WO2021098321A1 - 一种二维高性能谐振器 - Google Patents

一种二维高性能谐振器 Download PDF

Info

Publication number
WO2021098321A1
WO2021098321A1 PCT/CN2020/111348 CN2020111348W WO2021098321A1 WO 2021098321 A1 WO2021098321 A1 WO 2021098321A1 CN 2020111348 W CN2020111348 W CN 2020111348W WO 2021098321 A1 WO2021098321 A1 WO 2021098321A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resonator
dimensional
dimensional high
performance
Prior art date
Application number
PCT/CN2020/111348
Other languages
English (en)
French (fr)
Inventor
孙成亮
刘婕妤
周杰
童欣
高超
邹杨
Original Assignee
武汉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911127186.6A external-priority patent/CN110880922B/zh
Priority claimed from CN201911398316.XA external-priority patent/CN110995194B/zh
Application filed by 武汉大学 filed Critical 武汉大学
Publication of WO2021098321A1 publication Critical patent/WO2021098321A1/zh
Priority to US17/746,954 priority Critical patent/US20220278669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • H03H9/02031Characteristics of piezoelectric layers, e.g. cutting angles consisting of ceramic
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • H03H9/132Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials characterized by a particular shape
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/176Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of ceramic material

Definitions

  • the invention belongs to the technical field of resonators, and in particular relates to a two-dimensional high-performance resonator.
  • the resonant frequency of FBAR is determined by the thickness of the piezoelectric film, so it is difficult to achieve multi-band integration on a single wafer.
  • the proposal of the Lamb Wave Resonator (LWR) can break through the frequency limitation faced by SAW. Lamb wave resonators of different frequencies can be obtained by adjusting the distance of the interdigital fingers, so as to realize the frequency modulation of the same wafer.
  • the traditional one-dimensional Lamb wave resonator has a sandwich structure.
  • the upper and lower electrodes adopt an interdigital structure with a piezoelectric material layer in the middle.
  • the interdigital distance is generally one wavelength, and a zero-order symmetry mode is excited laterally.
  • the vibration of a two-dimensional lamb wave resonator is a coupling of lateral excitation and thickness direction excitation. This characteristic improves the electromechanical coupling coefficient and quality factor of the lamb wave resonator to a certain extent.
  • the complex structure and low quality factor and electromechanical coupling coefficient of the Lamb wave resonator are the main reasons that limit its commercialization.
  • XBARs transversely excited shear mode bulk acoustic wave (BAW) resonator
  • BAW transversely excited shear mode bulk acoustic wave
  • XBARs transversely excited shear mode bulk acoustic wave
  • the structure of XBAR is relatively simple, including metallized interdigital electrode (IDE) system, but the metallization rate is very small.
  • IDE metallized interdigital electrode
  • the electrode mainly generates a horizontal electric field, which produces a half-wavelength bulk shear wave A1 resonance in the suspended LiNbO3 film.
  • the maximum sound amplitude is located on the free membrane area between the two electrodes.
  • the design choice is very different from the traditional micro-acoustic resonator.
  • the metal IDT electrode spacing is closely related to the resonator frequency.
  • the metal thickness has a great influence on the resonator frequency and quality factor.
  • the frequency is mainly determined by the thickness of the piezoelectric plate.
  • the existing XBAR resonator structure is difficult to completely eliminate the influence of the pseudo mode, and a large electromechanical coupling coefficient must be sacrificed to obtain a high quality factor.
  • the purpose of the present invention is to provide an ultra-high-frequency high-performance resonator that can improve the electromechanical coupling coefficient and quality factor of the resonator and reduce pseudo-modes.
  • a two-dimensional high-performance resonator designed by the present invention includes a piezoelectric layer, an electrode layer is distributed on the upper surface of the piezoelectric layer, and the electrode layer includes several electrodes arranged in a horizontal direction with a spacing of more than four wavelengths.
  • a bridge structure is provided on the upper part of the electrode layer.
  • the electrical bridge structure is in direct contact with the piezoelectric layer, and connects the electrodes adjacent to each other in the vertical direction.
  • the electrical bridge structure does not directly contact the piezoelectric layer, and connects the electrodes adjacent to each other in the vertical direction.
  • the shape of the electrical bridge structure is rectangular, quadrilateral or polygonal.
  • the material of the electric bridge structure is platinum, molybdenum, gold, tungsten, copper or aluminum.
  • the material of the piezoelectric layer is selected from lithium niobate, lithium tantalate, aluminum nitride or doped aluminum nitride.
  • the material of the electrode is platinum, molybdenum, gold, tungsten, copper or aluminum.
  • the electrode layer includes a plurality of electrodes arranged in a vertical direction with a pitch of less than or equal to four wavelengths.
  • the shape of the electrode is an ellipse, a circle, a rectangle, a rhombus, a hexagon, an octagon, a polygon, or a combination of different shapes.
  • the electrode shape is an ellipse
  • the distance between adjacent electrodes distributed along the horizontal direction is greater than four wavelengths
  • the distance between adjacent electrodes along the vertical direction is less than four wavelengths equal to twice the distance of the long axis of the ellipse.
  • the electrode shape is an ellipse
  • the distance between adjacent electrodes distributed along the horizontal direction is greater than four wavelengths
  • the distance between adjacent electrodes along the vertical direction is less than four wavelengths and greater than twice the distance of the long axis of the ellipse.
  • the two-dimensional electrode arrangement of the two-dimensional UHF resonator makes the horizontal and vertical directions obtain electric fields to produce a coupling effect, and the coupling of the multi-directional electric fields increases the electromechanical coupling coefficient of the resonator.
  • the advantage of the present invention is that compared with the traditional existing resonator structure, the present invention can achieve a very high resonant frequency, and has a high electromechanical coupling coefficient at a very high resonant frequency, ultra-high frequency and high electromechanical coupling coefficient.
  • the performance of the subsequent construction of the filter determines the performance.
  • the feasibility of the structure of the present invention means that it can break through 5GHz and realize a chip with higher frequency and higher performance. It is based on the ultra-high-frequency high-performance resonator structure of the specific arrangement of electrodes.
  • the frequency can reach 6 GHz, which can well meet the needs of the 5G market, and the resonator structure with elliptical electrodes in the present invention can achieve an ultra-high electromechanical coupling coefficient greater than 40%, and the quality factor is also greatly improved.
  • Figure 1 shows the structure of a traditional one-dimensional aluminum nitride lamb wave resonator
  • Figure 2 is a traditional two-dimensional Lamb wave resonator structure
  • FIG. 3 is a two-dimensional resonator structure taking circular electrodes as an example in Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural diagram of a two-dimensional resonator taking hexagonal electrodes as an example in Embodiment 2 of the present invention
  • FIG. 5 is a front view of a two-dimensional resonator taking hexagonal electrodes as an example in Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram of a two-dimensional linearly arranged resonator structure taking circular electrodes as an example in Embodiment 3 of the present invention
  • FIG. 7 is a schematic structural diagram of a two-dimensional high-performance resonator taking an elliptical electrode as an example in Embodiment 4 of the present invention.
  • FIG. 8 is a schematic structural diagram of a two-dimensional high-performance resonator taking an elliptical electrode as an example in Embodiment 5 of the present invention.
  • FIG. 9 is an electrode distribution diagram of a two-dimensional high-performance resonator structure taking an elliptical electrode as an example in Embodiment 6 of the present invention.
  • FIG. 10 is an electrode distribution diagram of a two-dimensional high-performance resonator structure taking an elliptical electrode as an example in Embodiment 7 of the present invention.
  • FIG. 11 is a schematic diagram of two distributions of the bridge structure in the two-dimensional high-performance resonator in Embodiment 8 of the present invention.
