WO2021155672A1 - 一种半导体六边形微米碟激光器 - Google Patents

一种半导体六边形微米碟激光器 Download PDF

Info

Publication number
WO2021155672A1
WO2021155672A1 PCT/CN2020/119181 CN2020119181W WO2021155672A1 WO 2021155672 A1 WO2021155672 A1 WO 2021155672A1 CN 2020119181 W CN2020119181 W CN 2020119181W WO 2021155672 A1 WO2021155672 A1 WO 2021155672A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
hexagonal
whispering gallery
disk
semiconductor
Prior art date
Application number
PCT/CN2020/119181
Other languages
English (en)
French (fr)
Inventor
曹冰
何耿
王钦华
熊先杰
袁志豪
周浩
罗安林
陈王义博
徐立跃
Original Assignee
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学 filed Critical 苏州大学
Priority to US17/440,776 priority Critical patent/US20220181849A1/en
Publication of WO2021155672A1 publication Critical patent/WO2021155672A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1071Ring-lasers
    • H01S5/1075Disk lasers with special modes, e.g. whispering gallery lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1042Optical microcavities, e.g. cavity dimensions comparable to the wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2027Reflecting region or layer, parallel to the active layer, e.g. to modify propagation of the mode in the laser or to influence transverse modes

Definitions

  • the invention relates to the field of semiconductor microcavity lasers, in particular to a semiconductor hexagonal micro-disk laser.
  • Semiconductor materials have broad application value in the field of micro-nano light-emitting devices and optoelectronic integration, and have received extensive attention from scientists. Especially for semiconductors with high refractive index and direct band gap, such as GaN, ZnO, GaAs, InP, perovskite, etc., it can be directly used as gain material and resonant cavity to make microcavity lasers.
  • detectors and light-emitting devices made of GaInN, AlGaN, GaInAs and other compounds can also cover wide bands of ultraviolet, visible, and near-infrared.
  • the whispering-gallery mode (Whispering-gallery Mode) microcavity laser uses the principle of total reflection of light on the surface of the medium to form a periodic resonance. Compared with the Fabry-Pérot Mode (Fabry-Pérot Mode), it has a small volume and a high quality factor. , Low threshold, easy integration and other advantages have been widely studied.
  • the whispering gallery mode microcavity laser based on semiconductor materials can be used in optical communications, optical storage, chemical and biological detection and other fields.
  • the currently reported research on semiconductor whispering gallery mode microcavity lasers mainly uses micro-disk structure, among which hexagonal micro-disks are widely studied. This is because most of the wide band gap and direct band gap semiconductors are wurtzite structures.
  • the micron disc obtained by epitaxial growth has a hexagonal prism geometry.
  • most reports are the hexagonal and triangular whispering gallery modes, for example: the hexagonal whispering gallery mode scheme (see [Rui Chen and Bo Ling,” Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks", Advanced Materials, vol . 23, no. 19.pp.
  • the main purpose of the present invention is to provide a semiconductor hexagonal micro-disk laser to solve the disadvantages of the existing solutions that are limited by the low quality factor of the hexagonal whispering gallery mode and the triangular whispering gallery mode.
  • the laser output mode of the semiconductor hexagonal micro-disk laser is a double-triangular whispering gallery mode, which is characterized by comprising: a reflective substrate, a semiconductor hexagonal Shaped micron disc, laser; the semiconductor hexagonal micron disc is arranged on the reflective substrate; the laser's output light is perpendicular to the surface of the semiconductor hexagonal micron disc, and irradiates the six sides of the semiconductor hexagonal micron disc At any one of the corners; the sidewalls of the semiconductor hexagonal micron disc are flat, one of the sidewalls is the front cavity, and the other five sidewalls are the back cavity; the back cavity surface is provided with distribution The laser beam in the optical resonance mode of the double-triangular whispering gallery is emitted from the front cavity among the six side walls of the semiconductor hexagonal micron disc.
  • a more optimal solution a distributed Bragg reflective layer is also provided between the semiconductor hexagonal micro-disk and the reflective substrate.
  • the quantum well structure includes: Ga X In (1-X) N, Al X Ga (1-X) N, Ga X In (1-X) As, Al X Ga (1-X) As , Where X ⁇ (0, 1).
  • the beneficial effects of the present invention are: the semiconductor hexagonal micro-disk laser proposed by the present invention has a high quality factor compared with existing hexagonal whispering gallery mode lasers and triangular whispering gallery mode lasers. And the advantages of easy emission; the back cavity formed by the five sidewalls of the hexagonal micron stack and the front cavity form the interference cavity of the hexagonal micron disk laser, and the stimulated emission light continuously oscillates and gains in the interference cavity.
  • the laser generated after the gain of the laser light intensity exceeds the threshold of the microcavity laser is emitted from the front cavity; the arrangement of the distributed Bragg reflector layer on the back cavity can effectively improve the reflection efficiency of the light surface so that the laser emitted from the front cavity is effectively Enhance and effectively control the emitted light at the same time.
  • inserting a distributed Bragg reflector layer between the hexagonal micron disc and the substrate can effectively prevent the light in the hexagonal micron disc from falling down into the substrate, which can effectively reduce the optical loss and improve the optical characteristics of the laser.
  • adding quantum wells to the hexagonal micro-disk can effectively improve the luminous efficiency of the laser, and according to the properties of the quantum wells, lasers of any wavelength band can be emitted.
  • Figure 1 is a schematic front view of a semiconductor hexagonal micro-disk laser.
  • Fig. 2 is a schematic diagram of a distributed Bragg reflector on the surface of the back cavity.
  • Figure 3 shows the output spectrum of a gallium nitride laser.
  • Figure 4 shows the simulated light field diagram of the double triangle whispering gallery mode.
  • Figure 5 is a graph of the number of reflections and the quality factor function of the double-triangular whispering gallery mode.
  • Figure 6a is a simulated light field diagram with a ratio of excitation area to cavity area of 5%.
  • Figure 6b is a simulated light field diagram with a ratio of excitation area to cavity area of 15%.
  • Figure 6c is a simulated light field diagram with a ratio of excitation area to cavity area of 20%.
  • Figure 6d is a simulated light field diagram with a ratio of excitation area to cavity area of 30%.
  • FIG. 7 is a schematic diagram of a distributed Bragg reflective layer disposed between the semiconductor hexagonal micron disc and the reflective substrate.
  • FIG. 8 is a schematic diagram of the structure of several layers of quantum wells arranged along the cross-sectional direction in the semiconductor hexagonal microdisk.
  • 1 is a reflective substrate
  • 2 is a semiconductor hexagonal micro-disk
  • 3 is a laser
  • H1 ⁇ H5 are the first to fifth back cavities
  • Q is the front cavity
  • 4 is a distributed Bragg reflector layer
  • 5 is a quantum well structure with several layers.
  • Embodiment 1 A semiconductor hexagonal micro-disk laser, as shown in FIG. 1, includes: a reflective substrate 1, a semiconductor hexagonal micro-disk 2, and a laser 3; wherein: the semiconductor hexagonal micro-disk is arranged on On the reflective substrate; the laser's output light is perpendicular to the surface of the semiconductor hexagonal micron disc, and irradiates any one of the six corners of the semiconductor hexagonal micron disc; the laser of the double-triangular echo wall optical resonance mode Eject horizontally from one of the six sidewalls of the semiconductor hexagonal micron disc.
  • the sidewalls of the semiconductor hexagonal micron disc are all planes. As shown in FIG.
  • the sidewall Q is the front cavity, and the other five
  • the side walls H1 ⁇ H5 are respectively the first to fifth back cavities; the surfaces of the first to fifth back cavities are all provided with a distributed Bragg reflector 4, and the laser in the double-triangular whispering gallery optical resonance mode is from a semiconductor hexagon
  • the front cavity among the six sidewalls of the micron disc emits.
  • the invention mainly performs optical excitation on the part of the semiconductor micro-disk to control the output of the laser mode.
  • the laser excitation method reported in the past is that the laser spot completely covers the micron disc. Under this condition, only the hexagonal whispering gallery mode and the triangular whispering gallery mode can be excited.
  • the semiconductor micron disc of the present invention has a larger diameter, which makes the conventional The spot of the laser pump source can only cover a part of the micro-disk. Due to the spatial nature of the stimulated emission, the population inversion will only occur in the excited working material region and only the light path in this region will be enhanced.
  • the excitation spot when the excitation spot is only located at the corner of the hexagonal micron disc, only the optical mode with the light path under the spot will resonate, and the output laser is the double-triangular whispering gallery optical resonance mode.
  • This kind of double-triangular whispering gallery light The path is located at the corner of the hexagonal micron dish, so this optical mode can be effectively amplified by stimulated radiation.
  • FIG. 4 shows the light field simulation diagram in the double-triangular whispering gallery mode.
  • the white box is the excitation area
  • the regular hexagon is the semiconductor resonant cavity
  • the periphery is air
  • the outermost frame is the perfect matching layer as the absorption layer.
  • the bright color area in the polygon is the area with high light intensity, that is, the light path.
  • the light path of the double-triangular whispering gallery mode is located at the corners of the hexagonal micron disc.
  • the optical diffraction effect in the corner makes the resonant light of the double-triangular whispering gallery mode easier to exit.
  • a distributed Bragg reflective layer is set on the back cavity surface, and its structure is that two materials with large refractive index differences are sequentially superimposed in a specified thickness and order to form an optically highly reflective layer, so that the resonance light in the hexagonal micro-disk It is impossible to emit from the five back cavity surfaces, so that the laser can be controlled to only emit from the front cavity surface, thereby enhancing the emitted light intensity, and at the same time avoiding part of the trouble of subsequent device application.
  • Embodiment 2 A semiconductor hexagonal micro-disk laser based on the first embodiment.
  • the reflective substrate, the semiconductor hexagonal micro-disk, and the laser unit are sequentially configured as a monocrystalline silicon reflective substrate and a gallium nitride hexagonal laser.
  • the excitation area at any one of the six corners of the micron-shaped disc is a square; as shown in FIG. 7, a distributed Bragg reflector layer 4 is inserted into the contact interface of the hexagonal micron disc and the substrate.
  • the function of inserting the distributed Bragg reflective layer at the contact interface of the hexagonal micron disc and the substrate is to prevent the light in the hexagonal micron disc from being lost to the substrate, effectively reducing the optical loss of the laser, thereby reducing the threshold of the laser and improving the laser performance.
  • the excitation area is a dedicated term in the art.
  • the ultraviolet pulsed laser is irradiated on the gallium nitride hexagonal micro-disk, and the excitation area is the area where the ultraviolet pulsed laser has an excitation effect on the gallium nitride.
  • Embodiment 3 On the basis of Embodiment 1, a semiconductor hexagonal micro-disk laser, as shown in FIG. 8, a plurality of layers of quantum well structures 5 are inserted in the cross-sectional direction inside the hexagonal micro-disk, and the quantum well structure includes : Ga X In (1-X) N, Al X Ga (1-X) N, Ga X In (1-X) As, Al X Ga (1-X) As, where X ⁇ (0, 1).
  • the quantum well structure is usually a light-emitting gain material with a thickness of nanometers.
  • the quantum confinement effect can be used to greatly improve the quantum luminous efficiency.
  • the quantum confinement effect refers to the phenomenon that the quantization of the energy of microscopic particles becomes more obvious with the continuous reduction of the confinement size of their spatial motion, from continuous energy bands to discrete energy levels. This effect can make electrons and holes recombine light more quickly and efficiently, and increase the luminous intensity.
  • controlling the material that constitutes the quantum well can effectively control the emission wavelength of the hexagonal micro-disk laser, such as Ga X In (1-X) N material, and control the value of X, that is, control the composition of Ga element and In element in the material.
  • the emission wavelength can be further controlled, and the emission wavelength can cover the emission from the ultraviolet band to the near-infrared band.
  • the ratio of the excitation area to the area of the hexagon is adjusted.
  • the change of the light field distribution can be observed from the light field simulation result graph, that is, the optical mode inside the hexagonal cavity has changed.
  • the ultraviolet pulse laser has a wavelength of 325 nm, a line width of 100 fs, a frequency of 1 kHz, and a spot diameter of 10 ⁇ m.
  • Figure 2 is a scanning electron microscope image of a gallium nitride microdisk. The diameter of the gallium nitride hexagonal microdisk in the experiment is 25 ⁇ m.
  • Figure 3 is the output spectrum of the gallium nitride laser, through the formula ,in Is the emission wavelength of the micro-disk laser, as shown in Figure 3, we can see It is about 375nm, L is the total length of the optical path for one cycle, and the double triangle whispering gallery mode interval can be obtained as 0.35nm, which is very close to the experimental result of 0.36nm, which confirms that the obtained result is the double triangle whispering gallery mode laser emission.
  • the Q value can be as high as 3049.
  • Figure 4 is a simulated light field diagram of the double-triangular whispering gallery mode, which also confirms that the laser mode is a double-triangular whispering gallery mode.
  • Figure 5 is a function diagram of the number of reflections of the double-triangular whispering gallery mode and the quality factor, in which the corresponding values of the quality factors of the three whispering gallery modes in the same cavity are marked. It can be seen that the quality factor corresponding to the double triangle whispering gallery mode (D3-WGM) is higher than that of the hexagonal whispering gallery mode (6-WGM).
  • Figures 6a to 6d show the simulated light field diagrams when the ratio of excitation area to cavity area is 5%, 15%, 20%, and 30% respectively; the most suitable double-triangular whispering gallery mode laser stable and high-efficiency output is obtained from the simulation results The ratio of the excitation area to the area of the hexagonal cavity is 20%.
  • the semiconductor hexagonal micro-disk material uses one or more combinations of GaN, AlN, GaAs, InAs, ZnO, InP, CdS, and perovskite.
  • This solution can be used to achieve a double-triangular whispering gallery.
  • the optical resonance mode laser output and the quality factor have been greatly improved.
  • the listed materials all have the characteristics of high refractive index.
  • the reflective substrate uses the stimulated radiation physical characteristics of the high refractive index gain material, the reflective substrate provides light reflection on the bottom surface to reduce the vertical optical loss of the microcavity laser.
  • Semiconductor hexagon The micron disc is used as an optical resonator and laser gain material, and the laser is used as an optical pump source to provide optical gain.
  • the laser When the pump source power exceeds the microcavity laser threshold, the laser will be emitted; the laser spot is located at the corner of the hexagonal micron disc by controlling the pump source , After stimulated radiation, the laser emits the double-triangular whispering gallery optical resonance mode.
  • the present invention Compared with conventional lasers of hexagonal and triangular whispering gallery optical resonance modes, the present invention has the advantages of high quality factor and easy laser emission.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

一种半导体六边形微米碟激光器,利用高折射率增益材料的受激辐射物理特性,通过分布式布拉格反射层(4)来降低微腔激光器光学损耗,半导体六边形微米碟(2)作为光学谐振腔与激光增益物质,激光器(3)作为光学泵浦源提供光学增益,当增益超过微腔激光器阈值后产生激光出射;通过控制泵浦源激光光斑位于半导体六边形微米碟(2)的角落,在受激辐射后产生双三角回音壁光学谐振模式的激光出射。解决六边形回音壁模式品质因子低与三角形回音壁模式出射难的问题,相比较常规六边形和三角形回音壁光谐振模式的激光器同时具有高的品质因子和易于激光出射的优点。

Description

一种半导体六边形微米碟激光器 技术领域
本发明涉及半导体微腔激光器领域,具体涉及一种半导体六边形微米碟激光器。
背景技术
半导体材料在微纳发光器件与光电集成领域具有广阔的应用价值从而受到了科学家们的广泛关注。特别对于具有高折射率,直接带隙的半导体,如GaN, ZnO,GaAs,InP,钙钛矿等,可以直接作为增益物质与谐振腔来制作微腔激光器。此外,GaInN,AlGaN, GaInAs等化合物制作的探测器与发光器件还可以覆盖紫外,可见光,以及近红外的宽波段。回音壁模式(Whispering-gallery Mode)微腔激光器由于使用光在介质表面全反射形成周期性谐振的原理,相较于法布里-珀罗模式(Fabry–Pérot Mode)具有体积小,品质因子高,阈值低,易集成等优点而被广泛研究。基于半导体材料的回音壁模式微腔激光器,可用于光通信,光存储,化学生物探测等领域。
技术问题
目前报道的半导体回音壁模式微腔激光器方面的研究主要使用微米碟结构,其中六边形微米碟被广泛研究,这是由于多数宽禁带,直接带隙的半导体多为纤锌矿结构,导致外延生长获得的微米碟为六棱柱的几何形态。同时在六边形谐振腔光学模式研究中,报道的多为六边形和三角形回音壁模式,例如:六边形回音壁模式方案(参见[Rui Chen and Bo Ling,” Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks”, Advanced Materials,vol. 23, no. 19.pp. 2199+, 2011])以及三角形回音壁模式方案(参见[Kouno T,”Lasing Action on Whispering Gallery Mode of Self-Organized GaN Hexagonal Microdisk Crystal Fabricated by RF-Plasma-Assisted Molecular Beam Epitaxy”, Ieee Journal of Quantum Electronics,vol. 47, no. 12, pp. 1565-1570,2011])。通过Wiersig,J.(参见[“Hexagonal dielectric resonators and microcrystal lasers”, Physical Review A, vol. 67, no. 2, pp. 12,2003])的理论研究显示六边形回音壁模式光路径位于谐振腔边缘,由于光学衍射原理使得光可以从角落出射,但是其品质因子相较于三角形回音壁模式要低很多。另一方面三角形回音壁模式中光的反射区域位于六边形每个边的中心,使得内部循环的光很难出射从而降低了激光器的出光效率。因此这两个问题降低了半导体六边形微米碟激光器的性能。
技术解决方案
有鉴于此,本发明的主要目的在于提供一种半导体六边形微米碟激光器,以解决已有方案受限于六边形回音壁模式低品质因子与三角形回音壁模式难出射的缺点,具有兼顾高品质因子与易出射的优点。
为达到上述目的,本发明提供了一种半导体六边形微米碟激光器,该半导体六边形微米碟激光器输出激光的模式为双三角回音壁模式,其特征在于包括:反射衬底,半导体六边形微米碟,激光器;所述半导体六边形微米碟设置在所述反射衬底上;激光器的出射光垂直于半导体六边形微米碟表面,且照射在半导体六边形微米碟的六个边角之中任意一个边角处;所述半导体六边形微米碟的侧壁均为平面,其中一个侧壁为前腔,其余五个侧壁为后腔;所述后腔表面均设置有分布式布拉格反射层,双三角回音壁光谐振模式的激光从半导体六边形微米碟六个侧壁之中的前腔出射。
更优的方案:所述半导体六边形微米碟与所述反射衬底之间也设置分布式布拉格反射层。
所述半导体六边形微米碟中沿着横截面方向设置若干层量子阱结构。
进一步的,所述的量子阱结构包括:Ga XIn (1-X)N、Al XGa (1-X)N、Ga XIn (1-X)As、Al XGa (1-X)As,其中X∈(0,1)。
有益效果
由于采用上述技术方案,本发明的有益效果为:本发明提出的半导体六边形微米碟激光器和已有的六边形回音壁模式激光器以及三角形回音壁模式激光器方案相比,同时具有高品质因子和易出射的优点;六边形微米叠的五个侧壁构成的后腔与前腔之间组成六边形微米碟激光器的干涉腔,受激辐射的光在干涉腔之内不断的振荡增益,最终受增益的激光光强超过微腔激光器阈值后产生的激光从前腔射出;后腔上分布式布拉格反射层的设置可以有效提升光该面的反射效率使得在前腔出射的激光得到有效的增强,同时做到有效控制出射光。
进一步的在六边形微米碟与衬底之间插入分布式布拉格反射层可以有效防止六边形微米碟中的光向下流失与衬底中,可以有效降低光学损耗,提升激光器的光学特性。
进一步的六边形微米碟中加入量子阱可以有效提升激光器发光效率,并且依据量子阱的性质可以发出任意波段的激光。
附图说明
图1为半导体六边形微米碟激光器前视示意图。
图2为后腔表面均设置分布式布拉格反射层示意图。
图3为氮化镓激光器输出光谱。
图4为双三角回音壁模式仿真光场图。
图5为双三角回音壁模式反射次数与品质因子函数图。
图6a为激励面积与谐振腔面积比为5%仿真光场图。
图6b为激励面积与谐振腔面积比为15%仿真光场图。
图6c为激励面积与谐振腔面积比为20%仿真光场图。
图6d为激励面积与谐振腔面积比为30%仿真光场图。
图7为半导体六边形微米碟与所述反射衬底之间设置分布式布拉格反射层示意图。
图8为所述半导体六边形微米碟中沿着横截面方向设置若干层量子阱结构示意图。
其中,图中:1为反射衬底,2为半导体六边形微米碟,3为激光器;H1~H5分别为第一至第五后腔,Q为前腔;4为分布式布拉格反射层,5为若干层量子阱结构。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
实施例一:一种半导体六边形微米碟激光器,如图1所示,包括:反射衬底1,半导体六边形微米碟2,激光器3;其中:所述半导体六边形微米碟设置在反射衬底上;激光器的出射光垂直于半导体六边形微米碟表面,且照射在半导体六边形微米碟的六个边角之中任意一个边角处;双三角回音壁光谐振模式的激光从半导体六边形微米碟六个侧壁之中一个侧壁水平出射,所述半导体六边形微米碟的侧壁均为平面,如图2所示,侧壁Q为前腔,其余五个侧壁H1~H5是分别为第一至第五后腔;所述第一至第五后腔表面均设置有分布式布拉格反射层4,双三角回音壁光谐振模式的激光从半导体六边形微米碟六个侧壁之中的前腔出射。
本发明所涉及的一种半导体六边形微米碟激光器的具体工作原理如下。
本发明主要是对半导体微米碟的局部进行光激励从而控制激光模式的输出。以往报道的激光激励方式是激光光斑全覆盖微米碟,这种条件下只能激励出六边形回音壁模式和三角形回音壁模式,而本发明所述半导体微米碟具有较大的直径,使得常规激光器泵浦源的光斑只能覆盖微米碟的一部分。由于受激辐射特性具有空间性,即在所激励的工作物质区域内才会发生粒子数反转且只对该区域的光路径进行增强。所以当激励光斑只位于六边形微米碟角落时,只有光路径位于光斑下的光学模式才会发生谐振,且输出的激光为双三角回音壁光谐振模式,这种双三角回音壁模式的光路径位于六边形微米碟角落,所以该光学模式可以得到有效的受激辐射放大。
再通过公式
Figure 162081dest_path_image001
,其中m为反射次数,r为六边形外接圆半径,R为有效反射率,可以得到:在相同有效反射率条件下,双三角回音壁模式的品质因子与三角形回音壁模式近似,而明显比六边形回音壁模式高。如图4展示了双三角回音壁模式下的光场仿真图,白色框内为激励区域,正六边形为半导体谐振腔,其外围为空气,最外围边框为完美匹配层来作为吸收层,六边形内的亮色区域为光强密度高的区域,即光路径。同时双三角回音壁模式的光路径位于六边形微米碟边角处,由于角落的光学衍射效果使得双三角回音壁模式的谐振光更易出射。此外,后腔面上设置了分布式布拉格反射层,其结构为两种折射率相差较大的材料按照规定厚度与顺序依次叠加,从而构成光学高反射层,使得六边形微米碟内谐振光无法在五个后腔面出射,这样就可以控制激光只从前腔面出射,从而增强了出射光强,同时可以避免后续装置应用的部分麻烦。
实施例二:实施例一基础上一种半导体六边形微米碟激光器,所述的反射衬底、半导体六边形微米碟、激光器单依次配置为单晶硅反射衬底、氮化镓六边形微米碟、紫外脉冲激光器,紫外脉冲激光器波长为325 nm,线宽100 fs,频率1kHz,光斑直径为10 μm;氮化镓六边形微米碟直径为25 μm;照射在氮化镓六边形微米碟的六个边角之中任意一个边角处的激励区域为正方形;如图7所示,在六边形微米碟与衬底接触界面插入分布式布拉格反射层4。
在六边形微米碟与衬底接触界面插入分布式布拉格反射层的作用是防止六边形微米碟中的光流失到衬底中,有效降低激光器的光学损耗,从而降低激光器的阈值,提升激光器性能。
激励区域为本领域专用术语,本实施例中紫外脉冲激光器照射在氮化镓六边形微米碟上,激励区域为紫外脉冲激光对氮化镓产生激励作用的区域。
实施例三:实施例一基础上,一种半导体六边形微米碟激光器,如图8所示,在六边形微米碟内部截面方向插入若干层量子阱结构5,所述的量子阱结构包括:Ga XIn (1-X)N、Al XGa (1-X)N、Ga XIn (1-X)As、Al XGa (1-X)As,其中X∈(0,1)。
量子阱结构通常为纳米量级厚度的发光增益材料,其作为有源层可以运用量子限制效应使得量子发光效率大幅度提升。量子限制效应是指微观粒子能量的量子化现象随着其空间运动限制尺寸不断减小而更加明显,由连续的能带变为分立的能级。这种效应可以使得电子与空穴更加快速高效的复合发光,提升发光强度。同时控制构成量子阱的材料可以有效控制六边形微米碟激光器的出射波长,如Ga XIn (1-X)N材料,控制X的值,即控制材料中Ga元素和In元素的组分从而控制能带宽度,进一步可以控制发光波长,其发光波长可覆盖从紫外波段到近红外波段的发光。
通过使用Comsol Multiphysics仿真软件寻求最适宜双三角回音壁模式光出射的条件。构建六边形谐振腔模型,外围设置为空气,边缘区域设置为完美匹配层,在六边形谐振腔角落设置电场激励,激励区域为正方形。
通过改变激励区域正方形的面积,即调整激励面积与六边形面积的比值。可以从光场仿真结果图中观察到光场分布的变化,即六边形谐振腔内部的光学模式发生了变化。
为了验证本发明技术方案的效果,进行了实验验证。实验中紫外脉冲激光器波长为325 nm,线宽100 fs,频率1kHz,光斑直径为10 μm。图2为氮化镓微米碟扫描电镜图,可得实验中氮化镓六边形微米碟直径为25 μm。图3为氮化镓激光器输出光谱,通过公式
Figure 585103dest_path_image002
,其中
Figure 286343dest_path_image003
为微米碟激光器出射波长,图3所示可知
Figure 323569dest_path_image003
为375nm左右,L是光路径循环一周的总长度,可以得到双三角回音壁模式间隔为0.35nm,这与实验结果0.36nm十分接近,证实得到的结果是双三角回音壁模式激光出射。同时通过公式
Figure 602104dest_path_image004
计算品质因子,可得Q值高达3049。图4为双三角回音壁模式仿真光场图,同样证实激光模式为双三角回音壁模式。图5为双三角回音壁模式反射次数与品质因子函数图,其中标注了三种回音壁模式在相同谐振腔内品质因子所对应的数值。可看到双三角回音壁模式(D3-WGM)对应的品质因子相较六边形回音壁模式(6-WGM)要高。图6a至图6d分别为激励面积与谐振腔面积比为5%、15%、20%和30%时仿真光场图依次对应;从仿真结果中得到最适合双三角回音壁模式激光稳定高效输出的激励面积与六边形谐振腔面积的比是20%,这是由于进一步增加面积比时可见图6d双三角回音壁模式逐渐被破坏,所以在保证最大激励面积比和双三角回音壁模式的稳定性时可以得到最优的方案。
在实验中还发现半导体六边形微米碟材料选用GaN、AlN、GaAs、InAs、ZnO、InP、CdS、钙钛矿中的一种或多种组合,使用本解决方案均可实现双三角回音壁光谐振模式激光输出,品质因子均得到较大提高。所列出的材料均具有高折射率的特性,利用其高折射率增益材料的受激辐射物理特性, 通过反射衬底提供底面的光反射来降低微腔激光器垂直方向光学损耗,半导体六边形微米碟作为光学谐振腔与激光增益物质,激光器作为光学泵浦源提供光学增益,当泵浦源功率超过微腔激光器阈值后产生激光出射;通过控制泵浦源激光光斑位于六边形微米碟角落,在受激辐射后产生双三角回音壁光学谐振模式的激光出射。本发明相比较常规六边形和三角形回音壁光谐振模式的激光器同时具有高的品质因子和易于激光出射的优点。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

  1. 一种半导体六边形微米碟激光器,其特征在于包括:反射衬底,半导体六边形微米碟,激光器;所述半导体六边形微米碟设置在所述反射衬底上;激光器的出射光垂直于半导体六边形微米碟表面,且照射在半导体六边形微米碟的六个边角之中任意一个边角处;所述半导体六边形微米碟的侧壁均为平面,其中一个侧壁为前腔,其余五个侧壁为后腔;所述后腔表面均设置有分布式布拉格反射层,双三角回音壁光谐振模式的激光从前腔出射。
  2. 根据权利要求1所述的一种半导体六边形微米碟激光器,其特征在于:所述半导体六边形微米碟与所述反射衬底之间也设置分布式布拉格反射层。
  3. 根据权利要求1所述的一种半导体六边形微米碟激光器,其特征在于:所述半导体六边形微米碟中沿着横截面方向设置若干层量子阱结构。
  4. 根据权利要求3所述的一种半导体六边形微米碟激光器,其特征在于:所述的量子阱结构包括:GaXIn(1-X)N、AlXGa(1-X)N、GaXIn(1-X)As、AlXGa(1-X)As,其中X∈(0,1)。
PCT/CN2020/119181 2020-02-03 2020-09-30 一种半导体六边形微米碟激光器 WO2021155672A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/440,776 US20220181849A1 (en) 2020-02-03 2020-09-30 Laser with hexagonal semiconductor microdisk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010079229.4A CN111162453A (zh) 2020-02-03 2020-02-03 一种半导体六边形微米碟激光器
CN202010079229.4 2020-02-03

Publications (1)

Publication Number Publication Date
WO2021155672A1 true WO2021155672A1 (zh) 2021-08-12

Family

ID=70565203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119181 WO2021155672A1 (zh) 2020-02-03 2020-09-30 一种半导体六边形微米碟激光器

Country Status (3)

Country Link
US (1) US20220181849A1 (zh)
CN (1) CN111162453A (zh)
WO (1) WO2021155672A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162453A (zh) * 2020-02-03 2020-05-15 苏州大学 一种半导体六边形微米碟激光器
DE102022130568A1 (de) * 2022-11-18 2024-05-23 Ams-Osram International Gmbh Laservorrichtung und elektronische vorrichtung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065317A (ja) * 2006-08-10 2008-03-21 National Institute Of Advanced Industrial & Technology 光デバイスの製造方法
CN101325311A (zh) * 2007-06-15 2008-12-17 中国科学院半导体研究所 带输出波导的正方形微腔激光器
CN101867147A (zh) * 2009-04-15 2010-10-20 中国科学院半导体研究所 一种量子级联正多边形微腔激光器及其制作方法
CN102148476A (zh) * 2011-03-08 2011-08-10 东南大学 深度亚波长表面等离子体激元微腔激光器
US8094359B1 (en) * 2008-05-15 2012-01-10 Oewaves, Inc. Electro-optic whispering-gallery-mode resonator devices
CN105591284A (zh) * 2016-01-18 2016-05-18 华中科技大学 光栅辅助的微柱腔面发射激光器
CN106129808A (zh) * 2016-08-05 2016-11-16 太原理工大学 一种钙钛矿纳米结构等离子体激光器
CN111162453A (zh) * 2020-02-03 2020-05-15 苏州大学 一种半导体六边形微米碟激光器
CN211045977U (zh) * 2020-02-03 2020-07-17 苏州大学 一种半导体六边形微米碟激光器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008065317A (ja) * 2006-08-10 2008-03-21 National Institute Of Advanced Industrial & Technology 光デバイスの製造方法
CN101325311A (zh) * 2007-06-15 2008-12-17 中国科学院半导体研究所 带输出波导的正方形微腔激光器
US8094359B1 (en) * 2008-05-15 2012-01-10 Oewaves, Inc. Electro-optic whispering-gallery-mode resonator devices
CN101867147A (zh) * 2009-04-15 2010-10-20 中国科学院半导体研究所 一种量子级联正多边形微腔激光器及其制作方法
CN102148476A (zh) * 2011-03-08 2011-08-10 东南大学 深度亚波长表面等离子体激元微腔激光器
CN105591284A (zh) * 2016-01-18 2016-05-18 华中科技大学 光栅辅助的微柱腔面发射激光器
CN106129808A (zh) * 2016-08-05 2016-11-16 太原理工大学 一种钙钛矿纳米结构等离子体激光器
CN111162453A (zh) * 2020-02-03 2020-05-15 苏州大学 一种半导体六边形微米碟激光器
CN211045977U (zh) * 2020-02-03 2020-07-17 苏州大学 一种半导体六边形微米碟激光器

Also Published As

Publication number Publication date
CN111162453A (zh) 2020-05-15
US20220181849A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
JP5118544B2 (ja) 面発光レーザ素子
Gourley et al. Optical properties of two‐dimensional photonic lattices fabricated as honeycomb nanostructures in compound semiconductors
Hayamizu et al. Lasing from a single-quantum wire
CN107959224B (zh) 一种基于金属腔的表面等离激元激光器
WO2021155672A1 (zh) 一种半导体六边形微米碟激光器
US6239901B1 (en) Light source utilizing a light emitting device constructed on the surface of a substrate and light conversion device that includes a portion of the substrate
US9239427B1 (en) Methods and apparatus for photonic integration in non-polar and semi-polar oriented wave-guided optical devices
Alvarez Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites
JP4829119B2 (ja) 側方に取り付けられたエッジ発光体を有するモノリシック光学的ポンピングvcsel
CN108233180B (zh) 一种AlGaInP结构的808nm半导体激光器结构
KR101168283B1 (ko) 고출력 수직외부공진형 표면발광 레이저
WO2021098391A1 (zh) 双三角回音壁光谐振模式的半导体六边形微米碟激光器
CN211045977U (zh) 一种半导体六边形微米碟激光器
CN1797877A (zh) 半导体激光装置和使用该半导体激光装置的光拾波装置
CN210897977U (zh) 双三角回音壁光谐振模式的半导体六边形微米碟激光器
US7965752B1 (en) Native green laser semiconductor devices
CN1972043A (zh) 光子晶体激光器与光子晶体波导耦合输出方法及输出器
CN1681176A (zh) 带有锥形增益区的脊型波导高功率半导体激光器结构
Lu et al. Broad-area laser diodes with on-chip combined angled cavity
CN113794104A (zh) 光子晶体激光器
Leong et al. Edge-emitting vertically aligned ZnO nanorods random laser on plastic substrate
Shveikin et al. New diode lasers with leaking emission in an optical cavity
CN111525392B (zh) 一种基于微纳结构半导体薄膜的增益装置及激光器
RU2606925C1 (ru) Активный элемент полупроводникового лазера с поперечной накачкой электронным пучком
Navarro-Arenas et al. Role of Self-Absorption in the Photoluminescence Waveguided along CsPbBr 3 Perovskite Nanocrystals Thin Films

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917615

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917615

Country of ref document: EP

Kind code of ref document: A1