WO2021098580A1 - 一种机械手抓取力度控制方法及装置 - Google Patents
一种机械手抓取力度控制方法及装置 Download PDFInfo
- Publication number
- WO2021098580A1 WO2021098580A1 PCT/CN2020/128345 CN2020128345W WO2021098580A1 WO 2021098580 A1 WO2021098580 A1 WO 2021098580A1 CN 2020128345 W CN2020128345 W CN 2020128345W WO 2021098580 A1 WO2021098580 A1 WO 2021098580A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- manipulator
- vibration
- vibration excitation
- modal
- response signal
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
- B25J9/1633—Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Definitions
- the invention relates to the field of intelligent manipulators, in particular to a method and device for controlling the gripping force of a manipulator.
- the gripping force needs to be controlled when the manipulator grasps the object nondestructively.
- the traditional vibrating tactile sensor manipulator touches and grips an object
- its sensing mechanism is passive vibratory tactile sense.
- the manipulator control unit determines whether to increase the gripping of the manipulator according to whether the gripped object slides and generates a frictional vibration signal. Intensity.
- the typical operation mode of the sensing mechanism is as follows: first, the manipulator performs a grasping movement to make the gripper contact the surface of the object to be clamped. After the vibration sensor on the manipulator detects a contact pulse signal, the manipulator lifts the movement.
- the vibrating sensor detects the vibration signal and outputs it to the manipulator control unit.
- the control unit analyzes and determines the vibration signal and increases the gripping force, starts the manipulator to lift it again, and then according to the energy Whether the vibration signal is detected and analyzed to determine whether to continue to increase the clamping force, this process is repeated until the manipulator clamping force is large enough, the clamped object no longer slides, and finally the object force control grasp is completed.
- the manipulator using the traditional passive vibratory tactile sensing mechanism has poor sampling continuity and signal stability during the grasping process.
- the main problems when acquiring contact and grasping process signals are: the contact signal between the manipulator and the object is generally a transient pulse Signals are susceptible to external interference and misjudgment; during force-controlled grasping, friction is generated due to the movement of the mechanical hand and the clamped object, and the contact and sliding signals are passively generated and obtained. Once the movement of the manipulator is unstable or stops, the sliding signal Then it becomes unstable or disappears, affecting the sampling and processing of contact and sliding signals and real-time program control of the manipulator.
- the purpose of the present invention is to provide a method and device for controlling the gripping force of a manipulator.
- the invention organically combines the manipulator, the grasped object and the sensor to form a variable modal mechanical control system, which has the characteristics of multiple structural modes, easy implementation, simple structure, wide range of material selection, and easy manufacturing and processing.
- the technical scheme of the present invention a method for controlling the gripping force of a manipulator, including the following steps:
- the vibration excitation source vibrates the manipulator, and at the same time couples the manipulator and the vibration sensor, so that the vibration sensor obtains the initial vibration excitation response signal;
- the manipulator touches the grasped object, so that the vibration sensor receives the vibration excitation response signal when touched, conducts modal analysis on the vibration excitation response signal when touched, and obtains and saves the touch modal parameters of the manipulator;
- the manipulator is forced to clamp the object to be grasped, so that the vibration sensor receives the vibration excitation response signal when the force is applied, and conducts modal analysis on the vibration excitation response signal when the force is applied, and obtains and saves the force clamping modal parameters of the manipulator;
- step d in a loop, and analyze and compare the modal parameters of the two adjacent after-force clamping until the manipulator continues to be clamped and the modal parameters of the manipulator no longer change, obtain and save the modal parameters of the manipulator ;
- the gripping force corresponding to the gripping modal parameters of the manipulator ensures the stable gripping of the object being grasped.
- the corresponding vibration excitation response signal is first subjected to noise reduction filtering processing.
- the modal analysis and the result of the modal analysis are the judgment criteria of the force-controlled grasping process state and the force-controlled grasping completion.
- the device used in the aforementioned gripping force control method of the manipulator includes a vibration excitation source and a vibration sensor that are all arranged on the manipulator, the vibration sensor is electrically connected to the conditioning circuit module, the conditioning circuit module is electrically connected to the modal analysis module, and the modal analysis module is electrically connected to the conditioning circuit module. Electrical connection of the drive module of the manipulator gripper;
- the vibration excitation source is used to vibrate the manipulator to generate a vibration excitation response signal
- the vibration sensor is used to obtain a vibration excitation response signal
- the conditioning circuit module is used to reduce noise and filter the vibration excitation response signal
- the modal analysis module is used to identify and extract the modal parameters in the vibration excitation response signal, and analyze and compare the changes and differences of the modal parameters;
- the manipulator gripper drive module is used to drive the gripper of the manipulator according to the modal parameters output by the modal analysis module.
- the vibration excitation source is a mechanical vibration excitation source or an electrical vibration excitation source.
- the mechanical vibration excitation source includes hammer, vibrating wire, reciprocating and/or rotary vibration excitation sources;
- the electrical vibration excitation source includes Vibration excitation source of piezoelectric transduction type and/or electromagnetic transduction type.
- the vibration sensor is a mechanical vibration sensor or an electrical vibration sensor;
- the mechanical vibration sensor includes a piezoresistive type/or a vibrating wire type;
- the electrical Vibration sensors include piezoelectric transducers and/or electromagnetic transducers.
- the vibration characteristic of the excitation source of the vibration excitation source is deterministic vibration and/or random vibration.
- the vibration excitation source is arranged on the support base, the manipulator or the gripper of the manipulator.
- the vibration sensor is arranged on the support base, the manipulator or the gripper of the manipulator.
- the present invention excites the vibration of the manipulator during the process of the manipulator grasping objects, and continuously detects the vibration excitation response signal of the manipulator, and realizes the status of the entire grasping process of the manipulator by analyzing and comparing the changes in the modal parameters of the manipulator. Uninterrupted detection, comparison and judgment are completed to complete the force control grasping; through this method, since the vibration excitation response signal is actively sent out by the vibration excitation source, its anti-interference ability and low misjudgment rate are strong, which overcomes the traditional passive vibration manipulator grasping During the fetching process, the transient pulse signal generated by the fetching friction will be unstable, which will affect the real-time control of the manipulator.
