第二侧480,且四个安装部500之间相互连接形成框形安装部600。位于热管本体400两端的两个安装部500的结构可以采用实施例1中任一实施方式以及可能的实施方式所提供的两个安装部的结构。其中,第一端450与第二端460相对设置,第一侧470与第二侧480相对设置,且第一侧470的一端和第二侧480的一端均邻接第一端450,第一侧470的另一端和第二侧480的另一端均邻接第二端460,第一端450位于蒸发段,第二端460位于冷凝段。
如图6-图8所示,每一安装部500的安装面510上设有向安装面510内凹陷并用于填充溶胶920的容胶空间700。四个安装部500上对应的容胶空间700之间相互连通形成环形容胶空间710。该环形容胶空间710环绕热管本体400的外周缘。
在本实施方式中,每一安装部500的容胶空间700在安装面510上沿一直线延伸。具体地,位于热管本体400两端的两个安装部500的容胶空间700在热管的横向T上沿一直线延伸;位于热管本体400两侧的两个安装部500的容胶空间700在热管的纵向L上沿一直线延伸。需要说明的是,在可替代的其它实施方式中,位于热管本体400两端的两个安装部500的容胶空间700在热管的横向T上也可以沿一曲线延伸;位于热管本体400两侧的两个安装部500的容胶空间700在热管的纵向L上也可以沿一曲线延伸,在此并不对本申请的保护范围产生限定作用。
进一步地,框形安装部600的安装面510突出于热管本体400面对其它物体的面(在本实施方式中,该面为热管本体400的正面430),使得四个安装部500围绕热管本体400形成有用于填充导热材料的容纳腔室310。在本实施方式中,导热材料为导热硅脂。在可替代的其它实施方式中,导热材料也可为金粉等其它导热材料。
如图6-图8所示,在本实施方式中,每一个安装部500上设有一个容胶空间700, 从而使得四个安装部500的容胶空间700对应形成一个环形容胶空间710。此外热管本体400四周的安装部500相对于热管本体400整体发生下沉,构造出该容纳腔室310。需要说明的是,在可替代的其它实施方式中,每一个安装部500上设置的容胶空间700也可以具有两个或两个以上,从而对应的环形容胶空间710也可以为两个或两个以上,在此并不对本申请的保护范围产生限定作用。
请参见图9,图9示出了本申请实施例2的散热模组200的示意性结构。如图9所示,本申请实施例2还提供了一种散热模组200,本实施例的散热模组200的结构与实施例1的散热模组200的结构基本相同,其不同之处在于,本实施例的散热模组200的热管采用实施例2所提供的热管。
其中,屏蔽罩900(参见图9)与安装部500的容胶空间700对应的部位设有容胶空间902,通过在对应设置的容胶空间902和容胶空间700内填充溶胶920,并通过容胶空间902与容胶空间700对接,将至少部分安装部500粘接于屏蔽罩900。
进一步地,其它物体与框形安装部600的环形容胶空间710对应的部位设有环形容胶空间800。通过在对应设置的环形容胶空间710和环形容胶空间800内填充溶胶920,并通过环形容胶空间710和环形容胶空间800对接,将框形安装部600(参见图6)粘接于其它物体,且环形容胶空间800包括容胶空间902。
在本实施方式中,其它物体包括屏蔽罩900和中框930的底板931(参见图4),且屏蔽罩900和中框930的底板931相接,并位于同一平面上。也就是说,屏蔽罩900面向对应的安装部500的面为第一安装面,其它物体除屏蔽罩900外的其它部件面向对应的安装部500的面为第二安装面,第一安装面与第二安装面位于同一平面上。
进一步地,框形安装部600的安装面510突出于热管本体400面对包括屏蔽罩900的其它物体的面,使得四个安装部500围绕热管本体400形成有容纳腔室310。当框形安装部600粘接于其它物体时,容纳腔室310内填充有导热材料,以形成导热层320。该导热材料为导热硅脂。这样能够减小热源组件910的屏蔽罩900和热管本体400之间的接触热阻,从而增加了屏蔽罩900与热管本体400之间的导热性,进而提高热量在屏蔽罩900与热管本体400的蒸发段410之间的传递效率。同时,连续的点胶胶路(在本实施方式中,环形容胶空间710和环形容胶空间800内填充溶胶920,并对接,从而形成点胶胶路)也可密封热管本体400上涂覆的导热硅脂,即点胶胶路完全封闭住了导热硅脂,导热硅脂在使用过程中不会发生逸出,避免对终端设备内部复杂的电子元件造成影响。
上述的导热硅脂具有良好的导热、耐温、绝缘性能,是耐热器件理想的介质材料,而且性能稳定,在使用中不会产生腐蚀气体,不会对所接触的金属产生影响。涂抹于热管本体400和其它物体的装配面,帮助消除接触面的空气间隙增大热流通,减小热阻,降低功率器件的工作温度,提高可靠性和延长使用寿命。
在本实施方式中,该热管300的固定方法包括以下步骤:
首先,在热源组件910的屏蔽罩900的配合面上的容胶空间902进行点胶操作,容胶空间902形状和容胶空间700的形状一致、设置的数量一致。同时在热管本体400与包括屏蔽罩900的其它物体的配合面上进行导热硅脂涂覆操作。点胶操作所用溶胶920可为热熔胶、导热凝胶、快干胶。
