CN115548835A - 基于单个回音壁模式光学微腔双波长激光的可调谐微波源 - Google Patents

基于单个回音壁模式光学微腔双波长激光的可调谐微波源 Download PDF

Info

Publication number
CN115548835A
CN115548835A CN202210991189.XA CN202210991189A CN115548835A CN 115548835 A CN115548835 A CN 115548835A CN 202210991189 A CN202210991189 A CN 202210991189A CN 115548835 A CN115548835 A CN 115548835A
Authority
CN
China
Prior art keywords
dual
whispering gallery
microcavity
optical
wavelength laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210991189.XA
Other languages
English (en)
Inventor
程亚
林锦添
高仁宏
管江林
付博涛
黎春桃
汪旻
李明慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CN202210991189.XA priority Critical patent/CN115548835A/zh
Publication of CN115548835A publication Critical patent/CN115548835A/zh
Priority to US18/107,524 priority patent/US20230187894A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/02Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range solid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094096Multi-wavelength pumping
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • H01S3/0809Two-wavelenghth emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/083Ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1042Optical microcavities, e.g. cavity dimensions comparable to the wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1092Multi-wavelength lasing
    • H01S5/1096Multi-wavelength lasing in a single cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种基于单个回音壁模式光学微腔双波长激光的可调谐微波源,包括:基于单个回音壁模式光学微腔的双波长激光器,用于产生间距可调、线宽窄以及阈值低的双波长激射;光纤或光波导放大器,用于放大光信号;光滤波器,用于滤去其它光信号及噪声;高速探测器,用于产生带宽窄、可调谐的微波信号;其中,所述基于单个回音壁模式光学微腔的双波长激光器包括:泵浦光源、光波导或锥形光纤、衬底、单个回音壁模式光学微腔和金电极对;通过调节金电极对的外加电压大小实现间距可调的双波长激射。本发明提供了一种间距可调的双波长激光器实现方案,结构简单,基于该激光器拍频后可获得可调谐的微波源。

Description

基于单个回音壁模式光学微腔双波长激光的可调谐微波源
技术领域
本发明涉及光通信、半导体光电子学、集成光子学和微波光子学领域,主要涉及一种基于单个回音壁模式光学微腔双波长激光的可调谐微波源,更具体的是本发明提出了结构简单、尺寸小、间距可调的基于单个回音壁模式光学微腔的双波长激光器,以及基于此的可调谐微波源产生系统。
背景技术
以回音壁模式微腔激光器为代表的光学微腔激光器是利用光在光滑侧壁上的连续全内反射来实现对光场的强束缚,具有模式品质因子很高、模式体积很小、泵浦功率低、易于集成的优点。但回音壁模式很密集,存在模式竞争,难以在获得高效增益的前提下实现单模激射或稳定的双波长乃至多波长输出。借助双波长光信号的拍频获取低噪声、高强度、可调谐的微波信号,通常需要利用独立的两个激光器进行拍频。与独立的两个激光器相比,在单个回音壁模式光学微腔实现稳定的双波长激光输出,其产生于同一个微腔内,通过拍频可获得稳定性好、线宽很窄的微波信号,而且受外界环境影响较小,结构简单,制作工艺简单,尺寸小,成本低,易于集成,稳定性高。双波长的频率间距由微腔模式间距决定,可以从几GHz覆盖到几百GHz,拍频后产生的微波信号范围宽。但利用单个回音壁模式光学微腔实现稳定的双波长激光器,进而拍频产生可调谐微波源面临一个问题:如何实现稳定、间距可调谐的窄线宽双波长激光器。
发明内容
本发明的目的是提出一种基于单个回音壁模式光学微腔双波长激光的可调谐微波源,克服现有的片上双波长微激光器制备的挑战,提供一种基于单个回音壁模式光学微腔双波长激光的可调谐微波源。与独立的双激光系统相比,该双波长激光器只需要一个回音壁模式光学微腔,具有制备工艺简单、尺寸小、品质因子高、泵浦阈值低、易于集成的特点,拍频所产生的微波源具有信号范围宽、带宽窄、可调谐和频率稳定的优点。
实现本发明目的的具体技术方案是:
一种基于单个回音壁模式光学微腔双波长激光的可调谐微波源,包括:
基于单个回音壁模式光学微腔的双波长激光器,用于产生间距可调、线宽窄以及阈值低的双波长激射;
光纤或光波导放大器,其输入端与所述双波长激光器输出端相连,用于将光信号放大;
光滤波器,其输入端与光纤或光波导放大器输出端相连,用于滤去其它光信号及噪声;
高速探测器,其输入端与光滤波器输出端相连,用于产生带宽窄、可调谐的微波信号,其特点是:所述的基于单个回音壁模式光学微腔的双波长激光器包括:
泵浦光源;
单个回音壁模式光学微腔;
光波导或锥形光纤,与单个回音壁模式光学微腔直接相连或者通过消逝波侧向耦合或垂直耦合,用于输入泵浦光,并输出激光,同时引入模式微扰,引起几何特征接近的准简并回音壁模式相干重组,分别在泵浦光和激射光光波段产生空间分布特征相似的准简并多边形模式,准简并多边形模式包含一个多边形模式组成的局域化周期轨道和至少一个多边形模式组成的多重局域化周期轨道;
衬底;
金电极对。
所述衬底的材料是掺杂稀土离子或量子点的铌酸锂、硅、二氧化硅、氮化硅、碳化硅、IV族半导体材料及其化合物、III-V族化合物、II-VI族化合物、IV-VI族化合物、有机半导体材料或蓝宝石。
所述单个回音壁模式光学微腔的增益介质是稀土离子或量子点;所述单个回音壁模式光学微腔的构型是微盘腔、变形腔、环形微腔或跑道形微腔。
所述准简并多边形模式具有以下特征:本征频率具有几GHz到THz量级的差异值,径向量子数和角量子数的差异值固定,且具体差异值由本征频率和对应的量子数确定,从而使得模式的模场几何分布接近。
所述空间分布特征相似的准简并多边形模式远离微腔边缘,遭遇小的表面散射损耗,具有106以上的品质因子,从而获得窄线宽激光。
所述空间分布特征相似的准简并多边形模式的多边形形状通过改变单个回音壁模式光学微腔的直径、光波导或锥形光纤与单个回音壁模式光学微腔的耦合距离以及泵浦光波长来选择性激发,获得不同的双波长激光的频率间距,从而控制双波长工作范围。
所述激射光光波段产生空间分布特征相似的准简并多边形模式存在小的空间分布差异,借助电光、热光或等离子体色散物理效应改变局部的折射率,从而获得双波长间距的调谐。
本发明的单个回音壁模式光学微腔内,泵浦光和激射光光波段产生的空间分布特征相似的准简并多边形模式远离微腔边缘,遭遇小的表面散射损耗,具有106以上的品质因子,从而获得窄线宽激光;激射光光波段产生的准简并多边形模式的频率间隔小,空间分布特征相似,可获得相近的高光学增益,易于实现稳定的双波长乃至多波长激射。而且,激射光光波段产生空间分布特征相似的准简并多边形模式存在小的空间分布差异,借助电光、热光或等离子体色散物理效应改变局部的折射率,从而获得双波长间距的调谐。
本发明的有益效果是,利用光波导或锥形光纤与单个回音壁模式光学微腔耦合,引入模式微扰,引起几何特征接近的准简并回音壁模式相干重组,分别在泵浦光和激射光光波段产生空间分布特征相似的准简并多边形模式,获得双波长激光;产生的光信号经放大、滤波后,再通过高速探测器产生可调谐的微波信号,为可调谐光频梳、可调谐微波信号源提供了结构更简单、尺寸更小的解决方案。
附图说明
图1是本发明基于单个回音壁模式光学微腔双波长激光的可调谐微波源的系统示意图;
图2是本发明实施例中在泵浦光和激射光光波段产生的空间分布特征相似的准简并多边形模式的模场分布图;
图3是本发明实施例中双波长激光器的输出功率随泵浦功率的演化曲线图;
图4是本发明实施例中双波长激光器的光谱图,插图为其精细光谱图;
图5是本发明实施例中双波长激光经光放大、滤波和高速探测器后产生的微波频谱图;
图6是本发明实施例中可调谐微波随外加电压(电光效应)的调谐图。
具体实施方式
以下结合附图及实施例,对本发明做进一步详细描述。
参阅图1,本发明提供的一种基于单个回音壁模式光学微腔双波长激光的可调谐微波源,包括:基于单个回音壁模式光学微腔的双波长激光器1,用于产生间距可调、线宽窄以及阈值低的双波长激射;光纤或光波导放大器2,用于将光信号放大;光滤波器3,用于滤去其它光信号及噪声;高速探测器4,用于产生带宽窄、可调谐的微波信号5。基于单个回音壁模式光学微腔的双波长激光器1的输出光分别经过光纤或光波导放大器2和光滤波器3进行光信号放大、滤波后,再经过高速探测器4产生可调谐的微波信号5,通过调节金电极对16的外加电压大小实现间距可调的双波长激射。
实施例
以下对本实施例基于单个回音壁模式光学微腔双波长激光的可调谐微波源的各部分进行详细说明。
基于单个回音壁模式光学微腔双波长激光器如图1所示,包括:泵浦光源11,其激光波长为970 nm;锥形光纤12,其束腰尺寸为2μm;衬底14是铌酸锂晶体;单个回音壁模式光学微腔15的构型是微盘腔,其直径为106 μm,厚度为700 nm;单个回音壁模式光学微腔15与衬底14之间有一个厚度2μm、直径为10 μm的圆形二氧化硅支柱;金电极对16的间隔为60 μm,用于施加外电场,从而调谐双波长频率间隔。
单个回音壁模式光学微腔15是采用飞秒激光光刻辅助化学机械抛光制备工艺在z切向的掺铒铌酸锂薄膜上制备出来的,掺铒铌酸锂薄膜中铒离子的掺杂浓度为0.1 mol%;锥形光纤12是采用热拉法将标准的单模光纤拉成中间束腰为2μm、模场绝热过度的微纳光纤。
锥形光纤12与单个回音壁模式光学微腔15耦合,用于引入模式微扰,引起几何特征接近的准简并回音壁模式相干重组,分别在泵浦光和激射光光波段产生空间分布特征相似的准简并多边形模式13。参阅图2,其中,图a是在泵浦光光波段产生的多重局域化(multi-localized)八边形模式132的模场分布图;图b和图c是在激射光光波段产生的空间分布特征相似、本征频率接近的局域化八边形模式(也称局域化周期性轨道,localizedperiodic orbit)131和多重局域化(multi-localized)八边形模式132的模场分布图,这两个模式的空间模场相干叠加为准简并八边形模式。在泵浦光源11的光驱动下,当泵浦功率超过泵浦阈值功率时,这两个模式形成了波长很接近的双波长激光。通过在金电极对16上施加外电压,引起不均匀的折射率分布,影响这两个模场分布相近但不尽一致的模式波长间距,从而可通过调节外加电压大小实现间距可调的双波长激射。
图3是本发明实施例中双波长激光器的输出功率随泵浦功率的演化曲线,泵浦阈值功率仅为80 μW,当泵浦功率高于泵浦阈值功率时,双波长激光器的输出功率随泵浦功率线性增加,该曲线表明器件实现了室温连续光泵浦下的激射。
图4是本发明实施例中双波长激光器的光谱图,插图为其精细光谱图,双波长间隔9.9 pm,拍频之后会产生GHz量级的微波信号。
图5是本发明实施例中双波长激光器经放大、滤波和高速探测器产生的微波频谱图,微波信号频率在1.2309 GHz附近。
图6是本发明实施例中可调谐微波随外加电压(利用铌酸锂的电光效应)的调谐图,调谐效率为-166 MHz/V。结果验证了图1所示的基于单个回音壁模式光学微腔双波长激光的可调谐微波源的可行性。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于单个回音壁模式光学微腔双波长激光的可调谐微波源,包括:
基于单个回音壁模式光学微腔的双波长激光器(1),用于产生间距可调、线宽窄以及阈值低的双波长激射;光纤或光波导放大器(2),其输入端与所述双波长激光器(1)输出端相连,用于将光信号放大;光滤波器(3),其输入端与光纤或光波导放大器(2)输出端相连,用于滤去其它光信号及噪声;高速探测器(4),其输入端与光滤波器(3)输出端相连,用于产生带宽窄、可调谐的微波信号(5),其特征在于,所述的基于单个回音壁模式光学微腔的双波长激光器(1)包括:泵浦光源(11);单个回音壁模式光学微腔(15);光波导或锥形光纤(12),与单个回音壁模式光学微腔(15)直接相连或者通过消逝波侧向耦合或垂直耦合,用于输入泵浦光,并输出激光,同时引入模式微扰,引起几何特征接近的准简并回音壁模式相干重组,分别在泵浦光和激射光光波段产生空间分布特征相似的准简并多边形模式(13),准简并多边形模式(13)包含一个多边形模式组成的局域化周期轨道(131)和至少一个多边形模式组成的多重局域化周期轨道(132);衬底(14);金电极对(16)。
2.根据权利要求1所述的基于单个回音壁模式光学微腔双波长激光的可调谐微波源,其特征在于,所述衬底(14)的材料是掺杂稀土离子或量子点的铌酸锂、硅、二氧化硅、氮化硅、碳化硅、IV族半导体材料及其化合物、III-V族化合物、II-VI族化合物、IV-VI族化合物、有机半导体材料或蓝宝石。
3.根据权利要求1所述的基于单个回音壁模式光学微腔双波长激光的可调谐微波源,其特征在于,所述单个回音壁模式光学微腔(15)的增益介质是稀土离子或量子点;所述单个回音壁模式光学微腔(15)的构型是微盘腔、变形微腔、环形微腔或跑道形微腔。
4.根据权利要求1所述的基于单个回音壁模式光学微腔双波长激光的可调谐微波源,其特征在于,所述准简并多边形模式(13)具有以下特征:本征频率具有几GHz到THz量级的差异值,径向量子数和角量子数的差异值固定,且具体差异值由本征频率和对应的量子数确定,从而使得模式的模场几何分布接近。
5.根据权利要求1所述的基于单个回音壁模式光学微腔双波长激光的可调谐微波源,其特征在于,所述空间分布特征相似的准简并多边形模式(13)远离微腔边缘,遭遇小的表面散射损耗,具有至少106的品质因子,从而获得窄线宽激光。
6.根据权利要求1所述的基于单个回音壁模式光学微腔双波长激光的可调谐微波源,其特征在于,所述空间分布特征相似的准简并多边形模式(13)的多边形形状通过改变单个回音壁模式光学微腔(15)的直径、光波导或锥形光纤(12)与单个回音壁模式光学微腔(15)的耦合距离以及泵浦光波长来选择性激发,获得不同的双波长激光的频率间距,从而控制双波长工作范围。
7.根据权利要求1所述的基于单个回音壁模式光学微腔双波长激光的可调谐微波源,其特征在于,所述激射光光波段产生空间分布特征相似的准简并多边形模式(13)存在小的空间分布差异,借助电光、热光或等离子体色散物理效应改变局部的折射率,从而获得双波长间距的调谐。
CN202210991189.XA 2022-08-18 2022-08-18 基于单个回音壁模式光学微腔双波长激光的可调谐微波源 Pending CN115548835A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210991189.XA CN115548835A (zh) 2022-08-18 2022-08-18 基于单个回音壁模式光学微腔双波长激光的可调谐微波源
US18/107,524 US20230187894A1 (en) 2022-08-18 2023-02-09 Tunable microwave source based on dual-wavelength lasing of single optical whispering gallery microcavity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210991189.XA CN115548835A (zh) 2022-08-18 2022-08-18 基于单个回音壁模式光学微腔双波长激光的可调谐微波源

Publications (1)

Publication Number Publication Date
CN115548835A true CN115548835A (zh) 2022-12-30

Family

ID=84726756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210991189.XA Pending CN115548835A (zh) 2022-08-18 2022-08-18 基于单个回音壁模式光学微腔双波长激光的可调谐微波源

Country Status (2)

Country Link
US (1) US20230187894A1 (zh)
CN (1) CN115548835A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117516605A (zh) * 2023-11-23 2024-02-06 海南大学 一种集成回音壁模式微泡微腔的多参量感测系统与方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117516605A (zh) * 2023-11-23 2024-02-06 海南大学 一种集成回音壁模式微泡微腔的多参量感测系统与方法
CN117516605B (zh) * 2023-11-23 2024-05-31 海南大学 一种集成回音壁模式微泡微腔的多参量感测系统与方法

Also Published As

Publication number Publication date
US20230187894A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
Babin et al. Tunable random fiber laser
US7050212B2 (en) Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators
Baumann et al. Ti: Er: LiNbO/sub 3/waveguide laser of optimized efficiency
US7991023B2 (en) Multi-band multiwavelength quantum dot mode-locked lasers
Lang et al. Advances in narrow linewidth diode lasers
CN107872002A (zh) 一种高效率全光纤柱矢量光束激光器
US20090103576A1 (en) System and Method of Providing Second Harmonic Generation (SHG) Light in a Single Pass
CN115548835A (zh) 基于单个回音壁模式光学微腔双波长激光的可调谐微波源
CN113644542B (zh) 基于掺铒铌酸锂薄膜的稳频和调频激光器及制备方法
Bowers Integrated microwave photonics
CN109755850B (zh) 一种基于微腔的中红外拉曼超快光纤激光振荡器
Sohler et al. Frequency Conversion In Ti: LiNbO [sub] 3 [/sub] Optical Waveguides
Yuan et al. Dual-wavelength DFB laser array based on sidewall grating and lateral modulation of the grating coupling coefficient
US20220337021A1 (en) Integrated silicon structures with optical gain mediated by rare-earth-doped tellurium-oxide-coating
CN207559263U (zh) 一种高效率全光纤柱矢量光束激光器
Nakahama et al. On-Chip high-resolution beam scanner based on Bragg reflector slow-light waveguide amplifier and tunable micro-electro-mechanical system vertical cavity surface emitting laser
Furusawa et al. Microring resonator based frequency comb sources for compact continuous-wave THz generators
Singh et al. Watt-class CMOS-compatible optical high power amplifier
Volet et al. Temporal soliton locked in a micro-resonator pumped by a diode laser without an amplifier
Shi et al. Dual-mode Vertex-deformed Square Microcavity Lasers
Ooi et al. High-power single-wavelength SOA-based fiber-ring laser with an optical modulator
Han et al. Widely Tunable O-band Lithium Niobite/III-V Hybrid Laser
Bradley et al. C-and L-band erbium-doped aluminum oxide lasers with silicon nitride distributed Bragg reflector cavities
KR20010045864A (ko) 파장 가변 단일 주파수 레이저
Wanzhuo et al. All-fiber wavelength tunable actively mode-locked Ho-doped fiber laser

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination