CN111162453A - 一种半导体六边形微米碟激光器 - Google Patents

一种半导体六边形微米碟激光器 Download PDF

Info

Publication number
CN111162453A
CN111162453A CN202010079229.4A CN202010079229A CN111162453A CN 111162453 A CN111162453 A CN 111162453A CN 202010079229 A CN202010079229 A CN 202010079229A CN 111162453 A CN111162453 A CN 111162453A
Authority
CN
China
Prior art keywords
laser
hexagonal
semiconductor
micro
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010079229.4A
Other languages
English (en)
Inventor
曹冰
何耿
王钦华
熊先杰
袁志豪
周浩
罗安林
陈王义博
徐立跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN202010079229.4A priority Critical patent/CN111162453A/zh
Publication of CN111162453A publication Critical patent/CN111162453A/zh
Priority to PCT/CN2020/119181 priority patent/WO2021155672A1/zh
Priority to US17/440,776 priority patent/US20220181849A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1071Ring-lasers
    • H01S5/1075Disk lasers with special modes, e.g. whispering gallery lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1042Optical microcavities, e.g. cavity dimensions comparable to the wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2004Confining in the direction perpendicular to the layer structure
    • H01S5/2018Optical confinement, e.g. absorbing-, reflecting- or waveguide-layers
    • H01S5/2027Reflecting region or layer, parallel to the active layer, e.g. to modify propagation of the mode in the laser or to influence transverse modes

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

本发明属于半导体微腔激光器领域,为解决六边形回音壁模式品质因子低与三角形回音壁模式出射难的问题:公开了一种半导体六边形微米碟激光器,该装置利用高折射率增益材料的受激辐射物理特性,通过分布式布拉格反射层来降低微腔激光器光学损耗,半导体六边形微米碟作为光学谐振腔与激光增益物质,激光器作为光学泵浦源提供光学增益,当增益超过微腔激光器阈值后产生激光出射;通过控制泵浦源激光光斑位于六边形微米碟角落,在受激辐射后产生双三角回音壁光学谐振模式的激光出射。本发明相比较常规六边形和三角形回音壁光谐振模式的激光器同时具有高的品质因子和易于激光出射的优点。