随后,使用治具将热管300准确定位在热源组件910的屏蔽罩900上。点胶操作后 固定热管300时,采用与热管300的安装部形状对应的加压、保压治具进行热管300的固定。
最后,对热管300的安装部500进行加压操作以完全压散溶胶920,对热管300的安装部500进行保压操作直至溶胶920完全生效,最终实现热管300与热源组件910的屏蔽罩900的牢固连接和紧密接触。进行热管300压合与保压的压头与热管300的安装部500形状匹配,压合过程中压头仅与安装部500接触,不与热管本体400发生直接作用,避免损伤热管本体400的管壁内侧的多孔毛细结构层。
本申请实施例2还提供了一种终端设备,本实施例的终端设备的结构与实施例1的终端设备的结构基本相同,其不同之处在于,本实施例的终端设备所包括的散热模组200采用实施例2所提供的散热模组200。
实施例3
请参见图10-图11,图10为本申请实施例3的热管300的立体结构示意图。图11为图10的局部放大结构示意图,其示出了靠近热管本体400的蒸发段410的无效部500的结构。
如图10-图11所示,本申请实施例3提供了一种热管300。该热管的结构与实施例2的热管结构基本相同,其不同之处在于,位于热管本体400两端(即热管本体400的第一端450和第二端460)的两个安装部500上设置有铆钉530,使得该两个安装部500通过铆钉530能够固定于其它物体上。位于热管本体400两侧(即热管本体400的第一侧470和第二侧480)的两个安装部500设置有点焊点540,使得这两个安装部500通过焊接能够固定于其它物体上。热管的这种固定方式具有更高的可靠性,而且不需要加压保压操作,在批量化生产时具有明显优势。
也就是说,在本实施方式中,热管本体400的四周均具有作为安装部500的无效部500,即四周的无效部500对应的四个安装部500之间相互连接形成框形安装部600,无效部500对应的安装部500上不开设容胶空间,热管不依靠溶胶920进行固定,而是采用铆接和点焊的方法进行热管的固定。热管本体400两端的安装部500较宽,可以采用铆接(或螺钉连接)的方法进行连接。热管本体400两侧的安装部500较窄,可以采用激光点焊的方式进行连接。
本领域技术人员可以理解的是,在可替代的其它实施方式中,热管300也可以仅通过铆接的方式固定于其它物体,比如,位于热管本体400的第一端450和第二端460的两个安装部500分别通过铆接的方式固定于其它物体,或者,位于热管本体400的第一侧470和第二侧480的两个安装部500分别通过铆接的方式固定于其它物体;热管300也可以仅通过焊接的方式固定于其它物体,比如,位于热管本体400的第一端450和第二端460的两个安装部500分别通过焊接的方式固定于其它物体,或者,位于热管本体400的第一侧470和第二侧480的两个安装部500分别通过焊接的方式固定于其它物体。
请参见图12,图12为本申请实施例3的散热模组200的局部结构示意图。如图12所示,本申请实施例3还提供了一种散热模组200,本实施例的散热模组200的结构与实施例2的散热模组的结构基本相同,其不同之处在于,本实施例的散热模组200的热管300采用实施例3所提供的热管。位于蒸发段410的一端的安装部500通过铆接固定于屏蔽罩900,位于热管本体400的两侧的安装部500靠近蒸发段410的部分通过点焊固定于 屏蔽罩900。位于冷凝段420一端的安装部500通过铆接固定于除屏蔽罩900外的其它部件(比如中框930、后壳等),位于热管本体400的两侧的安装部靠近冷凝段420的部分通过点焊固定于该其它部件。也就是说,位于热管本体400两端的两个安装部500通过铆钉530固定于其它物体对应的位置,位于热管本体400两侧的两个安装部500通过点焊点540焊接于其它物体对应的位置。
本申请提供的一种新型的热管300,尤其是主动扩大传统上认为有害的无效部500,将该无效部500用作热管300与其它物体固定的安装部500,并对该安装部500设置容胶空间。从而,本申请至少具有以下优点:
第一,通过将与热管本体400一体形成的无效部500用作热管300与其它物体固定用的安装部500,在热管300的装配过程中,仅需对无效部500施加载荷,从而并不会对热管本体400造成明显影响,在完成热管300固定的同时,保证了热管本体400内部多孔毛细结构层的完整,热管300的导热能力未受到明显损失,从而可以减小热管300装配过程中的导热能力损失,提高热管300的传热效率,进而提高了终端设备的散热能力,提供了终端设备的使用可靠性。
第二,通过在无效部500对应的安装部500上设有向安装面510内凹陷的并用于填充溶胶920的容胶空间700,该安装部500在保压时热管300不会被点胶区域顶起,一方面避免了热管本体400的变形失效,另一方面避免了热管300两端的翘起,从而规避了顶屏问题。并且热管300与包括屏蔽罩900的其它物体牢固连接,拉拔力较大。