  • FIG. 13 is a schematic diagram of the impedance curve of the hexagonal electrode two-dimensional resonator and the impedance curve of the traditional Lamb wave resonator according to the second embodiment of the present invention
  • FIG. 14 is a schematic diagram of the impedance curve of the elliptical electrode two-dimensional resonator according to Embodiment 3 of the present invention and the impedance curve of the circular electrode two-dimensional resonator according to Embodiment 1 of the present invention;
  • FIG. 15 is a schematic diagram of the impedance curve of the elliptical electrode two-dimensional resonator according to Embodiment 3 of the present invention, the impedance curve of the circular electrode two-dimensional resonator according to Embodiment 1 of the present invention, and the impedance curve of a traditional Lamb wave resonator;
  • FIG. 1 is a schematic diagram of the structure of a traditional one-dimensional aluminum nitride lamb wave resonator.
  • the upper and lower surfaces of the piezoelectric layer 1 are composed of interdigitated electrode layers 2.
  • the electrode layers 2 are divided into two groups, the first electrode 3 and the second electrode 4, one group is applied with a positive voltage, the other The group applies a negative voltage.
  • the distance between the interdigital electrodes is the same order of magnitude as the thickness of the piezoelectric layer 1, a Lamb wave propagating in the x-axis direction is excited inside the piezoelectric layer 1.
  • Fig. 2 is a schematic diagram of the structure of a traditional two-dimensional Lamb wave resonator.
  • uniformly arranged electrode layers 2 are arranged on the upper and lower surfaces of the piezoelectric layer 1.
  • the electrode layers 2 are divided into two groups, namely the first electrode 3 and the second electrode 4.
  • the group applies a negative voltage.
  • both the first electrode 3 and the second electrode 4 are circular.
  • the first electrode 3 and the second electrode 4 are respectively distributed on the upper and lower surfaces of the piezoelectric layer 1, so that AC can be applied to the upper and lower surfaces of the piezoelectric layer 1. Voltage.
  • the electrode layers 2 are connected by a bridge structure 7.
  • the bridge structure 7 may be in contact with the surface of the piezoelectric layer 1 or not in contact with the surface of the piezoelectric layer 1. If the bridge direction on the upper surface is arranged in parallel along the y-axis, the bridge direction on the lower surface is arranged along the x-axis. In addition, if a positive voltage is applied to the first electrode 3 on the upper surface, the second electrode 4 on the lower surface opposite to the first electrode 3 is negatively charged and becomes the second electrode 4.
  • This structure excites transverse waves propagating along the x and y axes and longitudinal waves propagating along the z axis, thereby generating a two-dimensional Lamb wave.
  • This structure uses the Lamb waves transmitted in two directions, which not only eliminates the adverse effects of the parasitic mode, but also uses the parasitic mode wave to enhance the electrical reflection of the main mode, thereby improving the electromechanical coupling coefficient.
  • FIG. 3 is a schematic diagram of the structure of a two-dimensional resonator according to Embodiment 1 of the present invention.
  • an electrode layer 2 is arranged on the upper surface of the piezoelectric layer 1.
  • the electrode layer 2 is divided into two groups, one group is called the first electrode 3, and the other group is called the second electrode 4, extending in the y direction
  • the distributed first electrodes 3 are connected by a bridge structure 7, the first electrodes 3 connected by the bridge structure form a first electrode layer 5, and the second electrodes 4 distributed along the y direction are connected by a bridge structure 7
  • the second electrode 4 connected by the bridge structure forms the second electrode layer 6.
  • the first electrode layer 5 and the second electrode layer 6 are alternately arranged, and the adjacent first electrode layer 5 and the second electrode layer 6 are arranged alternately. Voltages of different polarities are respectively applied. If the first electrode layer 5 applies a positive voltage, the second electrode layer 6 increases a negative voltage, and if the first electrode layer 5 applies a negative voltage, the second electrode layer 6 increases a positive voltage.
  • the distance between the first electrode layer 5 distributed along the x-axis direction and the adjacent second electrode layer 6 is greater than four wavelengths, and the end of the first electrode layer 5 and the end of the second electrode layer 6 are not on the same horizontal line.
  • the present invention does not need to provide the electrode layer 2 on the lower surface of the piezoelectric layer 1, but only needs to provide the electrode layer 2 on the upper surface of the piezoelectric layer 1.
  • the present invention is relatively The traditional two-dimensional Lamb wave resonator achieves a higher frequency and has a higher electromechanical coupling coefficient.
  • the shape of the bridge structure is rectangular, quadrilateral or polygonal.
  • the selection of the shape of the bridge structure can be adaptively changed according to the arrangement and shape of the electrodes to meet the needs of connecting various electrodes, and the bridge structure can be arranged well. Suppress the spurious mode of the resonator.
  • the material of the electric bridge structure is platinum, molybdenum, gold, tungsten, copper or aluminum.
  • the material of the piezoelectric layer 1 is lithium niobate, lithium tantalate, aluminum nitride or doped aluminum nitride.
  • Lithium niobate and lithium tantalate are new-generation piezoelectric film materials suitable for high-frequency devices.
  • Lithium oxide has a large piezoelectric coefficient and is suitable for large-bandwidth piezoelectric devices.
  • Lithium tantalate has a small piezoelectric coefficient and is suitable for narrow-band piezoelectric devices.
  • Aluminum nitride is a traditional piezoelectric film material with high quality factor, low loss, High sound speed, low cost, excellent temperature performance, and compatibility with complementary metal oxide semiconductor (CMOS) process integration and compatibility. The bandwidth of doped aluminum nitride is improved compared to aluminum nitride.
  • CMOS complementary metal oxide semiconductor
  • the material of the electrode is platinum, molybdenum, gold, tungsten, copper or aluminum.
  • Fig. 4 is a schematic diagram of the two-dimensional resonator structure of the hexagonal electrode of the embodiment 2 of the present invention
  • Fig. 5 is a front view of the two-dimensional resonator structure of the hexagonal electrode of the embodiment 2 of the present invention, and the first electrode of the electrode layer 2
  • the shapes of 3 and the second electrode 4 are both hexagons, and the rest of the structure is the same as that of the first embodiment.
  • the advantage of this embodiment is that the pseudo mode of the resonator can be suppressed to a certain extent, and the performance of the resonator can be improved.
  • Embodiment 6 is a schematic diagram of a resonator structure with circular electrodes in a two-dimensional linear arrangement of Embodiment 3 of the present invention.
  • the end of the first electrode layer 5 and the end of the second electrode layer 6 are on the same horizontal line.
  • the rest of the structure is the same as that of the embodiment. 1 is the same.
  • the advantage of this embodiment is that the coupling electric field excited by the piezoelectric layer 1 is more regular.
  • FIG. 7 is a schematic diagram of a two-dimensional high-performance resonator with an elliptical electrode as an example of Embodiment 4 of the present invention.
  • the upper surface of the piezoelectric layer 1 is provided with an electrode layer 2 on an xy two-dimensional plane, and the electrode is elliptical.
  • the layer 2 is divided into two groups, one group is called the first electrode 3, and the other group is called the second electrode 4.
  • the first electrodes 3 distributed along the y direction are in contact with each other and are connected by a bridge structure 7.
  • the first electrode 3 connected by the bridge structure forms the first electrode layer 5.
  • the second electrodes 4 distributed along the y direction are in contact with each other, and are connected by the bridge structure 7, and the second electrode layer 5 is connected by the bridge structure.
  • the electrode 4 forms a second electrode layer 6, the first electrode layer 5 and the second electrode layer 6 are alternately arranged, and the adjacent first electrode layer 5 and the second electrode layer 6 are respectively applied with voltages of different polarities.
  • the distance between the first electrode layer 5 distributed along the x-axis direction and the adjacent second electrode layer 6 is greater than four wavelengths.
  • f the resonator frequency
  • v the phase velocity of sound wave propagation
  • the sound wave wavelength.
  • Fig. 8 is a schematic structural diagram of a two-dimensional high-performance resonator taking an elliptical electrode as an example of embodiment 5 of the present invention. Similar to Fig. 7, an electrode layer 2 distributed in a two-dimensional direction is arranged on the upper surface of the piezoelectric layer 1. It has an oval shape, and the material of the electrode layer 2 can be metal materials such as molybdenum, aluminum, copper, and gold. Each first electrode 3 distributed along the y direction is not in direct contact, and is connected by a bridge structure 7.
  • the first electrodes 3 connected by the bridge structure form a first electrode layer 5, and each first electrode 3 distributed along the y direction There is no direct contact between the two second electrodes 4, they are connected by the bridge structure 7, the second electrode 4 connected by the bridge structure forms the second electrode layer 6, the first electrode layer 5 and the second electrode layer 6 alternate Arranged, along the x direction, the adjacent first electrode layer 5 and the second electrode layer 6 are respectively applied with voltages of different polarities, and the electrode layer 2 in the x direction is applied with alternating positive and negative voltages. , Can excite the bulk acoustic wave in the x direction to realize the acoustic-electric conversion.
  • the electrodes distributed along the y direction on the upper surface of the piezoelectric layer 1 have voltages of the same polarity, and the electrodes along this direction are connected by a bridge structure 4 as shown in FIG. 2.
  • the bridge structure 4 may be in direct contact with the piezoelectric layer 1 or not; this structure will excite transverse waves propagating along the x and y axes and longitudinal waves propagating along the z axis, thereby generating multi-dimensional bulk acoustic waves.
  • This structure uses the bulk acoustic waves transmitted in multiple directions, which not only eliminates the adverse effects of the parasitic mode, but also uses the parasitic mode wave to enhance the electrical reflection of the main mode, thereby improving the electromechanical coupling coefficient.
  • FIG. 9 is an electrode distribution diagram of a two-dimensional high-performance resonator structure taking an elliptical electrode as an example of Embodiment 6 of the present invention.
  • the distance a between the adjacent first electrode 3 and the second electrode 4 distributed along the x direction and the distance b between the electrodes along the y direction are both key factors affecting the performance of the resonator.
  • the distance a between the adjacent first electrode 3 and the second electrode 4 distributed in the x-direction designed in Example 6 is greater than four wavelengths, and the distance b between adjacent electrodes along the y-direction is less than four wavelengths, as shown in Fig. 9
  • the electrode shown is elliptical, and the spacing b along the y direction is equal to twice the distance of the long axis of the ellipse.
  • FIG. 10 is an electrode distribution diagram of a two-dimensional high-performance resonator structure taking an elliptical electrode as an example of Embodiment 7 of the present invention.
  • the electrode is still taken as an example of an ellipse, and the shape of the electrode can also be a circle, a hexagon, a diamond, or the like.
  • the electrode distribution of the seventh embodiment is different from the electrode distribution structure of the sixth embodiment.
  • the distance c between the adjacent first electrode 3 and the second electrode 4 distributed along the x-direction designed in the seventh embodiment is greater than four wavelengths.
  • the distance d between adjacent electrodes in the y direction is greater than twice the distance of the major axis of the ellipse, and is less than the distance of four wavelengths.
  • FIG 11 is a schematic diagram of two distributions of a two-dimensional high-performance resonator bridge structure.
  • the resonator structure is composed of a piezoelectric layer 1, an electrode layer 2, and a bridge structure.
  • the bridge structure can directly contact the piezoelectric layer 1, which has the advantage of simplifying the MEMS manufacturing process flow and easy implementation.
  • the bridgeable structure may not be in contact with the piezoelectric layer 1, but indirectly connected to the piezoelectric layer 1 through the contact electrode layer 2. The advantage is that it has a good suppression effect on the pseudo mode.
  • Fig. 12 is the amplitude diagram of the traditional lamb wave resonator structure and the amplitude diagram of the structure of the present invention.
  • the interdigital distance e of the traditional lamb wave resonator structure is about half a wavelength, while the interdigital distance of the resonator structure of the present invention f, that is, the distance between adjacent first electrodes 3 and second electrodes 4 distributed along the x direction is 4 wavelengths and above.
  • FIG. 13 is a schematic diagram of the impedance curve of the hexagonal electrode two-dimensional resonator and the impedance curve of the traditional Lamb wave resonator according to Embodiment 2 of the present invention.
  • the frequency interval ⁇ f between the series resonance frequency f s and the parallel resonance frequency f p determines the electromechanical coupling coefficient of the resonator
  • the size can be calculated with the following formula:
  • the piezoelectric layer 1 After the electrode layer 2 on the upper surface of the piezoelectric layer 1 is alternately applied with positive and negative voltages, the piezoelectric layer 1 will generate multi-directional electric field coupling.
  • the arrangement of the electrode layer 2 in the example of the present invention is such that the piezoelectric layer 1
  • the internal e 15 and e 24 are coupled by the classical piezoelectric equation:
  • the coupling of e 15 and e 24 causes the electric field of the structure to increase sharply, improving the electromechanical coupling coefficient of the resonator.
  • the dashed line is the impedance curve of the traditional Lamb wave resonator based on AlN piezoelectric material
  • the black curve is the impedance curve of the circular electrode two-dimensional resonator structure of Example 2 of the present invention.
  • the electromechanical coupling coefficient of traditional Lamb wave resonator Is 1.19%
  • the electromechanical coupling coefficient of the circular electrode two-dimensional resonator of Example 2 of the present invention At 34.80%, the structure of the present invention can greatly improve the effective electromechanical coupling coefficient of the resonator and enhance the performance of the resonator.
  • Example 14 is a schematic diagram of the impedance curve of the elliptical electrode two-dimensional resonator in Example 3 of the present invention and the impedance curve of the circular electrode two-dimensional resonator in Example 1 of the present invention; the calculation method is the same as that in Comparative Example 2, as shown in the figure As shown in 14, the electromechanical coupling coefficient of the circular electrode two-dimensional resonator of embodiment 1 of the present invention Is 31.2804%, and the electromechanical coupling coefficient of the elliptical electrode two-dimensional resonator of Example 3 of the present invention It was 41.693%, an increase of 33.5319%.
  • the quality factor (Q) can be calculated by the 3dBD bandwidth method.
  • the quality factor (Q) of the circular electrode two-dimensional resonator of Example 1 of the present invention is 1488
  • the quality factor (Q) of the elliptical electrode two-dimensional resonator of Example 3 of the present invention is 1488.
  • the quality factor (Q) is 1029, an increase of 44.6064%. Therefore, the structure of this embodiment can greatly improve the effective electromechanical coupling coefficient and quality factor of the resonator, and enhance the performance of the resonator.
  • the resonance frequency is higher than 6GHz, laying a favorable hardware foundation for the development of the next generation of ultra 5G technology.
  • FIG. 15 is a schematic diagram of the impedance curve of the elliptical electrode two-dimensional resonator of Embodiment 3 of the present invention, the impedance curve of the circular electrode two-dimensional resonator of Embodiment 1 of the present invention, and the impedance curve of the traditional Lamb wave resonator; calculation method and comparative example
  • the calculation method in 2 is the same, as shown in Figure 15, the electromechanical coupling coefficient of the traditional Lamb wave resonator Is 1.19%, the electromechanical coupling coefficient of the circular electrode two-dimensional resonator of Example 1 of the present invention Is 31.2804%, and the electromechanical coupling coefficient of the elliptical electrode two-dimensional resonator of Example 3 of the present invention It is 41.693%, which further shows that the performance of the two-dimensional resonator of the present invention is significantly better than that of the traditional Lamb wave resonator.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明公开了一种二维高性能谐振器,具体指一种可以提高谐振器机电耦合系数的超高频谐振器机构,该种谐振器包括压电层,压电层上表面分布有电极层,电极层包括设置于水平方向间距大于四个波长的若干电极,所述电极层上部设置有电桥结构。此种谐振器结构能够有效的提高谐振器的谐振频率和机电耦合系数,可以很好的满足5G市场的需求,且品质因数有很大程度提升。

Description

一种二维高性能谐振器 技术领域
本发明属于谐振器技术领域,尤其涉及一种二维高性能谐振器。
背景技术
随着5G时代的到来,对多频段高频滤波器的需求急剧增加。这对压电谐振器的性能提出了更高的要求。众所周知,声表面波(SAW)谐振器早期广泛应用于射频前端,但由于其相速度低、光刻存在限制等原因,在高频段很难保持优良的性能。体波谐振器(BAW)由于其插入损耗低、功率处理能力好而被广泛应用于高频市场。特别是其中的薄膜体声波谐振器(FBAR),具有高品质因数(Q)和高机电耦合系数(K2)。然而,FBAR的谐振频率是由压电薄膜的厚度决定的,因此很难在单片晶圆上实现多频段集成。兰姆波谐振器(LWR)的提出,可以突破SAW所面对的频率限制。通过调节叉指的间距可以获得不同频率的兰姆波谐振器,从而实现同一晶圆的调频。
传统的一维兰姆波谐振器是三明治结构,上下电极采用叉指结构,中间为压电材料层,叉指间距一般为一个波长,横向激发出零阶对称模态。二维兰姆波谐振器的振动是横向激发与厚度方向激发的耦合,这种特性能在一定程度上提升兰姆波谐振器的机电耦合系数以及品质因数。但兰姆波谐振器复杂的结构和较低的品质因数和机电耦合系数是限制其商业化的主要原因。
移动手机依靠小型化的高性能射频(RF)滤波器来实现其日益复杂的架构,新的5G标准要求更高频率和更大的带宽。更高的需求需要大于3GHz的高频和大于10%的宽带。这对现有的基于铌酸锂(LiTaO 3)/钽酸锂(LiNbO 3)的声表面波(SAW)和基于AlN的体声波(BAW)技术提出了严峻的挑战,这些技术通常受到较低的声耦合、约3%的带宽以及对高频的尺寸要求越来越小的限制。LTCC滤波器可以支持宽频带,但需要更大的形状因子,具有更高的损耗,并且缺乏高品质因数(Q)声学谐振器所所需的陡峭抑制。
为了满足这一需求,最近提出了一种横向激励的剪切模式体声波(BAW)谐振器(XBARs),其损耗低,在4.8GHz下的相对带宽为11%。XBAR的结构相对简单,包括金属化叉指电极(IDE)系统,但金属化率很小。电极主要产生水平电场,在悬浮的LiNbO3薄膜中产生半波长体剪切波A1共振。最大声振幅位于两个电极之间的自由膜面积上。设计的取舍与传统的微声谐振器有很大的不同。在声表面波器件中,金属IDT电极间距与谐振器频率密切相关,在声表面波器件和体声波器件中,金属厚度对谐振器频率和品质因数有很大影响。对于XBAR谐振器,频率主要由压电板厚度决定。
目前已有的XBAR谐振器结构,难以完全消除伪模态的影响,且获得高品质因数时要牺牲很大的机电耦合系数。
发明内容
本发明的目的是提供一种能提高谐振器机电耦合系数和品质因数并减少伪模态的超高频高性能谐振器。
为实现上述目的,本发明所设计的一种二维高性能谐振器,包括压电层,压电层上表面分布有电极层,电极层包括设置于水平方向间距大于四个波长的若干电极,所述电极层上部设置有电桥结构。
上述技术方案中,所述电桥结构与压电层直接接触,连接垂直方向相邻的电极。
上述技术方案中,所述电桥结构与压电层非直接接触,连接垂直方向相邻的电极。
上述技术方案中,所述电桥结构的形状为矩形,四边形或多边形。
上述技术方案中,所述电桥结构的材料选用铂、钼、金、钨、铜或铝。
上述技术方案中,所述压电层的材料选用铌酸锂、钽酸锂、氮化铝或掺杂氮化铝。
上述技术方案中,所述电极的材料选用铂、钼、金、钨、铜或铝。
上述技术方案中,所述电极层包括设置于垂直方向间距小于等于四个波长的若干电极。
上述技术方案中,所述电极形状为椭圆形、圆形、矩形、菱形、六边形、八边形、多边形或不同形状的组合。
进一步地,所述电极形状为椭圆形,沿水平方向分布的相邻电极间距大于四个波长,沿垂直方向相邻电极间距小于四个波长等于2倍椭圆长轴的距离。
进一步地,所述电极形状为椭圆形,沿水平方向分布的相邻电极间距大于四个波长,沿垂直方向相邻电极间距小于四个波长且大于2倍椭圆长轴的距离。
上述技术方案中,所述二维超高频谐振器的二维电极布置使得水平方向与垂直方向得到电场产生耦合效应,多方向电场的耦合使得谐振器的机电耦合系数增加。
本发明的有益效果是:
本发明的优点在于相对于传统的已有的谐振器结构,本发明可以达到很高的谐振频率,且在很高的谐振频率下拥有实现高机电耦合系数,超高频且高机电耦合系数对后续搭建滤波器的性能起了决定的性能,本发明结构的可行,意味着可以突破5GHz,实现更高频更高性能的芯片,基于特定排布电极的超高频高性能谐振器结构,谐振频率可以达到6GHz,可以很好的满足5G市场的需求,且本发明中具有椭圆形电极的谐振器结构可以达到大于40%的超高的机电耦合系数,且品质因数也有很大程度提升。
附图说明
图1为传统的一维氮化铝兰姆波谐振器结构;
图2为传统的二维兰姆波谐振器结构;
图3为本发明实施例1以圆形电极为例的二维谐振器结构;
图4为本发明实施例2以六边形电极为例的二维谐振器结构示意图;
图5为本发明实施例2以六边形电极为例的二维谐振器主视图;
图6为本发明实施例3以圆形电极为例的二维线性排布的谐振器结构示意图;
图7为本发明实施例4以椭圆形电极为例的二维高性能谐振器结构示意图;
图8为本发明实施例5以椭圆形电极为例的二维高性能谐振器结构示意图;
图9为本发明实施例6以椭圆形电极为例的二维高性能谐振器结构的电极分布图;
图10为本发明实施例7以椭圆形电极为例的二维高性能谐振器结构的电极分布图;
图11为本发明实施例8中二维高性能谐振器中电桥结构的两种分布示意图;
图12为本发明实施例1的圆形电极二维谐振器振幅图与传统兰姆波谐振器振幅图;
图13为本发明实施例2六边形电极二维谐振器阻抗曲线与传统兰姆波谐振器阻抗曲线示意图;
图14为本发明实施例3的椭圆形电极二维谐振器阻抗曲线与本发明实施例1的圆形电极二维谐振器阻抗曲线示意图;
图15为本发明实施例3的椭圆形电极二维谐振器阻抗曲线、本发明实施例1的圆形电极二维谐振器阻抗曲线与传统兰姆波谐振器阻抗曲线示意图;
图中:1—压电层,2—电极层,3—第一电极,4—第二电极,5—第一电极层,6—第二电极层,7—电桥结构。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明创造的描述中,需要理解的是,术语“中心”、“上”、“下”、“左”、“右”“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明创造和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明创造的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重 要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明创造的描述中,除非另有说明,“多个”的含义是两个或两个以上。
如图1所示,图1为传统的一维氮化铝兰姆波谐振器的结构示意图。如图所示,压电层1的上下表面由呈叉指状的电极层2,电极层2分为两组,分别为第一电极3和第二电极4,一组施加正电压,另一组施加负电压。当叉指电极的间距与压电层1的厚度在同一数量级时,在压电层1的内部激发沿x轴方向传播的兰姆波。
图2为传统的二维兰姆波谐振器的结构示意图。如图所示,在压电层1的上下表面布置排布均匀的电极层2,电极层2分为两组,分别为第一电极3和第二电极4,一组施加正电压,另一组施加负电压。如图所示第一电极3和第二电极4都呈圆形状,第一电极3和第二电极4分别分布在压电层1的上下表面,从而可以在压电层1的上下表面施加交流电压。电极层2之间通过电桥结构7连接。电桥结构7可以与压电层1的表面接触,也可以不接触压电层1的表面。若上表面的电桥方向沿着y轴并行排布,下表面的电桥方向则沿着x轴排布。此外,上表面的第一电极3若被施加了正电压,则与之正对着的下表面的第二电极4是带负电的,为第二电极4。此结构会激发沿着x、y轴传输的横波和沿着z轴传输的纵波,从而产生二维的兰姆波。此结构利用了两个方向传输的兰姆波,既消除了寄生模式的不利影响,也利用的寄生模式的波增强了主模的电学反映,从而提高了机电耦合系数。
实施例1
图3是本发明实施例1的二维谐振器结构示意图。如图所示,在压电层1的上表面布置有电极层2,电极层2被分为两组,一组称作第一电极3,另一组称为第二电极4,延y方向分布的第一电极3之间通过电桥结构7相连接,通过电桥结构连接后的第一电极3形成第一电极层5,延y方向分布的第二电极4之间通过电桥结构7相连接,通过电桥结构连接后的第二电极4形成第二电极层6,第一电极层5和第二电极层6交替排列,且相邻的第一电极层5和第二电极层6分别施加有不同极性的电压,若第一电极层5施加正电压,则第二电极层6增加负电压,若第一电极层5施加负电压,则第二电极层6增加正电压。沿x轴方向分布的第一电极层5与其相邻的第二电极层6的间距大于四个波长,且第一电极层5的端部与第二电极层6端部不在同一水平线上。有不同电压的第一电极层5和第二电极层6之间,会产生横向的电场,激励出声波,实现电能与机械能的转化。与图2所示传统二维兰姆波谐振器相比,本发明无需在压电层1下表面设置电极层2,仅需在压电层1上表面设置电极层2,但本发明相对于传统二维兰姆波谐振器,更高达到更高的频率,且拥有更高的机电耦合系数。
所述电桥结构的形状为矩形,四边形或多边形,电桥结构形状的选取可以根据电极的布置与形状做适应性变化,满足连接各类电极的需求,且布置电桥结构后能很好的抑制谐振器的杂散模式。
所述电桥结构的材料选用铂、钼、金、钨、铜或铝。
所述压电层1的材料选用铌酸锂、钽酸锂、氮化铝或掺杂氮化铝,铌酸锂与钽酸锂是新一代压电薄膜材料,适合用于高频器件,铌酸锂压电系数大,适用于大带宽压电器件,钽酸锂压电系数较小,适用于窄带压电器件;氮化铝是传统压电薄膜材料,其有着高品质因数、低损耗、高声速、低成本、优异的温度性能、能和互补金属氧化物半导体(CMOS)工艺集成兼容这些优势。掺杂氮化铝相对于氮化铝来说带宽有所提升。
所述电极的材料选用铂、钼、金、钨、铜或铝。
实施例2
图4是本发明实施例2的六边形电极的二维谐振器结构示意图,图5本发明实施例2的六边形电极的二维谐振器结构的主视图,电极层2的第一电极3和第二电极4的形状均为六边形,其余结构与实施例1相同。与实施例1相比,本实施例的优点是可以在一定程度上抑制谐振器的伪模态,提高谐振器的性能。
实施例3
图6是本发明实施例3的圆形电极二维线性排布的谐振器结构示意图,第一电极层5的端部与第二电极层6的端部在同一水平线上,其余结构与实施例1相同。与实施例1相比,本实施例的优点是使得压电层1内部激励出的耦合电场更规律。
实施例4
图7是本发明实施例4的以椭圆形电极为例的二维高性能谐振器结构示意图,压电层1的上表面在xy二维平面上分布有电极层2,电极呈椭圆形,电极层2被分为两组,一组称作第一电极3,另一组称为第二电极4,延y方向分布的第一电极3之间相互接触,并通过电桥结构7相连接,通过电桥结构连接后的第一电极3形成第一电极层5,延y方向分布的第二电极4之间相互接触,并通过电桥结构7相连接,通过电桥结构连接后的第二电极4形成第二电极层6,第一电极层5和第二电极层6交替排列,且相邻的第一电极层5和第二电极层6分别施加有不同极性的电压。沿x轴方向分布的第一电极层5与其相邻的第二电极层6的间距大于四个波长。当第一电极3与第二电极4在x方向的间距与压电层1的厚度在同一数量级时,在压电层1的内部可以激发沿x轴方向传播的兰姆波,兰姆波在压电层的传播方程为:f=v/λ,f为谐振器频率,v为声波传播的相速度,λ为声波波长。当调整第一电极3 与第二电极4在x方向的间距时,可以激发出其他波,例如横向剪切波等。沿y方向的电极施加有相同极性的电压,且间距需小于四个波长,当间距逐渐减小时,该谐振器的阻抗曲线越光滑,谐振器的性能越优越。如图7所示,y方向相邻电极直接接触,可以实现该方向电流导通。
实施例5
图8是本发明实施例5的以椭圆形电极为例的二维高性能谐振器结构示意图,与图7类似,在压电层1的上表面布置有二维方向分布的电极层2,电极呈椭圆形,电极层2的材料可为钼、铝、铜、金等金属材料。延y方向分布的每个第一电极3之间不直接接触,其通过电桥结构7相连接,通过电桥结构连接后的第一电极3形成第一电极层5,延y方向分布的每个第二电极4之间不直接接触,其通过电桥结构7相连接,通过电桥结构连接后的第二电极4形成第二电极层6,第一电极层5和第二电极层6交替排列,沿x方向,相邻的第一电极层5和第二电极层6分别施加有不同极性的电压,x方向的电极层2被施加有正负相交替的电压,如此施加电压的方式,可以在x方向激发出体声波,实现声电转换。压电层1上表面沿y方向分布的电极带有相同的极性的电压,且如图2所示沿该方向的电极是通过电桥结构4连接起来的。电桥结构4可以直接与压电层1接触,也可以不直接接触;此结构会激发沿着x、y轴传输的横波和沿着z轴传输的纵波,从而产生多维度的体声波。此结构利用了多个方向传输的体声波,既消除了寄生模式的不利影响,也利用的寄生模式的波增强了主模的电学反映,从而提高了机电耦合系数。
实施例6
图9是本发明实施例6的以椭圆形电极为例的二维高性能谐振器结构的电极分布图。如图9所示,沿x方向分布的相邻的第一电极3和第二电极4之间的间距a和沿y方向电极之间的间距b都是影响谐振器性能的关键因素,本实施例6设计的沿x方向分布的相邻的第一电极3和第二电极4之间的间距a大于四个波长,沿y方向相邻电极之间的间距b小于四个波长,图9所示的电极呈椭圆形,在沿y方向分布间距b等于2倍椭圆长轴的距离。
实施例7
图10是本发明实施例7的以椭圆形电极为例的二维高性能谐振器结构的电极分布图。如图10所示,电极仍以椭圆为例,电极形状也可以为圆形、六边形、菱形等形状。本实施例7电极分布与实施例6的电极分布结构不同,本实施例7设计的沿x方向分布的相邻的第一电极3和第二电极4之间的间距c大于四个波长,沿y方向相邻电极之间的间距的d大于两倍椭圆长轴的间距,且小于四个波长的距离。
实施例8
图11是二维高性能谐振器电桥结构的两种分布示意图。谐振器结构由压电层1、电极层2和电桥结构组成。如图11(a)所示,电桥结构可以直接与压电层1接触,优点是可以简化MEMS制备工艺流程,易于实现。如图11(b)所示,可电桥结构可以不与压电层1接触,而是通过接触电极层2间接连接压电层1,优点是对伪模态有很好的抑制作用。
对比例1
图12是传统兰姆波谐振器结构的振幅图与本发明结构的振幅图,传统兰姆波谐振器结构的叉指间距e大约为半个波长左右,而本发明谐振器结构的叉指间距f,即沿x方向分布的相邻的第一电极3和第二电极4之间的间距为4个波长及以上。
对比例2
图13是本发明实施例2的六边形电极二维谐振器阻抗曲线与传统兰姆波谐振器阻抗曲线示意图。其串联谐振频率f s和并联谐振频率f p之间的频率间隔Δf决定了谐振器的机电耦合系数
Figure PCTCN2020111348-appb-000001
的大小,可用下列公式计算:
Figure PCTCN2020111348-appb-000002
压电层1上表面的电极层2被交替施加上正负电压后,其压电层1内部会产生多方向的电场耦合,本发明实例所述的电极层2的排布方式使得压电层1内部的e 15与e 24产生耦合,由经典压电方程:
Figure PCTCN2020111348-appb-000003
其中:
Figure PCTCN2020111348-appb-000004
e 15与e 24的耦合使得该结构的电场激增,提升谐振器的机电耦合系数。
如图13所示,虚线是基于AlN压电材料的传统兰姆波谐振器的阻抗曲线图,黑色曲线为本发明实施例2的圆形电极二维谐振器结构的阻抗曲线图,在相同的归一化谐振频率下,传统兰姆波谐振器的机电耦合系数
Figure PCTCN2020111348-appb-000005
为1.19%,本发明实施例2的圆形电极二维谐振器的机电耦合系数
Figure PCTCN2020111348-appb-000006
为34.80%,本发明结构能极大的提高谐振器的有效机电耦合系数,增强谐 振器的性能。
对比例3
图14是本发明实施例3的椭圆形电极二维谐振器阻抗曲线与本发明实施例1的圆形电极二维谐振器阻抗曲线示意图;计算方法与对比例2中的计算方法一致,如图14所示,本发明实施例1的圆形电极二维谐振器机电耦合系数
Figure PCTCN2020111348-appb-000007
为31.2804%,而本发明实施例3的椭圆形电极二维谐振器机电耦合系数
Figure PCTCN2020111348-appb-000008
为41.7693%,提升了33.5319%。通过3dBD带宽法可以计算出品质因数(Q),本发明实施例1的圆形电极二维谐振器出的品质因数(Q)为1488,本发明实施例3的椭圆形电极二维谐振器的品质因数(Q)为1029,提升了44.6064%。因此本实施例结构能极大的提高谐振器的有效机电耦合系数和品质因数,增强谐振器的性能。且谐振频率高于6GHz,为下一代超5G技术发展奠定了有利的硬件基础。
对比例4
图15是本发明实施例3的椭圆形电极二维谐振器阻抗曲线、本发明实施例1的圆形电极二维谐振器阻抗曲线与传统兰姆波谐振器阻抗曲线示意图;计算方法与对比例2中的计算方法一致,如图15所示,传统兰姆波谐振器的机电耦合系数
Figure PCTCN2020111348-appb-000009
为1.19%,本发明实施例1的圆形电极二维谐振器机电耦合系数
Figure PCTCN2020111348-appb-000010
为31.2804%,而本发明实施例3的椭圆形电极二维谐振器机电耦合系数
Figure PCTCN2020111348-appb-000011
为41.7693%,因此更加能说明本发明的二维谐振器的性能明显优于传统兰姆波谐振器。
上述结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (12)

  1. 一种二维高性能谐振器,其特征在于:包括压电层,压电层上表面分布有电极层,电极层包括设置于水平方向间距大于四个波长的若干电极,所述电极层上部设置有电桥结构。
  2. 如权利要求1所述的二维高性能谐振器,其特征在于:所述电桥结构与压电层直接接触,连接垂直方向相邻的电极。
  3. 如权利要求1所述的二维高性能谐振器,其特征在于:所述电桥结构与压电层非直接接触,连接垂直方向相邻的电极。
  4. 如权利要求1至3中任一项所述的二维高性能谐振器,其特征在于:所述电桥结构的形状为矩形,四边形或多边形。
  5. 如权利要求4所述的二维高性能谐振器,其特征在于:所述电桥结构的材料选用铂、钼、金、钨、铜或铝。
  6. 如权利要求1所述的二维高性能谐振器,其特征在于:所述压电层的材料选用铌酸锂、钽酸锂、氮化铝或掺杂氮化铝。
  7. 如权利要求1所述的二维高性能谐振器,其特征在于:所述电极的材料选用铂、钼、金、钨、铜或铝。
  8. 如权利要求1或7所述的二维高性能谐振器,其特征在于:所述电极层包括设置于垂直方向间距小于等于四个波长的若干电极。
  9. 如权利要求1或7所述的二维高性能谐振器,其特征在于:所述电极形状为椭圆形、圆形、矩形、菱形、六边形、八边形、多边形或不同形状的组合。
  10. 如权利要求9所述的二维高性能谐振器,其特征在于:所述电极形状为椭圆形,沿水平方向分布的相邻电极间距大于四个波长,沿垂直方向相邻电极间距小于四个波长等于2倍椭圆长轴的距离。
  11. 如权利要求9所述的二维高性能谐振器,其特征在于:所述电极形状为椭圆形,沿水平方向分布的相邻电极间距大于四个波长,沿垂直方向相邻电极间距小于四个波长且大于2倍椭圆长轴的距离。
  12. 如权利要求1所述的二维高性能谐振器,其特征在于:所述二维超高频谐振器的二维电极布置使得水平方向与垂直方向得到电场产生耦合效应,多方向电场的耦合使得谐振器的机电耦合系数增加。
PCT/CN2020/111348 2019-11-18 2020-08-26 一种二维高性能谐振器 WO2021098321A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/746,954 US20220278669A1 (en) 2019-11-18 2022-05-17 Two-dimensional high-performance resonator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911127186.6 2019-11-18
CN201911127186.6A CN110880922B (zh) 2019-11-18 2019-11-18 一种二维超高频谐振器
CN201911398316.X 2019-12-30
CN201911398316.XA CN110995194B (zh) 2019-12-30 2019-12-30 一种二维高性能谐振器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/746,954 Continuation-In-Part US20220278669A1 (en) 2019-11-18 2022-05-17 Two-dimensional high-performance resonator

Publications (1)

Publication Number Publication Date
WO2021098321A1 true WO2021098321A1 (zh) 2021-05-27

Family

ID=75980278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111348 WO2021098321A1 (zh) 2019-11-18 2020-08-26 一种二维高性能谐振器

Country Status (2)

Country Link
US (1) US20220278669A1 (zh)
WO (1) WO2021098321A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023213412A1 (en) * 2022-05-06 2023-11-09 Huawei Technologies Co., Ltd. An acoustic resonator device exploiting al lamb mode
WO2023237219A1 (en) * 2022-06-07 2023-12-14 Huawei Technologies Co., Ltd. Acoustic resonator device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064283A1 (en) * 2010-11-08 2012-05-18 Agency For Science, Technology And Research Cross-reference to related application
WO2014112951A1 (en) * 2013-01-15 2014-07-24 Agency For Science, Technology And Research Dual mode resonator
CN103975525A (zh) * 2011-09-30 2014-08-06 高通Mems科技公司 横截面扩张模式共振器
CN110113026A (zh) * 2019-05-22 2019-08-09 武汉大学 一种二维兰姆波谐振器
CN110880922A (zh) * 2019-11-18 2020-03-13 武汉大学 一种二维超高频谐振器
CN110995194A (zh) * 2019-12-30 2020-04-10 武汉大学 一种二维高性能谐振器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064283A1 (en) * 2010-11-08 2012-05-18 Agency For Science, Technology And Research Cross-reference to related application
CN103975525A (zh) * 2011-09-30 2014-08-06 高通Mems科技公司 横截面扩张模式共振器
WO2014112951A1 (en) * 2013-01-15 2014-07-24 Agency For Science, Technology And Research Dual mode resonator
CN110113026A (zh) * 2019-05-22 2019-08-09 武汉大学 一种二维兰姆波谐振器
CN110880922A (zh) * 2019-11-18 2020-03-13 武汉大学 一种二维超高频谐振器
CN110995194A (zh) * 2019-12-30 2020-04-10 武汉大学 一种二维高性能谐振器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LOKE SAMUEL PEI HAO; SUN CHENGLIANG; ZHU YAO; WANG NAN; GU YUANDONG ALEX: "Two dimensional, high electromechanical coupling aluminium nitride Lamb wave resonators", 2015 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), IEEE, 1 June 2015 (2015-06-01), pages 733 - 735, XP033219365, ISBN: 978-1-4799-8362-9, DOI: 10.1109/EDSSC.2015.7285221 *
YANG XING; LIANG JI; JIANG YUAN; CHEN XUEJIAO; ZHANG HAO; ZHANG MENGLUN; PANG WEI: "AlN Lamb Wave Resonators on a Flexible Substrate", IEEE ELECTRON DEVICE LETTERS, IEEE, USA, vol. 38, no. 8, 1 August 2017 (2017-08-01), USA, pages 1125 - 1127, XP011660639, ISSN: 0741-3106, DOI: 10.1109/LED.2017.2714708 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023213412A1 (en) * 2022-05-06 2023-11-09 Huawei Technologies Co., Ltd. An acoustic resonator device exploiting al lamb mode
WO2023237219A1 (en) * 2022-06-07 2023-12-14 Huawei Technologies Co., Ltd. Acoustic resonator device

Also Published As

Publication number Publication date
US20220278669A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
US12052011B2 (en) High quality factor transducers for surface acoustic wave devices
JP5926735B2 (ja) 広帯域音響結合薄膜bawフィルタ
CN110880922B (zh) 一种二维超高频谐振器
CN110995194B (zh) 一种二维高性能谐振器
CN111697943B (zh) 一种高频高耦合系数压电薄膜体声波谐振器
US20220278669A1 (en) Two-dimensional high-performance resonator
CN113839643B (zh) 一种横向激发体声波谐振器和滤波器
WO2024001757A1 (zh) 一种高频声波谐振器及应用其的滤波器
WO2021114555A1 (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN110868187B (zh) 一种基于弧形电极的超高频谐振器结构
CN110572138A (zh) 一种滤波装置及其制作方法
CN210405249U (zh) 一种滤波装置
US11791799B2 (en) Ladder-type surface acoustic wave device
CN114584102A (zh) 射频谐振器及滤波器
WO2023097531A1 (zh) 一种体声波谐振器、滤波器及电子设备
US8957745B2 (en) Superlattice crystal resonator and its usage as superlattice crystal filter
US20230283258A1 (en) Transversely-excited film bulk acoustic resonator with symmetric diaphragm
CN112290904A (zh) 基于嵌入型电极的超高频谐振器
CN111130495B (zh) 超高频谐振器
CN112688656B (zh) 一种二维高性能超高频谐振器
US20230090976A1 (en) Bulk Acoustic Resonator and Filter
CN111010124B (zh) 电极具有空隙层的体声波谐振器、滤波器及电子设备
TWI751407B (zh) 用於表面聲波濾波裝置中源抑制的轉換器結構
CN112968685A (zh) 带有沟槽结构的体声波谐振器
CN112350683B (zh) 类石墨烯结构的超高频谐振器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20891344

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20891344

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20891344

Country of ref document: EP

Kind code of ref document: A1