- the device used in the control method of the present invention organically combines the manipulator, the grasped object and the sensor to form a variable modal mechanical control system, which has the characteristics of diverse structure modes and easy implementation; especially the manipulator can be continuous without movement Detect the contact state of the manipulator and the object being grasped.
- the present invention uses active excitation tactile sensing and modal analysis to control the gripping force of the manipulator, and divides the gripping process of the manipulator to the object into two transitions from separation, contact, and force clamping to clamping and merging.
- the manipulator system with variable modal parameters can judge the state of the manipulator grasping objects by detecting the change of the modal parameters during the grasping process of the manipulator.
- the manipulator system has different modalities during no-load, touch, clamping and clamping. As long as the corresponding modal parameters are determined, the state of the manipulator grasping objects can be determined. Judging the gripping state through the modal analysis of the manipulator system not only makes the control method simpler, but also greatly reduces the misjudgment rate.
- the active tactile sensing used in the present invention is mainly composed of three parts: vibration excitation source, manipulator and vibration sensor.
- the vibration sensor is connected with the conditioning circuit module, and the conditioning circuit module is connected with the modal analysis module; when the manipulator is connected to the object being grasped
- the modal change of the manipulator and the corresponding vibration excitation response signal are detected by the vibration sensor, and the signal conditioning is performed by the conditioning circuit module.
- the modal analysis module recognizes and extracts the modal parameters and compares and analyzes it to determine the contact state with external objects.
- the manipulator gripper drive module receives the output signal of the modal analysis module, and drives the manipulator to perform a gripping movement, thereby completing the grasping process.
- the grasping process of the present invention does not need to rely on the lifting motion of the mechanical hand to generate sliding friction vibration, so the structural accuracy of the manipulator is not high, especially the force control program is simple, thereby reducing the development and implementation cost of the manipulator as a whole.
- the modal analysis technology adopted by the present invention is mature and reliable, and the application methods of modal parameter identification, extraction and comparative analysis are diverse and convenient, thereby reducing the difficulty of equipment development and implementation and the development implementation cycle.
- the present invention adopts active excitation tactile sensing and modal analysis, and the sampling continuity and signal stability during the grasping process are better, especially when the manipulator is not moving, it can continuously detect the contact state of the manipulator and the grasped object, thereby reducing The interference of external signals is improved, the stability of the signal is improved, and the misjudgment rate of the system is finally reduced.
- the active excitation method of the present invention can select appropriate excitation methods and/or frequencies according to the actual application environment, and cooperate with band-pass filtering, etc., which is further beneficial to reduce and/or avoid external interference signal confusion and misjudgment; actual application environment
- various external interference signals typically noise and vibration
- the present invention can adopt suitable excitation methods and/or frequencies according to their characteristics, and cooperate with band-pass filtering. For example, use a lower operating frequency system for high-frequency environmental noise interference, and use a higher operating frequency system for low-frequency vibration interference. This method makes the scope of application of the present invention wider and more adaptable.
- the present invention only needs to detect the modal change of the mechanical structure when sensing the state of the contacting object, and there is no special requirement for the specific structural materials that actively stimulate the tactile sensing. Therefore, the range of materials for actively exciting the tactile sensing manipulator is wide. Strong practicability; it is also more conducive to reducing the cost of equipment and materials.
- the present invention adopts active excitation tactile sensing.
- the vibration excitation source and vibration sensor can be installed at any position of the manipulator according to actual needs.
- the installation method is flexible, the structure design forms are diverse, and the manufacturing and processing are simple.
- the invention can select and adopt multiple modal analysis methods and technologies at the same time, and can select appropriate technologies pertinently during use, or adopt a mixed solution of multiple modal parameter identification and analysis technologies, which not only improves the reliability of the sensor, but also is convenient to use .
- the present invention organically combines the manipulator, the grasped object and the sensor to form a variable modal mechanical control system, which has the characteristics of various structural modes, easy implementation, simple structure, wide range of material selection, and easy manufacturing and processing. .
- Figure 1 is a schematic diagram of the structure of the present invention
- Figure 2 is a schematic diagram of the vibration excitation source and the vibration sensor both installed on the manipulator holder;
- Figure 3 is a schematic diagram of a vibration excitation source and a vibration sensor respectively installed on the manipulator gripper and the manipulator arm;
- Figure 4 is a schematic diagram of a vibration excitation source and a vibration sensor respectively installed on the manipulator holder and the support base;
- Figure 5 is a schematic diagram of the vibration excitation source and the vibration sensor are both installed on the manipulator arm of the manipulator;
- Figure 6 is a schematic diagram of the vibration excitation source and the vibration sensor installed on the manipulator arm and the support base;
- Fig. 7 is a schematic diagram of the vibration excitation source and the vibration sensor both installed on the support base of the manipulator.
- a gripping force control method of a manipulator includes the following steps:
- the vibration excitation source vibrates the manipulator 6, and at the same time couples the manipulator 6 with the vibration sensor, so that the vibration sensor obtains the initial vibration excitation response signal;
- step a is: start the gripping control program of the manipulator 6, the vibration excitation source vibrates the manipulator 6 to generate a vibration excitation response signal related to the characteristics of the manipulator 6, and couples the manipulator 6 with the vibration sensor, and the vibration sensor obtains the initial Time vibration excitation response signal;
- the manipulator 6 touches the object to be grasped, so that the vibration sensor receives the vibration excitation response signal when touched, conducts modal analysis on the vibration excitation response signal when touched, and acquires and saves the touch modal parameters of the manipulator 6; after steps a and b are completed
- the initial natural mode of the manipulator 6 will change accordingly, and the vibration excitation response signal received by the vibration sensor will change accordingly.
- the change is the vibration excitation response signal when touched, and the modal analysis module performs Modal analysis and comparison, acquiring and saving the touch modal parameters of the manipulator 6; the touch modal parameters correspond to the state of the manipulator 6 touching the object;
- Manipulator 6 is forced to clamp the object to be grasped, so that the vibration sensor receives the vibration excitation response signal when the force is applied, and conducts modal analysis on the vibration excitation response signal when the force is applied, and obtains and saves the force clamping mode of the manipulator 6 Parameters;
- the manipulator gripper drive module 5 drives the manipulator 6 for clamping motion, and the manipulator 6 is forced to clamp the object to be grasped.
- the touch mode of the manipulator 6 will change accordingly, and the vibration sensor receives The vibration excitation response signal changes accordingly, and the modal analysis module performs modal analysis and comparison, and obtains and saves the modal parameters of the force clamping of the manipulator 6; the force clamping modal parameters correspond to the process of the force clamping of the manipulator 6 status;
- step d cyclically, and analyze and compare the modal parameters of the two adjacent after-force clamping until the manipulator 6 continues to be clamped and the modal parameters of the manipulator 6 no longer change, and the clamping of the manipulator 6 is obtained and saved Modal parameters; the modal parameters of the manipulator no longer change.
- the manipulator 6 and the grasped object are closely combined to form a new stable structure of the manipulator (that is, the manipulator and the grasped object are equivalent to a whole at this time).
- the gripping modal parameters of the manipulator 6 correspond to the state of the manipulator 6 gripping the object;
- the clamping force corresponding to the clamping modal parameters of the manipulator 6 ensures the stable clamping of the object being grasped.
- the clamping modal parameters are used as the criterion for the completion of force control grasping.
- the manipulator 6 organically combines with the object to be grasped to form a new stable structure of the manipulator 6, and the clamping force corresponding to the clamping modal parameters of the manipulator 6 ensures that it is grasped.
- the manipulator 6 is finished.
- the corresponding vibration excitation response signal is first subjected to noise reduction filtering processing.
- the modal analysis and the results of the modal analysis are the judgment criteria of the force-controlled grasping process state and the force-controlled grasping completion.
- Modes are the natural vibration characteristics of mechanical structures. Each mode has a specific natural frequency, damping ratio and mode shape, which are related to the shape, restraint form, material properties, etc. of the structure; modal analysis is the inherent vibration of the structure. Vibration characteristic analysis, modal parameters can be obtained by calculation or experimental analysis. The process of calculation or test analysis is called modal analysis, which is used to determine the natural frequency and mode shape of the structure. Since the modal represents the inherent characteristics of the object, only need to grasp the modal characteristics and changes of the corresponding object to perceive the state of the contact object.
- the device used in the aforementioned gripping force control method of the manipulator has an electrical connection structure as shown in Fig. 1, and includes a vibration excitation source 1 and a vibration sensor 2 which are all arranged on the manipulator 6.
- the vibration sensor 2 is electrically connected to the conditioning circuit module 3 for conditioning.
- the circuit module 3 is electrically connected with the modal analysis module 4, and the modal analysis module 4 is electrically connected with the manipulator gripper drive module 5;
- the vibration excitation source 1 is used to vibrate the manipulator 6 to generate a vibration excitation response signal
- the vibration sensor 2 is used to obtain a vibration excitation response signal
- the conditioning circuit module 3 is used to reduce noise and filter the vibration excitation response signal
- the modal analysis module 4 is used to identify and extract the modal parameters in the vibration excitation response signal, and analyze and compare the changes and differences of the modal parameters;
- the manipulator gripper drive module 5 is used to drive the gripper of the manipulator 6 according to the modal parameters output by the modal analysis module 4.
- the aforementioned vibration excitation source 1 is a mechanical vibration excitation source or an electrical vibration excitation source.
- the aforementioned mechanical vibration excitation source includes hammer, vibrating wire, reciprocating and/or rotary vibration excitation sources; the electrical vibration excitation source includes piezoelectric transducer and/or electromagnetic transducer. Vibration excitation source.
- the aforementioned vibration sensor 2 is a mechanical vibration sensor or an electrical vibration sensor; the mechanical vibration sensor includes a piezoresistive type/or a vibrating wire type; the electrical vibration sensor includes a piezoelectric transducer type and/ Or electromagnetic transducer type.
- the vibration characteristic of the aforementioned vibration excitation source 1 is deterministic vibration and/or random vibration.
- the aforementioned vibration excitation source 1 is arranged on the support base 63, the robot arm 62 or the holder 61 of the manipulator 6.
- the aforementioned vibration sensor 2 is arranged on the support base 63, the robot arm 62 or the gripper 61 of the manipulator 6.
- the vibration excitation source 1 and the vibration sensor 2 of the present invention can be arranged in flexible positions, and can be arranged in different parts of the manipulator according to actual needs. See Figures 2-7. The following are selected for description:
- both the vibration excitation source 1 and the vibration sensor 2 can be arranged on the clamp 61; specifically, the vibration excitation source 1 and the vibration sensor 2 are respectively installed on the two clamping fingers of the clamp 61
- the vibration signal sent by the vibration excitation source 1 is transmitted to the vibration sensor 2 through the clamping finger connection structure of the gripper;
- the vibration excitation source 1 is a piezoelectric vibration excitation, and the vibration sensor 2 uses a piezoelectric vibration sensor;
- conditioning circuit Module 3 is composed of charge amplifier and band-pass filter;
- Modal analysis module 4 uses spectral density analysis technology;
- Manipulator gripper drive module 5 determines the state of the robot contacting and grasping objects according to the spectral density distribution and changes.
- the vibration excitation source 1 can be arranged on the gripper 61, and the vibration sensor 2 can be arranged on the robot arm 62; the vibration signal from the vibration excitation source 1 is connected through the gripper 61 and the robot arm 62. Passed to vibration sensor 2; vibration excitation source 1 is piezoelectric vibration excitation, vibration sensor 2 uses electret microphone vibration sensor; conditioning circuit module 3 is composed of electret capacitor amplifier and band pass filter; modal analysis module 4 The frequency domain function transformation analysis technology is adopted; the manipulator gripper drive module 5 determines the state of the robot contacting the object according to the frequency change.
- both the vibration excitation source 1 and the vibration sensor 2 can be arranged on the mechanical arm 62; the vibration signal from the vibration excitation source 1 is transmitted to the vibration sensor module through the mechanical arm structure; the vibration excitation source 1 is a hammer Shock type vibration excitation, vibration sensor 2 adopts electret microphone vibration sensor; conditioning circuit module 3 is composed of electret capacitor amplifier and band pass filter; modal analysis module 4 adopts time domain transfer function analysis technology; manipulator gripper The amplitude change of the driving module 5 determines the state of the robot contacting the object.
- the active excitation method of the present invention can select a suitable excitation method and/or frequency according to the actual application environment.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
一种机械手(6)抓取力度控制方法及装置。控制方法为:振动激励源(1)对机械手进行振动激励,使振动传感器(2)获取初始时振动激励响应信号,并对其进行模态分析,获取初始固有模态参数;机械手触摸被抓取物体,使振动传感器接收到触摸时振动激励响应信号,并对其进行模态分析,获取机械手触摸模态参数;机械手加力夹紧被抓取物体,使振动传感器接收到加力时振动激励响应信号,并对其进行模态分析,获取机械手加力夹紧模态参数;循环执行上一步骤,并对相邻两次加力夹紧模态参数进行分析比较,直至机械手继续加力夹紧而机械手模态参数不再发生变化,得到机械手夹持模态参数。该机械手抓取力度控制方法及装置具有结构方式多样,实施容易、制作加工容易的特点。
Description
本申请要求于2019年11月20日提交中国专利局、申请号为201911143576.2、发明名称为“一种机械手抓取力度控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及智能机械手领域,特别是一种机械手抓取力度控制方法及装置。
机械手无损抓取物体时需要对夹持力度进行控制。传统的振动式触觉传感器的机械手在接触和夹持抓取物体过程时,其传感机理是被动振动式触觉,机械手控制单元根据被夹持物体是否滑动产生摩擦振动信号而确定是否增加机械手夹持力度。该传感机理典型的运行方式为:首先机械手进行抓握运动,使夹持器与被夹持物体表面接触,机械手上的振动式传感器检测得到一个接触脉冲信号后,机械手提起运动。如果机械手夹持力不足,被夹持物体滑动产生摩擦振动,振动式传感器检测到振动信号并输出到机械手控制单元,控制单元分析确定振动信号后增加夹持力度,启动机械手再次提起,再根据能否检测到振动信号分析判断是否继续增加夹持力度,此过程反复循环直至机械手夹持力足够大,被夹持物体不再滑动,最终完成物体力度控制抓取。
采用传统被动振动式触觉传感机理的机械手,抓取过程中采样连续性及信号稳定性差,获取接触和抓取过程信号时存在的主要问题有:机械手与物体的接触信号一般是一个瞬态脉冲信号,易受外界干扰和误判;进行力度控制抓取时,由于依靠机械手提起运动与被夹持物体产生摩擦,被动地产生和获取接触和滑动信号,一旦机械手运动不稳定或停止,滑动信号便随之不稳定或消失,影响接触和滑动信号的采样和处理及对机械手进行实时程序控制。
发明内容
本发明的目的在于,提供一种机械手抓取力度控制方法及装置。本发明将机械手、被抓取物体与传感有机结合,构成一个变模态机械控制系统,其具有结构方式多样,以及实施容易、结构简单、材料选择范围广、制作加工容易的特点。
本发明的技术方案:一种机械手抓取力度控制方法,包括下述步骤:
a.振动激励源对机械手进行振动激励,同时将机械手与振动传感器耦合,使振动传感器获取初始时振动激励响应信号;
b.对初始时振动激励响应信号进行模态分析,获取和保存空载机械手初始固有模态参数;
c.机械手触摸被抓取物体,使振动传感器接收到触摸时振动激励响应信号,对触摸时振动激励响应信号进行模态分析,获取和保存机械手触摸模态参数;
d.机械手加力夹紧被抓取物体,使振动传感器接收到加力时振动激励响应信号,对加力时振动激励响应信号进行模态分析,获取和保存机械手加力夹紧模态参数;
e.循环执行步骤d,并对相邻两次加力夹紧模态参数进行分析比较,直至机械手继续加力夹紧而机械手模态参数不再发生变化,得到和保存机械手夹持模态参数;
f.机械手夹持模态参数所对应的夹持力度确保被抓取物体的稳固夹持。
前述的机械手抓取力度控制方法中,所述的模态分析进行前,先对相应的振动激励响应信号进行降噪滤波处理。
前述的机械手抓取力度控制方法中,模态分析与模态分析结果是力度控制抓取过程状态与力度控制抓取完成的判断标准。
前述的机械手抓取力度控制方法所用装置,包括均设置于机械手上的振动激励源和振动传感器,振动传感器与调理电路模块电连接,调理电路模块与模态分析模块电连接,模态分析模块与机械手夹持器驱动模块电连接;
所述的振动激励源,用于使机械手振动,产生振动激励响应信号;
所述的振动传感器,用于获取振动激励响应信号;
所述的调理电路模块,用于对振动激励响应信号降噪滤波;
所述的模态分析模块,用于识别提取振动激励响应信号中的模态参数,对模态参数的变化和差异进行分析比较;
所述的机械手夹持器驱动模块,用于根据模态分析模块输出的模态参数驱动机械手的夹持器。
前述的机械手抓取力度控制方法所用装置中,所述的振动激励源为机械式振动激励源或为电学式振动激励源。
前述的机械手抓取力度控制方法所用装置中,所述的机械式振动激励源包括锤击式、振弦式、往复式和/或旋转式的振动激励源;所述的电学式振动激励源包括压电换能式和/或电磁换能式的振动激励源。
前述的机械手抓取力度控制方法所用装置中,所述的振动传感器为机械式振动传感器或电学式振动传感器;所述的机械式振动传感器,包括压阻式/或振弦式;所述的电学式振动传感器,包括压电换能式和/或电磁换能式。
前述的机械手抓取力度控制方法所用装置中,所述的振动激励源的激励源振动特性为确定性振动和/或随机振动。
前述的机械手抓取力度控制方法所用装置中,所述的振动激励源设置于机械手的支撑座、机械臂或夹持器上。
前述的机械手抓取力度控制方法所用装置中,所述的振动传感器设置于机械手的支撑座、机械臂或夹持器上。
与现有技术相比,本发明在机械手抓取物体过程中对机械手进行振动激励,并且连续检测机械手的振动激励响应信号,通过分析比较机械手模态参数变化,实现对机械手抓取全过程状态的不间断检测、比较和判断,完成力度控制抓取;通过该方法,由于振动激励响应信号是由振动激励源主动发出,其抗干扰能力强和误判率低,克服了传统被动振动式机械手抓取过程中会因抓取摩擦产生的瞬态脉冲信号不稳定而影响机械手的实时控制的情况。本发明的控制方法所用的装置将机械手、被抓取物体与传感有机结合,构成一个变模态机械控制系统,具有结构方式多样,以及实施 容易等特点;特别是机械手没有运动时也能够连续检测机械手与被抓取物体的接触状态。具体地,本发明采用基于主动激励触觉传感与模态分析,进行机械手抓取力度控制,将机械手对物体的抓取过程分为两者从分离、接触、加力夹紧过渡到夹持合并的模态参数可变的机械手系统,通过检测机械手抓取过程中模态参数的变化来判断机械手抓取物体的状态。抓取过程中,机械手系统在空载、触摸、加力夹紧和夹持时分别具有不同的模态,只要确定了相应模态参数就可以确定机械手抓取物体的状态。通过机械手系统模态分析对抓取状态进行判断,不仅控制方法更加简单,而且误判率会大幅降低。
与传统的被动振动式机械手抓取相比,本发明的优势主要体现在以下几点:
①本发明采用的主动触觉传感,主要由振动激励源、机械手和振动传感器三部分构成,将振动传感器与调理电路模块连接,调理电路模块与模态分析模块连接;当机械手与被抓取物体相互作用时,机械手模态变化、相应的振动激励响应信号被振动传感器检测,经过调理电路模块进行信号调理,模态分析模块对模态参数识别提取和比较分析,判断确定与外部物体的接触状态,机械手夹持器驱动模块接收模态分析模块的输出信号,驱动机械手进行夹持运动,从而完成抓取过程。本发明的抓取过程无需依靠机械手提起运动产生滑动摩擦振动,因此对机械手结构精度要求不高,特别是力度控制程序简单,从而从整体上降低了机械手的研发实施成本。
②本发明采用的模态分析技术成熟可靠,模态参数识别提取和比较分析的应用方式多样方便,从而降低了设备的研发实施难度和研发实施周期。
③本发明采用主动激励触觉传感与模态分析,抓取过程中采样连续性及信号稳定性较好,特别是机械手没有运动时能够不间断检测机械手与被抓取物体的接触状态,从而降低了外界信号的干扰,提高了信号稳定性,最终降低了系统误判率。
④本发明的主动激励方式可以根据实际应用的场合环境,选用合适的激励方式和/或频率,配合带通滤波等,进一步有利于减少和/或避免外界干扰信号混淆和误判;实际应用环境存在各种外界干扰信号,典型的为噪 音和振动,本发明可以针对其特性,采用合适的激励方式和/或频率,配合带通滤波等。如:对于高频环境噪音干扰选用较低的工作频率系统,而低频振动干扰则选用较高工作频率系统。该方式使得本发明的适用范围更广,适应性更强。
⑤本发明在感知接触物体的状态时,只需检测机械结构的模态变化,而对主动激励触觉传感的具体结构材料并无特殊要求,因此主动激励触觉传感机械手的材料选择范围广,实用性强;也更有利于降低设备材料成本。
⑥本发明采用主动激励触觉传感,振动激励源和振动传感器可根据实际需要在机械手的任意位置实施安装,其安装实施方式灵活,结构设计形式多样、制作加工简单。
⑦本发明可以同时选择和采用多种模态分析方法和技术,使用时可以针对性选择合适的技术,或采用多种模态参数识别分析技术混合方案,不仅提高传感器的可靠性,而且使用方便。
综上,本发明将机械手、被抓取物体与传感有机结合,构成一个变模态机械控制系统,其具有结构方式多样,以及实施容易、结构简单、材料选择范围广、制作加工容易的特点。
说明书附图
图1是本发明的结构示意图;
图2是振动激励源和振动传感器均安装在机械手夹持器上的示意图;
图3是振动激励源和振动传感器分别安装在机械手夹持器和机械臂上的示意图;
图4是振动激励源和振动传感器分别安装在机械手夹持器和支撑座上的示意图;
图5是振动激励源和振动传感器均安装在机械手机械臂上的示意图;
图6是振动激励源和振动传感器安装在机械手机械臂和支撑座上的示意图;
图7是振动激励源和振动传感器均安装在机械手支撑座上的示意图。
附图标记:1-振动激励源,2-振动传感器,3-调理电路模块,4-模态分析模块,5-机械手夹持器驱动模块,6-机械手,61-夹持器,62-机械臂, 63-支撑座。
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发明限制的依据。
实施例1
一种机械手抓取力度控制方法,包括下述步骤:
a.振动激励源对机械手6进行振动激励,同时将机械手6与振动传感器耦合,使振动传感器获取初始时振动激励响应信号;
具体地,步骤a为:启动机械手6抓取控制程序,振动激励源对机械手6进行振动激励,产生与机械手6特性相关的振动激励响应信号,并且通过机械手6与振动传感器耦合,振动传感器获取初始时振动激励响应信号;
b.对初始时振动激励响应信号进行模态分析,获取和保存空载机械手6初始固有模态参数;
c.机械手6触摸被抓取物体,使振动传感器接收到触摸时振动激励响应信号,对触摸时振动激励响应信号进行模态分析,获取和保存机械手6触摸模态参数;步骤a、b完成后,机械手6触摸被抓取物体时,机械手6初始固有模态会发生相应变化,振动传感器接收到的振动激励响应信号随之变化,此时变化为触摸时振动激励响应信号,模态分析模块进行模态分析比较,获取和保存机械手6触摸模态参数;该触摸模态参数对应于机械手6触摸物体的状态;
d.机械手6加力夹紧被抓取物体,使振动传感器接收到加力时振动激励响应信号,对加力时振动激励响应信号进行模态分析,获取和保存机械手6加力夹紧模态参数;完成步骤c后,机械手夹持器驱动模块5驱动机械手6进行夹持运动,机械手6加力夹紧被抓取物体,此时机械手6触摸模态会发生相应变化,振动传感器接收到的振动激励响应信号随之变化,模态分析模块进行模态分析比较,获取和保存机械手6加力夹紧模态参数;该加力夹紧模态参数对应于机械手6加力夹紧物体过程的状态;
e.循环执行步骤d,并对相邻两次加力夹紧模态参数进行分析比较, 直至机械手6继续加力夹紧而机械手6模态参数不再发生变化,得到和保存机械手6夹持模态参数;机械手模态参数不再发生变化,此时机械手6与被抓取物体紧密有机结合构成新的机械手稳定结构(即此时机械手与被抓取物体等效于一个整体),此时的机械手6夹持模态参数对应于机械手6夹持物体的状态;
f.机械手6夹持模态参数所对应的夹持力度确保被抓取物体的稳固夹持。夹持模态参数作为力度控制抓取完成的判断标准,此时机械手6与被抓取物体有机结合构成新的机械手6稳定结构,机械手6夹持模态参数所对应的夹持力度确保被抓取物体的稳固夹持,机械手6抓取结束。
前述的模态分析进行前,根据选用的模态参数特性或信号特征,先对相应的振动激励响应信号进行降噪滤波处理。
上述步骤中,模态分析与模态分析结果是力度控制抓取过程状态与力度控制抓取完成的判断标准。
模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型,其与结构的形状、约束形式、材料特性等有关;模态分析是对结构的固有振动特性分析,模态参数可以由计算或试验分析取得。计算或试验分析过程称为模态分析,这种分析用于确定结构的固有频率和振型。由于模态表示物体的固有特性,只需掌握相应物体的模态特性与变化即可感知接触物体的状态。
前述的机械手抓取力度控制方法所用装置,电连接结构构成如图1所示,包括均设置于机械手6上的振动激励源1和振动传感器2,振动传感器2与调理电路模块3电连接,调理电路模块3与模态分析模块4电连接,模态分析模块4与机械手夹持器驱动模块5电连接;
所述的振动激励源1,用于使机械手6振动,产生振动激励响应信号;
所述的振动传感器2,用于获取振动激励响应信号;
所述的调理电路模块3,用于对振动激励响应信号降噪滤波;
所述的模态分析模块4,用于识别提取振动激励响应信号中的模态参数,对模态参数的变化和差异进行分析比较;
所述的机械手夹持器驱动模块5,用于根据模态分析模块4输出的模态参数驱动机械手6的夹持器。
前述的振动激励源1为机械式振动激励源或为电学式振动激励源。
前述的机械式振动激励源包括锤击式、振弦式、往复式和/或旋转式的振动激励源;所述的电学式振动激励源包括压电换能式和/或电磁换能式的振动激励源。
前述的振动传感器2为机械式振动传感器或电学式振动传感器;所述的机械式振动传感器,包括压阻式/或振弦式;所述的电学式振动传感器,包括压电换能式和/或电磁换能式。
前述的振动激励源1的激励源振动特性为确定性振动和/或随机振动。
前述的振动激励源1设置于机械手6的支撑座63、机械臂62或夹持器61上。
前述的振动传感器2设置于机械手6的支撑座63、机械臂62或夹持器61上。
本发明的振动激励源1和振动传感器2设置位置灵活,可根据实际需要设置于机械手不同部位,参见图2-图7所示,下面挑选其中几种情况进行说明:
如图2所示,可将振动激励源1和振动传感器2均设置于夹持器61上;具体地,将振动激励源1和振动传感器2分别安装在夹持器61的两个夹持指上,振动激励源1发出的振动信号,通过夹持器夹持指副连接结构传递到振动传感器2;振动激励源1为压电式振动激励,振动传感器2采用压电式振动传感器;调理电路模块3由电荷放大器和带通滤波器组成;模态分析模块4采用谱密度分析技术;机械手夹持器驱动模块5根据频谱密度分布及变化确定机器人接触抓取物体的状态。
如图3所示,可将振动激励源1设置于夹持器61上,振动传感器2设置于机械臂62上;振动激励源1发出的振动信号,通过夹持器61和机械臂62连接结构传递到振动传感器2;振动激励源1为压电式振动激励,振动传感器2采用驻极体麦克风振动传感器;调理电路模块3由驻极体电容放大器和带通滤波器组成;模态分析模块4采用频域函数变换分析技术;机械手夹持器驱动模块5根据频率变化确定机器人接触物体状态。
如图5所示,可将振动激励源1和振动传感器2均设置于机械臂62 上;振动激励源1发出的振动信号,通过机械臂结构件传递到振动传感器模块;振动激励源1为锤击式振动激励,振动传感器2采用驻极体麦克风振动传感器;调理电路模块3由驻极体电容放大器和带通滤波器组成;模态分析模块4采用时域传递函数分析技术;机械手夹持器驱动模块5振幅变化确定机器人接触物体状态。
由上述可知,本发明的主动激励方式可以根据实际应用的场合环境,选用合适的激励方式和/或频率。
Claims (10)
- 一种机械手抓取力度控制方法,其特征在于,包括下述步骤:a.振动激励源对机械手(6)进行振动激励,同时将机械手(6)与振动传感器耦合,使振动传感器获取初始时振动激励响应信号;b.对初始时振动激励响应信号进行模态分析,获取和保存空载机械手(6)初始固有模态参数;c.机械手(6)触摸被抓取物体,使振动传感器接收到触摸时振动激励响应信号,对触摸时振动激励响应信号进行模态分析,获取和保存机械手(6)触摸模态参数;d.机械手(6)加力夹紧被抓取物体,使振动传感器接收到加力时振动激励响应信号,对加力时振动激励响应信号进行模态分析,获取和保存机械手(6)加力夹紧模态参数;e.循环执行步骤d,并对相邻两次加力夹紧模态参数进行分析比较,直至机械手(6)继续加力夹紧而机械手(6)模态参数不再发生变化,得到和保存机械手(6)夹持模态参数;f.机械手(6)夹持模态参数所对应的夹持力度确保被抓取物体的稳固夹持。
- 根据权利要求1所述的机械手抓取力度控制方法,其特征在于,所述的模态分析进行前,先对相应的振动激励响应信号进行降噪滤波处理。
- 根据权利要求1所述的机械手抓取力度控制方法,其特征在于,控制方法中,模态分析与模态分析结果是力度控制抓取过程状态与力度控制抓取完成的判断标准。
- 一种如权利要求1-3任一项所述的机械手抓取力度控制方法所用装置,其特征在于,包括均设置于机械手(6)上的振动激励源(1)和振动传感器(2),振动传感器(2)与调理电路模块(3)电连接,调理电路模块(3)与模态分析模块(4)电连接,模态分析模块(4)与机械手夹持器驱动模块(5)电连接;所述的振动激励源(1),用于使机械手(6)振动,产生振动激励响应信号;所述的振动传感器(2),用于获取振动激励响应信号;所述的调理电路模块(3),用于对振动激励响应信号降噪滤波;所述的模态分析模块(4),用于识别提取振动激励响应信号中的模态参数,对模态参数的变化和差异进行分析比较;所述的机械手夹持器驱动模块(5),用于根据模态分析模块(4)输出的模态参数驱动机械手(6)的夹持器。
- 根据权利要求4所述的机械手抓取力度控制方法所用装置,其特征在于,所述的振动激励源(1)为机械式振动激励源或为电学式振动激励源。
- 根据权利要求5所述的机械手抓取力度控制方法所用装置,其特征在于,所述的机械式振动激励源包括锤击式、振弦式、往复式和/或旋转式的振动激励源;所述的电学式振动激励源包括压电换能式和/或电磁换能式的振动激励源。
- 根据权利要求4所述的机械手抓取力度控制方法所用装置,其特征在于,所述的振动传感器(2)为机械式振动传感器或电学式振动传感器;所述的机械式振动传感器,包括压阻式/或振弦式;所述的电学式振动传感器,包括压电换能式和/或电磁换能式。
- 根据权利要求4所述的机械手抓取力度控制方法所用装置,其特征在于,所述的振动激励源(1)的激励源振动特性为确定性振动和/或随机振动。
- 根据权利要求4所述的机械手抓取力度控制方法所用装置,其特征在于,所述的振动激励源(1)设置于机械手(6)的支撑座、机械臂或夹持器上。
- 根据权利要求4所述的机械手抓取力度控制方法所用装置,其特征在于,所述的振动传感器(2)设置于机械手(6)的支撑座、机械臂或夹持器上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911143576.2A CN110757463B (zh) | 2019-11-20 | 2019-11-20 | 一种机械手抓取力度控制方法及装置 |
CN201911143576.2 | 2019-11-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021098580A1 true WO2021098580A1 (zh) | 2021-05-27 |
Family
ID=69338736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/128345 WO2021098580A1 (zh) | 2019-11-20 | 2020-11-12 | 一种机械手抓取力度控制方法及装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110757463B (zh) |
WO (1) | WO2021098580A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117268676A (zh) * | 2023-11-17 | 2023-12-22 | 西南交通大学 | 一种基于模态分析的振动试验装置及分析方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110757463B (zh) * | 2019-11-20 | 2023-06-27 | 贵州大学 | 一种机械手抓取力度控制方法及装置 |
CN114434492B (zh) * | 2021-12-17 | 2024-05-17 | 北京未末卓然科技有限公司 | 一种安全巡逻机器人 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1796955A (zh) * | 2004-12-28 | 2006-07-05 | 中国科学院合肥智能机械研究所 | 一种柔性触觉传感器 |
CN103528782A (zh) * | 2013-10-23 | 2014-01-22 | 东北大学 | 基于压电陶瓷激振器的薄壁结构件振动测试装置及方法 |
CN108318200A (zh) * | 2018-01-10 | 2018-07-24 | 东方电气集团东方汽轮机有限公司 | 一种叶片静态振动频率测试系统及其使用方法 |
US20190030732A1 (en) * | 2016-01-29 | 2019-01-31 | Tsuneaki Kondoh | Pressure-sensitive sensor, gripping device, and robot |
CN110044402A (zh) * | 2019-04-01 | 2019-07-23 | 贵州大学 | 一种基于模态分析的主动激励触觉传感器及使用方法 |
CN110243400A (zh) * | 2019-06-18 | 2019-09-17 | 贵州大学 | 基于主动激励信号获取共振信号的触滑觉传感器 |
CN110757463A (zh) * | 2019-11-20 | 2020-02-07 | 贵州大学 | 一种机械手抓取力度控制方法及装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1004444A (en) * | 1972-05-08 | 1977-02-01 | Unimation | Programmed manipulator arrangement for assembling randomly oriented parts |
DE10136581B4 (de) * | 2001-07-27 | 2004-09-09 | Stiftung Caesar | Kraftsensitiver Mikromanipulator |
JP2005342846A (ja) * | 2004-06-03 | 2005-12-15 | Nisca Corp | マイクロマニュピュレータ |
US8428780B2 (en) * | 2010-03-01 | 2013-04-23 | Honda Motor Co., Ltd. | External force target generating device of legged mobile robot |
JP2012152860A (ja) * | 2011-01-26 | 2012-08-16 | Toyota Motor Corp | 把持装置およびその制御方法 |
JP5799596B2 (ja) * | 2011-06-10 | 2015-10-28 | セイコーエプソン株式会社 | 圧電アクチュエーター、ロボットハンド、及びロボット |
CN104813462B (zh) * | 2012-11-30 | 2017-04-26 | 应用材料公司 | 振动控制的基板传送机械手、系统及方法 |
DE102013101883A1 (de) * | 2013-02-26 | 2014-08-28 | Krones Ag | Verfahren zur Überwachung einer Funktionsfähigkeit eines Greifsystems |
CN104972008B (zh) * | 2015-06-10 | 2017-03-15 | 南京邮电大学 | 一种应用于自动化生产线的板材定位抓取系统及定位抓取方法 |
CN106313053B (zh) * | 2016-10-21 | 2018-12-18 | 北京北方华创微电子装备有限公司 | 一种具有防撞功能的传片机械手及其防撞方法 |
DE102018001505A1 (de) * | 2017-02-28 | 2018-08-30 | Fill Gesellschaft M.B.H. | Verfahren zum spanenden Bearbeiten eines Werkstückes mittels einem Knickarmroboter |
JP2018171664A (ja) * | 2017-03-31 | 2018-11-08 | セイコーエプソン株式会社 | 制御装置、ロボット、およびロボットシステム |
CN107314854A (zh) * | 2017-07-07 | 2017-11-03 | 北京工业大学 | 一种实时测量振动环境下螺栓夹紧力衰减的装置及方法 |
CN107703376B (zh) * | 2017-09-15 | 2019-08-16 | 北京理工大学 | 一种动态流场下多孔介质的压电转换特性测量装置 |
CN107632532A (zh) * | 2017-10-27 | 2018-01-26 | 安徽工程大学 | 一种用于机械臂运行性能分析的系统及方法 |
CN108466290B (zh) * | 2018-03-09 | 2021-02-19 | 苏州灵猴机器人有限公司 | 机器人辅助作业系统及其辅助作业方法 |
CN108748164A (zh) * | 2018-07-19 | 2018-11-06 | 深圳市慧传科技有限公司 | 机械手自动夹取力度和夹取状态的控制方法 |
CN110271007B (zh) * | 2019-07-24 | 2021-02-02 | 广州科博锐视科技有限公司 | 一种机械手臂的物体抓取方法及相关装置 |
-
2019
- 2019-11-20 CN CN201911143576.2A patent/CN110757463B/zh active Active
-
2020
- 2020-11-12 WO PCT/CN2020/128345 patent/WO2021098580A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1796955A (zh) * | 2004-12-28 | 2006-07-05 | 中国科学院合肥智能机械研究所 | 一种柔性触觉传感器 |
CN103528782A (zh) * | 2013-10-23 | 2014-01-22 | 东北大学 | 基于压电陶瓷激振器的薄壁结构件振动测试装置及方法 |
US20190030732A1 (en) * | 2016-01-29 | 2019-01-31 | Tsuneaki Kondoh | Pressure-sensitive sensor, gripping device, and robot |
CN108318200A (zh) * | 2018-01-10 | 2018-07-24 | 东方电气集团东方汽轮机有限公司 | 一种叶片静态振动频率测试系统及其使用方法 |
CN110044402A (zh) * | 2019-04-01 | 2019-07-23 | 贵州大学 | 一种基于模态分析的主动激励触觉传感器及使用方法 |
CN110243400A (zh) * | 2019-06-18 | 2019-09-17 | 贵州大学 | 基于主动激励信号获取共振信号的触滑觉传感器 |
CN110757463A (zh) * | 2019-11-20 | 2020-02-07 | 贵州大学 | 一种机械手抓取力度控制方法及装置 |
Non-Patent Citations (1)
Title |
---|
ZHONG, FANGLIANG ET AL.: "Analysis on Characteristics of Active Excitation Tactile Sensor", TRANSDUCER AND MICROSYSTEM TECHNOLOGIES, vol. 38, no. 11, 7 November 2019 (2019-11-07), pages 19 - 22, XP055814321, ISSN: 2096-2436 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117268676A (zh) * | 2023-11-17 | 2023-12-22 | 西南交通大学 | 一种基于模态分析的振动试验装置及分析方法 |
CN117268676B (zh) * | 2023-11-17 | 2024-03-01 | 西南交通大学 | 一种基于模态分析的振动试验装置及分析方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110757463B (zh) | 2023-06-27 |
CN110757463A (zh) | 2020-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021098580A1 (zh) | 一种机械手抓取力度控制方法及装置 | |
US11500494B2 (en) | Ultrasonic touch detection and decision | |
US9513709B2 (en) | Haptic feedback generation based on resonant frequency | |
TWI474229B (zh) | 觸摸面板邊緣持握觸摸的檢測方法和裝置 | |
CN104144377B (zh) | 话音激活设备的低功率激活 | |
EP3133474B1 (en) | Gesture detector using ultrasound | |
CN105631402B (zh) | 指纹识别装置及方法 | |
JP2003330618A5 (zh) | ||
JP6093350B2 (ja) | 容量性接触センサのための評価方法および評価デバイス | |
WO2019226680A1 (en) | Ultrasonic touch and force input detection | |
Dementyev et al. | Haptics with input: back-EMF in linear resonant actuators to enable touch, pressure and environmental awareness | |
CN110162193A (zh) | 一种触碰定位装置及方法 | |
CN109580780A (zh) | 手持式敲击检测仪及检测方法 | |
CN102901185A (zh) | 空调系统及其防夹装置、防夹方法 | |
CN107122703B (zh) | 生物信息传感装置、电子设备和共模干扰检测方法 | |
CN110243400B (zh) | 基于主动激励信号获取共振信号的触滑觉传感器 | |
CN110441717B (zh) | 超磁致伸缩换能器动态电磁损耗的测量方法及系统 | |
CN209311395U (zh) | 手持式敲击检测仪 | |
US20230003590A1 (en) | Piezoelectric Sensor And Robot Hand | |
TWI543030B (zh) | The method of recognizing the rodent 's mouse and its blowing quantity | |
CN110497425A (zh) | 一种基于兰姆波与瑞利波的机器人皮肤 | |
US11906374B2 (en) | Measurement method and measurement apparatus | |
Nikolovski | Moderately reverberant learning ultrasonic pinch panel | |
CN110044402A (zh) | 一种基于模态分析的主动激励触觉传感器及使用方法 | |
CN110101575A (zh) | 带监测功能的夹取执行装置、配药机器人及其监测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20889665 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20889665 Country of ref document: EP Kind code of ref document: A1 |