Description

一种半导体六边形微米碟激光器
技术领域
本发明涉及半导体微腔激光器领域,具体涉及一种半导体六边形微米碟激光器。
背景技术
半导体材料在微纳发光器件与光电集成领域具有广阔的应用价值从而受到了科学家们的广泛关注。特别对于具有高折射率,直接带隙的半导体,如GaN,ZnO,GaAs,InP,钙钛矿等,可以直接作为增益物质与谐振腔来制作微腔激光器。此外,GaInN,AlGaN,GaInAs等化合物制作的探测器与发光器件还可以覆盖紫外,可见光,以及近红外的宽波段。回音壁模式(Whispering-gallery Mode)微腔激光器由于使用光在介质表面全反射形成周期性谐振的原理,相较于法布里-珀罗模式(Fabry–Pérot Mode)具有体积小,品质因子高,阈值低,易集成等优点而被广泛研究。基于半导体材料的回音壁模式微腔激光器,可用于光通信,光存储,化学生物探测等领域。
目前报道的半导体回音壁模式微腔激光器方面的研究主要使用微米碟结构,其中六边形微米碟被广泛研究,这是由于多数宽禁带,直接带隙的半导体多为纤锌矿结构,导致外延生长获得的微米碟为六棱柱的几何形态。同时在六边形谐振腔光学模式研究中,报道的多为六边形和三角形回音壁模式,例如:六边形回音壁模式方案(参见[Rui Chen and BoLing,”Room Temperature Excitonic Whispering Gallery Mode Lasing from High-Quality Hexagonal ZnO Microdisks”,Advanced Materials,vol.23,no.19.pp.2199+,2011])以及三角形回音壁模式方案(参见[Kouno T,”Lasing Action on WhisperingGallery Mode of Self-Organized GaN Hexagonal Microdisk Crystal Fabricated byRF-Plasma-Assisted Molecular Beam Epitaxy”,Ieee Journal of QuantumElectronics,vol.47,no.12,pp.1565-1570,2011])。通过Wiersig,J.(参见[“Hexagonaldielectric resonators and microcrystal lasers”,Physical Review A,vol.67,no.2,pp.12,2003])的理论研究显示六边形回音壁模式光路径位于谐振腔边缘,由于光学衍射原理使得光可以从角落出射,但是其品质因子相较于三角形回音壁模式要低很多。另一方面三角形回音壁模式中光的反射区域位于六边形每个边的中心,使得内部循环的光很难出射从而降低了激光器的出光效率。因此这两个问题降低了半导体六边形微米碟激光器的性能。
发明内容
有鉴于此,本发明的主要目的在于提供一种半导体六边形微米碟激光器,以解决已有方案受限于六边形回音壁模式低品质因子与三角形回音壁模式难出射的缺点,具有兼顾高品质因子与易出射的优点。
为达到上述目的,本发明提供了一种半导体六边形微米碟激光器,该半导体六边形微米碟激光器输出激光的模式为双三角回音壁模式,其特征在于包括:反射衬底,半导体六边形微米碟,激光器;所述半导体六边形微米碟设置在所述反射衬底上;激光器的出射光垂直于半导体六边形微米碟表面,且照射在半导体六边形微米碟的六个边角之中任意一个边角处;所述半导体六边形微米碟的侧壁均为平面,其中一个侧壁为前腔,其余五个侧壁为后腔;所述后腔表面均设置有分布式布拉格反射层,双三角回音壁光谐振模式的激光从半导体六边形微米碟六个侧壁之中的前腔出射。
更优的方案:所述半导体六边形微米碟与所述反射衬底之间也设置分布式布拉格反射层。
所述半导体六边形微米碟中沿着横截面方向设置若干层量子阱结构。
进一步的,所述的量子阱结构包括:GaXIn(1-X)N、AlXGa(1-X)N、GaXIn(1-X)As、AlXGa(1-X)As,其中X∈(0,1)。
由于采用上述技术方案,本发明的有益效果为:本发明提出的半导体六边形微米碟激光器和已有的六边形回音壁模式激光器以及三角形回音壁模式激光器方案相比,同时具有高品质因子和易出射的优点;六边形微米叠的五个侧壁构成的后腔与前腔之间组成六边形微米碟激光器的干涉腔,受激辐射的光在干涉腔之内不断的振荡增益,最终受增益的激光光强超过微腔激光器阈值后产生的激光从前腔射出;后腔上分布式布拉格反射层的设置可以有效提升光该面的反射效率使得在前腔出射的激光得到有效的增强,同时做到有效控制出射光。
进一步的在六边形微米碟与衬底之间插入分布式布拉格反射层可以有效防止六边形微米碟中的光向下流失与衬底中,可以有效降低光学损耗,提升激光器的光学特性。
进一步的六边形微米碟中加入量子阱可以有效提升激光器发光效率,并且依据量子阱的性质可以发出任意波段的激光。
附图说明
图1为半导体六边形微米碟激光器前视示意图;
图2为后腔表面均设置分布式布拉格反射层示意图;
图3为氮化镓激光器输出光谱;
图4为双三角回音壁模式仿真光场图;
图5为双三角回音壁模式反射次数与品质因子函数图;
图6a为激励面积与谐振腔面积比为5%仿真光场图;
图6b为激励面积与谐振腔面积比为15%仿真光场图;
图6c为激励面积与谐振腔面积比为20%仿真光场图;
图6d为激励面积与谐振腔面积比为30%仿真光场图;
图7为半导体六边形微米碟与所述反射衬底之间设置分布式布拉格反射层示意图;
图8为所述半导体六边形微米碟中沿着横截面方向设置若干层量子阱结构示意图;
其中,图中:1为反射衬底,2为半导体六边形微米碟,3为激光器;H1~H5分别为第一至第五后腔,Q为前腔;4为分布式布拉格反射层,5为若干层量子阱结构。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
实施例一
一种半导体六边形微米碟激光器,如图1所示,包括:反射衬底1,半导体六边形微米碟2,激光器3;其中:所述半导体六边形微米碟设置在反射衬底上;激光器的出射光垂直于半导体六边形微米碟表面,且照射在半导体六边形微米碟的六个边角之中任意一个边角处;双三角回音壁光谐振模式的激光从半导体六边形微米碟六个侧壁之中一个侧壁水平出射,所述半导体六边形微米碟的侧壁均为平面,如图2所示,侧壁Q为前腔,其余五个侧壁H1~H5是分别为第一至第五后腔;所述第一至第五后腔表面均设置有分布式布拉格反射层4,双三角回音壁光谐振模式的激光从半导体六边形微米碟六个侧壁之中的前腔出射。
本发明所涉及的一种半导体六边形微米碟激光器的具体工作原理如下:
本发明主要是对半导体微米碟的局部进行光激励从而控制激光模式的输出。以往报道的激光激励方式是激光光斑全覆盖微米碟,这种条件下只能激励出六边形回音壁模式和三角形回音壁模式,而本发明所述半导体微米碟具有较大的直径,使得常规激光器泵浦源的光斑只能覆盖微米碟的一部分。由于受激辐射特性具有空间性,即在所激励的工作物质区域内才会发生粒子数反转且只对该区域的光路径进行增强。所以当激励光斑只位于六边形微米碟角落时,只有光路径位于光斑下的光学模式才会发生谐振,且输出的激光为双三角回音壁光谐振模式,这种双三角回音壁模式的光路径位于六边形微米碟角落,所以该光学模式可以得到有效的受激辐射放大。
再通过公式
Figure BDA0002379684810000041
其中m为反射次数,r为六边形外接圆半径,R为有效反射率,可以得到:在相同有效反射率条件下,双三角回音壁模式的品质因子与三角形回音壁模式近似,而明显比六边形回音壁模式高。如图4展示了双三角回音壁模式下的光场仿真图,白色框内为激励区域,正六边形为半导体谐振腔,其外围为空气,最外围边框为完美匹配层来作为吸收层,六边形内的亮色区域为光强密度高的区域,即光路径。同时双三角回音壁模式的光路径位于六边形微米碟边角处,由于角落的光学衍射效果使得双三角回音壁模式的谐振光更易出射。此外,后腔面上设置了分布式布拉格反射层,其结构为两种折射率相差较大的材料按照规定厚度与顺序依次叠加,从而构成光学高反射层,使得六边形微米碟内谐振光无法在五个后腔面出射,这样就可以控制激光只从前腔面出射,从而增强了出射光强,同时可以避免后续装置应用的部分麻烦。
实施例二
实施例一基础上一种半导体六边形微米碟激光器,所述的反射衬底、半导体六边形微米碟、激光器单依次配置为单晶硅反射衬底、氮化镓六边形微米碟、紫外脉冲激光器,紫外脉冲激光器波长为325nm,线宽100fs,频率1kHz,光斑直径为10μm;氮化镓六边形微米碟直径为25μm;照射在氮化镓六边形微米碟的六个边角之中任意一个边角处的激励区域为正方形;如图7所示,在六边形微米碟与衬底接触界面插入分布式布拉格反射层4。
在六边形微米碟与衬底接触界面插入分布式布拉格反射层的作用是防止六边形微米碟中的光流失到衬底中,有效降低激光器的光学损耗,从而降低激光器的阈值,提升激光器性能。
激励区域为本领域专用术语,本实施例中紫外脉冲激光器照射在氮化镓六边形微米碟上,激励区域为紫外脉冲激光对氮化镓产生激励作用的区域。
实施例三
实施例一基础上,一种半导体六边形微米碟激光器,如图8所示,在六边形微米碟内部截面方向插入若干层量子阱结构5,所述的量子阱结构包括:GaXIn(1-X)N、AlXGa(1-X)N、GaXIn(1-X)As、AlXGa(1-X)As,其中X∈(0,1)。
量子阱结构通常为纳米量级厚度的发光增益材料,其作为有源层可以运用量子限制效应使得量子发光效率大幅度提升。量子限制效应是指微观粒子能量的量子化现象随着其空间运动限制尺寸不断减小而更加明显,由连续的能带变为分立的能级。这种效应可以使得电子与空穴更加快速高效的复合发光,提升发光强度。同时控制构成量子阱的材料可以有效控制六边形微米碟激光器的出射波长,如GaXIn(1-X)N材料,控制X的值,即控制材料中Ga元素和In元素的组分从而控制能带宽度,进一步可以控制发光波长,其发光波长可覆盖从紫外波段到近红外波段的发光。
通过使用Comsol Multiphysics仿真软件寻求最适宜双三角回音壁模式光出射的条件。构建六边形谐振腔模型,外围设置为空气,边缘区域设置为完美匹配层,在六边形谐振腔角落设置电场激励,激励区域为正方形。
通过改变激励区域正方形的面积,即调整激励面积与六边形面积的比值。可以从光场仿真结果图中观察到光场分布的变化,即六边形谐振腔内部的光学模式发生了变化。
为了验证本发明技术方案的效果,进行了实验验证。实验中紫外脉冲激光器波长为325nm,线宽100fs,频率1kHz,光斑直径为10μm。图2为氮化镓微米碟扫描电镜图,可得实验中氮化镓六边形微米碟直径为25μm。图3为氮化镓激光器输出光谱,通过公式Δλ=λ2/[L(n-λdn/dλ)],其中λ为微米碟激光器出射波长,图3所示可知λ为375nm左右,L是光路径循环一周的总长度,可以得到双三角回音壁模式间隔为0.35nm,这与实验结果0.36nm十分接近,证实得到的结果是双三角回音壁模式激光出射。同时通过公式Q=λ/Δλ计算品质因子,可得Q值高达3049。图4为双三角回音壁模式仿真光场图,同样证实激光模式为双三角回音壁模式。图5为双三角回音壁模式反射次数与品质因子函数图,其中标注了三种回音壁模式在相同谐振腔内品质因子所对应的数值。可看到双三角回音壁模式(D3-WGM)对应的品质因子相较六边形回音壁模式(6-WGM)要高。图6a至图6d分别为激励面积与谐振腔面积比为5%、15%、20%和30%时仿真光场图依次对应;从仿真结果中得到最适合双三角回音壁模式激光稳定高效输出的激励面积与六边形谐振腔面积的比是20%,这是由于进一步增加面积比时可见图6d双三角回音壁模式逐渐被破坏,所以在保证最大激励面积比和双三角回音壁模式的稳定性时可以得到最优的方案。
在实验中还发现半导体六边形微米碟材料选用GaN、AlN、GaAs、InAs、ZnO、InP、CdS、钙钛矿中的一种或多种组合,使用本解决方案均可实现双三角回音壁光谐振模式激光输出,品质因子均得到较大提高。所列出的材料均具有高折射率的特性,利用其高折射率增益材料的受激辐射物理特性,通过反射衬底提供底面的光反射来降低微腔激光器垂直方向光学损耗,半导体六边形微米碟作为光学谐振腔与激光增益物质,激光器作为光学泵浦源提供光学增益,当泵浦源功率超过微腔激光器阈值后产生激光出射;通过控制泵浦源激光光斑位于六边形微米碟角落,在受激辐射后产生双三角回音壁光学谐振模式的激光出射。本发明相比较常规六边形和三角形回音壁光谐振模式的激光器同时具有高的品质因子和易于激光出射的优点。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种半导体六边形微米碟激光器,其特征在于包括:反射衬底,半导体六边形微米碟,激光器;所述半导体六边形微米碟设置在所述反射衬底上;激光器的出射光垂直于半导体六边形微米碟表面,且照射在半导体六边形微米碟的六个边角之中任意一个边角处;所述半导体六边形微米碟的侧壁均为平面,其中一个侧壁为前腔,其余五个侧壁为后腔;所述后腔表面均设置有分布式布拉格反射层,双三角回音壁光谐振模式的激光从前腔出射。
2.根据权利要求1所述的一种半导体六边形微米碟激光器,其特征在于:所述半导体六边形微米碟与所述反射衬底之间也设置分布式布拉格反射层。
3.根据权利要求1所述的一种半导体六边形微米碟激光器,其特征在于:所述半导体六边形微米碟中沿着横截面方向设置若干层量子阱结构。
4.根据权利要求3所述的一种半导体六边形微米碟激光器,其特征在于:所述的量子阱结构包括:GaXIn(1-X)N、AlXGa(1-X)N、GaXIn(1-X)As、AlXGa(1-X)As,其中X∈(0,1)。
CN202010079229.4A 2020-02-03 2020-02-03 一种半导体六边形微米碟激光器 Pending CN111162453A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202010079229.4A CN111162453A (zh) 2020-02-03 2020-02-03 一种半导体六边形微米碟激光器
PCT/CN2020/119181 WO2021155672A1 (zh) 2020-02-03 2020-09-30 一种半导体六边形微米碟激光器
US17/440,776 US20220181849A1 (en) 2020-02-03 2020-09-30 Laser with hexagonal semiconductor microdisk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010079229.4A CN111162453A (zh) 2020-02-03 2020-02-03 一种半导体六边形微米碟激光器

Publications (1)

Publication Number Publication Date
CN111162453A true CN111162453A (zh) 2020-05-15

Family

ID=70565203

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010079229.4A Pending CN111162453A (zh) 2020-02-03 2020-02-03 一种半导体六边形微米碟激光器

Country Status (3)

Country Link
US (1) US20220181849A1 (zh)
CN (1) CN111162453A (zh)
WO (1) WO2021155672A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021155672A1 (zh) * 2020-02-03 2021-08-12 苏州大学 一种半导体六边形微米碟激光器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022130568A1 (de) * 2022-11-18 2024-05-23 Ams-Osram International Gmbh Laservorrichtung und elektronische vorrichtung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577661B1 (en) * 2002-02-18 2003-06-10 Arima Optoelectronics Corp. Semiconductor laser with lateral light confinement by polygonal surface optical grating resonator
JP4915945B2 (ja) * 2006-08-10 2012-04-11 独立行政法人産業技術総合研究所 光デバイスの製造方法
CN101325311B (zh) * 2007-06-15 2010-06-02 中国科学院半导体研究所 带输出波导的正方形微腔激光器
US8094359B1 (en) * 2008-05-15 2012-01-10 Oewaves, Inc. Electro-optic whispering-gallery-mode resonator devices
CN101867147B (zh) * 2009-04-15 2011-12-07 中国科学院半导体研究所 一种量子级联正多边形微腔激光器及其制作方法
US9093818B2 (en) * 2010-07-15 2015-07-28 The Regents Of The University Of California Nanopillar optical resonator
CN102148476B (zh) * 2011-03-08 2012-06-27 东南大学 深度亚波长表面等离子体激元微腔激光器
GB2526063B (en) * 2014-04-28 2016-10-26 Solus Tech Ltd Optical amplifier
CN105591284B (zh) * 2016-01-18 2019-05-21 华中科技大学 光栅辅助的微柱腔面发射激光器
CN106129808B (zh) * 2016-08-05 2019-01-29 太原理工大学 一种钙钛矿纳米结构等离子体激光器
CN211045977U (zh) * 2020-02-03 2020-07-17 苏州大学 一种半导体六边形微米碟激光器
CN111162453A (zh) * 2020-02-03 2020-05-15 苏州大学 一种半导体六边形微米碟激光器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021155672A1 (zh) * 2020-02-03 2021-08-12 苏州大学 一种半导体六边形微米碟激光器

Also Published As

Publication number Publication date
US20220181849A1 (en) 2022-06-09
WO2021155672A1 (zh) 2021-08-12

Similar Documents

Publication Publication Date Title
Hayamizu et al. Lasing from a single-quantum wire
JP5118544B2 (ja) 面発光レーザ素子
US8213473B2 (en) Laser based on quantum dot activated media
US9124062B2 (en) Optically pumped surface emitting lasers incorporating high reflectivity/bandwidth limited reflector
US20050040410A1 (en) Tilted cavity semiconductor optoelectronic device and method of making same
CN107959224B (zh) 一种基于金属腔的表面等离激元激光器
CN111162453A (zh) 一种半导体六边形微米碟激光器
JP2013229580A (ja) 第3の反射器を組み込んだ面発光レーザ
Alvarez Active photonic devices based on colloidal semiconductor nanocrystals and organometallic halide perovskites
JPH04229683A (ja) 能動鏡を有する出力レーザ
RU2391756C2 (ru) Диодный лазер, интегральный диодный лазер и интегральный полупроводниковый оптический усилитель
CN211045977U (zh) 一种半导体六边形微米碟激光器
KR101168283B1 (ko) 고출력 수직외부공진형 표면발광 레이저
JP2005079582A (ja) 半導体チップを備えた半導体レーザ
CN110829181A (zh) 双三角回音壁光谐振模式的半导体六边形微米碟激光器
CN112563882A (zh) 一种基于氮化铝纳米线的激光器
CN210897977U (zh) 双三角回音壁光谐振模式的半导体六边形微米碟激光器
CN116169560A (zh) 一种氮化镓基光子晶体面发射激光器及制备方法
Kim et al. Enhancement of pumping efficiency in a vertical-external-cavity surface-emitting laser
CN213367030U (zh) 一种光泵浦半导体激光器芯片
US7756175B2 (en) Pumped semiconductor laser systems and methods
EP3435499B1 (en) Method for making a semiconductor laser diode, and laser diode
CN112271549A (zh) 一种光泵浦半导体激光器芯片
CN1681176A (zh) 带有锥形增益区的脊型波导高功率半导体激光器结构
Suárez et al. GENERATION OF AMPLIFIED SPONTANEOUS EMISSION IN LEAD HALIDE PEROVSKITE SEMICONDUCTORS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination