WO2021098440A1 - 一种电池包和电动车 - Google Patents

一种电池包和电动车 Download PDF

Info

Publication number
WO2021098440A1
WO2021098440A1 PCT/CN2020/122891 CN2020122891W WO2021098440A1 WO 2021098440 A1 WO2021098440 A1 WO 2021098440A1 CN 2020122891 W CN2020122891 W CN 2020122891W WO 2021098440 A1 WO2021098440 A1 WO 2021098440A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery pack
pack according
sequence
structural reinforcement
Prior art date
Application number
PCT/CN2020/122891
Other languages
English (en)
French (fr)
Inventor
何龙
孙华军
朱燕
谭亮稳
万龙
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to JP2022528565A priority Critical patent/JP2023503414A/ja
Priority to US17/777,938 priority patent/US20220416343A1/en
Priority to EP20889809.8A priority patent/EP4053980A4/en
Priority to KR1020227016042A priority patent/KR20220083762A/ko
Publication of WO2021098440A1 publication Critical patent/WO2021098440A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6551Surfaces specially adapted for heat dissipation or radiation, e.g. fins or coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • H01M10/6555Rods or plates arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/276Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/282Lids or covers for the racks or secondary casings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/291Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • This application belongs to the field of batteries, and in particular relates to a battery pack and an electric vehicle.
  • the power battery pack currently applied to electric vehicles mainly includes a pack body and a plurality of battery modules installed in the pack body.
  • the battery module includes a battery array composed of a plurality of batteries arranged in sequence, and a battery array arranged in the battery array. Side plates on both sides and end plates arranged at both ends of the battery array. The side plate and the end plate are connected by screws or tie rods or welding to realize the fixation of the battery array.
  • the battery module is installed in the package body through fasteners such as screws, and in order to improve the strength of the battery package, it is usually necessary to provide a reinforcing beam in the battery package.
  • the existing patent CN201822274851.1 provides a battery module, which includes a first battery module, a second battery module, and a liquid cooling plate.
  • the first battery module and the second battery module both include a horizontal arrangement Each single battery in the battery module is laid flat (that is, the two opposite large surfaces of the single battery are arranged in the vertical direction).
  • the liquid cooling plate is arranged between the first battery module and the second battery module in a vertical direction, and two side surfaces of the liquid cooling plate are respectively bonded to the first battery module and the second battery module through a thermally conductive glue.
  • a containing cavity for containing the cooling liquid is provided inside the liquid cooling plate, and the containing cavity needs to have a certain thickness.
  • the liquid-cooling plate of this structure has low strength and cannot bear excessive structural force, so as to avoid its damage and cause the coolant to flow out and cause a short circuit in the single battery. Therefore, the liquid-cooled plate cannot play a role in the battery module. The role of strengthening and support.
  • the purpose of this application is to provide a battery pack and electric vehicle with simple structure, convenient assembly, high structural strength, large space utilization rate and energy density.
  • a battery pack including: a casing having a bottom surface and a top surface therein, a battery assembly, the battery assembly is located in the casing; the battery assembly includes a battery sequence And structural reinforcement, the battery sequence includes a plurality of single cells, and at least part of the single cells in the battery sequence are connected by the structural reinforcement; the outer surface of the single cell includes a bottom surface, a top surface, and On the side surface, the bottom surface of the single battery faces the bottom surface inside the casing, and the top surface of the single battery faces the top surface inside the casing; the side surfaces include a first side surface and two opposite second side surfaces, The area of the first side surface is the surface with the largest area among all the outer surfaces of the single battery; the single batteries in the battery assembly are arranged in sequence, and the second side surfaces of two adjacent single batteries are arranged opposite to each other, The arrangement direction of the single cells is the first direction; the structural reinforcement is fixed and pasted on the first side of the single battery connected to the structural reinforcement
  • the number of single cells connected to the structural reinforcement is not less than one-half of the number of single cells contained in the battery sequence.
  • the single cells counted as odd or the single cells counted as even along the first direction in the battery sequence are connected to the structural reinforcement.
  • the structural reinforcement is fixedly pasted on the first side surface of each single battery in the battery sequence.
  • the side surface includes two opposite first sides
  • the structural reinforcement includes two, which are respectively located on both sides of the battery sequence
  • one structural reinforcement is associated with each cell in the battery sequence.
  • the first side surface on one side of the battery is fixed and pasted, and the other structural reinforcement is fixed and pasted to the first side surface on the other side of each single battery in the battery sequence.
  • the structural reinforcing member is fixedly attached to the surface of the first side surface of the single battery at both ends in the first direction in the battery sequence.
  • the size of the single cell along the first direction is the largest.
  • the battery assembly extends from one side of the housing to the other side along the first direction.
  • the first side surfaces of all the single cells in the battery assembly are on the same plane.
  • the surface of the structural reinforcement member that is attached to the battery sequence is referred to as the first surface
  • the surface of the battery sequence that is attached to the structural reinforcement member is referred to as the second surface.
  • the first surface and the second surface are arranged in cooperation.
  • the structural reinforcement member is a rectangular plate body.
  • the structural reinforcement member is an L-shaped plate body, and the "
  • the "-" part of the L-shaped plate body is attached to and fixedly connected to the bottom surface of the single battery in the battery sequence.
  • the structural reinforcement is a "["-shaped plate body, the battery sequence is arranged in the "["-shaped plate body, and the "
  • the two "-" parts of the "["-shaped plate body are respectively attached to the top surface of the single cell and the bottom surface of the single cell in the battery sequence.
  • the single area of the two "-" parts of the "["-shaped plate body is less than the area of the bottom surface or the top surface of the battery sequence.
  • a structural glue is provided between the first side surface of each single cell in the battery sequence and the structural reinforcement member.
  • the structural reinforcement includes a metal plate.
  • the battery pack has an X direction, a Y direction, and a Z direction that are perpendicular to each other, and the bottom surface in the casing and the top surface in the casing are opposite in the Z direction; the battery pack includes multiple The battery components are arranged along the X direction; the first direction is parallel to the Y direction; and the second direction is parallel to the X direction.
  • the single battery is substantially a rectangular parallelepiped, including a length L, a height H, and a thickness D.
  • L is greater than D, and L is greater than H;
  • the length of the single battery extends along the Y direction,
  • the height direction extends along the Z direction, and the thickness direction extends along the X direction;
  • the structural reinforcement is a rectangular plate and includes a thickness T1; the length direction of the rectangular plate extends along the Y direction, and the thickness direction extends along the X direction.
  • the thickness of the single cell is 10-90 mm.
  • the single cell has six surfaces, which are a bottom surface and a top surface that are parallel to each other, two parallel first side surfaces, and two parallel second side surfaces.
  • the single cells face each other in the thickness direction.
  • the single cells in one of the at least two adjacent battery assemblies are arranged in a staggered arrangement with the single cells in the other battery assembly.
  • the number of single cells in one of the at least two adjacent battery components is greater than the number of single cells in the other battery component.
  • a reinforcing block is provided in the other battery assembly, and the reinforcing block is bonded to the second side surface of the single cells in the battery assembly to form the battery sequence.
  • the lengths of the two adjacent battery assemblies are equal.
  • the battery assembly includes a first end and a second end opposed to each other along the Y direction
  • the housing includes a first frame and a second end opposed to each other along the Y direction.
  • Frame the battery assembly is arranged between the first frame and the second frame, the first end of the battery assembly is supported on the first frame, and the second end of the battery assembly is supported on the first frame.
  • the second border On the second border.
  • the first frame is provided with a first support step
  • the second frame is provided with a second support step; the first end of the battery assembly is supported on the first support step , The second end of the battery assembly is supported on the second supporting step.
  • the housing includes a third frame and a fourth frame oppositely arranged along the X direction, and a plurality of the battery components are arranged side by side on the third frame along the X direction. And the fourth border.
  • one battery assembly is provided in the Y direction in the housing.
  • a reinforcing plate is provided between at least two adjacent battery assemblies.
  • the reinforcing plate is fixedly attached to the battery components located on both sides of the reinforcing plate.
  • the thickness of the structural reinforcement of at least one battery assembly is 10 mm to 35 mm.
  • the housing includes a tray and an upper cover, the tray and the upper cover jointly define an accommodating space, and the battery assembly is located in the accommodating space; single cells in the battery assembly The bottom surface of the battery is fixed and pasted on the inner surface of the tray, and the top surface of the single battery is fixed and pasted on the inner surface of the upper cover.
  • the bottom surfaces of the plurality of single cells are fixed and pasted on the inner surface of the tray, and the top surfaces of the plurality of single cells are fixed and pasted on the inner surface of the tray.
  • the upper cover On the inner surface of the upper cover.
  • the tray and/or the upper cover is a multi-layer composite structure
  • the multi-layer composite structure includes two layers of aluminum plates and a steel plate or hairpin sandwiched between the two layers of aluminum plates. Bubble aluminum plate.
  • the tray and/or the upper cover is a multi-layer composite structure
  • the multi-layer composite structure includes two fiber composite layers and sandwiched between the two fiber composite layers Layer of foam material.
  • the fiber composite layer includes a glass fiber layer and/or a carbon fiber layer.
  • the electrode terminals of the single cells in the battery assembly are located on the top surface of the single cells.
  • the battery pack further includes a battery management system.
  • the present application also provides an electric vehicle, which includes the above-mentioned battery pack.
  • the present application has the beneficial effects that: the present application connects multiple single cells into a whole through structural reinforcements, that is, a battery assembly.
  • the battery assembly is longer in size, higher in strength, and supports the battery assembly. On the shell, it can play a supporting role.
  • the battery assembly can be used as a beam or longitudinal beam to strengthen the structural strength of the shell, thereby reducing the use of beams and/or longitudinal beams in the battery pack, and even the battery pack can not be used
  • the beams and/or longitudinal beams that is, the battery assembly itself can replace the beams and/or longitudinal beams to ensure the structural strength of the battery pack and ensure that the battery pack is not easily deformed under the action of external forces; thereby reducing the beams and/or
  • the space occupied by the longitudinal beams in the shell improves the space utilization of the shell, so that more single batteries can be arranged in the shell as much as possible, thereby increasing the capacity, voltage and endurance of the entire battery pack.
  • the battery assembly of the present application reduces the use of end plates, and because there is no need to arrange cross beams and/or longitudinal beams in the battery pack, on the one hand, the manufacturing process of the battery pack It is simplified, the assembly complexity of the single battery is reduced, and the production cost is reduced. On the other hand, the weight of the battery pack and the entire battery pack is reduced, and the weight of the battery pack is realized. In particular, when the power battery pack is installed on an electric vehicle, the endurance of the electric vehicle can also be improved, and the weight of the electric vehicle can be reduced.
  • FIG. 1 is a schematic structural diagram of a battery pack provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the structure of a plurality of battery assemblies provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a housing provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of the connection between the battery sequence and the structural reinforcement provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the connection between the battery sequence and the structural reinforcement provided by another embodiment of the present application.
  • Fig. 6 is an exploded schematic diagram of a battery assembly provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of the connection between the battery sequence and the structural reinforcement provided by another embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a structural reinforcement provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a structural reinforcement provided by still another embodiment of the present application.
  • FIG. 10 is a schematic diagram of the structure of a single battery provided by the present application.
  • FIG. 11 is a schematic structural diagram of another battery assembly provided by the present application.
  • FIG. 12 is a schematic structural diagram of another stack of multiple battery modules provided by the present application.
  • FIG. 13 is another battery pack provided by this application.
  • Figure 14 is a battery pack provided by the prior art
  • Figure 15 is another battery pack provided by the prior art.
  • the present application provides a battery pack 300, including: a housing 100 having a housing bottom surface 101 and a housing top surface, a battery assembly 200, and the battery assembly 200 Located in the casing 100; the battery assembly 200 includes a battery sequence 201 and a structural reinforcement 202, the battery sequence 201 includes a plurality of single cells 203, at least part of the single cells 203 in the battery sequence 201 The connection is made through the structural reinforcement 202.
  • the outer surface of the single battery 203 includes a bottom surface, a top surface and side surfaces.
  • the bottom surface 204 of the single battery faces the bottom surface inside the housing 100, and the top surface 205 of the single battery faces the housing 100.
  • the inner top surface; the side surface includes a first side surface 206 and two opposite second side surfaces 207, the area of the first side surface 206 is the surface with the largest area among all the outer surfaces of the single battery 203; battery assembly
  • the single cells 203 in 200 are arranged in sequence, the second side surfaces 207 of two adjacent single cells 203 are arranged oppositely, the arrangement direction of the single cells 203 is the first direction;
  • the structural reinforcement 202 is fixed Pasted on the first side surface 206 of the single battery 203 connected to the structural reinforcement 202; the battery assembly 200 is in contact with the bottom surface of the casing 100 to be supported in the casing 100.
  • the housing 100 has a housing bottom surface 101 and a housing top surface (opposite to the housing bottom surface 101, not shown in the figure).
  • the bottom surface 101 of the housing and the top surface of the housing refer to two opposite surfaces in the height direction of the housing 100.
  • the housing 100 includes a bottom plate and a sealing cover. The bottom plate and the sealing cover define a accommodating cavity for accommodating the battery. Then, the bottom surface 101 of the housing refers to the inner surface of the bottom plate, and the top of the housing 100 The face refers to the inner surface of the sealing cover.
  • the shape of the single battery 203 is not limited.
  • the shape of the single battery 203 can be various, and can be a regular geometric shape or an irregular geometric shape, such as a square, a circle, or a polygon. , Triangle, can also be any shape, such as special-shaped battery. It is understandable that the shape of the single battery 203 is not limited in this application.
  • a plurality of single cells 203 are arranged to form a battery sequence 201.
  • the strength between two adjacent single cells 203 is generally weak.
  • the battery sequence 201 is fixed and bonded to a structural reinforcement member, and the structure is reinforced.
  • 202 is bonded to the side surface of the single cell 203 with the largest area to ensure the area of the bonding surface, thereby ensuring the structural strength of the bonding surface.
  • the structural reinforcement and the battery sequence 201 can be pasted together by structural glue.
  • the structural glue at this time is preferably a structural glue with a thermal conductivity function, which can also conduct heat to the outside of the battery while bonding.
  • a plurality of single cells 203 are first arranged in a large surface (the surface with the largest area) to form a battery sequence 201.
  • the battery Side panels are also set on both sides of the sequence.
  • the multiple single cells 203 are arranged in a large-surface arrangement.
  • the battery sequence 201 multiple single cells
  • the batteries 203 are arranged oppositely on the second side surface 207 (small surface) with a smaller area to form the battery sequence 201; that is, the arrangement of "small surface” to "small surface”, these two arrangements are more than the arrangement of this application. It is beneficial to improve the overall structural strength of the battery assembly 200.
  • the size of the battery assembly 200 along the first direction is 400-2500 mm. In other embodiments, the size of the battery assembly 200 along the first direction is 600-2500 mm.
  • the bottom plate of the battery pack is made very thick, but the weight of the battery pack will increase, reducing the weight and energy density of the battery pack;
  • the tray bottom plate is designed as a hollow structure; the cavity is equipped with a reinforced structure, although the weight of the battery pack can be reduced, it virtually increases the processing difficulty and design difficulty of the tray, and the height of the tray increases, which reduces the volume energy density of the battery pack.
  • Reinforcing ribs are arranged on the bottom of the tray, and the single cells are assembled into battery modules, and then the battery modules are fixed on the reinforcing ribs.
  • the thickness of the reinforcing ribs is generally 10-20mm. This will occupy the space of the battery pack and reduce the volume utilization of the battery pack.
  • the single battery 203 is arranged vertically (the large surface is not in contact with the bottom surface or the top surface); at this time, the structural reinforcement is arranged in the height direction of the box, and the strength of the structural reinforcement is Larger, it can increase the structural strength of the entire battery sequence 201.
  • the Z-direction force is more likely to cause the structural reinforcement 202 to bend along the thickness direction of the battery assembly 200, but due to the structural reinforcement 202 is closely connected to the battery, and the support and protection of the four frames of the tray greatly suppress the deformation of the structural reinforcement 202 in the thickness direction and the deformation of the first side 206 of the single battery 203, ensuring that the battery is in the thickness direction Reliability
  • the overall strength requirement can reduce the size of the structural reinforcement as much as possible.
  • the size of the structural reinforcement is significantly smaller than the thickness (10-20 mm) of the reinforcement ribs in the prior art.
  • the dimension T1 of the structural reinforcement in the second direction and the weight G of the single battery satisfy the relationship: 0.25mm ⁇ kg-1 ⁇ T1/G ⁇ 5.8mm ⁇ kg-1.
  • the structural reinforcement 202 is used to connect the multiple single batteries 203 into a size of 400-2500mm or 600mm-2500mm.
  • the battery assembly 200 is a whole composed of multiple single cells 203, and its structural strength is far greater than the strength of any one of the single cells 203, and because the battery assembly 200 is sufficiently long, both ends of the battery assembly 200 can be directly supported on the casing
  • the battery assembly 200 replaces the reinforcement structure to ensure the structural strength of the battery pack 300, thereby reducing the use of beams and/or longitudinal beams in the battery pack 300, and even the battery pack 300 may not use the beams and/or longitudinal beams.
  • the space occupied by the cross beam and/or the longitudinal beam in the battery pack 300 is reduced, the space utilization rate of the battery pack 300 is improved, and as many single cells 203 can be arranged in the battery pack 300 as much as possible, and then Improve the capacity, voltage and endurance of the entire battery pack 300.
  • the battery assembly 200 and the bottom surface 101 of the housing may be connected to the bottom surface 101 of the housing by direct contact between the battery assembly 200 and the bottom surface 101 of the housing to support the battery assembly 200, or the battery assembly 200 may be connected to the bottom surface 101 of the housing through other structural members.
  • the indirect contact or connection can be set by those skilled in the art according to specific working conditions, which is not limited in this application.
  • the first side surface 206 of all the single cells 203 can be connected to the structural reinforcement 202, or only a part of the single cells can be connected.
  • the first side surface 206 of 203 is connected to the structural reinforcement 202; that is, the multiple single batteries 203 in the battery sequence 201 are divided into two groups, one group is fixedly attached to the structural reinforcement 202, and the other group is not connected to the structural reinforcement 202. 202 Paste and fix.
  • the number of the single cells 203 connected to the structural reinforcement 202 is not less than one-half of the number of the single cells 203 contained in the battery sequence 201.
  • the part of the single cells 203 in the battery sequence 201 may be arranged in a row in the battery sequence 201 or may be arranged at intervals. That is to say, the single battery 203 connected to the structural reinforcement 202 and the single battery 203 not connected to the structural reinforcement 202 are arranged in a cross arrangement to form a battery sequence 201.
  • the single battery 203 counted as odd or the single battery 203 counted as even along the first direction in the battery sequence 201 is connected to the structural reinforcement 202.
  • the side surfaces include two opposite first side surfaces 206, and the structural reinforcement 202 includes two, which are located on both sides of the battery sequence 201, respectively.
  • One structural reinforcement 202 is fixedly attached to the first side 206 on one side of each single battery 203 in the battery sequence 201, and the other structural reinforcement 202 is attached to the first side 206 on the other side of each single battery 203 in the battery sequence 201.
  • the side 206 is fixed and pasted.
  • the structural reinforcement 202 is provided on the opposite sides of the battery sequence 201 at the same time, which can further improve the strength of the battery assembly 200.
  • the entire area of the first side surface 206 of the single cell 203 can be pasted with the structural reinforcement 202, or part of the first side 206 of the single cell 203 can be pasted with the structural reinforcement 202.
  • the structural reinforcement 202 is pasted and fixed to the entire area of the first side surface 206 of the single battery 203 in the middle part, the structural strength and stability of the entire battery assembly 200 is still high, and it is located in the battery sequence.
  • the partial area of the first side surface 206 of the single battery 203 at both ends of 201 is pasted with the structural reinforcement 202, thereby not affecting the overall strength and stability of the battery assembly 200, and at the same time saving cost.
  • the size of the single cells 203 along the first direction is the largest, so that the smallest single cells 203 can be used to form the battery assembly 200 with higher strength.
  • the arrangement direction of the single cells 203 is the direction in which the number of the single cells 203 increases.
  • the battery assembly 200 extends from one side of the housing 100 to the other side of the housing 100 in the first direction, that is, in the first direction, when a plurality of battery assemblies 200 are arranged in the housing 100, the first In the direction, only one battery assembly 200 is arranged, and two or more battery assemblies 200 will not be accommodated. Only a single battery assembly 200 is arranged along the first direction, which facilitates close-packing of a plurality of single cells 203.
  • the first side surfaces 206 of the multiple single cells 203 are on the same plane, so that the structural reinforcement 202 can be glued and fixed to the first side surfaces 206 of all the single cells 203 at the same time, and the battery is more reliable.
  • the stability and strength of the assembly 200 are also higher.
  • the shape of the structural reinforcement member 202 is not particularly limited, as long as it has a certain structural strength, and the structural strength of the battery assembly 200 can be increased when multiple single cells 203 are connected as a whole, and Not easily deformed.
  • the surface of the structural reinforcement member 202 that is attached to the battery sequence 201 is marked as the first surface, and the surface of the battery sequence 201 that is attached to the structural reinforcement member 202 is recorded as the second surface.
  • the coordinated arrangement means that as long as the first surface of the structural reinforcement 202 and the second surface of the battery sequence 201 can be arranged in close contact with each other, the structural reinforcement 202 can play the role of strengthening and fixing. That is, the shape and area of the structural reinforcement 202 are not particularly limited. In some specific embodiments, the first surface of the structural reinforcement 202 and the second surface of the battery sequence 201 have the same shape and are arranged correspondingly. The first surface and the second surface have the same shape, which makes it easier for the structural reinforcement 202 to adhere to the battery sequence 201 more easily.
  • the shapes of the first surface and the second surface may also be different.
  • the single battery 203 in the battery sequence 201 is a rectangular battery with a rectangular parallelepiped structure (the battery sequence 201 is also a rectangular parallelepiped shape)
  • the structural reinforcement 202 is a rectangular plate, such as when the strength of the battery pack 300 meets the requirements or the battery assembly 200 has specific requirements for the assembly space in the housing 100, and when the structural reinforcement 202 connects all the single cells 203 in the battery sequence 201 into a whole and can ensure the strength of the battery assembly 200, the structure can be reinforced
  • the area of the member 202 is smaller than the area of the second surface of the battery string 201.
  • the length of the rectangular structural reinforcement member 202 is smaller than the length of the battery string 201, and the width of the structural reinforcement member 202 is smaller than the width of the battery string 201.
  • the length of the battery assembly 200 is the length of the battery string 201
  • the width of the battery assembly 200 is the width of the battery string 201
  • the thickness of the battery assembly 200 is the thickness of the battery string 201.
  • the area of the structural reinforcement 202 may also be greater than the area of the second surface of the battery sequence 201.
  • the length of the rectangular structural reinforcement 202 is greater than the length of the battery sequence 201
  • the width of the structural reinforcement 202 is greater than The width of the battery sequence 201.
  • the structural reinforcement 202 is a rectangular plate body.
  • the structural reinforcement 202 is an L-shaped plate body, and the "
  • " part of the L-shaped plate body that is attached to the first side surface 206 of the single battery 203 in the battery sequence 201 is marked as the first plate surface 208
  • the side surface of the battery sequence 201 that is attached to the first plate surface 208 is marked as the third surface, and the first plate surface 208 and the third surface have the same shape and are arranged correspondingly.
  • the "-" part of the L-shaped plate body is attached to and fixedly connected to the bottom surface 204 of the single battery in the battery sequence 201.
  • the surface of the "-" part of the L-shaped plate body that is attached to the bottom surface 204 of the single battery in the battery sequence 201 is recorded as the second board surface 210, and the surface on the battery sequence 201 that is attached to the second board surface 210 is recorded as the No.
  • the second plate surface 210 and the fourth surface have the same shape, the same area, and are arranged correspondingly.
  • the structural reinforcement 202 is a "["-shaped plate body
  • the battery sequence 201 is set in the “["-shaped plate body
  • " part of the "["-shaped plate body is in the battery sequence 201
  • the first side surface 206 of the single battery 203 is attached to and fixedly connected.
  • " part of the "["-shaped plate body that is attached to the first side surface 206 of the single battery 203 in the battery sequence 201 is marked as the third plate surface 209, and the battery sequence 201
  • the side surface attached to the third board surface 209 is denoted as the seventh surface, and the third board surface 209 and the seventh surface have the same shape, the same area, and are arranged correspondingly.
  • the two "-" parts of the "["-shaped plate body are attached to the top surface 205 of the single cell and the bottom surface 204 of the single cell in the battery sequence 201, respectively.
  • the single area of the two "-" parts of the "["-shaped plate body is less than the area of the bottom surface or the top surface of the battery sequence.
  • the surface on the "["-shaped board body that is attached to the bottom surface 204 of the single cell in the battery sequence 201 is marked as the fourth board surface 211, and the battery sequence 201 is attached to the fourth board surface 211.
  • the combined surface is denoted as the fifth surface, and the fourth plate surface 211 and the fifth surface have the same shape, the same area, and are arranged correspondingly.
  • the surface on the "["-shaped plate body that is attached to the top surface of the single battery 203 in the battery sequence 201 is marked as the fifth plate surface 212, and the battery sequence 211 is connected to the fifth plate surface 212.
  • the bonded surface is denoted as the sixth surface, the fifth plate surface 212 is rectangular, and the area of the rectangular is smaller than the area of the sixth surface.
  • a structural glue 213 is provided between the first side 206 of each single battery 203 in the battery sequence 201 and the structural reinforcement 202, that is, the single battery 203 and The structural reinforcement 202 is adhered by the structural adhesive 213.
  • the structural glue 213 is a thermally conductive structural glue 213.
  • the thermally conductive structural adhesive 213 can not only ensure a good bonding effect between the structural reinforcement 202 and the first side surface 206 of the single battery 203, but also can conduct heat generated by the single battery 203 during operation.
  • the thickness of the thermally conductive structural adhesive 213 is 0.5 mm-20 mm.
  • the structural reinforcement 202 is a metal plate.
  • the metal plate may be a steel plate or an aluminum plate, and the metal plate has high structural strength and good heat dissipation performance.
  • the thickness of the metal plate is 0.8mm-3.5mm.
  • the thickness of the metal plate is 1mm-2.5mm.
  • the battery pack 300 has an X direction, a Y direction, and a Z direction that are perpendicular to each other, and the bottom surface 101 in the casing and the top surface in the casing are opposite in the Z direction; the battery pack 300 It includes a plurality of battery assemblies 200 arranged along the X direction; the first direction is parallel to the Y direction, and the second direction is parallel to the X direction.
  • the X direction, the Y direction and the Z direction only indicate the orientation, and the specific shape of the housing 100 is not limited.
  • the single battery is substantially a rectangular parallelepiped, including a length L, a height H, and a thickness D.
  • L is greater than D, and L is greater than H;
  • the length direction of the single battery 203 is along the Y direction
  • the height direction extends along the Z direction, and the thickness direction extends along the X direction.
  • the structural reinforcement is a rectangular plate and the dimension along the second direction is the thickness T1; the length direction of the rectangular plate extends along the Y direction, and the thickness The direction extends along the X direction.
  • the length of the battery assembly 200 is the size of the battery assembly 200 mentioned above in the first direction; the thickness of the rectangular plate is The dimension T1 of the structural reinforcement 202 along the second direction described above.
  • the single battery 203 is generally a rectangular parallelepiped structure. It can be understood that the single battery 203 can be a rectangular parallelepiped shape, a cube shape, or a local abnormal shape, but it is generally a rectangular parallelepiped shape or a cube shape; or, there are some gaps or protrusions. Starting, chamfering, radiating, bending, but the overall shape is similar to cuboid or cube.
  • the structural reinforcement 202 is generally a rectangular plate. It can be understood that the structural reinforcement 202 can be a rectangular parallelepiped shape, a cube shape, or a local abnormal shape, but is generally a rectangular parallelepiped shape or a cube shape; or, there are gaps, Convex, chamfer, radian, and curved, but the overall shape is approximately cuboid or cube.
  • the thickness T1 of the structural reinforcement and the thickness D of the single battery satisfy the relationship: T1/D>0.012, More preferably, 0.4 ⁇ T1/D ⁇ 0.9.
  • the inventor of the present application has found through a lot of experiments that when the thickness T1 of the structural reinforcement and the thickness D of the single battery satisfy the above relationship, the battery pack can meet the national standard GB /T 31467.3-2015 vibration and extrusion performance requirements.
  • the thickness of the single cell is 10-90 mm. Therefore, the bonding strength between the structural reinforcement and the single battery is higher.
  • the single battery 203 has 6 surfaces, which are two parallel bottom and top surfaces, two parallel first side surfaces 206, and two parallel second side surfaces 207.
  • the two parallel first side surfaces 206 are on the single cell.
  • the battery 203 faces each other in the thickness direction.
  • the first side surface 206 of the single battery 203 is a surface formed along its length and width directions (the first side surface 206 includes two opposite surfaces), and the second side surface 207 of the single battery 203 is along the The surface formed by the length direction and the thickness direction (the second side surface 207 also includes two opposite surfaces), the bottom surface 204 and the top surface of the single cell are both surfaces formed along the width direction and the thickness direction.
  • the structural reinforcement 202 By setting the single cells 203 in the battery sequence 201 as a rectangular battery with a rectangular parallelepiped structure, it is not only convenient for the structural reinforcement 202 to fit and be fixedly connected to the first side surface 206 of each single battery 203 in the battery sequence 201, The structural reinforcement 202 connects all the single cells 203 in the battery sequence 201 into a rectangular solid body, simplifying the assembly process.
  • the rectangular parallelepiped battery assembly 200 can better assume the role of a reinforcing beam in the housing 100, reducing the use of reinforcing ribs in the housing 100, which not only helps to reduce the weight of the entire battery pack 300, but also greatly Simplifying the structure of the housing 100 is beneficial to improve the space utilization rate of the battery pack 300 and the energy density of the battery pack 300.
  • the shapes of the multiple single cells 203 included in the battery sequence 201 may be the same or different.
  • the single cells 203 in the battery sequence 201 may all be rectangular batteries with a rectangular parallelepiped structure, the shapes in the battery sequence 201
  • the sizes (length L, height H, thickness D) of the single cells 203 may also be different from each other, and the size of each single cell 203 can be flexibly set and selected according to actual needs.
  • the single cells 203 in one of the at least two adjacent battery assemblies 200 and the single cells in the other battery assembly 200 203 misaligned arrangement.
  • the single cells 203 in two adjacent battery assemblies 200 are staggered in one direction.
  • the dislocation arrangement makes the second side surface 207 of the contact surface between the single battery 203 and the single battery 203 not be in the same straight line. Therefore, in one of the battery assemblies 200, the single battery 203 and the single battery 203 The weak points in between can be balanced by using another battery assembly 200. Once external force occurs in the battery pack, these weak points will not easily fail.
  • the staggered arrangement can be understood to mean that all the single cells 203 of two adjacent battery assemblies 200 are arranged staggered, or they can be arranged between some of the single cells 203 of two adjacent battery assemblies 200. Staggered arrangement; it can also be that the single cells 203 in all two adjacent battery assemblies 200 are staggered, or the single cells 203 in the battery assemblies 200 that are arranged at intervals are staggered.
  • the single cells 203 in the first battery assembly and the second battery assembly are misplaced, and the single cells 203 in the second battery assembly and the third battery assembly are misplaced, and the third battery
  • the single battery 203 in the fourth battery assembly and the fourth battery assembly are misplaced, and the single battery 203 in the fourth battery assembly and the fifth battery assembly are misplaced, and the fifth battery assembly and the sixth battery assembly are misplaced.
  • the single battery 203 is misplaced;
  • the single battery 203 in the first battery assembly and the second battery assembly are arranged in a misaligned manner, and the single batteries 203 in the second battery assembly and the third battery assembly are aligned, and the third battery
  • the single cells 203 in the fourth battery assembly and the fourth battery assembly are misaligned, and the single batteries 203 in the fourth battery assembly and the fifth battery assembly are aligned, and the fifth battery assembly and the sixth battery assembly are aligned with each other.
  • the single battery 203 is misplaced.
  • the single cells 203 in a part of the adjacent battery assemblies may be aligned, and the single cells 203 in the other part of the adjacent battery assemblies may be arranged in a staggered manner; or all adjacent battery assemblies may be arranged in a staggered manner.
  • the single battery 203 in the dislocation is arranged.
  • the sizes of the single cells 203 in the two adjacent battery assemblies 200 that are dislocation arrangement may not be the same.
  • single cells 203 of the same size are used.
  • the number of single cells 203 in one of at least two adjacent battery assemblies 200 is greater than that of the other battery. The number of single cells 203 in the assembly 200.
  • the battery assembly 200 is denoted as A, and the number of single batteries 203 in another battery assembly 200 is at most n-1, marked as battery assembly B.
  • battery assembly A and battery assembly B are alternately arranged to form an ABAB... structure, or AABBAA...
  • a casing 100 is provided outside to form a battery pack 300.
  • the single battery 203 and the single battery 203 are optimized, and the single battery 203 and the housing 100 are bonded by structural adhesive. It is best to use the glue-filling method to make the battery pack 300 firmly form a overall.
  • the length of the battery assembly 200 with the smaller number of single batteries 203 will be smaller than the length of the other adjacent battery assembly 200.
  • the battery assembly 200 is provided with a reinforcing block 218, which is bonded to the second side surface 207 of the single cell 203 in the battery assembly 200 In order to form the battery sequence 201, it is ensured that the lengths of the two adjacent battery assemblies 200 are equal, and the overall strength of the battery pack is high.
  • the specific position of the reinforcing block 218 in the battery assembly 200 is not particularly limited. It can be located at one end of the battery assembly 200 or between two adjacent single cells 203 in the battery assembly 200;
  • the number of blocks 218 is not limited, and can be one or more.
  • a plurality of reinforcing blocks 218 may be arranged between the single cells 203 at intervals, or may be located together.
  • the battery sequence 201 between the two structural reinforcements 202 and the structural reinforcement 201 form a firm "I" structure, and three adjacent battery assemblies 200 form another
  • the "I” structure increases the overall strength of the battery pack 300 through the densely distributed "I” structure.
  • Structural strength forming a honeycomb-like structure.
  • the battery pack 300 of this structure is arranged at the bottom of the vehicle, which can well support the structural strength of the entire vehicle and reduce the strength design of the entire vehicle, thereby reducing the design cost, difficulty and cycle of the entire vehicle.
  • the gap there is a gap between two adjacent battery sequences 201 in the battery sequence 201, and the gap forms a battery cooling air duct.
  • the gap is also used to accommodate the expansion of the single battery 203 during operation.
  • a cooling plate may also be provided in the gap to cool and dissipate the single battery 203.
  • the battery assembly 200 includes a first end 214 and a second end 215 disposed opposite to each other in the Y direction
  • the housing 100 includes a first frame 103 and a second frame 104 disposed opposite to each other in the Y direction.
  • the assembly 200 is disposed between the first frame 103 and the second frame 104, the first end 214 of the battery assembly 200 is supported on the first frame 103, and the second end 215 of the battery assembly 200 is supported on the second frame 104.
  • the battery assembly 200 extends between the first frame 103 and the second frame 104.
  • the first end 214 and the second end 215 of the battery assembly 200 are respectively supported on the first frame 103 and the second frame 104, and the battery assembly 200 can be directly connected to the first frame 103 and the second frame 104.
  • Support that is, placed on the first frame 103 and the second frame 104, or can be further fixed on the first frame 103 and the second frame 104, the specific fixing method is described in detail below, for the specific support and fixing method , This application is not restricted.
  • the distance between the first frame 103 and the second frame 104 matches the size of the battery assembly 200, and the match here refers to the two frames or the lower frame.
  • the distance between the two side walls mentioned above can be matched to install a battery assembly 200, and this kind of fit can be a clearance fit, an interference fit, a tightened fit, a fixed fit, etc., so as to achieve the purpose of the present application.
  • the first end 214 of the battery assembly 200 may be directly or indirectly supported on the first frame 103, and the second end 215 of the battery assembly 200 may be directly or indirectly supported on the second frame 104.
  • the direct meaning means that the first end 214 and the first frame 103 of the battery assembly 200 directly contact and cooperate with each other, and the second end 215 and the second frame 104 of the battery assembly 200 directly contact and cooperate; the indirect meaning refers to, for example, some implementations
  • the first end 214 of the battery assembly 200 is supported in cooperation with the first frame 103 through the first end 214 plate, and the second end 215 of the battery assembly 200 is supported in cooperation with the second frame 104.
  • the battery assembly 200 provided in the present application extends between the first frame 103 and the second frame 104, and both ends of the battery assembly 200 are supported on the first frame 103 and the second frame 104, respectively.
  • the battery assembly 200 itself can be used as a beam or a longitudinal beam to strengthen the structural strength of the casing 100. That is to say, there is no need to provide a strengthening structure for strengthening its structural strength in the casing 100, and it can be directly replaced by the battery assembly 200 itself.
  • the strengthening structure ensures the structural strength of the housing 100 and ensures that the housing 100 is not easily deformed under the action of external forces.
  • the first frame 103 is provided with a first support step 107
  • the second frame 104 is provided with a second support step (not shown); the first end 214 of the battery assembly 200 is supported on the first support On the step 107, the second end 215 of the battery assembly 200 is supported on the second supporting step 108.
  • the plurality of battery assemblies 200 There are a plurality of battery assemblies 200, and the plurality of battery assemblies 200 are arranged side by side along X.
  • a plurality of battery assemblies 200 are directly arranged and arranged in the housing 100. This structural design omits the structural parts for installing and fixing the single battery 203, which not only helps to reduce the weight of the entire battery pack 300, but also simplifies the assembly process. Conducive to reducing production costs.
  • each battery assembly 200 when there are multiple battery assemblies 200, the shape and size of each battery assembly 200 and the shape and number of the single cells 203 in each battery assembly 200 may be the same or different.
  • the single cells 203 in the plurality of battery sequences 201 are all rectangular batteries with a rectangular parallelepiped structure
  • the housing 100 includes a third frame 111 and a fourth frame 112 oppositely arranged along the X direction, and a plurality of battery assemblies 200 are arranged side by side on the third frame along the X direction. Between 111 and the fourth frame 112.
  • the first frame 103 and the second frame 104 are perpendicular to and connected to the third frame 111 and the fourth frame 112, so that the housing 100 is formed into a rectangle or a square.
  • first frame 103 and the second frame 104 may be parallel to each other, and the third frame 111 and the fourth frame 112 may be arranged at an angle to the first frame 103 and the second frame 104, so that the housing 100 is formed as Trapezoid, parallelogram, etc.
  • the present application does not limit the specific shape of the housing 100 formed by the first frame 103, the second frame 104, the third frame 111, and the fourth frame 112.
  • the third frame 111 applies a force toward the fourth frame 112 to the battery assembly 200 disposed adjacent to the third frame 111
  • the fourth frame 112 applies a force to the battery assembly 200 disposed adjacent to the fourth frame 112.
  • the force toward the third frame 111 enables the plurality of battery assemblies 200 to be closely arranged between the third frame 111 and the fourth frame 112 along the X direction, and the plurality of battery assemblies 200 can be attached to each other.
  • the third frame 111 and the fourth frame 112 can limit the multiple battery assemblies 200 in the X direction, especially when the battery assembly 200 is slightly expanded, it can buffer the battery assembly 200 and provide inward pressure. The effect of preventing excessive expansion and deformation of the battery assembly 200.
  • the third frame 111 and the fourth frame 112 can effectively limit the expansion of the battery assembly 200, so that when the battery assembly 200 fails and expands, There can be enough air pressure inside to break through the flip sheet in the explosion-proof valve or the current interrupt device (CID), so as to short-circuit the battery assembly 200, ensure the safety of the battery assembly 200, and prevent the battery assembly 200 from exploding.
  • CID current interrupt device
  • a reinforcing plate is provided between at least two adjacent battery assemblies 200.
  • the arrangement of the reinforcing plate can better absorb the impact force received by the battery sequence 201 in the three-dimensional direction, and improve the mechanical strength of the entire battery sequence 201.
  • the reinforcing plate can be an aluminum plate or a steel plate.
  • the number of reinforcing plates is not limited and can be one or more. When the number of reinforcing plates is more than one, it can be every two adjacent battery modules. Reinforcing plates are arranged between each of the battery assemblies 200, or it may be that only a part of adjacent battery assemblies 200 are provided with reinforcing plates.
  • the shape of the reinforcing plate may be substantially similar to the shape of the single cells 203.
  • the reinforcing plate is fixedly attached to the battery assembly 200 on both sides, thereby improving the overall structure of the entire battery pack 300.
  • the thickness of the structural reinforcement 202 of the at least one battery assembly 200 may be directly thickened.
  • the at least one battery assembly The thickness of the structural reinforcement is 10mm-35mm.
  • the thickness is 0.5mm-3.5mm.
  • multiple single cells 203 connected by structural reinforcements 202 can strengthen the battery pack 300 as a whole.
  • 202 itself can also play a role in strengthening the structure of the battery pack 300.
  • the dual strengthening effect makes the overall mechanical strength of the battery pack 300 higher.
  • the housing 100 includes a tray and an upper cover, the tray and the upper cover jointly define an accommodating space, and the battery assembly 200 is located in the accommodating space.
  • the bottom surface 204 of the plurality of single cells is fixed and pasted on the inner surface of the tray and the top surface 205 of the plurality of single cells is fixed and pasted on the inner surface of the upper cover.
  • the top and bottom surfaces of the multiple single cells 203 are respectively pasted with the inner surface of the housing 100, and the battery pack 300 can be designed as an integral structure.
  • the so-called integral design means that the battery pack 300 is designed to have a great A rigid structural part greatly improves the rigidity and strength of the battery pack 300, and improves the mechanical safety and reliability. In use, the structural strength of the integral battery pack 300 is taken as part of the structural strength of the entire vehicle.
  • the battery pack can be used to enhance the structural strength of the entire vehicle without the need for the entire vehicle to protect the battery pack. It can simplify or even cancel the design structure of the whole vehicle frame to protect the structural strength of the battery pack, realize the design requirements of the light weight of the whole vehicle, reduce the design and manufacturing cost of the whole vehicle, and improve the production efficiency of the whole vehicle.
  • the inner surface refers to the surface adjacent to the side of the single cell 203.
  • top surface 205 of the multiple single cells may be directly fixed and bonded to the inner surface of the upper cover, or indirectly fixed to the inner surface of the upper cover.
  • the upper cover and/or the tray may have a multi-layer composite structure, so that the battery pack can better withstand the impact of the entire vehicle and improve the structural strength.
  • the multilayer composite structure includes two layers of aluminum plates and a steel plate or foamed aluminum plate sandwiched between the two layers of aluminum plates; that is, the multilayer composite structure is aluminum plate/foamed aluminum plate/aluminum plate or The multi-layer composite structure is aluminum plate/steel plate/aluminum plate.
  • the multilayer composite structure includes two fiber composite layers and a foamed material layer sandwiched between the two fiber composite layers.
  • the foamed material layer includes foamed polymer materials, such as polyurethane foam or phenolic foam.
  • the foamed material layer has low thermal conductivity and can play a good thermal insulation effect.
  • the foamed material has low density, and the sealing cover is made of steel plate or Compared with aluminum alloy, the battery pack is lighter.
  • the fiber composite layer includes a glass fiber layer and/or a carbon fiber layer. That is, the multilayer composite layer can be glass fiber layer/foamed material layer/glass fiber layer, carbon fiber layer/foamed material layer/carbon fiber layer, or glass fiber layer/foamed material layer/carbon fiber layer.
  • the upper cover of the battery pack And/or the tray is designed as a foam material layer and a fiber composite layer distributed inside and outside the foam material layer.
  • the fiber layer has high tensile strength and elastic modulus, which can not only withstand the internal pressure of the battery pack within a certain range It is still not deformed when enlarged, and can effectively isolate fire and heat, and improve the safety performance of the battery pack under extreme conditions.
  • the structural strength of the integral battery pack can be used as a part of the structural strength of the entire vehicle.
  • the battery pack can be used to enhance the structural strength of the entire vehicle, simplify the design structure of the entire vehicle frame to protect the structural strength of the battery pack, and realize the design requirements of the lightweight of the entire vehicle. Reduce vehicle design and manufacturing costs, and improve vehicle production efficiency.
  • the electrode terminals 216 of the single cells 203 in the battery assembly 200 are located on the top surface of the single cells 203.
  • One of the electrode terminals 216 is a positive electrode terminal, and the other is a negative electrode terminal; the electrode terminals 216 of the single battery 203 are connected in series or in parallel through the battery connecting piece 217.
  • the housing 100 further includes a battery management system.
  • the second aspect of the present application provides an electric vehicle, including the above-mentioned battery pack 300.
  • the electric vehicle has strong endurance and low cost.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meanings of the above-mentioned terms in this application can be understood under specific circumstances.
  • the description with reference to the terms “embodiment”, “specific embodiment”, “example”, etc. means that the specific feature, structure, material, or characteristic described in combination with the embodiment or example is included in at least the application. In one embodiment or example.
  • the schematic representation of the above-mentioned terms does not necessarily refer to the same embodiment or example.
  • the described specific features, structures, materials or characteristics may be combined in any one or more embodiments or examples in a suitable manner.
  • the four rectangular parallelepiped single cells 203 are arranged in the Y direction in the manner shown in FIG. 2, and the same side of the four single cells is connected by a structural reinforcement 202 to form a battery assembly 200.
  • the structural reinforcement 202 has a shape such as Fig. 4 shows a rectangular plate. Twelve battery assemblies 200 are arranged in the X direction in the housing 100 as shown in Fig. 1, and two ends of each battery assembly 200 are supported on the first frame. 103 and the second frame 104 are then sealed with an upper cover to form a battery pack.
  • the structural reinforcement 202 and the single battery 203 in each embodiment meet the following conditions, according to the standard number: GB/T 31467.3-2015 Lithium-ion power battery packs and systems for electric vehicles Part 3: Safety requirements and testing Method, the test results are shown in Table 1:
  • the four rectangular parallelepiped single cells 203 are arranged in the Y direction in the manner shown in FIG. 7, and two large surfaces of the four single cells 203 are connected with structural reinforcements 202.
  • the shape of the structural reinforcement 202 is a rectangular plate as shown in FIG. 4, the four single cells 203 are assembled into a battery assembly 200, and the twelve battery assemblies 200 are arranged in the X direction as shown in the accompanying drawings.
  • both ends of each battery assembly 200 are supported on the first frame 103 and the second frame 104, and then sealed with an upper cover to form a battery pack.
  • the structural reinforcement and single battery 203 in this embodiment meet the conditions in Table 1 below, according to the standard number: GB/T 31467.3-2015 Lithium-ion power battery packs and systems for electric vehicles Part 3: Safety requirements and Test method, test results are shown in Table 1:
  • the battery pack provided by the present application has high strength, which can meet the requirements of the anti-vibration and extrusion performance of the battery pack.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请涉及一种电池包和电动车。电池包包括壳体,具有壳体底面和壳体顶面,壳体内设有电池组件;电池组件包括结构加固件将多个单体电池连接成的电池序列;单体电池的外表面包括底面、顶面和第一侧面和两个相对的第二侧面,单体电池的底面面向壳体底面,单体电池的顶面面向壳体顶面;第一侧面的面积最大;沿第一方向,多个单体电池以第二侧面对的方式排列形成电池序列,结构加固件固定粘贴在电池序列中每个单体电池的第一侧面上;电池组件与所述壳体底面对接以支撑于所述壳体内。

Description

一种电池包和电动车
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2019年11月18日提交的、发明名称为“一种电池包和电动车”的中国专利申请号“201911129785.1”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电池领域,尤其涉及一种电池包和电动车。
背景技术
目前应用于电动车的动力电池包,其主要包括包体和安装在包体内的多个电池模组,其中,电池模组包括由多个依次排列的电池构成的电池阵列、设置于电池阵列的两侧的侧板和设置于电池阵列的两端的端板。侧板与端板通过螺钉或者拉杆或者焊接的方式连接,以实现对电池阵列的固定。电池模组在组装完成后再通过螺钉等紧固件安装于包体内,并且为了提高电池包的强度,通常需要在电池包内设置加强梁。由于加入了端板、侧板、加强梁及紧固件等结构件导致整个电池包的重量较大,同时也降低了包体内部空间的利用率,使其能量密度无法满足用户对电动车的续航能力的需求。此外,这种结构也存在组装过程繁琐、组装工序复杂,需要先将电池组装成电池模组,然后再将电池模组安装在包体内,从而导致人力、物力等成本的增加。
为了解决上述问题,现有专利CN201822274851.1提供了一种电池模组,其包括第一电池模块、第二电池模块以及液冷板,第一电池模块和第二电池模块均包括沿水平方向排列的多个单体电池,并且在电池模块中的每个单体电池平躺放置(即单体电池相对的两个大面沿竖直方向排布)。液冷板沿竖直方向设置在第一电池模块和第二电池模块之间,并且液冷板的两个侧面分别通过导热胶粘接于第一电池模块和第二电池模块。该电池模组虽然省略了安装和固定单体电池的结构件,简化了组装工艺,但是这种电池模组的整体结构强度较低。而且,为了保证液冷板的冷却效果,液冷板内部设有用于容纳冷却液的容纳腔,并且容纳腔需要具有一定的厚度。但是,这种结构的液冷板其强度较低,无法承载过大的结构力,以避免其损坏而导致冷却液流出造成单体电池出现短路,因此液冷板并不能对电池模组起到加强和支撑的作用。
申请内容
本申请旨在提供一种结构简单、组装方便,并且具有较高的结构强度、较大的空间利用率和能量密度的电池包及电动车。
在本申请的第一方面,提供了一种电池包,包括:壳体,所述壳体内具有底面和顶面,电池组件,所述电池组件位于所述壳体内;所述电池组件包括电池序列和结构加固件,所述电池序列包括多个单体电池,所述电池序列中至少部分所述单体电池通过所述结构加固件连接;所述单体电池的外表面包括底面、顶面和侧面,所述单体电池的底面面向所述壳体内的底面,所述单体电池的顶面面向所述壳体内的顶面;所述侧面包括第一侧面和两个相对的第二侧面,所述第一侧面的面积为所述单体电池的所有外表面中面积最大的表面;电池组件内所述单体电池依次排列,相邻两个所述单体电池的第二侧面相对设置,所述单体电池的排列方向为第一方向;所述结构加固件固定粘贴在与所述结构加固件连接的单体电池的第一侧面上;所述结构加固件的沿第二方向的尺寸为T1,T1=0.5~5mm;所述第一方向与所述第二方向垂直;所述电池组件与所述壳体底面对接以支撑于所述壳体内。
在本申请的一些实施方式中,所述电池序列中,与所述结构加固件连接的单体电池的数量不小于电池序列中所含有的单体电池数量的二分之一。
在本申请的一些实施方式中,所述电池序列中沿第一方向计数为奇数的单体电池或计数为偶数的单体电池与所述结构加固件连接。
在本申请的一些实施方式中,所述结构加固件固定粘贴在所述电池序列中每个单体电池的第一侧面上。
在本申请的一些实施方式中,所述侧面包括两个相对的第一侧面,所述结构加固件包括两个,分别位于电池序列的两侧,一个结构加固件与电池序列中每个单体电池一侧的第一侧面固定粘贴,另一个结构加固件与电池序列中每个单体电池另一侧的第一侧面固定粘贴。
在本申请的一些实施方式中,所述结构加固件与所述电池序列中沿第一方向两端的单体电池的第一侧面部分表面固定粘贴。
在本申请的一些实施方式中,所述单体电池沿第一方向的尺寸最大。
在本申请的一些实施方式中,所述电池组件沿第一方向从壳体的一侧延伸到另一侧。
在本申请的一些实施方式中,所述电池组件中所有单体电池的第一侧面处于同一平面。
在本申请的一些实施方式中,所述结构加固件上与所述电池序列贴合的面记为第一表面,所述电池序列上与所述结构加固件贴合的面记为第二表面,所述第一表面与所述第二表面配合设置。
在本申请的一些实施方式中,所述结构加固件为长方形板体。
在本申请的一些实施方式中,所述结构加固件为L型板体,所述L型板体的“|”部分与所述电池序列中单体电池的第一侧面贴合且固定连接。
在本申请的一些实施方式中,所述L型板体的“—”部分与所述电池序列中单体电池的底面贴合且固定连接。在本申请的一些实施方式中,所述结构加固件为“[”型板体,所述电池序列设于所述“[”型板体内,且所述“[”型板体的“|”部分与所述电池序列中单体电池的第一侧面贴合且固定连接。
在本申请的一些实施方式中,所述“[”型板体的两个“—”部分分别与所述电池序列中单体电池的顶面和单体电池的底面贴合。
在本申请的一些实施方式中,所述“[”型板体的两个“—”部分的单个面积≤所述电池序列的底面或顶面的面积。
在本申请的一些实施方式中,所述电池序列中每个单体电池的第一侧面均与所述结构加固件之间设有结构胶。
在本申请的一些实施方式中,所述结构加固件包括金属板。
在本申请的一些实施方式中,所述电池包具有相互垂直的X方向、Y方向和Z方向,所述壳体内的底面和壳体内的顶面在Z方向上相对;所述电池包包括多个电池组件,所述多个电池组件沿X方向排布;所述第一方向与Y方向平行;所述第二方向与X方向平行。
在本申请的一些实施方式中,所述单体电池大体为长方体,包括长度L,高度H和厚度D,L大于D,且L大于H;所述单体电池的长度方向沿Y方向延伸,高度方向沿Z方向延伸,厚度方向沿X方向延伸;所述结构加固件为长方形板体且包括厚度T1;所述长方形板体的长度方向沿Y方向延伸,厚度方向沿X方向延伸。
在本申请的一些实施方式中,所述单体电池的厚度为10-90mm。
在本申请的一些实施方式中,所述单体电池含有六个表面,分别为相互平行的底面和顶面、两平行的第一侧面、两平行的第二侧面,两平行的第一侧面在单体电池的厚度方向上相对。
在本申请的一些实施方式中,至少两个相邻电池组件中的其中一个电池组件中的单体电池与另一个电池组件中的单体电池错位排列。
在本申请的一些实施方式中,至少两个相邻电池组件中其中一个电池组件中单体电池的数量大于另一个电池组件中单体电池的数量。
在本申请的一些实施方式中,所述另一个电池组件中设有加强块,所述加强块与该电池组件中的单体电池的第二侧面粘接以形成所述电池序列。
在本申请的一些实施方式中,所述相邻两个电池组件的长度相等。
在本申请的一些实施方式中,相邻两个所述电池序列之间存在间隙,所述间隙形成电池冷却风道。
在本申请的一些实施方式中,相邻两个所述电池序列之间存在间隙,所述间隙中设有冷 却板。
在本申请的一些实施方式中,所述电池组件包括沿所述Y方向相对设置的第一端和第二端,所述壳体包括沿所述第Y方向相对设置的第一边框和第二边框,所述电池组件设置在所述第一边框和第二边框之间,所述电池组件的第一端支撑在所述第一边框上,所述电池组件的第二端支撑在所述第二边框上。
在本申请的一些实施方式中,所述第一边框设置有第一支撑台阶,所述第二边框设置有第二支撑台阶;所述电池组件的第一端支撑在所述第一支撑台阶上,所述电池组件的第二端支撑在所述第二支撑台阶上。
在本申请的一些实施方式中,所述壳体包括沿所述X方向相对设置有第三边框和第四边框,多个所述电池组件沿所述X方向并列排布在所述第三边框和第四边框之间。
在本申请的一些实施方式中,所述壳体内在所述Y方向上设有一个所述电池组件。
在本申请的一些实施方式中,至少两个相邻的所述电池组件之间设有加强板。
在本申请的一些实施方式中,所述加强板与位于所述加强板两侧的电池组件固定粘贴。
在本申请的一些实施方式中,至少一个电池组件的结构加固件的厚度为10mm——35mm。
在本申请的一些实施方式中,所述壳体包括托盘和上盖,所述托盘和所述上盖共同限定出容纳空间,所述电池组件位于所述容纳空间内;电池组件中单体电池的底面固定粘贴在所述托盘的内表面上,单体电池的顶面固定粘贴在所述上盖的内表面上。
在本申请的一些实施方式中,所述电池序列中,所述多个单体电池的底面固定粘贴在所述托盘的内表面上且所述多个单体电池的顶面固定粘贴在所述上盖的内表面上。
在本申请的一些实施方式中,所述托盘和/或所述上盖为多层复合结构,所述多层复合结构包括两层铝板和夹设在所述两层铝板之间的钢板或发泡铝板。
在本申请的一些实施方式中,所述托盘和/或所述上盖为多层复合结构,所述多层复合结构包括两层纤维复合层和夹设在所述两层纤维复合层之间的发泡材料层。
在本申请的一些实施方式中,所述纤维复合层包括玻璃纤维层和/或碳纤维层。
在本申请的一些实施方式中,所述电池组件中的单体电池的电极端子位于所述单体电池的顶面上。
在本申请的一些实施方式中,所述电池包还包括电池管理系统。
另一方面,本申请还提供一种电动车,其包括上述的电池包。
与现有技术相比,本申请具有的有益效果为:本申请通过结构加固件将多个单体电池连接成一个整体,即电池组件,该电池组件尺寸较长,强度较高,电池组件支撑在壳体上,本身可以起到支撑的作用,电池组件可用作加强壳体结构强度的横梁或纵梁,从而减少电池包中横梁和/或纵梁的使用,甚至电池包中可以不使用横梁和/或纵梁,也就是说,通过电池组 件本身便可代替横梁和/或纵梁来保证电池包的结构强度,确保电池包在外力作用下不易发生变形;从而减少了横梁和/或纵梁在壳体中占据的空间,提高了壳体的空间利用率,尽可能地使更多的单体电池能够布置在壳体中,进而提高整个电池包的容量、电压以及续航能力。
另一方面,本申请的电池组件相对于现有的电池模组,减少了端板的使用,并且,由于电池包中无需再布置横梁和/或纵梁,一方面,使得电池包的制作工艺得到了简化,单体电池的组装复杂度降低,生产成本降低,另一方面,使得电池包和整个电池包的重量减轻,实现了电池包的轻量化。特别地,当动力电池包安装在电动车上时,还可以提升电动车的续航能力,实现电动车的轻量化。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是本申请一实施例提供的电池包的结构示意图;
图2是本申请一实施例提供的多个电池组件的结构示意图;
图3是本申请一实施例提供的壳体的结构示意图;
图4是本申请一实施例提供的电池序列与结构加固件连接的结构示意图;
图5是本申请另一实施例提供的电池序列与结构加固件连接的结构示意图;
图6是本申请一实施例提供的电池组件的爆炸示意图;
图7是本申请再一个实施例提供的电池序列与结构加固件连接的结构示意图;
图8是本申请一个实施例提供的结构加固件的结构示意图;
图9是本申请再一个实施例提供的结构加固件的结构示意图;
图10是本申请提供的单体电池的结构示意图;
图11是本申请提供的另一个电池组件的结构示意图;
图12是本申请提供的另一个多个电池组件堆叠的结构示意图;
图13是本申请提供的另一个电池包;
图14是现有技术提供的电池包;
图15是另一项现有技术提供的电池包。
附图标记:
100、壳体;101、壳体底面;103、第一边框;104、第二边框;107、第一支撑台阶; 111、第三边框;112、第四边框;200、电池组件;201、电池序列;202、结构加固件;203、单体电池;204、单体电池的底面;205、单体电池的顶面;206、第一侧面;207、第二侧面;208、第一板面;209、第三板面;210、第二板面;211、第四板面;212、第五板面;213、结构胶;214、第一端;215、第二端;216、电极端子;217、电池连接片;218、加强块
300、电池包;
L单体电池的长度       D单体电池的厚度
H单体电池的高度
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“高度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
如图1和图3所示,本申请提供一种电池包300,包括:壳体100,所述壳体100内具有壳体底面101和壳体顶面,电池组件200,所述电池组件200位于所述壳体100内;所述电池组件200包括电池序列201和结构加固件202,所述电池序列201包括多个单体电池203,所述电池序列201中至少部分所述单体电池203通过所述结构加固件202连接。
所述单体电池203的外表面包括底面、顶面和侧面,所述单体电池的底面204面向所述壳体100内的底面,所述单体电池的顶面205面向所述壳体100内的顶面;所述侧面包括第一侧面206和两个相对的第二侧面207,所述第一侧面206的面积为所述单体电池203的所有外表面中面积最大的表面;电池组件200内所述单体电池203依次排列,相邻两个所述单体电池203的第二侧面207相对设置,所述单体电池203的排列方向为第一方向;所述结构加固件202固定粘贴在与所述结构加固件202连接的单体电池203的第一侧面206上;所述电池组件200与所述壳体100的底面对接以支撑于所述壳体100内。
在本申请中,壳体100,壳体100内具有壳体底面101和壳体顶面(与壳体底面101相对,图中未画出)。这里壳体的底面101和壳体顶面是指在壳体100的高度方向上的相对的两个面。在一些具体的实施例中,壳体100包括底板和密封盖,底板和密封盖限定出用于容纳电池的容纳腔,则,壳体的底面101是指底板的内表面,壳体100的顶面是指密封盖的内表 面。
在本申请中,单体电池203的形状不作限定,单体电池203的形状可以为多种,可以为规则的几何形状,也可以为不规则的几何形状,例如可以为方形、圆形、多边形、三角形,也可以是任意的形状,如异形电池。可以理解的是,本申请对单体电池203的形状不作限定。
在本申请中,多个单体电池203排列形成电池序列201,在相邻两个单体电池203之间强度一般较弱,电池序列201通过与结构加强件固定粘结在一起,结构加固件202与单体电池203面积最大的侧面粘结,保证粘结面的面积,从而保证粘结面的结构强度。
在本申请中,可通过结构胶将结构加强件和电池序列201粘贴在一起,此时的结构胶优选具有导热功能的结构胶,在粘结的同时,也可使热量向电池外部传导。现有的电池模组在组装的过程中,先将多个单体电池203以大面(面积最大的表面)对大面的方式排列形成电池序列201,沿单体电池203的排列方向,电池序列的两侧也会设置侧板,在这种组装方式中,多个单体电池203是以大面对大面的排列方式,而在本申请中,在电池序列201中,多个单体电池203以面积较小的第二侧面207(小面)相对排列形成电池序列201;即“小面”对“小面”的方式排列,这两种排列方式相比本申请的排列方式更有利于电池组件200整体结构强度的提高。
在本申请的一些实施方式中,电池组件200沿第一方向的尺寸为400~2500mm。在另一些实施方式中,电池组件200沿第一方向的尺寸为600~2500mm。
现有技术中,如专利文献CN201822274851.1,电池模块中,多个单体电池尽管是小面对小面的方式排列,但多个单体电池203卧式排列(两个大面分别朝向底面和顶面)。
当电池包受到Z向(高度方向)作用力时,单体电池面积最大的第一侧面最容易发生变形,如果将结构加固件水平放置(单体电池卧式放置),当电池包受到Z向的作用力,Z向的力更容易使结构加固件沿电池组件厚度方向发生弯曲,单体电池本身也容易沿厚度方向的变形,为了抑制两者的变形,一般有以下几种解决办法:
①、将电池包的底板做的很厚,但电池包的重量会增加,降低电池包重量能量密度;
②、托盘底板设计为中空结构;空腔中设置加强结构,虽然可以降低电池包的重量,无形中增加了托盘的加工难度和设计难度,同时托盘高度增加,降低了电池包体积能量密度。
③、在托盘底板上设置加强筋,单体电池组装成电池模组,然后再将电池模组固定在加强筋上,为了满足电池模组的安装要求,加强筋的厚度一般在10~20mm,这会占据电池包的空间,降低电池包的体积利用率。
本申请中,在电池序列201中,单体电池203是立式布置(大面不与底面接触或顶面接触);此时,结构加强件在箱体的高度方向布置,结构加强件的强度更大,可增大整个电池序列201的结构强度,当电池组件200受到Z向力作用时,Z向的力更容易使结构加固件202 沿电池组件200厚度方向发生弯曲,但由于结构加固件202与电池紧密相连,以及托盘四个边框的支撑和保护作用,极大的抑制了结构加固件202沿厚度方向的变形以及单体电池203的第一侧面206的变形,保证了电池沿厚度方向的可靠性;
本申请将结构加固件202的沿第二方向的尺寸和单体电池的重量限定为0.15mm·kg-1<T1/G<7mm·kg-1且T1=0.5~5mm,既可以满足电池组件整体的强度要求又可以尽量减小结构加固件的尺寸,该结构加固件的尺寸明显小于现有技术中加强筋的厚度(10~20mm)。
在一些优选的实施方式中,结构加固件沿第二方向的尺寸T1与单体电池的重量G满足关系式:0.25mm·kg-1≤T1/G≤5.8mm·kg-1。
现有技术中,单体电池的尺寸较小,单体电池无法起到自身支撑的作用,本申请采用结构加固件202将多个单体电池203连接成尺寸为400~2500mm或600mm-2500mm的电池组件200,多个单体电池203组成的整体,其结构强度远远大于其中任何一个单体电池203的强度,且由于电池组件200的足够长,电池组件200两端可以直接支撑在壳体底面101上,即,电池组件200从而代替加强结构来保证电池包300的结构强度,从而减少电池包300中横梁和/或纵梁的使用,甚至电池包300中可以不使用横梁和/或纵梁,从而减少了横梁和/或纵梁在电池包300中占据的空间,提高了电池包300的空间利用率,尽可能地使更多的单体电池203能够布置在电池包300中,进而提高整个电池包300的容量、电压以及续航能力。
在本申请中,电池组件200与壳体的底面101对接可以为电池组件200与壳体的底面101直接接触以支撑电池组件200,也可以为电池组件200通过其他结构件与壳体的底面101间接接触或连接,本领域的技术人员可根据具体的工况要求来设置,本申请不作限定。
在本申请的一个实施方式中,多个单体电池203依次排列形成的电池序列201中,可以所有的单体电池203的第一侧面206与结构加固件202连接,也可以只有部分单体电池203的第一侧面206与结构加固件202连接;也就说,电池序列201中的多个单体电池203分成两组,一组与结构加固件202固定粘贴,另一组未与结构加固件202粘贴固定。为了使得电池组件200的整体结构强度较高,与结构加固件202连接的单体电池203的数量不小于电池序列201中所含有的单体电池203数量的二分之一。
需要说明的是,当电池序列201中部分单体电池203的第一侧面206与结构加固件202连接时,该部分单体电池203可以是在电池序列201中连续排列的,也可以是间隔排列的,也就是说,与结构加固件202连接的单体电池203与未与结构加固件202连接的单体电池203是交叉排列形成电池序列201的。
在一些具体的实施方式中,所述电池序列201中沿第一方向计数为奇数的单体电池203或计数为偶数的单体电池203与所述结构加固件202连接。在本申请中,第一侧面206为可以有多个,在一些实施方式中,侧面包括两个相对的第一侧面206,所述结构加固件202包 括两个,分别位于电池序列201的两侧,一个结构加固件202与电池序列201中每个单体电池203一侧的第一侧面206固定粘贴,另一个结构加固件202与电池序列201中每个单体电池203另一侧的第一侧面206固定粘贴。在电池序列201相对设置的两侧同时设置结构加固件202,可以进一步提高电池组件200的强度。
在本申请中,单体电池203的第一侧面206的整个区域可以全部与结构加固件202粘贴,也可以部分单体电池203的第一侧面206的部分区域与结构加固件202粘贴,在一些实施方式中,如图4所示,由于结构加固件202与中间部分的单体电池203第一侧面206的全部区域粘贴固定,整个电池组件200的结构强度和稳定性仍然较高,位于电池序列201两端的单体电池203的第一侧面206的部分区域与结构加固件202粘贴,由此,既不会影响电池组件200的整体强度和稳定性,同时还能节省成本。
本申请中,单体电池203沿第一方向的尺寸最大,由此,可以利用最少的单体电池203排成强度更高的电池组件200。
需要注意的是,单体电池203的排列方向,即第一方向,为单体电池203数量增加的方向。
本申请中,电池组件200沿第一方向从壳体100的一侧延伸到壳体100的另一侧,即,在第一方向,当多个电池组件200排列在壳体100内,第一方向上,只布置一个电池组件200,不会容纳2个或2个以上的电池组件200。沿第一方向只设置单个的电池组件200,便于实现多个单体电池203的密堆。
本申请中,在电池序列201中,多个单体电池203的第一侧面206处于同一平面,使得结构加固件202能够同时与所有单体电池203的第一侧面206粘贴固定的更加可靠,电池组件200的稳定和强度也更高。
在本申请中,对结构加固件202的形状不作特殊限定,只要本身能具有一定的结构强度,将多个单体电池203连接成一个整体时,能够增加电池组件200的结构强度即可,且不易变形。
在一些实施方式中,结构加固件202上与电池序列201贴合的面记为第一表面,电池序列201上与结构加固件202贴合的面记为第二表面,第一表面与第二表面配合设置。
需要说明的是,在本申请中,配合设置是指只要能是结构加固件202的第一表面与电池序列201的第二表面能够贴合设置,使结构加固件202能够起到加强固定的作用即可,对结构加固件202的形状和面积不作特殊限定,在一些具体的实施方式中,结构加固件202的第一表面与电池序列201的的第二表面形状相同且对应设置。第一表面和第二表面形状相同,便于结构加固件202更加容易贴紧电池序列201。
当然,第一表面与第二表面的形状也可不同。例如,当电池序列201中的单体电池203 均为长方体结构的方形电池(电池序列201也为长方体形),结构加固件202为长方形板体时,如当电池包300强度满足要求或电池组件200在壳体100内的组装空间有特定要求,且在结构加固件202将电池序列201中的所有单体电池203连接成一个整体,且能保证电池组件200强度的情况下,可以使结构加固件202的面积小于电池序列201的第二表面的面积,如长方形的结构加固件202的长度小于电池序列201的长度,结构加固件202的宽度小于电池序列201的宽度。此时,电池组件200的长度即为电池序列201的长度,电池组件200的宽度即为电池序列201的宽度,电池组件200的厚度即为电池序列201的厚度。
当然,在一些实施例中,结构加固件202的面积也可大于电池序列201的第二表面的面积,如长方形的结构加固件202的长度大于电池序列201的长度,结构加固件202的宽度大于电池序列201的宽度。
在本申请的一些实施例中,在本申请的一些实施例中,结构加固件202为长方形板体。
在本申请的一些实施例中,结构加固件202为L型板体,L型板体的“|”部分与电池序列201中单体电池203的第一侧面206贴合且固定连接。
在本申请的一些实施例中,如图9所示,L型板体的“|”部分上与电池序列201中单体电池203的第一侧面206贴合的侧面记为第一板面208,电池序列201上与第一板面208贴合的侧面记为第三表面,第一板面208与第三表面形状相同且对应设置。
在本申请的一些实施例中,L型板体的“—”部分与电池序列201中单体电池的底面204贴合且固定连接。
L型板体的“—”部分上与电池序列201中单体电池的底面204贴合的面记为第二板面210,电池序列201上与第二板面210贴合的面记为第四表面,第二板面210与第四表面形状相同、面积相等且对应设置。
这样不仅可以极大地简化壳体100的结构,提高电池包300的空间利用率以及电池包300的能量密度,而且通过结构加固件202可将电池序列中的所有单体电池203连接成一个整体,提高电池组件200的强度,减小了电池包300中加强筋占用的空间,进而可减小电池包300的重量。
在本申请的一些实施例中,结构加固件202为“[”型板体,电池序列201设于“[”型板体内,且“[”型板体的“|”部分与电池序列201中单体电池203的第一侧面206贴合且固定连接。
在本申请的一些实施例中,“[”型板体的“|”部分上与电池序列201中单体电池203的第一侧面206贴合的侧面记为第三板面209,电池序列201上与第三板面209贴合的侧面记为第七表面,第三板面209与第七表面形状相同、面积相等且对应设置。
在本申请的一些实施例中,“[”型板体的两个“—”部分分别与电池序列201中单体电 池的顶面205和单体电池的底面204贴合。
在本申请的一些实施例中,所述“[”型板体的两个“—”部分的单个面积≤所述电池序列的底面或顶面的面积。
在本申请的一些实施例中,“[”型板体上与电池序列201中单体电池的底面204贴合的面记为第四板面211,电池序列201上与第四板面211贴合的面记为第五表面,第四板面211与第五表面形状相同、面积相等且对应设置。
在本申请的一些实施例中,“[”型板体上与电池序列201中单体电池203的顶面贴合的面记为第五板面212,电池序列211上与第五板面212贴合的面记为第六表面,第五板面212呈长方形,且该长方形的面积小于第六表面的面积。这样不仅可以极大地简化壳体100的结构,提高电池包300的空间利用率以及电池包300的能量密度,而且通过结构加固件202可将电池序列中的所有单体电池203连接成一个整体,提高电池组件200的强度,减小了电池包300中加强筋占用的空间,进而可减小电池包300的重量。
在本申请的一些实施例中,如图6所示,电池序列201中每个单体电池203的第一侧面206均与结构加固件202之间设有结构胶213,即单体电池203与结构加固件202通过结构胶213粘接。
优先地,结构胶213为导热结构胶213。导热结构胶213不仅能够保证结构加固件202与单体电池203的第一侧面206有良好的粘接效果,同时还可以传导单体电池203在工作时产生的热量。优先地,导热结构胶213的厚度为0.5mm~20mm。
在本申请的一些实施例中,结构加固件202为金属板。例如,该金属板可以为钢板或者铝板,金属板的结构强度高且散热性能也好。在本申请的一些实施例中,金属板的厚度为0.8mm-3.5mm。优先地,金属板的厚度为1mm-2.5mm。当结构加固件202过薄时,则会影响电池组件200的结构强度;当结构加固件202过厚时,则会占用电池包300中的重量和空间,不利于电池包300的设计。
在发明的一些实施方式中,所述电池包300具有相互垂直的X方向、Y方向和Z方向,所述壳体内的底面101和壳体内的顶面在Z方向上相对;所述电池包300包括多个电池组件200,所述多个电池组件200沿X方向排布;所述第一方向与Y方向平行,所述第二方向与X方向平行。
在本申请中,X方向、Y方向和Z方向仅表示方位,并不限制壳体100的具体形状。
在本申请中的一些实施方式中,所述单体电池大体为长方体,包括长度L,高度H和厚度D,L大于D,且L大于H;所述单体电池203的长度方向沿Y方向延伸,高度方向沿Z方向延伸,厚度方向沿X方向延伸,所述结构加固件为长方形板体且沿第二方向的尺寸为厚度T1;所述长方形板体的长度方向沿Y方向延伸,厚度方向沿X方向延伸。
该实施方式中,当单体电池203为长方体,结构加固件202为长方形板体,则电池组件200的长度即上文提到的电池组件200沿第一方向的尺寸;长方形板的厚度即为上文记载的结构加固件202沿第二方向的尺寸T1。
该实施方式中,单体电池203大体为长方体结构,可以理解为单体电池203可为长方体形、正方体形,或局部存在异形,但大致为长方体形、正方体形;或者,部分存在缺口、凸起、倒角、弧度、弯曲,但整体呈近似长方体形、正方体形。
该实施方式中,结构加固件202大体为长方形板体,可以理解为结构加固件202可为长方体形、正方体形,或局部存在异形,但大致为长方体形、正方体形;或者,部分存在缺口、凸起、倒角、弧度、弯曲,但整体呈近似长方体形、正方体形。
该实施方式中,为了便于结构加固件202与单体电池203粘贴的更加稳定,寿命更长,结构加固件的厚度T1与所述单体电池的厚度D满足关系式:T1/D>0.012,更优选的,0.4≤T1/D≤0.9,本申请的发明人经过大量实验发现,当结构加固件的厚度T1与所述单体电池的厚度D满足上述关系式时,电池包能够满足国标GB/T 31467.3-2015的振动和挤压性能的要求。
在一些具体的实施方式中,所述单体电池的厚度为10-90mm。由此结构加固件与单体电池粘接强度更高。
该实施方式中,单体电池203含有6个表面,分别为两平行的底面和顶面、两平行的第一侧面206、两平行的第二侧面207,两平行的第一侧面206在单体电池203的厚度方向上相对。
该实施方式中,单体电池203的第一侧面206为沿其长度方向和宽度方向所形成的面(第一侧面206包括两个相对的面),单体电池203的第二侧面207为沿其长度方向和厚度方向所形成的面(第二侧面207也包括两个相对的面),单体电池的底面204、顶面均为沿其宽度方向和厚度方向所形成的面。
通过将电池序列201中的单体电池203均设为长方体结构的方形电池,不仅方便结构加固件202与电池序列201中的每个单体电池203的第一侧面206贴合且固定连接,通过结构加固件202将电池序列201中的所有单体电池203连接成一个长方体形的整体,简化组装工艺。而且,长方体形的电池组件200可以更好地在壳体100内承担加强梁的作用,减小壳体100中加强筋的使用,这样不仅有利于减轻整个电池包300的重量,还可以极大地简化壳体100的结构,从而有利于提高电池包300的空间利用率以及电池包300的能量密度。
需要说明的是,电池序列201包括的多个单体电池203形状可以相同也可不同,例如,虽然电池序列201中的单体电池203可以均为长方体结构的方形电池,但是电池序列201中的单体电池203的尺寸(长度L、高度H、厚度D)相互之间也可以是不同,每个单体电池203 的尺寸可以根据实际需要进行灵活设定与选择。
为了进一步提高整个电池包的强度,在本申请的一些实施方式中,至少两个相邻电池组件200中的其中一个电池组件200中的单体电池203与另一个电池组件200中的单体电池203错位排列。
现有技术中,如图14和图15所示,所有单体电池在排布时,在各向上都是直线对齐的,此种方式的优势在于排布及工艺简单,但是带来的问题是两个单体电池之间的缝隙是整个电池包结构的薄弱点,一旦电池包遭遇挤压、撞击等极端情况,这些缝隙就极易产生失效。这就造成当前电动汽车的设计思路,电池置于电池包内,需要托盘来保护内部电池,防止撞击。同时整车也会做相应的结构加强,从整车层级来保护电池包。无形中就增加了电动汽车的设计制造难度,由于结构上的保护作用,整车结构也会加强,使得电动汽车无法很好的做到轻量化设计。
在本申请中,如图12和图13所示,两个相邻的电池组件200中的单体电池203在一个方向上错位放置。
需要说明的是,错位设置使得单体电池203与单体电池203之间的接触面第二侧面207不在同一条直线上,由此其中一个电池组件200中,单体电池203和单体电池203之间薄弱点可以借用另外一个电池组件200来平衡,当电池包一旦发生外力时,这些薄弱点不会轻易的失效。
在该实施方式中,错位设置,可以理解为,相邻两个电池组件200所有的单体电池203之间均错位设置,也可以相邻两个电池组件200中的部分单体电池203之间错位设置;还可以是所有两个相邻的电池组件200中的单体电池203错位设置,也可以间隔设置的电池组件200中的单体电池203错位设置。
具体的,电池包中设有6个电池组件,可以有以下几种情况:
(一)、第一个电池组件与第二个电池组件中的单体电池203错位设置,且第二个电池组件和第三个电池组件中的单体电池203错位设置,且第三个电池组件和第四个电池组件中的单体电池203错位设置,且第四个电池组件和第五个电池组件中的单体电池203错位设置,且第五个电池组件和第六个电池组件中的单体电池203错位设置;
(二)、第一个电池组件与第二个电池组件中的单体电池203对齐设置,且第二个电池组件和第三个电池组件中的单体电池203错位设置,且第三个电池组件和第四个电池组件中的单体电池203对齐设置,且第四个电池组件和第五个电池组件中的单体电池203错位设置,且第五个电池组件和第六个电池组件中的单体电池203对齐设置;
(三)、第一个电池组件与第二个电池组件中的单体电池203错位设置,且第二个电池组件和第三个电池组件中的单体电池203对齐设置,且第三个电池组件和第四个电池组件中的 单体电池203错位设置,且第四个电池组件和第五个电池组件中的单体电池203对齐设置,且第五个电池组件和第六个电池组件中的单体电池203错位设置。
换句话说,在该实施方式中,可以一部分相邻的电池组件中的单体电池203对齐设置,另一部分相邻的电池组件中的单体电池203错位设置;也可以所有相邻的电池组件中的单体电池203错位设置。
为了实现错位设置,错位设置的两个相邻电池组件200中的单体电池203的大小可以不相等。
为了保证单体电池203的一致性,采用相同大小的单体电池203,则为了实现错位设置,至少两个相邻电池组件200中其中一个电池组件200中单体电池203的数量大于另一个电池组件200中单体电池203的数量。
具体的,如果电池组件200中的单体电池203数量为n(n>1,且n为整数),该电池组件200记为A,另一个电池组件200中的单体电池203的数量最多为n-1,记为电池组件B。如图12所示,电池组件A和电池组件B交替排列,形成ABAB……结构,也可以形成AABBAA……。最后如图13,电池组件200排列完成后外部设置壳体100,形成电池包300。采用此设计,优化单体电池203与单体电池203之间,单体电池203与壳体100之间采用结构胶粘结,最好采用灌胶的方式,使电池包300内部牢牢形成一个整体。
在上述实施方式中,当两个相邻的电池组件200中的单体电池203数量不等,单体电池数量203较少的一个电池组件200的长度会小于相邻的另一个电池组件200,为了为保证电池包300整体的强度,如图11所示,该电池组件200中设有加强块218,所述加强块218与该电池组件200中的单体电池203的第二侧面207粘接以形成所述电池序列201,从而保证所述相邻两个电池组件200的长度相等,电池包的整体强度高。
在上述实施方式中,加强块218在该电池组件200中的具体位置不作特殊限定,可以位于电池组件200的一端,也可以位于电池组件200中两个相邻的单体电池203之间;加强块218的数量不做限定,可以为1个或多个。多个加强块218可以间隔设置在单体电池203之间,也可以位于一起。
在上述的实施方式中,例如ABAB……结构,两个结构加固件202之间的电池序列201与结构加固件201形成牢固的“工”字结构,相邻三个电池组件200又形成另外的“工”字结构,通过密布的“工”字结构使电池包300整体强度增加,采用此结构,可使结构加固件201的厚度得到很大程度的降低,即可支撑整个电池包300中的结构强度,形成类蜂窝状的结构。同时,由于电池包300内部并非实心体,少量的空隙也可同时吸收由于撞击等极端情况带来的冲击力。此结构的电池包300,设置在汽车底部,可很好的支撑整车的结构强度,减少整车的强度设计,以此降低整车设计成本、难度和周期。
在本申请的一些实施例中,电池序列201中相邻两个电池序列201之间存在间隙,间隙形成电池冷却风道。当然,该间隙也用于容纳单体电池203在工作时产生的膨胀。在本申请的一些实施例中,该间隙中也可设有冷却板,以对单体电池203进行冷却和散热。
在本申请的一些实施例中,电池组件200包括沿Y方向相对设置的第一端214和第二端215,壳体100包括沿Y方向相对设置的第一边框103和第二边框104,电池组件200设置在第一边框103和第二边框104之间,电池组件200的第一端214支撑在第一边框103上,电池组件200的第二端215支撑在第二边框104上。换言之,电池组件200在第一边框103和第二边框104之间延伸。
在本实施例中,电池组件200的第一端214和第二端215是分别支撑在第一边框103和第二边框104上的,电池组件200可以直接由第一边框103和第二边框104支撑,即,分别放置在第一边框103和第二边框104上,也可以进一步固定在第一边框103和第二边框104上,具体的固定方式在下文中详细描述,对于特定的支撑和固定方式,对此本申请不作限制。
在本申请的技术构思下,一个实施例中,沿Y方向,第一边框103和第二边框104之间的距离和电池组件200的尺寸相配合,此处的相配合指两个边框或下述中的两个侧壁之间的间距能够配合安装一个电池组件200,这种配合可是间隙配合、过盈配合、紧固配合、固定配合等各种配合方式,从而实现本申请的目的。
在本申请的一些实施例中,电池组件200的第一端214可以直接或间接支撑在第一边框103上,电池组件200的第二端215可以直接或间接支撑在第二边框104上。直接的含义是指电池组件200的第一端214和第一边框103直接接触配合支撑,和电池组件200的第二端215和第二边框104直接接触配合;间接的含义是指,比如一些实施例中,电池组件200的第一端214通过第一端214板与第一边框103配合支撑,电池组件200的第二端215与第二边框104配合支撑。
此外,相比于现有技术,本申请提供的电池组件200在第一边框103和第二边框104之间延伸,电池组件200的两端分别支撑在第一边框103和第二边框104上,电池组件200本身便可用作加强壳体100结构强度的横梁或纵梁,也就是说,壳体100中无需再设置用于加强其结构强度的加强结构,直接通过电池组件200本身便可代替加强结构来保证壳体100的结构强度,确保壳体100在外力作用下不易发生形变。并且,在体积恒定的情况下,由于现有技术中单体电池203的尺寸较小,长度较短,单体电池203的相对两端无法与壳体100中相对设置的两个边框相适配,单体电池203本身无法起到支撑的作用。
在本申请的一些实施例中,第一边框103设置有第一支撑台阶107,第二边框104设置有第二支撑台阶(未画出);电池组件200的第一端214支撑在第一支撑台阶107上,电池组件200的第二端215支撑在第二支撑台阶108上。
电池组件200为多个,多个电池组件200沿X并排设置。多个电池组件200直接布置并排列于壳体100内,这种结构设计省略了安装和固定单体电池203的结构件,不仅有利于减轻整个电池包300的重量,同时还可以简化组装工艺,有利于减少生产成本。
需要说明的是,电池组件200为多个时,每个电池组件200的形状及尺寸、以及每个电池组件200中的单体电池203的形状及数量可以相同也可以不同。例如,当多个电池序列201中的单体电池203均为长方体结构的方形电池时,多个电池组件200中的单体电池203数量、单体电池203的尺寸(长度l、宽度h、厚度d)相互之间可以是不同的,每个单体电池203的尺寸可以根据实际需要进行灵活设定与选择。
在本申请的一些实施例中,如图3所示,壳体100包括沿X方向相对设置有第三边框111和第四边框112,多个电池组件200沿X方向并列排布在第三边框111和第四边框112之间。在一种实施方式中,第一边框103和第二边框104与第三边框111和第四边框112垂直并连接,以使壳体100形成为矩形或正方形。在其他实施方式中,第一边框103和第二边框104可以相互平行,第三边框111和第四边框112可以与第一边框103和第二边框104呈角度设置,以使壳体100形成为梯形、平行四边形等。本申请对第一边框103、第二边框104、第三边框111、第四边框112构成的壳体100的具体形状不作限制。
在本申请的一些实施例中,第三边框111向邻近第三边框111设置的电池组件200施加朝向第四边框112的作用力,第四边框112向邻近第四边框112设置的电池组件200施加朝向第三边框111的作用力,以使多个电池组件200能够紧密地沿X方向排布在第三边框111和第四边框112之间,多个电池组件200之间能够相互贴合。此外,第三边框111和第四边框112可以在X方向上对多个电池组件200进行限位,特别是当电池组件200发生少量膨胀时,可以对电池组件200起到缓冲和提供向内压力的作用,防止电池组件200膨胀量和变形量过大。
特别是当电池组件200设置有防爆阀和电流中断装置(CID)时,通过第三边框111和第四边框112可以有效地限制电池组件200膨胀,使得当电池组件200在发生故障并膨胀时,其内部能够具有足够的气压冲破防爆阀或电流中断装置(CID)内的翻转片,从而使电池组件200短路,保证电池组件200的安全,防止电池组件200爆炸。
为了进一步提高电池包300的整体强度,在本申请的一些实施方式中,至少两个相邻的电池组件200之间设有加强板。加强板的设置可以更好的吸收电池序列201在三维方向上受到的冲击力,提升整个电池序列201的机械强度。
在本申请中,加强板可以为铝板或钢板,加强板的个数不作限制,可以为1个或多个,当加强板的个数为多个时,可以为每两个相邻的电池组件200之间均设置有加强板,也可以为只有部分相邻的电池组件200之间设置加强板。
为了便于单体电池203在整个电池包300中的密堆,在本申请的一些实施方式中,加强板的形状可以与单体电池203的外形大体相似。加强板与位于两侧的电池组件200固定粘贴,从而提高整个电池包300的整体结构。
为了提高电池包300的整体的强度,在本申请的另一些实施方式中,可以直接将至少一个电池组件200的结构加固件202的厚度做厚,在一些具体的实施方式中,至少一个电池组件的结构加固件的厚度为10mm——35mm。
相对于其他结构加固件的厚度在0.5mm-3.5mm,通过加厚,一方面,多个单体电池203被结构加固件202连成的整体可以起到电池包300加强的作用,结构加固件202本身也可以起到电池包300结构加强的作用。双重加强作用,使得电池包300的整体机械强度更高。
在本申请中,壳体100包括托盘和上盖,所述托盘和所述上盖共同限定出容纳空间,所述电池组件200位于所述容纳空间内。
在本申请中,多个单体电池的底面204固定粘贴在托盘的内表面上且多个单体电池的顶面205固定粘贴在上盖的内表面上。将多个单体电池203的顶面和底面分别与壳体100的内表面粘贴起来,可将电池包300设计成整体式结构,所谓整体式设计,就是将电池包300设计成为一个具有极大刚性的一个结构件,使电池包300的刚度和强度大幅提高,机械安全可靠性提升。使用时将该整体式电池包300结构强度作为整车结构强度一部分,与现有设计思路相反,用电池包可以用来增强整车的结构强度,而无须整车来保护电池包,通过该设计可以简化甚至取消整车车架对电池包结构强度保护的设计结构,实现整车轻量化的设计要求,降低整车设计和制造成本,提升整车生产效率。
在发明中,内表面是指临近单体电池203一侧的表面。
需要说明的是,多个单体电池的顶面205可以直接固定粘接在上盖的内表面,也可以间接固定在上盖的内表面。
在本申请的一些实施方式中,上盖和/或托盘可以为多层复合结构,可以使电池包更好的承受整车的冲击,提高结构强度。
例如,在一些具体的实施方式中,多层复合结构包括两层铝板和夹设在所述两层铝板之间的钢板或发泡铝板;即多层复合结构为铝板/发泡铝板/铝板或多层复合结构为铝板/钢板/铝板。
在另一些具体的实施方式中,多层复合结构包括两层纤维复合层和夹设在所述两层纤维复合层之间的发泡材料层。
发泡材料层包括发泡聚合材料,例如聚氨酯泡沫或酚醛泡沫材料,采用发泡材料层,导热系数低,能起到很好的保温效果,另外发泡材料密度低,与密封盖采用钢板或者铝合金相比,电池包更加轻量化。
其中,所述纤维复合层包括玻璃纤维层和/或碳纤维层。即多层复合层可以为玻璃纤维层/发泡材料层/玻璃纤维层、碳纤维层/发泡材料层/碳纤维层,或玻璃纤维层/发泡材料层/碳纤维层,将电池包的上盖和/或托盘设计成发泡材料层和分布在发泡材料层内侧和外侧的纤维复合层,纤维层具有很高的抗拉强度和弹性模量,不仅能够承受电池包内部压力在一定范围内增大时仍然不变形,还能有效的隔火隔热,提高了电池包在极端情况下的安全性能。
整体式电池包结构强度可以作为整车结构强度一部分,电池包可以用来增强整车的结构强度,简化整车车架对电池包结构强度保护的设计结构,实现整车轻量化的设计要求,降低整车设计和制造成本,提升整车生产效率。如图4和图10所示,为了便于电池组件200在电池包300内部的布置,电池组件200中单体电池203的电极端子216位于所述单体电池203的顶面上。电极端子216一个为正电极端子,另一个为负电极端子;单体电池203的电极端子216之间通过电池连接片217串联或并联。
在本申请中,所述壳体100还包括电池管理系统。
本申请的第二个方面提供了一种电动车,包括上述电池包300。该电动车续航能力强,成本低。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“实施例”、“具体实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
具体实施例1-5:
采用如图2所示的方式将四个长方体状的单体电池203沿Y方向排列,4个单体电池的同一侧用结构加固件202连接成一个电池组件200,结构加固件202的形状如附图4所示为长方形板体,将如此的十二个电池组件200沿X方向排列放置于如附图1所示的壳体100中, 每个电池组件200的两端支撑在第一边框103和第二边框104上,然后用上盖密封形成电池包。其中,每个实施例中的结构加固件202及单体电池203满足如下条件,根据标准号:GB/T 31467.3—2015电动汽车用锂离子动力蓄电池包和系统第3部分:安全性要求与测试方法,测试结果如表1:
具体实施例6-14:
采用如图7所示的方式将四个长方体状的单体电池203沿Y方向排列,4个单体电池203的两个大面均连接有结构加固件202。结构加固件202的形状如附图4所示为长方形板体,将此四个单体电池203组装成一个电池组件200,将如此的十二个电池组件200沿X方向排列放置于如附图1所示的壳体100中,每个电池组件200的两端支撑在第一边框103和第二边框104上,然后用上盖密封形成电池包。其中,该实施例中的结构加固件及单体电池203满足如下表1的条件,根据标准号:GB/T 31467.3—2015电动汽车用锂离子动力蓄电池包和系统第3部分:安全性要求与测试方法,测试结果如表1:
表1 含不同规格的电池组件的电池的抗振抗挤压性能测试结果
Figure PCTCN2020122891-appb-000001
由上表测试结果,可知,本申请的提供的电池包的强度较高,可以满足电池包对抗振抗挤压性能的要求。

Claims (42)

  1. 一种电池包,其特征在于,包括:
    壳体,所述壳体内具有底面和顶面,
    电池组件,所述电池组件位于所述壳体内;所述电池组件包括电池序列和结构加固件,所述电池序列包括多个单体电池,所述电池序列中至少部分所述单体电池通过所述结构加固件连接;所述单体电池的外表面包括底面、顶面和侧面,所述单体电池的底面面向所述壳体内的底面,所述单体电池的顶面面向所述壳体内的顶面;所述侧面包括第一侧面和两个相对的第二侧面,所述第一侧面的面积为所述单体电池的所有外表面中面积最大的表面;电池组件内所述单体电池依次排列,相邻两个所述单体电池的第二侧面相对设置,所述单体电池的排列方向为第一方向;
    所述结构加固件固定粘贴在与所述结构加固件连接的单体电池的第一侧面上;所述结构加固件沿第二方向的尺寸为T1,T1=0.5~5mm;所述第一方向与所述第二方向垂直;
    所述电池组件与所述壳体的底面对接以支撑于所述壳体内。
  2. 如权利要求1所述的电池包,其特征在于,所述电池序列中,与所述结构加固件连接的单体电池的数量不小于电池序列中所含有的单体电池数量的二分之一。
  3. 如权利要求1或2所述的电池包,其特征在于,所述电池序列中沿第一方向计数为奇数的单体电池或计数为偶数的单体电池与所述结构加固件连接。
  4. 如权利要求1-3任一项所述的电池包,其特征在于,所述结构加固件固定粘贴在所述电池序列中每个单体电池的第一侧面上。
  5. 如权利要求1-4任一项所述的电池包,其特征在于,所述侧面包括两个相对的第一侧面,所述结构加固件包括两个,分别位于电池序列的两侧,一个结构加固件与电池序列中每个单体电池一侧的第一侧面固定粘贴,另一个结构加固件与电池序列中每个单体电池另一侧的第一侧面固定粘贴。
  6. 如权利要求1-5任一项所述的电池包,其特征在于,所述结构加固件与所述电池序列中沿第一方向两端的单体电池的第一侧面部分表面固定粘贴。
  7. 如权利要求1-6任一项所述的电池包,其特征在于,所述单体电池沿第一方向的尺寸最大。
  8. 如权利要求1-7任一项所示的电池包,其特征在于,所述电池组件沿第一方向从壳体的一侧延伸到另一侧。
  9. 如权利要求1-8任一项所述的电池包,其特征在于,所述电池组件中所有单体电池的第一侧面处于同一平面。
  10. 如权利要求1-9任一项所述的电池包,其特征在于,所述结构加固件上与所述电池 序列贴合的面记为第一表面,所述电池序列上与所述结构加固件贴合的面记为第二表面,所述第一表面与所述第二表面配合设置。
  11. 如权利要求1-9任一项所述的电池包,其特征在于,所述结构加固件为长方形板体。
  12. 如权利要求1-9任一项所述的电池包,其特征在于,所述结构加固件为L型板体,所述L型板体的“|”部分与所述电池序列中单体电池的第一侧面贴合且固定连接。
  13. 如权利要求12所述的电池包,其特征在于,所述L型板体的“—”部分与所述电池序列中单体电池的底面贴合且固定连接。
  14. 如权利要求1-9任一项所述的电池包,其特征在于,所述结构加固件为“[”型板体,所述电池序列设于所述“[”型板体内,且所述“[”型板体的“|”部分与所述电池序列中单体电池的第一侧面贴合且固定连接。
  15. 如权利要求14所述的电池包,其特征在于,所述“[”型板体的两个“—”部分分别与所述电池序列中单体电池的顶面和单体电池的底面贴合。
  16. 如权利要求15所述的电池包,其特征在于,所述“[”型板体的两个“—”部分的单个面积≤所述电池序列的底面或顶面的面积。
  17. 如权利要求1-9任一项所述的电池包,其特征在于,所述电池序列中与所述结构加固件连接的每个单体电池的第一侧面均与所述结构加固件之间设有结构胶。
  18. 如权利要求1-9任一项所述的电池包,其特征在于,所述结构加固件包括金属板。
  19. 如权利要求1-18任一项所述的电池包,其特征在于,所述电池包具有相互垂直的X方向、Y方向和Z方向,所述壳体内的底面和壳体内的顶面在Z方向上相对;所述电池包包括多个电池组件,所述多个电池组件沿X方向排布;所述第一方向与Y方向平行;所述第二方向与X方向平行。
  20. 如权利要求19所述的电池包,其特征在于,所述单体电池大体为长方体,包括长度L,高度H和厚度D,L大于D,且L大于H;所述单体电池的长度方向沿Y方向延伸,高度方向沿Z方向延伸,厚度方向沿X方向延伸;所述结构加固件为长方形板体且包括厚度T1;所述长方形板体的长度方向沿Y方向延伸,厚度方向沿X方向延伸。
  21. 如权利要求20所述的电池包,其特征在于,所述单体电池的厚度为10-90mm。
  22. 如权利要求20或21所示的电池包,其特征在于,所述单体电池含有六个表面,分别为相互平行的底面和顶面、两平行的第一侧面、两平行的第二侧面,两平行的第一侧面在单体电池的厚度方向上相对。
  23. 如权利要求19-22任一项所述的电池包,其特征在于,至少两个相邻电池组件中的其中一个电池组件中的单体电池与另一个电池组件中的单体电池错位排列。
  24. 如权利要求23所述的电池包,其特征在于,至少两个相邻电池组件中其中一个电 池组件中单体电池的数量大于另一个电池组件中单体电池的数量。
  25. 如权利要求24所述的电池包,其特征在于,所述另一个电池组件中设有加强块,所述加强块与该电池组件中的单体电池的第二侧面粘接以形成所述电池序列。
  26. 如权利要求25所述的电池包,其特征在于,所述相邻两个电池组件的长度相等。
  27. 如权利要求19-26任一项所述的电池包,其特征在于,相邻两个所述电池序列之间存在间隙,所述间隙形成电池冷却风道。
  28. 如权利要求19-27任一项所述的电池包,其特征在于,相邻两个所述电池序列之间存在间隙,所述间隙中设有冷却板。
  29. 如权利要求19-28任一项所述的电池包,其特征在于,所述电池组件包括沿所述Y方向相对设置的第一端和第二端,所述壳体包括沿所述Y方向相对设置的第一边框和第二边框,所述电池组件设置在所述第一边框和第二边框之间,所述电池组件的第一端支撑在所述第一边框上,所述电池组件的第二端支撑在所述第二边框上。
  30. 如权利要求29所述的电池包,其特征在于,所述第一边框设置有第一支撑台阶,所述第二边框设置有第二支撑台阶;所述电池组件的第一端支撑在所述第一支撑台阶上,所述电池组件的第二端支撑在所述第二支撑台阶上。
  31. 如权利要求19-30任一项所述的电池包,其特征在于,所述壳体包括沿所述X方向相对设置有第三边框和第四边框,多个所述电池组件沿所述X方向并列排布在所述第三边框和第四边框之间。
  32. 如权利要求19-31任一项所述的电池包,其特征在于,所述壳体内在所述Y方向上设有一个所述电池组件。
  33. 如权利要求19-32任一项所述的电池包,其特征在于,至少两个相邻的所述电池组件之间设有加强板。
  34. 如权利要求33所述的电池包,其特征在于,所述加强板与位于所述加强板两侧的电池组件固定粘贴。
  35. 如权利要求20-34任一项所述的电池包,其特征在于,至少一个电池组件的结构加固件的厚度为10mm——35mm。
  36. 如权利要求1-35任一项所述的电池包,其特征在于,所述壳体包括托盘和上盖,所述托盘和所述上盖共同限定出容纳空间,所述电池组件位于所述容纳空间内;电池组件中单体电池的底面固定粘贴在所述托盘的内表面上,单体电池的顶面固定粘贴在所述上盖的内表面上。
  37. 如权利要求36所述的电池包,其特征在于,所述托盘和/或所述上盖为多层复合结构,所述多层复合结构包括两层铝板和夹设在所述两层铝板之间的钢板或发泡铝板。
  38. 如权利要求37所述的电池包,其特征在于,所述托盘和/或所述上盖为多层复合结构,所述多层复合结构包括两层纤维复合层和夹设在所述两层纤维复合层之间的发泡材料层。
  39. 如权利要求38所述的电池包,其特征在于,所述纤维复合层包括玻璃纤维层和/或碳纤维层。
  40. 如权利要求1-39任一项所述的电池包,其特征在于,所述电池组件中的单体电池的电极端子位于所述单体电池的顶面上。
  41. 如权利要求1-40任一项所述的电池包,其特征在于,所述电池包还包括电池管理系统。
  42. 一种电动车,其特征在于,包括如权利要求1-41任一项所述的电池包。
PCT/CN2020/122891 2019-11-18 2020-10-22 一种电池包和电动车 WO2021098440A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022528565A JP2023503414A (ja) 2019-11-18 2020-10-22 電池パック及び電気自動車
US17/777,938 US20220416343A1 (en) 2019-11-18 2020-10-22 Battery pack and electric vehicle
EP20889809.8A EP4053980A4 (en) 2019-11-18 2020-10-22 BATTERY PACK AND ELECTRIC VEHICLE
KR1020227016042A KR20220083762A (ko) 2019-11-18 2020-10-22 배터리 팩 및 전기 자동차

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911129785.1 2019-11-18
CN201911129785.1A CN111009629B (zh) 2019-11-18 2019-11-18 一种电池包和电动车

Publications (1)

Publication Number Publication Date
WO2021098440A1 true WO2021098440A1 (zh) 2021-05-27

Family

ID=70112947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122891 WO2021098440A1 (zh) 2019-11-18 2020-10-22 一种电池包和电动车

Country Status (6)

Country Link
US (1) US20220416343A1 (zh)
EP (1) EP4053980A4 (zh)
JP (1) JP2023503414A (zh)
KR (1) KR20220083762A (zh)
CN (1) CN111009629B (zh)
WO (1) WO2021098440A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113314784A (zh) * 2021-06-01 2021-08-27 荣盛盟固利新能源科技有限公司 集成液冷的动力电池模组
CN114744354A (zh) * 2022-04-18 2022-07-12 香港城市大学深圳研究院 一种带有抗压承托功能的锂离子电池组件
WO2023029174A1 (zh) * 2021-08-31 2023-03-09 蔚来汽车科技(安徽)有限公司 一种电池包以及具有其的车辆
US11862776B2 (en) 2022-02-21 2024-01-02 Contemporary Amperex Technology Co., Limited Battery, power consumption device, and method and device for producing battery
EP4187670A4 (en) * 2021-09-30 2024-02-28 Contemporary Amperex Technology Co Ltd BATTERY, CORRESPONDING MANUFACTURING METHOD AND MANUFACTURING SYSTEM, AND ELECTRICAL DEVICE

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111009629B (zh) * 2019-11-18 2022-02-08 比亚迪股份有限公司 一种电池包和电动车
CN112290115A (zh) * 2020-09-30 2021-01-29 东风汽车集团有限公司 一种z形水冷板及动力电池包
CN115843398B (zh) * 2021-07-21 2023-12-15 宁德时代新能源科技股份有限公司 电池、用电设备、制备电池的方法和设备
EP4261997A1 (en) * 2022-02-21 2023-10-18 Contemporary Amperex Technology Co., Limited Battery, electric device, and battery preparation method and device
CN116745978A (zh) * 2022-02-21 2023-09-12 宁德时代新能源科技股份有限公司 电池和用电装置
EP4258419A1 (en) * 2022-02-21 2023-10-11 Contemporary Amperex Technology Co., Limited Battery, electrical device, and battery preparation method and device
EP4258441A1 (en) * 2022-02-21 2023-10-11 Contemporary Amperex Technology Co., Limited Battery, electric device, and battery preparation method and device
EP4258437A1 (en) * 2022-02-21 2023-10-11 Contemporary Amperex Technology Co., Limited Battery, electric device, and battery preparation method and device
CN116868417A (zh) * 2022-02-21 2023-10-10 宁德时代新能源科技股份有限公司 电池和用电装置
KR20230129052A (ko) * 2022-02-25 2023-09-05 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 배터리, 전기 장치, 배터리 제조 방법 및 장치
US11949080B2 (en) 2022-09-06 2024-04-02 Harbinger Motors Inc. Battery packs with safety features and methods of installing such packs on truck frames
US11961987B2 (en) 2022-09-06 2024-04-16 Harbinger Motors Inc. Battery modules with casted module enclosures and methods of fabricating thereof
CN116618241B (zh) * 2023-07-24 2023-09-12 江苏泽润新能科技股份有限公司 一种汽车电池包灌胶装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034754A1 (en) * 2009-12-23 2013-02-07 Martin Michelitsch Battery with voltage-generating cells and interposed compensating plates
CN103378319A (zh) * 2012-04-25 2013-10-30 三星Sdi株式会社 电池模块
CN208014836U (zh) * 2018-04-23 2018-10-26 洛阳鑫光锂电科技有限公司 一种软包锂电池组组装结构
CN110137400A (zh) * 2016-07-29 2019-08-16 苹果公司 具有用于改进热管理的结构构件的电池组
CN110190218A (zh) * 2019-05-07 2019-08-30 宁德时代新能源科技股份有限公司 电池包和车辆
CN209328987U (zh) * 2018-12-29 2019-08-30 蜂巢能源科技有限公司 电池模组
CN209496928U (zh) * 2019-04-12 2019-10-15 宁德时代新能源科技股份有限公司 一种电池模组
CN209896152U (zh) * 2019-11-18 2020-01-03 比亚迪股份有限公司 电池包及电动车
CN110993845A (zh) * 2019-11-18 2020-04-10 比亚迪股份有限公司 电池包及电动车
CN111009629A (zh) * 2019-11-18 2020-04-14 比亚迪股份有限公司 一种电池包和电动车

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638528B2 (ja) * 2008-07-02 2011-02-23 株式会社Gsユアサ 組電池及び組電池の組立方法
CN101877413B (zh) * 2009-04-30 2013-10-30 比亚迪股份有限公司 一种单体电池及包含该单体电池的动力电池组
KR101293943B1 (ko) * 2009-12-22 2013-08-07 주식회사 엘지화학 강성이 향상된 전지팩
DE102011076575A1 (de) * 2011-05-27 2012-11-29 Bmw Ag Energiespeichermodul aus mehreren insbesondere prismatischen Speicherzellen und Verfahren zur Herstellung eines Energiespeichermoduls sowie Verfahren zur Herstellung einer Endplatte für ein Energiespeichermodul
JP2014063598A (ja) * 2012-09-03 2014-04-10 Nec Energy Devices Ltd 電池パック
EP3376556A4 (en) * 2015-12-16 2018-12-19 BYD Company Limited Tray, power battery pack and electric vehicle
JP6545212B2 (ja) * 2017-03-17 2019-07-17 本田技研工業株式会社 電池パック
KR102172517B1 (ko) * 2017-04-04 2020-10-30 주식회사 엘지화학 크래쉬 빔 구조를 갖는 배터리 팩
KR102256098B1 (ko) * 2017-04-06 2021-06-03 주식회사 엘지에너지솔루션 루버 핀 형상의 열전도 매개체를 구비한 배터리 팩
JP2019046578A (ja) * 2017-08-30 2019-03-22 日産自動車株式会社 バッテリパックの製造方法
JP6908715B2 (ja) * 2017-08-30 2021-07-28 本田技研工業株式会社 積層体、車載用電池収容体及び車載用電池収容体の製造方法
CN109742281B (zh) * 2018-12-27 2021-05-28 宁德时代新能源科技股份有限公司 一种电池箱

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130034754A1 (en) * 2009-12-23 2013-02-07 Martin Michelitsch Battery with voltage-generating cells and interposed compensating plates
CN103378319A (zh) * 2012-04-25 2013-10-30 三星Sdi株式会社 电池模块
CN110137400A (zh) * 2016-07-29 2019-08-16 苹果公司 具有用于改进热管理的结构构件的电池组
CN208014836U (zh) * 2018-04-23 2018-10-26 洛阳鑫光锂电科技有限公司 一种软包锂电池组组装结构
CN209328987U (zh) * 2018-12-29 2019-08-30 蜂巢能源科技有限公司 电池模组
CN209496928U (zh) * 2019-04-12 2019-10-15 宁德时代新能源科技股份有限公司 一种电池模组
CN110190218A (zh) * 2019-05-07 2019-08-30 宁德时代新能源科技股份有限公司 电池包和车辆
CN209896152U (zh) * 2019-11-18 2020-01-03 比亚迪股份有限公司 电池包及电动车
CN110993845A (zh) * 2019-11-18 2020-04-10 比亚迪股份有限公司 电池包及电动车
CN111009629A (zh) * 2019-11-18 2020-04-14 比亚迪股份有限公司 一种电池包和电动车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4053980A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113314784A (zh) * 2021-06-01 2021-08-27 荣盛盟固利新能源科技有限公司 集成液冷的动力电池模组
WO2023029174A1 (zh) * 2021-08-31 2023-03-09 蔚来汽车科技(安徽)有限公司 一种电池包以及具有其的车辆
EP4187670A4 (en) * 2021-09-30 2024-02-28 Contemporary Amperex Technology Co Ltd BATTERY, CORRESPONDING MANUFACTURING METHOD AND MANUFACTURING SYSTEM, AND ELECTRICAL DEVICE
US11862776B2 (en) 2022-02-21 2024-01-02 Contemporary Amperex Technology Co., Limited Battery, power consumption device, and method and device for producing battery
CN114744354A (zh) * 2022-04-18 2022-07-12 香港城市大学深圳研究院 一种带有抗压承托功能的锂离子电池组件
CN114744354B (zh) * 2022-04-18 2024-04-05 香港城市大学深圳研究院 一种带有抗压承托功能的锂离子电池组件

Also Published As

Publication number Publication date
CN111009629A (zh) 2020-04-14
KR20220083762A (ko) 2022-06-20
CN111009629B (zh) 2022-02-08
US20220416343A1 (en) 2022-12-29
EP4053980A1 (en) 2022-09-07
EP4053980A4 (en) 2023-07-19
JP2023503414A (ja) 2023-01-30

Similar Documents

Publication Publication Date Title
WO2021098440A1 (zh) 一种电池包和电动车
TWI755643B (zh) 電池包、車輛和儲能裝置
US20220416346A1 (en) Battery pack and electric vehicle
WO2010114318A2 (ko) 모듈의 구조 설계에 유연성을 가진 전지모듈 및 이를 포함하는 중대형 전지팩
WO2020207230A1 (zh) 一种电池模组
WO2014010842A1 (ko) 간접 공냉 구조를 포함하는 전지모듈
US20230023909A1 (en) Battery pack and electric vehicle
CN209896153U (zh) 一种电池包和电动车
CN209896152U (zh) 电池包及电动车
US11296385B2 (en) Battery module and battery pack
US20230275287A1 (en) Battery, power consumption device, and method and device for producing battery
WO2023060715A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2021249272A1 (zh) 一种电池包及电动车
CN209993636U (zh) 电池模组
CN219086120U (zh) 一种锂电池模组
CN217485615U (zh) 一种电池组及电池包
WO2024031416A1 (zh) 电池以及用电装置
CN220753553U (zh) 一种新能源电动车用电池模组
WO2024113461A1 (zh) 电池包和车辆
US20230268579A1 (en) Battery, power consumption device, and method and device for producing battery
WO2024032641A1 (zh) 电池模组及电池包
CN116759756A (zh) 电池模组、电池模组装配方法及动力电池包

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227016042

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022528565

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020889809

Country of ref document: EP

Effective date: 20220603

NENP Non-entry into the national phase

Ref country code: DE