CN117516605B - 一种集成回音壁模式微泡微腔的多参量感测系统与方法 - Google Patents
一种集成回音壁模式微泡微腔的多参量感测系统与方法 Download PDFInfo
- Publication number
- CN117516605B CN117516605B CN202311573315.0A CN202311573315A CN117516605B CN 117516605 B CN117516605 B CN 117516605B CN 202311573315 A CN202311573315 A CN 202311573315A CN 117516605 B CN117516605 B CN 117516605B
- Authority
- CN
- China
- Prior art keywords
- micro
- whispering gallery
- bubble
- gallery mode
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 238000005259 measurement Methods 0.000 claims abstract description 34
- 238000011527 multiparameter analysis Methods 0.000 claims abstract description 18
- 238000001228 spectrum Methods 0.000 claims description 28
- 239000000835 fiber Substances 0.000 claims description 27
- 239000013307 optical fiber Substances 0.000 claims description 22
- 230000010287 polarization Effects 0.000 claims description 20
- 238000004458 analytical method Methods 0.000 claims description 15
- 230000008859 change Effects 0.000 claims description 9
- 239000004005 microsphere Substances 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 8
- 239000011521 glass Substances 0.000 claims description 5
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 230000003595 spectral effect Effects 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 2
- 230000033228 biological regulation Effects 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000000411 transmission spectrum Methods 0.000 description 4
- 230000003321 amplification Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 241000167857 Bourreria Species 0.000 description 1
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35316—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D27/00—Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00
- G05D27/02—Simultaneous control of variables covered by two or more of main groups G05D1/00 - G05D25/00 characterised by the use of electric means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N2021/4704—Angular selective
- G01N2021/4709—Backscatter
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Mathematical Physics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Theoretical Computer Science (AREA)
- Automation & Control Theory (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种集成回音壁模式微泡微腔的多参量感测系统与方法,包括:干涉信号解调子系统、多参量测量子系统以及多参量分析子系统;所述干涉信号解调子系统,用于基于回音壁模式微泡微腔,进行背向散射激光的干涉信号解调;所述多参量测量子系统,用于基于解调的干涉信号,进行多参量测量;所述多参量分析子系统,用于基于解调的干涉信号,进行多参量分析。本发明有助于大幅度降低WGM模式解调系统的复杂度与解调成本。
Description
技术领域
本发明属于光学技术领域,具体涉及一种集成回音壁模式微泡微腔的多参量感测系统与方法。
背景技术
随着传感器应用需求发展,很多时候现有传感系统已经无法满足高精度的测量要求。与光纤系统集成、体积小、具备远程监测能力的光学谐振腔具有很高的测量精度,在多参量如压力,气体测量方面有着独特的优势。在微腔回音壁模式WGM谐振信号解调方法方面,目前的WGM模式解调系统存在复杂度大与解调成本等问题。因为微腔WGM模式的谐振波长会随着传感参量变化而改变,对于常规的传输谱监测方案,输出干涉谱峰是衰减峰,线宽非常窄,为了有效WGM传输谱并解调,就需要利用性能稳定,成本高昂的窄线宽可调谐激光器对波长进行扫描得到WGM模式传输谱,分析才能得到模式的谐振频率以及线宽等信息。
发明内容
本发明旨在解决现有技术的不足,提出一种集成回音壁模式微泡微腔的多参量感测系统与方法,相比于通过监测基于WGM模式干涉效应产生的窄带低通干涉峰,背向散射激光的能量和谱峰位置与该干涉峰密切相关,可以替代干涉峰实现高可靠地微腔模式特性调控。
为实现上述目的,本发明提供了如下方案:
一种集成回音壁模式微泡微腔的多参量感测系统,包括:干涉信号解调子系统、多参量测量子系统以及多参量分析子系统;
所述干涉信号解调子系统,用于基于回音壁模式微泡微腔,进行背向散射激光的干涉信号解调;
所述多参量测量子系统,用于基于解调的干涉信号,进行多参量测量;
所述多参量分析子系统,用于基于解调的干涉信号,进行多参量分析。
优选的,所述干涉信号解调子系统,包括泵浦激光器、环形器、高掺铒光纤、高反射可调滤波器、偏振控制器以及集成回音壁模式微泡微腔;其中,所述高反射可调滤波器与所述集成回音壁模式微泡微腔之间形成激光线性腔;
所述泵浦激光器,用于输出激光;
所述环形器,用于传输所述激光;
所述高掺铒光纤,作为增益介质,用于使所述激光器输出单频激光;
所述高反射可调滤波器,作为激光线性腔的反射腔镜,用于调节所述激光的波长;
所述偏振控制器,用于控制所述激光线性腔的偏振态;
所述集成回音壁模式微泡微腔,作为激光线性腔的输出腔镜,用于进行微泡微腔回音壁模式的能量激发和耦合,完成基于背向散射激光的微腔回音壁模式干涉信号解调。
优选的,基于所述集成回音壁模式微泡微腔的谐振波长,获得所述激光的波长。
优选的,所述集成回音壁模式微泡微腔,包括超薄微泡腔和斜角度端面单模双芯光纤;其中,在预设研磨角度下,所述斜角度端面单模双芯光纤满足波矢匹配。
优选的,多参量测量子系统,包括光谱分析仪、温度控制模块、压强控制模块以及气体控制模块;
所述压强控制模块,用于基于解调的干涉信号,进行压强传感特性测量;
所述气体控制模块,用于基于解调的干涉信号,进行气体传感特性测量;
所述温度控制模块,用于恒温放置所述集成回音壁模式微泡微腔;所述温度控制模块,包括空心结构光纤微球,与所述压强控制模块或所述气体控制模块相连;
所述光谱分析仪,用于基于所述压强传感特性测量或所述气体传感特性测量,获得信号光谱变化图。
优选的,所述多参量分析子系统,包括布拉格光纤光栅、光电探测器、信号采集卡以及计算机;
所述布拉格光纤光栅,用于进行所述集成回音壁模式微泡微腔声波参量的频域分析;
所述光电探测器以及所述信号采集卡,用于进行光强度信号的采集;
所述计算机,用于处理采集的所述光强度信号,进行所述集成回音壁模式微泡微腔的压强参量响应特性分析或气体参量响应特性分析。
优选的,进行所述声波参量的频域分析的过程为:
测量在布拉格光纤光栅光谱范围内窄线宽激光功率的时域变化,并进行傅里叶变换,完成进行集成回音壁模式微泡微腔声波参量的分析。
本发明还提供一种集成回音壁模式微泡微腔的多参量感测方法,所述多参量感测方法基于所述的多参量感测系统实现,包括以下步骤:
基于回音壁模式微泡微腔,进行背向散射激光的干涉信号解调;
基于解调的干涉信号,进行多参量测量以及多参量分析。
与现有技术相比,本发明的有益效果为:本发明的特点在于利用回音壁模式微泡微腔特性,因为回音壁模式微泡微腔的高品质因子在输出端产生线宽极窄的WGM干涉光谱,同时也会在微腔内形成较强的背向散射光,采用激光腔增益放大方式,输实现干涉信号解调,通过分析输出激光特性可以实现主动微腔模式调控及传感测量,这有助于大幅度降低WGM模式解调系统的复杂度与解调成本。相比于通过监测基于WGM模式干涉效应产生的窄带低通干涉峰,背向散射激光的能量和谱峰位置与该干涉峰密切相关,可以替代干涉峰实现高可靠地微腔模式特性调控。
附图说明
为了更清楚地说明本发明的技术方案,下面对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的基于背向散射激光的微腔WGM模式干涉信号解调图;
图2为本发明实施例的微泡微腔传感器的压强传感特性测量图;
图3为本发明实施例的微泡微腔传感器的气体传感特性测量图;
图4为本发明实施例的微泡微腔压强参量响应特性分析图;
图5为本发明实施例的信号光谱变化图。
附图标记说明:泵浦激光器1,环形器2,环形器22,高掺铒光纤3,高反射可调滤波器4,偏振控制器5,集成回音壁模式微泡微腔6,光谱分析仪7,温度控制模块8,压强控制模块9,气体控制模块10,布拉格光纤光栅(FBG)11,光电探测器12,信号采集卡13,计算机14。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例一
一种集成回音壁模式微泡微腔的多参量感测系统,本发明系统采用激光腔增益放大方式,具体方法是基于微泡微腔的背向散射特性,将微泡微腔视作F-P激光线性腔或环形腔中的半透半反射输出镜面。通过在腔内引入增益介质和泵浦光源,形成基于微腔背向散射效应的单模窄线宽激光输出。
集成回音壁模式微泡微腔的多参量感测系统包括:干涉信号解调子系统、多参量测量子系统以及多参量分析子系统;
所述干涉信号解调子系统,用于基于回音壁模式微泡微腔,进行背向散射激光的干涉信号解调;
进一步的实施方式在于,干涉信号解调子系统,包括泵浦激光器1、环形器2、高掺铒光纤3、高反射可调滤波器4、偏振控制器5以及集成回音壁模式微泡微腔6;其中,高反射可调滤波器4与集成回音壁模式微泡微腔6之间形成激光线性腔;
泵浦激光器1,用于输出激光;
环形器2,用于传输激光;(环形器包括环形器2和环形器22)
高掺铒光纤3,作为增益介质,用于使激光器输出单频激光;铒纤也起到饱和吸收体效果;由980nm激光器泵浦。
高反射可调滤波器4,作为激光线性腔的反射腔镜,用于调节激光的波长;
偏振控制器5,用于控制激光线性腔的偏振态;
集成回音壁模式微泡微腔6,作为激光线性腔的输出腔镜(半透半反射的输出镜面),用于进行微泡微腔回音壁模式的能量激发和耦合,完成基于背向散射激光的微腔回音壁模式干涉信号解调。由于微腔内的粒子散射效应等因素影响,导致有一定程度的背向散射光谱输出。当微泡微腔品质因子较高(﹥105量级)时,不仅会在输出端产生线宽极窄的WGM干涉光谱,也会在微腔内形成较强的背向散射光,通过采用激光腔增益放大方式,来分析输出激光特性可以实现主动微腔模式调控及传感测量,这有助于大幅度降低WGM模式解调系统的复杂度与解调成本。微腔WGM谐振信号解调监测方法包括微腔的传输谱,反射谱,辐射谱。为了提升解调系统稳定性,结合了Pound-Drever-Hall锁模等技术将激光频率实时调节到回音壁模式谐振频率处,通过实时追踪谐振频率的变化作为信号进行传感。
进一步的实施方式在于,基于集成回音壁模式微泡微腔6的谐振波长,获得激光的波长。
进一步的实施方式在于,集成回音壁模式微泡微腔6,包括超薄微泡腔和斜角度端面单模双芯光纤;其中,在预设研磨角度下,斜角度端面单模双芯光纤满足波矢匹配。从而提高微泡微腔模式调控系统的集成度和稳定性。其中,基于临界态膨胀辅助放电法制备超薄微泡微腔,毛细光纤管一端连接单模光纤,另一端连接压力泵,在填充气压,多次的放电情况下,使得毛细光纤管缓慢膨胀成超薄的单端微泡结构。
多参量测量子系统,用于基于解调的干涉信号,进行多参量测量;
进一步的实施方式在于,多参量测量子系统,包括光谱分析仪7、温度控制模块8、压强控制模块9以及气体控制模块10;
压强控制模块9,用于基于解调的干涉信号,进行压强传感特性测量;
气体控制模块10,用于基于解调的干涉信号,进行气体传感特性测量;
温度控制模块8,用于恒温放置集成回音壁模式微泡微腔6;温度控制模块8,包括空心结构光纤微球,与压强控制模块9或气体控制模块10相连;
光谱分析仪7,用于基于压强传感特性测量或气体传感特性测量,获得信号光谱变化图。
如图1所示,为本发明实施案例的背向散射激光的微腔WGM模式干涉信号解调系统(干涉信号解调子系统连接关系图):
泵浦激光器1输出端和环形器2输入端连接,环形器2输出端和高掺铒光纤3的输入端连接,另外,环形器2的另一输出端和高反射可调滤波器4输入端连接。掺铒光纤3的输出端和偏振控制器5的输入端连接,偏振控制器5的输出端和集成回音壁模式微泡微腔6的输入端连接,集成回音壁模式微泡微腔6输出端和光谱分析仪7的输入端连接。
多参量测量子系统与干涉信号解调子系统的连接关系:
如图2所示,本实施例微泡微腔传感器的压强传感特性测量:泵浦激光器1输出端和环形器2输入端连接,环形器2输出端和高掺铒光纤3的输入端连接,另外,环形器2的另一输出端和高反射可调滤波器4输入端连接。掺铒光纤3的输出端和偏振控制器5的输入端连接,偏振控制器5的输出端和集成回音壁模式微泡微腔6的输入端连接,集成回音壁模式微泡微腔6输出端和光谱分析仪7的输入端连接,集成回音壁模式微泡微腔6系统放置在一个精密温度控制模块8内,另外与空心结构光纤微球相连的玻璃管另一端与一个压强控制模块9相连接。
如图3所示,本实施例微泡微腔传感器的气体传感特性测量:泵浦激光器1输出端和环形器2输入端连接,环形器2输出端和高掺铒光纤3的输入端连接,另外,环形器2的另一输出端和高反射可调滤波器4输入端连接。掺铒光纤3的输出端和偏振控制器5的输入端连接,偏振控制器5的输出端和集成回音壁模式微泡微腔6的输入端连接,集成回音壁模式微泡微腔6输出端和光谱分析仪7的输入端连接,集成回音壁模式微泡微腔6放置在一个精密温度控制模块8内,另外与空心结构光纤微球相连的玻璃管另一端与一个气体控制模块10相连接。
多参量分析子系统,用于基于解调的干涉信号,进行多参量分析。
进一步的实施方式在于,多参量分析子系统,包括布拉格光纤光栅11、光电探测器12、信号采集卡13以及计算机14;
布拉格光纤光栅11,用于进行集成回音壁模式微泡微腔6声波参量的频域分析;采用基于布拉格光纤光栅11(FBG)的动态光强度解调方案。测量在FBG光谱范围内窄线宽激光功率的时域变化,再通过傅里叶变换,实现被测声波参量的频域分析。具体方法是在确定激光脉冲波长值及其动态变化范围后,定做与其波长相匹配的FBG光纤光栅,使得输出激光脉冲的中心波长大致位于FBG反射谱上升沿或下降沿的中点位置。
光电探测器12以及信号采集卡13,用于进行光强度信号的采集;
计算机14,用于处理采集的光强度信号,进行集成回音壁模式微泡微腔6的压强参量响应特性分析或气体参量响应特性分析。
进一步的实施方式在于,进行声波参量的频域分析的过程为:
测量在布拉格光纤光栅11光谱范围内窄线宽激光功率的时域变化,并进行傅里叶变换,完成进行集成回音壁模式微泡微腔6声波参量的分析。
如图4所示,本实施例微泡微腔压强参量响应特性分析过程的装置结构示意:泵浦激光器1输出端和环形器2输入端连接,环形器2输出端和高掺铒光纤3的输入端连接,另外,环形器2的另一输出端和高反射可调滤波器4输入端连接。掺铒光纤3的输出端和偏振控制器5的输入端连接,偏振控制器5的输出端和集成回音壁模式微泡微腔6的输入端连接,集成回音壁模式微泡微腔6输出端和环形器22输入端连接,集成回音壁模式微泡微腔6放置在一个精密温度控制模块8内,另外与空心结构光纤微球相连的玻璃管另一端与一个压强控制模块9相连接。环形器22的输出端和布拉格光纤光栅(FBG)11输入端连接,另外,环形器22的另一输出端和光电探测器12输入端连接,光电探测器12输出端和信号采集卡13输入端连接,信号采集卡13输出端和计算机14输入端连接。
如图5所示,本实施例所述的一种集成回音壁模式微泡微腔的多参量感测系统所得到的信号光谱变化图。多参量不同数值变化,则出现信号光谱峰值移动。通过分析多参量不同数值变化与信号光谱峰值移动之间的数值关系,最终分析出集成回音壁模式微泡微腔6在传感领域潜在价值。
实施例二
本发明还提供一种集成回音壁模式微泡微腔的多参量感测方法,多参量感测方法基于多参量感测系统实现,包括以下步骤:
基于回音壁模式微泡微腔,进行背向散射激光的干涉信号解调;
基于解调的干涉信号,进行多参量测量以及多参量分析。
总的来说,多参量感测方法基于多参量感测系统,将微泡微腔及斜角度端面双芯光纤耦合系统放置在一个精密温度控制模块内。另外与空心结构光纤微球相连的玻璃管另一端与一个压强(气体)控制模块相连接。在恒温及仅改变填充压强(气体浓度)情况下,空心微腔腔长发生变化,这将导致微腔WGM干涉谱峰发生相应变化,通过监测光谱谱峰变化与压强大小(气体浓度)的关系,可计算出微泡WGM微腔的压强(气体浓度)传感特性。
以上所述的实施例仅是对本发明优选方式进行的描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
Claims (3)
1.一种集成回音壁模式微泡微腔的多参量感测系统,其特征在于,包括:干涉信号解调子系统、多参量测量子系统以及多参量分析子系统;
所述干涉信号解调子系统,用于基于回音壁模式微泡微腔,进行背向散射激光的干涉信号解调;所述干涉信号解调子系统,包括泵浦激光器、环形器、高掺铒光纤、高反射可调滤波器、偏振控制器以及集成回音壁模式微泡微腔;其中,所述高反射可调滤波器与所述集成回音壁模式微泡微腔之间形成激光线性腔;
所述泵浦激光器,用于输出激光;
所述环形器,用于传输所述激光;
所述高掺铒光纤,作为增益介质,用于使所述激光器输出单频激光;
所述高反射可调滤波器,作为激光线性腔的反射腔镜,用于调节所述激光的波长;
所述偏振控制器,用于控制所述激光线性腔的偏振态;
所述集成回音壁模式微泡微腔,作为激光线性腔的输出腔镜,用于进行微泡微腔回音壁模式的能量激发和耦合,完成基于背向散射激光的微腔回音壁模式干涉信号解调;
基于所述集成回音壁模式微泡微腔的谐振波长,获得所述激光的波长;所述集成回音壁模式微泡微腔,包括超薄微泡腔和斜角度端面单模双芯光纤;其中,在预设研磨角度下,所述斜角度端面单模双芯光纤满足波矢匹配;
泵浦激光器输出端和环形器输入端连接,环形器输出端和高掺铒光纤的输入端连接,另外,环形器的另一输出端和高反射可调滤波器输入端连接;掺铒光纤的输出端和偏振控制器的输入端连接,偏振控制器的输出端和集成回音壁模式微泡微腔的输入端连接,集成回音壁模式微泡微腔输出端和光谱分析仪的输入端连接;
集成回音壁模式微泡微腔系统放置在一个精密温度控制模块内,另外与空心结构光纤微球相连的玻璃管另一端与一个压强控制模块或一个气体控制模块相连接;
所述多参量测量子系统,用于基于解调的干涉信号,进行多参量测量;
所述多参量测量子系统,包括光谱分析仪、温度控制模块、压强控制模块以及气体控制模块;
所述压强控制模块,用于基于解调的干涉信号,进行压强传感特性测量;
所述气体控制模块,用于基于解调的干涉信号,进行气体传感特性测量;
所述温度控制模块,用于恒温放置所述集成回音壁模式微泡微腔;所述温度控制模块,包括空心结构光纤微球,与所述压强控制模块或所述气体控制模块相连;
所述光谱分析仪,用于基于所述压强传感特性测量或所述气体传感特性测量,获得信号光谱变化图;
所述多参量分析子系统,用于基于解调的干涉信号,进行多参量分析;
所述多参量分析子系统,包括布拉格光纤光栅、光电探测器、信号采集卡以及计算机;
所述布拉格光纤光栅,用于进行所述集成回音壁模式微泡微腔声波参量的频域分析;
所述光电探测器以及所述信号采集卡,用于进行光强度信号的采集;
所述计算机,用于处理采集的所述光强度信号,进行所述集成回音壁模式微泡微腔的压强参量响应特性分析或气体参量响应特性分析。
2.根据权利要求1所述的集成回音壁模式微泡微腔的多参量感测系统,其特征在于,进行所述声波参量的频域分析的过程为:
测量在布拉格光纤光栅光谱范围内窄线宽激光功率的时域变化,并进行傅里叶变换,完成进行集成回音壁模式微泡微腔声波参量的分析。
3.一种集成回音壁模式微泡微腔的多参量感测方法,所述多参量感测方法基于权利要求1-2任一项所述的多参量感测系统实现,其特征在于,包括以下步骤:
基于回音壁模式微泡微腔,进行背向散射激光的干涉信号解调;
基于解调的干涉信号,进行多参量测量以及多参量分析。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311573315.0A CN117516605B (zh) | 2023-11-23 | 2023-11-23 | 一种集成回音壁模式微泡微腔的多参量感测系统与方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311573315.0A CN117516605B (zh) | 2023-11-23 | 2023-11-23 | 一种集成回音壁模式微泡微腔的多参量感测系统与方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117516605A CN117516605A (zh) | 2024-02-06 |
CN117516605B true CN117516605B (zh) | 2024-05-31 |
Family
ID=89762388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311573315.0A Active CN117516605B (zh) | 2023-11-23 | 2023-11-23 | 一种集成回音壁模式微泡微腔的多参量感测系统与方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117516605B (zh) |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0907073A1 (en) * | 1997-10-02 | 1999-04-07 | Furukawa Electric Europe Ltd. | Optical fibre sensing apparatus for distributed sensing using BOTDR |
CN202582569U (zh) * | 2012-05-22 | 2012-12-05 | 浙江师范大学 | 基于回音壁模式光学微腔的分布式fbg解调装置 |
CN102980853A (zh) * | 2012-11-23 | 2013-03-20 | 天津大学 | 基于有源微管的谐振式光微流体传感装置和方法 |
CN104697448A (zh) * | 2015-03-05 | 2015-06-10 | 哈尔滨工业大学 | 基于光纤环形激光器的双光纤光栅探针微尺度测量装置及方法 |
CN107121157A (zh) * | 2017-05-04 | 2017-09-01 | 重庆大学 | 耦合光纤和回音壁微腔的测量滤波装置 |
CN110470329A (zh) * | 2019-08-09 | 2019-11-19 | 广州敏捷智感光电科技有限公司 | 一种基于多泵浦的实时光纤布里渊时域分析传感系统 |
CN110908417A (zh) * | 2019-12-09 | 2020-03-24 | 福建师范大学 | 一种电流调节光微流微泡腔谐振波长的实现装置及方法 |
CN112903545A (zh) * | 2021-03-16 | 2021-06-04 | 华侨大学 | 一种多通道传感系统和检测方法 |
CN113008841A (zh) * | 2021-02-26 | 2021-06-22 | 复旦大学 | 一种基于钯-回音壁模式光学谐振腔的氢气传感器及其制备和应用 |
CN113588065A (zh) * | 2021-07-14 | 2021-11-02 | 北京大学 | 基于光频梳的片上微腔超声并行传感装置及方法 |
WO2022121457A1 (zh) * | 2020-12-08 | 2022-06-16 | 国网安徽省电力有限公司电力科学研究院 | 一种抗环境噪音干扰的光纤光声传感探头及传感系统 |
CN115200843A (zh) * | 2022-07-26 | 2022-10-18 | 北京邮电大学 | 一种基于单个回音壁光学微腔的多参量并行检测方法 |
CN115548835A (zh) * | 2022-08-18 | 2022-12-30 | 华东师范大学 | 基于单个回音壁模式光学微腔双波长激光的可调谐微波源 |
CN116499505A (zh) * | 2023-06-29 | 2023-07-28 | 中北大学 | 一种基于回音壁谐振腔的精密传感测量系统 |
CN116609884A (zh) * | 2023-04-11 | 2023-08-18 | 海南大学 | 一种集成回音壁模式微泡微腔及其制备方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7050212B2 (en) * | 2002-11-22 | 2006-05-23 | California Institute Of Technology | Active mode-locked lasers and other photonic devices using electro-optic whispering gallery mode resonators |
WO2016138871A1 (en) * | 2015-03-05 | 2016-09-09 | Harbin Institute Of Technology | Method and equipment for dimensional measurement of a micro part based on fiber laser with multi-core fbg probe |
US20200012008A1 (en) * | 2018-07-08 | 2020-01-09 | Wayne State University | Parity-time (pt)-symmetric wireless telemetric sensors and systems |
CN113507039B (zh) * | 2021-05-13 | 2022-07-08 | 华东师范大学 | 基于单个回音壁模式光学微腔的单模微激光器及实现方法 |
US20230010794A1 (en) * | 2021-07-07 | 2023-01-12 | Washington University | Optical whispering gallery mode barcodes for high-precision and wide-range measurements |
-
2023
- 2023-11-23 CN CN202311573315.0A patent/CN117516605B/zh active Active
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0907073A1 (en) * | 1997-10-02 | 1999-04-07 | Furukawa Electric Europe Ltd. | Optical fibre sensing apparatus for distributed sensing using BOTDR |
CN202582569U (zh) * | 2012-05-22 | 2012-12-05 | 浙江师范大学 | 基于回音壁模式光学微腔的分布式fbg解调装置 |
CN102980853A (zh) * | 2012-11-23 | 2013-03-20 | 天津大学 | 基于有源微管的谐振式光微流体传感装置和方法 |
CN104697448A (zh) * | 2015-03-05 | 2015-06-10 | 哈尔滨工业大学 | 基于光纤环形激光器的双光纤光栅探针微尺度测量装置及方法 |
CN107121157A (zh) * | 2017-05-04 | 2017-09-01 | 重庆大学 | 耦合光纤和回音壁微腔的测量滤波装置 |
CN110470329A (zh) * | 2019-08-09 | 2019-11-19 | 广州敏捷智感光电科技有限公司 | 一种基于多泵浦的实时光纤布里渊时域分析传感系统 |
CN110908417A (zh) * | 2019-12-09 | 2020-03-24 | 福建师范大学 | 一种电流调节光微流微泡腔谐振波长的实现装置及方法 |
WO2022121457A1 (zh) * | 2020-12-08 | 2022-06-16 | 国网安徽省电力有限公司电力科学研究院 | 一种抗环境噪音干扰的光纤光声传感探头及传感系统 |
CN113008841A (zh) * | 2021-02-26 | 2021-06-22 | 复旦大学 | 一种基于钯-回音壁模式光学谐振腔的氢气传感器及其制备和应用 |
CN112903545A (zh) * | 2021-03-16 | 2021-06-04 | 华侨大学 | 一种多通道传感系统和检测方法 |
CN113588065A (zh) * | 2021-07-14 | 2021-11-02 | 北京大学 | 基于光频梳的片上微腔超声并行传感装置及方法 |
CN115200843A (zh) * | 2022-07-26 | 2022-10-18 | 北京邮电大学 | 一种基于单个回音壁光学微腔的多参量并行检测方法 |
CN115548835A (zh) * | 2022-08-18 | 2022-12-30 | 华东师范大学 | 基于单个回音壁模式光学微腔双波长激光的可调谐微波源 |
CN116609884A (zh) * | 2023-04-11 | 2023-08-18 | 海南大学 | 一种集成回音壁模式微泡微腔及其制备方法 |
CN116499505A (zh) * | 2023-06-29 | 2023-07-28 | 中北大学 | 一种基于回音壁谐振腔的精密传感测量系统 |
Non-Patent Citations (7)
Title |
---|
FBG微应变测量系统的相位解调技术研究;王景凡;刘芳芳;陈丽娟;;工具技术;20150420(第04期);全文 * |
光纤光栅传感系统信号解调新技术研究;王瑜;乔学光;傅海威;禹大宽;马超;张晶;;电光与控制;20080215(第02期);全文 * |
具有内参考热补偿功能的三层膜结构微球腔折射率传感器;孟令俊;王梦宇;沈远;杨煜;徐文斌;张磊;王克逸;;物理学报;20200108(第01期);全文 * |
分立式与分布式光纤传感关键技术研究进展;刘铁根;于哲;江俊峰;刘琨;张学智;丁振扬;王双;胡浩丰;韩群;张红霞;李志宏;;物理学报;20170408(第07期);全文 * |
回音壁模式微腔灵敏度的进样流速影响研究;何春枝;胡舜迪;陈瑞强;史振志;赵鹏;闻路红;;激光杂志;20180125(第01期);全文 * |
基于空心光纤构建微管生物传感器的实验研究;江俊峰;李海伟;刘铁根;刘琨;张以谟;;中国激光;20100610(第06期);全文 * |
复合光学微球腔回音壁模共振谱选模特性分析;吕宏春;万洪丹;王瑾;杨超麟;;光通信研究;20160210(第01期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN117516605A (zh) | 2024-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9581495B2 (en) | Spectral analysis device based on Brillouin dynamic grating and analysis method thereof | |
US7283216B1 (en) | Distributed fiber sensor based on spontaneous brilluoin scattering | |
Huang et al. | VCSEL-based tilted fiber grating vibration sensing system | |
Choban et al. | Φ-OTDR based on tunable Yb-Er: phosphate-glass laser | |
CN104931427A (zh) | 一种基于光路多次反射的光声气体探测装置 | |
CN103438916B (zh) | 基于可饱和吸收光纤的光纤光栅波长解调装置 | |
CN117516605B (zh) | 一种集成回音壁模式微泡微腔的多参量感测系统与方法 | |
CN112432921B (zh) | 基于特种增益光纤的可调谐半导体激光吸收光谱方法 | |
CN111257274B (zh) | 基于1.7μm波段双波长激光光源的血液酒精测试装置 | |
CN111678601B (zh) | 基于光纤布里渊散射的相干光谱分析装置及方法 | |
CN214702149U (zh) | 一种同时监测温度和应变的光纤传感器 | |
Takahashi et al. | Underwater acoustic sensor using optical fiber Bragg grating as detecting element | |
Zheng et al. | Tunable fiber ring laser absorption spectroscopic sensors for gas detection | |
JP2620665B2 (ja) | 広帯域源、広帯域源の用途および広帯域源の温度依存性を安定化させるための方法 | |
CN116625983A (zh) | 一种全光纤多光谱气体检测系统 | |
Yang et al. | Refractive index sensor based on fiber laser | |
FILIPPINI | Construction and characterization of a Diode Pumped Yb-Er: glass laser | |
Liu et al. | Investigation of gas detection based on fiber laser intracavity absorption spectroscopy | |
CN118670561A (zh) | 基于保偏光纤的温度传感器 | |
Ma et al. | A Torsion Relative Angle Measurement Method Based on Fiber-Loop Ring-Down with Intra-Cavity Amplification | |
Rodríguez-Barrios et al. | Distributed Brillouin fiber sensor featuring 2 meter resolution and 75 km dynamic range | |
Baer et al. | Narrow-linewidth and low-noise holmium-doped fiber amplifier at 2095 nm with compact packaging | |
Henderson-Sapir et al. | 2 µm simple tunable fibre laser source for optimizing pumping of 3.5 µm dual-wavelength pumping systems and material absorption characterization | |
JP3081569B2 (ja) | 半導体レーザの戻り光量測定方法及び装置 | |
CN111525373A (zh) | 一种基于双光栅压缩环行谐振腔的超窄线宽光纤激光器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |