WO2021098391A1 - 双三角回音壁光谐振模式的半导体六边形微米碟激光器 - Google Patents

双三角回音壁光谐振模式的半导体六边形微米碟激光器 Download PDF

Info

Publication number
WO2021098391A1
WO2021098391A1 PCT/CN2020/119163 CN2020119163W WO2021098391A1 WO 2021098391 A1 WO2021098391 A1 WO 2021098391A1 CN 2020119163 W CN2020119163 W CN 2020119163W WO 2021098391 A1 WO2021098391 A1 WO 2021098391A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
hexagonal
disk
semiconductor
double
Prior art date
Application number
PCT/CN2020/119163
Other languages
English (en)
French (fr)
Inventor
曹冰
何耿
王钦华
熊先杰
袁志豪
周浩
罗安林
陈王义博
徐立跃
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/440,775 priority Critical patent/US20220181848A1/en
Publication of WO2021098391A1 publication Critical patent/WO2021098391A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1071Ring-lasers
    • H01S5/1075Disk lasers with special modes, e.g. whispering gallery lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1042Optical microcavities, e.g. cavity dimensions comparable to the wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2027Reflecting region or layer, parallel to the active layer, e.g. to modify propagation of the mode in the laser or to influence transverse modes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0035Simulations of laser characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP

Definitions

  • the invention relates to the field of semiconductor micro-cavity lasers, in particular to a semiconductor hexagonal micro-disk laser in a double-triangular whispering gallery optical resonance mode.
  • Semiconductor materials have broad application value in the fields of micro-nano light-emitting devices and optoelectronic integration, and have received extensive attention from scientists. Especially for semiconductors with high refractive index and direct band gap, such as GaN, ZnO, GaAs, InP, perovskite, etc., it can be directly used as gain material and resonant cavity to make microcavity lasers.
  • detectors and light-emitting devices made of GaInN, AlGaN, GaInAs and other compounds can also cover wide bands of ultraviolet, visible, and near-infrared.
  • the whispering-gallery mode (Whispering-gallery Mode) microcavity laser uses the principle of total reflection of light on the surface of the medium to form a periodic resonance. Compared with the Fabry-Pérot Mode (Fabry-Pérot Mode), it has a small volume and a high quality factor. , Low threshold, easy integration and other advantages have been widely studied.
  • the whispering gallery mode microcavity laser based on semiconductor materials can be used in optical communications, optical storage, chemical and biological detection and other fields.
  • the currently reported research on semiconductor whispering gallery mode microcavity lasers mainly uses micro-disk structure, among which hexagonal micro-disks are widely studied. This is because most of the wide band gap and direct band gap semiconductors are wurtzite structures.
  • the micron disc obtained by epitaxial growth has a hexagonal prism geometry.
  • most reports are the hexagonal and triangular whispering gallery modes, for example: the hexagonal whispering gallery mode scheme (see [Rui Chen and Bo Ling,” Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnOMicrodisks", Advanced Materials, vol . 23, no. 19.pp.
  • the main purpose of the present invention is to provide a double-triangular whispering gallery optical resonance mode semiconductor hexagonal micron disk laser to solve the existing solutions that are limited by the low quality factor of the hexagonal whispering gallery mode and the triangular whispering gallery.
  • the shortcoming of the model is difficult to shoot, has the advantages of taking into account the high quality factor and easy to shoot.
  • the present invention provides a double-triangular whispering gallery optical resonance mode semiconductor hexagonal micro-disk laser, comprising: a reflective substrate, a semiconductor hexagonal micro-disk, and a laser; wherein: the semiconductor hexagon The micron disc is arranged on the reflective substrate; the laser's output light is perpendicular to the surface of the semiconductor hexagonal micron disc, and irradiates any one of the six corners of the semiconductor hexagonal micron disc; double-triangular echo wall light The laser in the resonant mode is emitted horizontally from one of the six side walls of the semiconductor hexagonal micro-disk.
  • the laser is a single-mode high-power laser
  • the wavelength of the emitted laser light is smaller than the band gap emission wavelength of the semiconductor material used
  • the semiconductor hexagonal micro-disk has a regular hexagonal surface, the side of which is perpendicular to the surface and Smooth
  • the surface of the reflective substrate is a smooth plane. It reduces the loss of strong optical resonance light and enhances the stability of the emitted laser spectrum.
  • the intensity and line width of the light emitted by the micro-disk laser can be changed.
  • the size of the excitation area irradiated by the laser at the corners of the semiconductor hexagonal micron disc is smaller than the surface size of the semiconductor hexagonal micron disc.
  • the stability of the double-triangular whispering gallery mode laser can be adjusted.
  • the beneficial effects of the present invention are: a double-triangular whispering gallery optical resonance mode semiconductor hexagonal micron disk laser and the existing hexagonal whispering gallery mode laser and triangular whispering gallery provided by the present invention Compared with the mode laser scheme, it has the advantages of high quality factor and easy emission at the same time.
  • Fig. 1 is a schematic diagram of a semiconductor hexagonal micro-disk laser provided by the present invention.
  • Figure 2 is a scanning electron microscope image of a gallium nitride micro-disk.
  • Figure 3 shows the output spectrum of a gallium nitride laser.
  • Figure 4 is the simulated light field diagram of the double triangle whispering gallery mode.
  • Figure 5 is a graph of the number of reflections and the quality factor function of the double-triangular whispering gallery mode.
  • Figure 6a is a simulated light field diagram with a ratio of excitation area to cavity area of 5%.
  • Figure 6b is a simulated light field diagram with a ratio of excitation area to cavity area of 15%.
  • Figure 6c is a simulated light field diagram with a ratio of excitation area to cavity area of 20%.
  • Figure 6d is a simulated light field diagram with a ratio of excitation area to cavity area of 30%.
  • Figure 1 1. Reflective substrate, 2. Semiconductor hexagonal micro-disk, 3. Laser.
  • Embodiment 1 A semiconductor hexagonal micro-disk laser in a double-triangular whispering gallery optical resonance mode, as shown in FIG. 1, includes: a reflective substrate 1, a semiconductor hexagonal micro-disk 2, and a laser 3; wherein: said The semiconductor hexagonal micron disc is arranged on the reflective substrate; the laser's output light is perpendicular to the surface of the semiconductor hexagonal micron disc and irradiates any one of the six corners of the semiconductor hexagonal micron disc; double The laser in the optical resonance mode of the triangular whispering gallery is emitted horizontally from one of the six side walls of the semiconductor hexagonal micron disc.
  • the specific working principle of the semiconductor hexagonal micro-disk laser in the double-triangular whispering gallery optical resonance mode involved in the present invention is as follows.
  • the invention mainly performs optical excitation on the part of the semiconductor micro-disk to control the output of the laser mode.
  • the laser excitation method reported in the past is that the laser spot completely covers the micron disc. Under this condition, only the hexagonal whispering gallery mode and the triangular whispering gallery mode can be excited.
  • the semiconductor micron disc of the present invention has a larger diameter, which makes the conventional The spot of the laser pump source can only cover a part of the micro-disk. Due to the spatial nature of the stimulated emission characteristics, the population inversion will only occur in the excited working material region and only the light path in this region will be enhanced. Therefore, when the excitation spot is only located at the corner of the hexagonal micron disc, only the optical mode with the light path under the spot will resonate. The light path of this double-triangular whispering gallery mode is located at the corner of the hexagonal micron disc, so the optical mode Can get effective stimulated radiation amplification.
  • FIG. 4 shows the light field simulation diagram in the double-triangular whispering gallery mode.
  • the white box is the excitation area
  • the regular hexagon is the semiconductor resonant cavity
  • the periphery is air
  • the outermost frame is the perfect matching layer as the absorption layer.
  • the bright color area in the polygon is the area with high light intensity, that is, the light path.
  • the light path of the double-triangular whispering gallery mode is located at the corners of the hexagonal micron disc.
  • the optical diffraction effect in the corner makes the resonant light of the double-triangular whispering gallery mode easier to exit.
  • Embodiment 2 A double-triangular whispering gallery optical resonance mode semiconductor hexagonal micro-disk laser, the reflective substrate, semiconductor hexagonal micro-disk, and laser unit are sequentially configured as a single crystal silicon reflective substrate, nitrided Gallium hexagonal micron disc, ultraviolet pulsed laser, ultraviolet pulsed laser has a wavelength of 325 nm, a line width of 100 fs, a frequency of 1kHz, and a spot diameter of 10 ⁇ m; the gallium nitride hexagonal micron disc has a diameter of 25 ⁇ m;
  • the excitation area at any one of the six corners of the gallium hexagonal micro-disk is a square.
  • the excitation area is a dedicated term in the art.
  • the ultraviolet pulse laser is irradiated on the gallium nitride hexagonal micro-disk, and the excitation area is the area where the ultraviolet pulse laser has an excitation effect on gallium nitride.
  • the ratio of the excitation area to the area of the hexagon is adjusted.
  • the change of the light field distribution can be observed from the light field simulation result graph, that is, the optical mode inside the hexagonal cavity has changed.
  • the ultraviolet pulse laser has a wavelength of 325 nm, a line width of 100 fs, a frequency of 1 kHz, and a spot diameter of 10 ⁇ m.
  • Figure 2 is a scanning electron microscope image of a gallium nitride micro-disk, and the diameter of the gallium nitride hexagonal micro-disk in the experiment is 25 ⁇ m.
  • Figure 3 is the output spectrum of the gallium nitride laser, through the formula ,among them Is the emission wavelength of the micro-disk laser, as shown in Figure 3, we can see It is about 375nm, and L is the total length of the optical path for one cycle.
  • the double-triangular whispering gallery mode interval is 0.35nm, which is very close to the experimental result of 0.36nm. It is confirmed that the obtained result is the double-triangular whispering gallery mode laser emission.
  • the Q value can be as high as 3049.
  • Figure 4 is a simulated light field diagram of the double-triangular whispering gallery mode, which also confirms that the laser mode is a double-triangular whispering gallery mode.
  • Figure 5 is a function diagram of the number of reflections of the double-triangular whispering gallery mode and the quality factor, in which the corresponding values of the quality factors of the three whispering gallery modes in the same cavity are marked.
  • Figures 6a to 6d show the simulated light field diagrams when the ratio of excitation area to cavity area is 5%, 15%, 20%, and 30% respectively; from the simulation results, the most suitable double-triangular whispering gallery mode laser stable and efficient output is obtained
  • the ratio of the excitation area to the area of the hexagonal cavity is 20%. This is because when the area ratio is further increased, it can be seen that the double-triangular whispering gallery mode in Figure 6d is gradually destroyed, so the maximum excitation area ratio and the double-triangular whispering gallery mode are guaranteed
  • the optimal solution can be obtained when it is stable.
  • the semiconductor hexagonal micro-disk material is selected from one or more combinations of GaN, AlN, GaAs, InAs, ZnO, InP, CdS, and perovskite.
  • This solution can be used to achieve double-triangular whispering walls.
  • the optical resonance mode laser output and the quality factor have been greatly improved.
  • the listed materials all have the characteristics of high refractive index.
  • the reflective substrate uses the stimulated radiation physical characteristics of the high refractive index gain material, the reflective substrate provides light reflection on the bottom surface to reduce the vertical optical loss of the microcavity laser.
  • Semiconductor hexagon The micro-disk is used as an optical resonator and laser gain material, and the laser is used as an optical pump source to provide optical gain.
  • the laser When the power of the pump source exceeds the threshold of the micro-cavity laser, the laser is emitted; the laser spot is located at the corner of the hexagonal micro-disk by controlling the pump source , After stimulated radiation, the laser emission of the double-triangular whispering gallery optical resonance mode is generated.
  • the present invention Compared with conventional lasers of hexagonal and triangular whispering gallery optical resonance modes, the present invention has the advantages of high quality factor and easy laser emission.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Lasers (AREA)

Abstract

本发明属于半导体微腔激光器领域,为解决六边形回音壁模式品质因子低与三角形回音壁模式出射难的问题:公开了一种双三角回音壁光谐振模式的半导体六边形微米碟激光器,该装置利用高折射率增益材料的受激辐射物理特性,通过反射衬底提供底面的光反射来降低微腔激光器垂直方向光学损耗,半导体六边形微米碟作为光学谐振腔与激光增益物质,激光器作为光学泵浦源提供光学增益,当泵浦源功率超过微腔激光器阈值后产生激光出射;通过控制泵浦源激光光斑位于六边形微米碟角落,在受激辐射后产生双三角回音壁光学谐振模式的激光出射。本发明相比较常规六边形和三角形回音壁光谐振模式的激光器同时具有高的品质因子和易于激光出射的优点。

Description

双三角回音壁光谐振模式的半导体六边形微米碟激光器 技术领域
本发明涉及半导体微腔激光器领域,具体涉及一种双三角回音壁光谐振模式的半导体六边形微米碟激光器。
背景技术
半导体材料在微纳发光器件与光电集成领域具有广阔的应用价值从而受到了科学家们的广泛关注。特别对于具有高折射率,直接带隙的半导体,如GaN, ZnO,GaAs,InP,钙钛矿等,可以直接作为增益物质与谐振腔来制作微腔激光器。此外,GaInN,AlGaN, GaInAs等化合物制作的探测器与发光器件还可以覆盖紫外,可见光,以及近红外的宽波段。回音壁模式(Whispering-gallery Mode)微腔激光器由于使用光在介质表面全反射形成周期性谐振的原理,相较于法布里-珀罗模式(Fabry–Pérot Mode)具有体积小,品质因子高,阈值低,易集成等优点而被广泛研究。基于半导体材料的回音壁模式微腔激光器,可用于光通信,光存储,化学生物探测等领域。
技术问题
目前报道的半导体回音壁模式微腔激光器方面的研究主要使用微米碟结构,其中六边形微米碟被广泛研究,这是由于多数宽禁带,直接带隙的半导体多为纤锌矿结构,导致外延生长获得的微米碟为六棱柱的几何形态。同时在六边形谐振腔光学模式研究中,报道的多为六边形和三角形回音壁模式,例如:六边形回音壁模式方案(参见[Rui Chen and Bo Ling,” Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnOMicrodisks”, Advanced Materials,vol. 23, no. 19.pp. 2199+, 2011])以及三角形回音壁模式方案(参见[Kouno T,”Lasing Action on Whispering Gallery Mode of Self-Organized GaN Hexagonal Microdisk Crystal Fabricated by RF-Plasma-Assisted Molecular Beam Epitaxy”, Ieee Journal of Quantum Electronics,vol. 47, no. 12, pp. 1565-1570,2011])。通过Wiersig,J.(参见[“Hexagonal dielectric resonators and microcrystal lasers”, Physical Review A, vol. 67, no. 2, pp. 12,2003])的理论研究显示六边形回音壁模式光路径位于谐振腔边缘,由于光学衍射原理使得光可以从角落出射,但是其品质因子相较于三角形回音壁模式要低很多。另一方面三角形回音壁模式中光的反射区域位于六边形每个边的中心,使得内部循环的光很难出射从而降低了激光器的出光效率。因此这两个问题降低了半导体六边形微米碟激光器的性能。
技术解决方案
有鉴于此,本发明的主要目的在于提供一种双三角回音壁光谐振模式的半导体六边形微米碟激光器,以解决已有方案受限于六边形回音壁模式低品质因子与三角形回音壁模式难出射的缺点,具有兼顾高品质因子与易出射的优点。
为达到上述目的,本发明提供了一种双三角回音壁光谐振模式的半导体六边形微米碟激光器,包括:反射衬底,半导体六边形微米碟,激光器;其中:所述半导体六边形微米碟设置在反射衬底上;激光器的出射光垂直于半导体六边形微米碟表面,且照射在半导体六边形微米碟的六个边角之中任意一个边角处;双三角回音壁光谐振模式的激光从半导体六边形微米碟六个侧壁之中一个侧壁水平出射。
更优的方案:所述激光器为单模高功率激光器,出射激光波长小于所用半导体材料的禁带发光波长,所述半导体六边形微米碟为规则的六边形表面,其侧面垂直于表面且光滑,所述反射衬底表面为光滑平面。使得光学谐振强光损耗降低,增强出射激光光谱的稳定性。
进一步的,通过调节所述激光器的出射功率,可以改变微米碟激光器出射光的强度与线宽。
进一步的,激光器照射于半导体六边形微米碟边角处的激励区域尺寸小于半导体六边形微米碟表面尺寸。
进一步的,通过调节所述激光器的照射光斑尺寸,可以调节双三角回音壁模式激光的稳定性。
有益效果
由于采用上述技术方案,本发明的有益效果为:本发明提出的一种双三角回音壁光谐振模式的半导体六边形微米碟激光器,和已有的六边形回音壁模式激光器和三角形回音壁模式激光器方案相比,同时具有高品质因子和易出射的优点。
附图说明
图1为本发明提供的半导体六边形微米碟激光器示意图。
图2为氮化镓微米碟扫描电镜图。
图3为氮化镓激光器输出光谱。
图4为双三角回音壁模式仿真光场图。
图5为双三角回音壁模式反射次数与品质因子函数图。
图6a为激励面积与谐振腔面积比为5%仿真光场图。
图6b为激励面积与谐振腔面积比为15%仿真光场图。
图6c为激励面积与谐振腔面积比为20%仿真光场图。
图6d为激励面积与谐振腔面积比为30%仿真光场图。
其中,图1中:1、反射衬底,2、半导体六边形微米碟,3、激光器。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
实施例一 一种双三角回音壁光谐振模式的半导体六边形微米碟激光器,如图1所示,包括:反射衬底1,半导体六边形微米碟2,激光器3;其中:所述半导体六边形微米碟设置在反射衬底上;激光器的出射光垂直于半导体六边形微米碟表面,且照射在半导体六边形微米碟的六个边角之中任意一个边角处;双三角回音壁光谐振模式的激光从半导体六边形微米碟六个侧壁之中一个侧壁水平出射。
本发明所涉及的双三角回音壁光谐振模式的半导体六边形微米碟激光器的具体工作原理如下。
本发明主要是对半导体微米碟的局部进行光激励从而控制激光模式的输出。以往报道的激光激励方式是激光光斑全覆盖微米碟,这种条件下只能激励出六边形回音壁模式和三角形回音壁模式,而本发明所述半导体微米碟具有较大的直径,使得常规激光器泵浦源的光斑只能覆盖微米碟的一部分。由于受激辐射特性具有空间性,即在所激励的工作物质区域内才会发生粒子数反转且只对该区域的光路径进行增强。所以当激励光斑只位于六边形微米碟角落时,只有光路径位于光斑下的光学模式才会发生谐振,这种双三角回音壁模式的光路径位于六边形微米碟角落,所以该光学模式可以得到有效的受激辐射放大。
再通过公式
Figure 299507dest_path_image001
,其中m为反射次数,r为六边形外接圆半径,R为有效反射率,可以得到:在相同有效反射率条件下,双三角回音壁模式的品质因子与三角形回音壁模式近似,而明显比六边形回音壁模式高。如图4展示了双三角回音壁模式下的光场仿真图,白色框内为激励区域,正六边形为半导体谐振腔,其外围为空气,最外围边框为完美匹配层来作为吸收层,六边形内的亮色区域为光强密度高的区域,即光路径。同时双三角回音壁模式的光路径位于六边形微米碟边角处,由于角落的光学衍射效果使得双三角回音壁模式的谐振光更易出射。
实施例二:一种双三角回音壁光谐振模式的半导体六边形微米碟激光器,所述的反射衬底、半导体六边形微米碟、激光器单依次配置为单晶硅反射衬底、氮化镓六边形微米碟、紫外脉冲激光器,紫外脉冲激光器波长为325 nm,线宽100 fs,频率1kHz,光斑直径为10 μm;氮化镓六边形微米碟直径为25 μm;照射在氮化镓六边形微米碟的六个边角之中任意一个边角处的激励区域为正方形。激励区域为本领域专用术语,本实施例中紫外脉冲激光器照射在氮化镓六边形微米碟上,激励区域为紫外脉冲激光对氮化镓产生激励作用的区域。
通过使用Comsol Multiphysics仿真软件寻求最适宜双三角回音壁模式光出射的条件。构建六边形谐振腔模型,外围设置为空气,边缘区域设置为完美匹配层,在六边形谐振腔角落设置电场激励,激励区域为正方形。
通过改变激励区域正方形的面积,即调整激励面积与六边形面积的比值。可以从光场仿真结果图中观察到光场分布的变化,即六边形谐振腔内部的光学模式发生了变化。
为了验证本发明技术方案的效果,进行了实验验证。实验中紫外脉冲激光器波长为325 nm,线宽100 fs,频率1kHz,光斑直径为10 μm。图2为氮化镓微米碟扫描电镜图,可得实验中氮化镓六边形微米碟直径为25 μm。图3为氮化镓激光器输出光谱,通过公式
Figure 715444dest_path_image002
,其中
Figure 716899dest_path_image003
为微米碟激光器出射波长,图3所示可知
Figure 758542dest_path_image003
为375nm左右,L是光路径循环一周的总长度,可以得到双三角回音壁模式间隔为0.35nm,这与实验结果0.36nm十分接近,证实得到的结果是双三角回音壁模式激光出射。同时通过公式
Figure 896262dest_path_image004
计算品质因子,可得Q值高达3049。图4为双三角回音壁模式仿真光场图,同样证实激光模式为双三角回音壁模式。图5为双三角回音壁模式反射次数与品质因子函数图,其中标注了三种回音壁模式在相同谐振腔内品质因子所对应的数值。可看到双三角回音壁模式(D3-WGM)对应的品质因子相较六边形回音壁模式(6-WGM)要高。图6a至图6d分别为激励面积与谐振腔面积比为5%、15%、20%和30%时仿真光场图依次对应;从仿真结果中得到最适合双三角回音壁模式激光稳定高效输出的激励面积与六边形谐振腔面积的比是20%,这是由于进一步增加面积比时可见图6d双三角回音壁模式逐渐被破坏,所以在保证最大激励面积比和双三角回音壁模式的稳定性时可以得到最优的方案。
在实验中还发现半导体六边形微米碟材料选用GaN、AlN、GaAs、InAs、ZnO、InP、CdS、钙钛矿中的一种或多种组合,使用本解决方案均可实现双三角回音壁光谐振模式激光输出,品质因子均得到较大提高。所列出的材料均具有高折射率的特性,利用其高折射率增益材料的受激辐射物理特性, 通过反射衬底提供底面的光反射来降低微腔激光器垂直方向光学损耗,半导体六边形微米碟作为光学谐振腔与激光增益物质,激光器作为光学泵浦源提供光学增益,当泵浦源功率超过微腔激光器阈值后产生激光出射;通过控制泵浦源激光光斑位于六边形微米碟角落,在受激辐射后产生双三角回音壁光学谐振模式的激光出射。本发明相比较常规六边形和三角形回音壁光谐振模式的激光器同时具有高的品质因子和易于激光出射的优点。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 双三角回音壁光谐振模式的半导体六边形微米碟激光器,包括:反射衬底,半导体六边形微米碟,激光器;所述半导体六边形微米碟设置在所述反射衬底上;其特征在于:激光器的出射光垂直于半导体六边形微米碟表面,且照射在半导体六边形微米碟的六个边角之中任意一个边角处;双三角回音壁光谐振模式的激光从半导体六边形微米碟六个侧壁之中一个侧壁水平出射。
  2. 根据权利要求1所述的双三角回音壁光谐振模式的半导体六边形微米碟激光器,其特征在于:所述激光器为高功率激光器,出射激光波长小于所用半导体六边形微米碟材料的禁带发光波长,所述半导体六边形微米碟为规则的正六边形表面。
  3. 根据权利要求2所述的双三角回音壁光谐振模式的半导体六边形微米碟激光器,其特征在于:六边形微米碟激光器出射光的强度与线宽通过所述激光器的出射功率控制。
  4. 根据权利要求1所述的双三角回音壁光谐振模式的氮化物六边形微米碟激光器,其特征在于:激光器照射于半导体六边形微米碟边角处的激励区域尺寸小于半导体六边形微米碟表面尺寸。
  5. 根据权利要求1所述的双三角回音壁光谐振模式的氮化物六边形微米碟激光器,其特征在于:激光器照射于半导体六边形微米碟边角处的激励区域尺寸小于半导体六边形微米碟表面尺寸。
  6. 根据权利要求1所述的双三角回音壁光谐振模式的半导体六边形微米碟激光器,其特征在于:所述的反射衬底、半导体六边形微米碟、激光器依次配置为单晶硅反射衬底、氮化镓六边形微米碟、紫外脉冲激光器;紫外脉冲激光器波长为325 nm,线宽100 fs,频率1kHz,光斑直径为10 μm;氮化镓六边形微米碟直径为25 μm。
  7. 根据权利要求1所述的双三角回音壁光谐振模式的半导体六边形微米碟激光器,其特征在于:所述半导体六边形微米碟材料选用GaN、AlN、GaAs、InAs、ZnO、InP、CdS中的一种或多种组合。
PCT/CN2020/119163 2019-11-18 2020-09-30 双三角回音壁光谐振模式的半导体六边形微米碟激光器 WO2021098391A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/440,775 US20220181848A1 (en) 2019-11-18 2020-09-30 Laser with hexagonal semiconductor microdisk in double-triangular whispering-gallery optical resonance mode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911124274.0 2019-11-18
CN201911124274.0A CN110829181A (zh) 2019-11-18 2019-11-18 双三角回音壁光谐振模式的半导体六边形微米碟激光器

Publications (1)

Publication Number Publication Date
WO2021098391A1 true WO2021098391A1 (zh) 2021-05-27

Family

ID=69556077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119163 WO2021098391A1 (zh) 2019-11-18 2020-09-30 双三角回音壁光谐振模式的半导体六边形微米碟激光器

Country Status (3)

Country Link
US (1) US20220181848A1 (zh)
CN (1) CN110829181A (zh)
WO (1) WO2021098391A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110829181A (zh) * 2019-11-18 2020-02-21 苏州大学 双三角回音壁光谐振模式的半导体六边形微米碟激光器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1440095A (zh) * 2002-02-18 2003-09-03 华上光电股份有限公司 一种具有侧向光限制的半导体激光二极管
CN1463480A (zh) * 2001-02-20 2003-12-24 奥斯兰姆奥普托半导体有限责任公司 光抽运的表面发射半导体激光器件及其制造方法
CN101045548A (zh) * 2007-03-12 2007-10-03 东南大学 基于氧化锌单晶微纳米碟的回音壁模激光腔的制备方法
US20140353712A1 (en) * 2010-07-15 2014-12-04 The Regents Of The University Of California Nanopillar optical resonator
CN110829181A (zh) * 2019-11-18 2020-02-21 苏州大学 双三角回音壁光谐振模式的半导体六边形微米碟激光器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463480A (zh) * 2001-02-20 2003-12-24 奥斯兰姆奥普托半导体有限责任公司 光抽运的表面发射半导体激光器件及其制造方法
CN1440095A (zh) * 2002-02-18 2003-09-03 华上光电股份有限公司 一种具有侧向光限制的半导体激光二极管
CN101045548A (zh) * 2007-03-12 2007-10-03 东南大学 基于氧化锌单晶微纳米碟的回音壁模激光腔的制备方法
US20140353712A1 (en) * 2010-07-15 2014-12-04 The Regents Of The University Of California Nanopillar optical resonator
CN110829181A (zh) * 2019-11-18 2020-02-21 苏州大学 双三角回音壁光谐振模式的半导体六边形微米碟激光器

Also Published As

Publication number Publication date
CN110829181A (zh) 2020-02-21
US20220181848A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
CN107959224B (zh) 一种基于金属腔的表面等离激元激光器
US9124062B2 (en) Optically pumped surface emitting lasers incorporating high reflectivity/bandwidth limited reflector
Hayamizu et al. Lasing from a single-quantum wire
US6239901B1 (en) Light source utilizing a light emitting device constructed on the surface of a substrate and light conversion device that includes a portion of the substrate
WO2021155672A1 (zh) 一种半导体六边形微米碟激光器
JP2008311625A (ja) 面発光レーザ素子
Alvarez Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites
WO2021098391A1 (zh) 双三角回音壁光谐振模式的半导体六边形微米碟激光器
JP2017050308A (ja) 量子カスケードレーザ
CN211045977U (zh) 一种半导体六边形微米碟激光器
WO2022141856A1 (zh) 一种基于氮化铝纳米线的激光器
CN210897977U (zh) 双三角回音壁光谐振模式的半导体六边形微米碟激光器
US7965752B1 (en) Native green laser semiconductor devices
CN1972043A (zh) 光子晶体激光器与光子晶体波导耦合输出方法及输出器
US9008145B2 (en) System for frequency conversion, semiconducting device and method for operating and manufacturing the same
CN1681176A (zh) 带有锥形增益区的脊型波导高功率半导体激光器结构
Gruzintsev et al. Mode structure of laser emission from ZnO Nanorods with one metal mirror
JPH0730181A (ja) 面発光型第2高調波生成素子
CN105048280B (zh) 一种基于砷酸钛氧钾晶体的斯托克斯光源及其工作方法与应用
Taojie et al. Photonic crystal lasers grown on CMOS-compatible on-axis Si (001)
CN208352708U (zh) 基于金属微腔的半导体激光器
Navarro-Arenas et al. Role of Self-Absorption in the Photoluminescence Waveguided along CsPbBr 3 Perovskite Nanocrystals Thin Films
Suárez et al. Halide perovskite amplifiers integrated in polymer waveguides
RU2606925C1 (ru) Активный элемент полупроводникового лазера с поперечной накачкой электронным пучком
CN115548835A (zh) 基于单个回音壁模式光学微腔双波长激光的可调谐微波源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20890971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20890971

Country of ref document: EP

Kind code of ref document: A1