第三,可通过点胶操作密封热管300与包括屏蔽罩900的其它物体之间涂覆的导热硅脂,延长散热系统的使用寿命,同时避免了导热硅脂使用过程中的逸出,以免对电子元件功能造成影响。本申请采用导热硅脂填充热管本体400与包括屏蔽罩900的其它物体之间的缝隙,降低接触热阻,提高整个终端设备的散热能力。
第四,不需要额外的框架结构或固定结构,不会增加终端设备的重量和厚度。此外不需要使用背胶,可以降低热源组件的总厚度。
第五,可采用点焊、铆接等方法进行热管300的固定,免除了耗时的保压操作,在批量化生产时具有明显优势。
总之,以上所述仅为本申请技术方案的实施例而已,并非用于限定本申请的保护范围。凡根据本申请的揭露,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种热管,包括热管本体和制作所述热管时与所述热管本体一体形成的无效部,所述热管本体的管壁的内侧具有多孔毛细结构层,其特征在于:
    所述无效部位于所述热管本体的四周的至少一部分上,且所述无效部用作所述热管与其它物体固定用的安装部。
  2. 如权利要求1所述的热管,其特征在于,所述安装部具有面向所述其它物体的安装面,所述安装面上设有向所述安装面内凹陷的、用于填充溶胶的容胶空间。
  3. 如权利要求2所述的热管,其特征在于,所述安装部上背离所述安装面的一侧具有鳍片散热方式的多个散热片。
  4. 如权利要求2或3所述的热管,其特征在于,所述容胶空间在所述安装面上延伸,且所述容胶空间的至少一端贯穿所述安装面。
  5. 如权利要求4所述的热管,其特征在于,所述容胶空间在所述安装面上沿一直线延伸,且所述容胶空间的两端均贯穿所述安装面。
  6. 如权利要求1-5中任一项所述的热管,其特征在于,所述热管具有两个所述安装部,两个所述安装部分别位于所述热管本体的第一端和第二端;其中,所述第一端和所述第二端相对设置。
  7. 如权利要求6所述的热管,其特征在于,每一所述安装部上的所述容胶空间在所述安装面沿所述热管的横向直线延伸,且所述容胶空间的两端贯穿所述安装面。
  8. 如权利要求6或7所述的热管,其特征在于,每一所述安装部上具有多个所述容胶空间,每一所述安装部上的多个所述容胶空间沿所述热管的纵向间隔设置。
  9. 如权利要求1-5中任一项所述的热管,其特征在于,所述热管具有四个所述安装部,其中两个所述安装部分别位于所述热管本体的第一端和第二端,另外两个所述安装部分别位于所述热管本体的第一侧和第二侧,且四个所述安装部之间相互连接形成框形安装部;其中,所述第一端与所述第二端相对设置,所述第一侧与所述第二侧相对设置,且所述第一侧的一端和所述第二侧的一端均邻接所述第一端,所述第一侧的另一端和所述第二侧的另一端均邻接所述第二端。
  10. 如权利要求9所述的热管,其特征在于,四个所述安装部上的所述容胶空间之间相互连通形成环形容胶空间。
  11. 如权利要求10所述的热管,其特征在于,所述框形安装部的所述安装面突出于所述热管本体面对所述其它物体的面,四个所述安装部围绕所述热管本体形成用于填充导热材料的容纳腔室。
  12. 一种散热模组,包括热管和外壳,所述外壳用于罩设于热源,其特征在于,所述热管采用如权利要求1所述的热管,所述其它物体包括所述外壳,至少部分所述安装部与所述外壳固定;
    所述热管本体具有蒸发段,所述蒸发段与所述热源对应设置,以吸收所述热源的热量。
  13. 如权利要求12所述的散热模组,其特征在于,所述安装部的安装面上设有向所述安装面内凹陷的容胶空间,所述外壳与所述安装部的所述容胶空间对应的部位设有外壳容胶空间,通过在对应设置的所述外壳容胶空间和所述容胶空间内填充溶胶,并通过所述外壳容胶空间与所述容胶空间对接,将至少部分所述安装部粘接于所述外壳。
  14. 如权利要求13所述的散热模组,其特征在于,所述热管具有两个所述安装部,两个所述安装部分别位于所述热管本体的第一端和第二端,位于所述第一端的所述安装部固定于所述外壳;其中,所述第一端和所述第二端相对设置,所述第一端位于所述蒸发段。
  15. 如权利要求13所述的散热模组,其特征在于,所述热管具有四个所述安装部,其中两个所述安装部分别位于所述热管本体的第一端和第二端,另外两个所述安装部分别位于所述热管本体的第一侧和第二侧,且四个所述安装部之间相互连接形成框形安装部,四个所述安装部上的容胶空间之间相互连通形成环绕所述热管本体的环形容胶空间;其中,所述第一端与所述第二端相对设置,所述第一侧与所述第二侧相对设置,且所述第一侧的一端和所述第二侧的一端均邻接所述第一端,所述第一侧的另一端和所述第二侧的另一端均邻接所述第二端,所述第一端位于所述蒸发段;
    所述其它物体与所述框形安装部的所述环形容胶空间对应的部位设有环形其它物体容胶空间,通过在对应设置的所述环形容胶空间和所述环形其它物体容胶空间内填充溶胶,并通过所述环形容胶空间和所述环形其它物体容胶空间对接,将所述框形安装部粘接于所述其它物体,且所述环形其它物体容胶空间至少包括所述外壳容胶空间。
  16. 如权利要求15所述的散热模组,其特征在于,所述框形安装部的安装面突出于所述热管本体面对所述外壳的面,使得四个所述安装部围绕所述热管本体绕形成有容纳腔室;
    当所述框形安装部粘接于所述其它物体时,所述容纳腔室内填充有导热材料,以形成导热层。
  17. 如权利要求12所述的散热模组,其特征在于,所述热管具有四个所述安装部,其中两个所述安装部分别位于所述热管本体的第一端和第二端,另外两个所述安装部分别位于所述热管本体的第一侧和第二侧,且四个所述安装部之间相互连接形成框形安装部;其中,所述第一端与所述第二端相对设置,所述第一侧与所述第二侧相对设置,且所述第一侧的一端和所述第二侧的一端均邻接所述第一端,所述第一侧的另一端和所述第二侧的另一端均邻接所述第二端,所述第一端位于所述蒸发段;
    位于所述第一端的所述安装部通过铆接固定于所述外壳,位于所述热管本体的所述第一侧和所述第二侧的所述安装部通过点焊固定于所述外壳。
  18. 如权利要求12-17中任一项所述的散热模组,其特征在于,所述外壳为屏蔽罩; 所述其它物体仅包括所述屏蔽罩,或者,所述其它物体包括所述屏蔽罩和终端设备的中框或后壳。
  19. 一种终端设备,其特征在于,包括如权利要求12-18中任一项所述的散热模组,所述热管本体还具有冷凝段,所述冷凝段与所述终端设备中温度低于所述热源处的温度的其它位置对应设置。
  20. 如权利要求19所述的终端设备,其特征在于,所述外壳面向对应的所述安装部的面为第一安装面,所述其它物体除所述外壳外的其它部件面向对应的所述安装部的面为第二安装面,所述第一安装面和所述第二安装面位于同一平面上。
PCT/CN2020/129041 2019-11-20 2020-11-16 热管、散热模组及终端设备 WO2021098641A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/426,359 US20220104398A1 (en) 2019-11-20 2020-11-16 Heat pipe, heat dissipation module, and terminal device
CN202080005731.9A CN113039875B (zh) 2019-11-20 2020-11-16 热管、散热模组及终端设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911142288.5A CN110856417B (zh) 2019-11-20 2019-11-20 热管、散热模组及终端设备
CN201911142288.5 2019-11-20

Publications (1)

Publication Number Publication Date
WO2021098641A1 true WO2021098641A1 (zh) 2021-05-27

Family

ID=69602870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129041 WO2021098641A1 (zh) 2019-11-20 2020-11-16 热管、散热模组及终端设备

Country Status (3)

Country Link
US (1) US20220104398A1 (zh)
CN (3) CN112672598A (zh)
WO (1) WO2021098641A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112672598A (zh) * 2019-11-20 2021-04-16 华为技术有限公司 热管、散热模组及终端设备
CN111542198B (zh) * 2020-04-28 2021-08-03 中国科学院空间应用工程与技术中心 一种具有导热结构的载荷适配器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228496A (ja) * 2003-01-27 2004-08-12 Sony Corp 回路基板の取付構造及び電子機器
WO2015031104A1 (en) * 2013-08-29 2015-03-05 Eaton Corporation Apparatus and methods using heat pipes for linking electronic assemblies that unequally produce heat
CN105992504A (zh) * 2015-03-19 2016-10-05 奇鋐科技股份有限公司 散热装置制造方法
CN110365815A (zh) * 2018-03-26 2019-10-22 华为技术有限公司 导热组件及终端
CN110856417A (zh) * 2019-11-20 2020-02-28 华为技术有限公司 热管、散热模组及终端设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4046190A (en) * 1975-05-22 1977-09-06 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flat-plate heat pipe
US6122167A (en) * 1998-06-02 2000-09-19 Dell Usa, L.P. Integrated hybrid cooling with EMI shielding for a portable computer
US20070284083A1 (en) * 2006-05-31 2007-12-13 Min-Hsien Sung Heat dissipating device
TW200801907A (en) * 2006-06-08 2008-01-01 Ama Precision Inc Cooling module with heat pipe
CN101598512A (zh) * 2008-06-03 2009-12-09 超众科技股份有限公司 具有双毛细结构的热管及其制作方法
TW201017085A (en) * 2008-10-23 2010-05-01 Golden Sun News Tech Co Ltd Manufacturing method for heat pipe joining and fixing base and structure thereof
CN102543914A (zh) * 2010-12-08 2012-07-04 鸿富锦精密工业(深圳)有限公司 散热器
US9429369B2 (en) * 2011-09-06 2016-08-30 Asia Vital Components Co., Ltd. Thermal module structure
CN103034285A (zh) * 2011-09-30 2013-04-10 富泰华工业(深圳)有限公司 粘合结构
US9987712B2 (en) * 2015-04-02 2018-06-05 Asia Vital Components Co., Ltd. Manufacturing method of flat-plate heat pipe
US10029337B2 (en) * 2015-04-02 2018-07-24 Asia Vital Components Co., Ltd. Method of manufacturing heat dissipation device
CN204790232U (zh) * 2015-06-29 2015-11-18 深圳市鸿合创新信息技术有限责任公司 一种容胶边框转角和防水边框
CN105116966A (zh) * 2015-08-31 2015-12-02 广东欧珀移动通信有限公司 终端前盖组件及终端
CN205378476U (zh) * 2016-01-25 2016-07-06 程建峰 一种用于超薄电子产品的热管
CN205793888U (zh) * 2016-05-19 2016-12-07 深圳市光峰光电技术有限公司 一种散热装置及投影设备
CN106440899A (zh) * 2016-11-25 2017-02-22 江苏大学 一种柔性脉动热管装置
EP3343161B1 (en) * 2016-12-28 2023-07-12 Ricoh Company, Ltd. Loop heat pipe wick, loop heat pipe, cooling device, and electronic device, and method for manufacturing porous rubber and method for manufacturing loop heat pipe wick
CN109327997A (zh) * 2017-08-01 2019-02-12 东莞市普威玛精密工业有限公司 移动电子装置的热管与金属壳体的连结构造
US10458718B2 (en) * 2017-11-29 2019-10-29 Asia Vital Components Co., Ltd. Airtight penetration structure for heat dissipation device
CN107864599B (zh) * 2017-12-11 2020-03-27 Oppo广东移动通信有限公司 玻璃外壳及移动终端
CN207797831U (zh) * 2017-12-15 2018-08-31 江苏贝德莱特太阳能科技有限公司 一种防冻超导热管
CN108551752B (zh) * 2018-06-11 2020-01-24 Oppo广东移动通信有限公司 一种电子装置及一种电路板组件
CN113686186A (zh) * 2018-12-13 2021-11-23 荣耀终端有限公司 一种薄型热管、薄型热管的制作方法及电子设备
CN110337215B (zh) * 2019-05-24 2023-10-20 荣耀终端有限公司 一种支架及电子设备
CN110149784B (zh) * 2019-06-03 2021-03-12 Oppo广东移动通信有限公司 散热组件及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004228496A (ja) * 2003-01-27 2004-08-12 Sony Corp 回路基板の取付構造及び電子機器
WO2015031104A1 (en) * 2013-08-29 2015-03-05 Eaton Corporation Apparatus and methods using heat pipes for linking electronic assemblies that unequally produce heat
CN105992504A (zh) * 2015-03-19 2016-10-05 奇鋐科技股份有限公司 散热装置制造方法
CN110365815A (zh) * 2018-03-26 2019-10-22 华为技术有限公司 导热组件及终端
CN110856417A (zh) * 2019-11-20 2020-02-28 华为技术有限公司 热管、散热模组及终端设备

Also Published As

Publication number Publication date
CN113039875A (zh) 2021-06-25
CN112672598A (zh) 2021-04-16
US20220104398A1 (en) 2022-03-31
CN110856417A (zh) 2020-02-28
CN110856417B (zh) 2020-12-18
CN113039875B (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2021098641A1 (zh) 热管、散热模组及终端设备
CN106535564B (zh) 一种液冷散热器
KR102111834B1 (ko) 종합성능이 양호한 방열구조부재 및 그 제조 공정
CN105758531A (zh) 一种非制冷红外探测器的真空封装组件
US20190082557A1 (en) Electrical enclosure with a great heat-dissipation and an ingress protection rating equal or greater than level 65
EP3907455A1 (en) Phase change heat radiating device
CN211090390U (zh) 一种复合回流结构的均热板散热器
JP2017139448A (ja) ヒートパイプ原理に基づく高出力led光源
CN207994414U (zh) 密闭式设备柜用散热装置和气体绝缘开关柜
JP5112374B2 (ja) 電子機器用放熱装置及びその製造方法
EP3813501A1 (en) Heat dissipation device
TW202120881A (zh) 超薄型均溫板及其製造方法
WO2021189726A1 (zh) 散热器和空调室外机
CN219577673U (zh) 均热板
CN205793902U (zh) 一种摄像头的散热结构及终端
CN210014476U (zh) 一种散热器、空调室外机和空调器
CN210014478U (zh) 一种散热器、空调室外机和空调器
JP4558258B2 (ja) 板型ヒートパイプおよびその製造方法
CN201571152U (zh) 一种液晶电视机的散热结构
US20070277962A1 (en) Two-phase cooling system for cooling power electronic components
JP2008196787A (ja) ヒートパイプ
CN112911028A (zh) 均温板、终端设备及均温板的制造方法
EP1863085A2 (en) Two-phase cooling system for cooling power electronic components
CN112129150B (zh) 一种铝合金热管散热手机背壳及其制造方法
JPH07106478A (ja) 沸騰冷却装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889157

Country of ref document: EP

Kind code of ref document: A1