WO2021098311A1 - 一种电机动态制动电路及电机动态制动方法 - Google Patents

一种电机动态制动电路及电机动态制动方法 Download PDF

Info

Publication number
WO2021098311A1
WO2021098311A1 PCT/CN2020/110296 CN2020110296W WO2021098311A1 WO 2021098311 A1 WO2021098311 A1 WO 2021098311A1 CN 2020110296 W CN2020110296 W CN 2020110296W WO 2021098311 A1 WO2021098311 A1 WO 2021098311A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
power
bus
dynamic braking
dynamic
Prior art date
Application number
PCT/CN2020/110296
Other languages
English (en)
French (fr)
Inventor
姚瑱
杜鑫
钱巍
Original Assignee
南京埃斯顿自动化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京埃斯顿自动化股份有限公司 filed Critical 南京埃斯顿自动化股份有限公司
Publication of WO2021098311A1 publication Critical patent/WO2021098311A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage

Definitions

  • the invention relates to a motor dynamic braking circuit and a motor dynamic braking method.
  • Dynamic braking is widely used in motor-driven power electronic conversion equipment. When an emergency alarm occurs in the system, or the system is powered off, or the system needs to be stopped in an emergency, the dynamic braking functions to stop the motor safely and reliably to avoid causing Equipment damage, personal injury, etc.
  • Several common topologies for dynamic braking are as follows:
  • Japanese patent document JP3863529B2 discloses a dynamic braking topology diagram, which is also the simplest and most common dynamic braking topology.
  • the system stops PWM sending, then starts the dynamic braking circuit, pulls in the relay, and The energy in the motor windings is consumed in the resistance loop, and the motor is quickly stopped.
  • dynamic braking can be further simplified in topology. For example, a relay contact is directly used to short-circuit the U and V phases without any series resistance.
  • Japanese patent document JP1994315287A discloses a dynamic braking topology diagram.
  • the system stops PWM transmission, then starts the dynamic braking circuit, pulls in the relay, and rectifies the alternating current in the motor windings on the resistor. Consume, stop the motor quickly.
  • the number of power resistors in this topology is greatly reduced, and the design is more concise, but there are also unavoidable problems. Normally, you can wait for the completion of dynamic braking before disconnecting the relay. At this time, the current is zero, and there is no problem with the relay disconnection.
  • Japanese patent document JP1989209970A discloses a dynamic braking topology diagram, which is an upgrade and improvement of the dynamic braking topology diagram disclosed in Japanese patent document JP1994315287A.
  • the specific principle is shown in Figure 1.
  • the advantage of this topology is that it saves 3 diodes compared with the dynamic braking topology disclosed in Japanese Patent Document JP1994315287A, and for a multi-axis drive system, it can be conveniently realized by the connection method shown in the dynamic braking topology diagram disclosed in Japanese Patent Document JP1989209970A
  • the multi-axis common bus system shares the same dynamic brake circuit, which greatly reduces the overall volume and cost of the system.
  • each axis needs a dynamic brake circuit.
  • the cost of the dynamic brake circuit can reach more than 60RMB and occupy a lot of PCB layout area.
  • Using this topology can reduce 67% of the cost, and greatly reduce the PCB layout area.
  • the multi-axis common bus drive system shares the dynamic brake circuit, and each drive device needs to be led out by an additional terminal to realize external connection. See the circle box in the dynamic brake topology diagram disclosed in Japanese Patent Document JP1989209970A, which will increase certain wiring. Cost and complexity. This topology can also be evolved to multiplex 3 body diodes.
  • the NMOS in the dynamic braking topology disclosed in Japanese Patent Document JP1989209970A does not actually meet the requirements of dynamic braking. Dynamic braking requires that the reliable operation of the dynamic braking circuit can still be ensured even when the system is powered off or abnormal. And thyristor is a better choice, but if you use a relay or thyristor, you still cannot avoid the problem of DC disconnection.
  • Figure 2 shows the power frame of the traditional motor drive, which is generally composed of a rectifier bridge module, a power-on soft start module, a bus capacitor module, a regenerative braking module, an inverter bridge module, and a dynamic braking module.
  • the dynamic brake module can only be placed on the AC side. If it is placed on the DC side, the terminal voltage of the dynamic brake module is clamped by the bus capacitor voltage, the dynamic braking effect is greatly affected, the motor stops slowly, and the dynamic brake The dynamic resistance also bears the additional discharge of the energy of the bus capacitance, which increases the burden of the resistance.
  • the technical problem to be solved by the present invention is to overcome the defects existing in the prior art and propose a motor dynamic braking circuit and a motor dynamic braking method.
  • dynamic braking is realized on the P/N side (DC side), which is different from the traditional method of realizing dynamic braking on the U/V/W side (AC side) of the motor.
  • the advantage is that it can reuse the 6 individual diodes of the inverter bridge, reduce the system cost, reduce the layout area, and support the multi-axis common bus system without additional wiring to achieve shared dynamic braking, reducing the dynamic braking wiring of the multi-axis system Cost, complexity.
  • the power frame is composed of a rectifier bridge module, a power-on soft start module, a bus capacitor module, a regenerative braking module, an inverter bridge module, and a dynamic braking module.
  • the connection topology of each module is The traditional scheme is different. Its characteristic is: after the AC power is rectified by the rectifier bridge module, it is filtered by the bus capacitor and transformed into a stable voltage DC bus P/N, and then the DC power is converted into AC power to drive the motor through the inverter bridge module.
  • One end of the power-on soft start module is connected to the positive P of the bus, the other end is connected to one end of the bus capacitor module and the regenerative braking module, the other end of the bus capacitor module and the regenerative braking module is connected to the negative N of the bus, and the dynamic braking module is directly connected On the DC bus P/N.
  • the function of the power-on soft-start module is to limit the charging current of the bus capacitor during power-on.
  • the module implementation is one, the buffer resistor electrically connected in parallel by a R 1 soft-start module and a power switch S 1 is composed of, on power, the power ON soft start module switch S 1 is turned off, after power-on snubber resistors R 1 charges the bus capacitor.
  • the power-on soft-start module switch S 1 is closed, and the system is powered on.
  • the switch S 1 of the power-on soft start module and the switch S 2 of the regenerative brake can be interlocking mechanism, and the resistance can be changed to NTC.
  • the first function of the regenerative braking module is to prevent the bus voltage from rising too high when the negative torque of the motor stops, and the second function is to discharge the residual energy of the bus after the system is powered off.
  • One of the implementations of this module is that the regenerative braking resistor R 2 and the freewheeling diode D 2 are connected in parallel and then connected in series with the regenerative braking switch S 2.
  • the regenerative brake switch S 2 When the bus voltage rises to the pump up point U 1 , the regenerative brake switch S 2 is opened to discharge.
  • the regenerative brake switch S 2 is closed to stop the discharge.
  • the function of the freewheeling diode D 2 is to provide a freewheeling loop for the current on the resistor to avoid excessively high peak voltage induced when the switch is turned off.
  • the regenerative braking module can also be implemented in other ways, such as turning on the switch when the voltage exceeds the threshold value 1, and turning on the switch for a fixed period of time, and so on.
  • the function of the dynamic braking module is to ensure the safe and reliable fast stop of the motor when an abnormal situation such as an emergency stop or a power failure of the system occurs.
  • the module wherein one implementation, the dynamic braking and dynamic braking resistor R 3 freewheeling diode D 3 is connected in parallel after the switch S 3 and dynamic braking in series. Supra diode effect, due to the dynamic braking characteristics, dynamic brake is required to open the switch S 3 is in the normal state. Turn off the dynamic brake switch S3 before powering on the system AC input power, and then charge the bus capacitor through the power-on buffer resistor R 1 after the system is powered on. After the bus is charged, close the power-on soft start module switch S 1 , and the system is powered on. .
  • the power-on soft-start module switch S 1 When the AC input power of the system is powered off, the power-on soft-start module switch S 1 is opened, and the regenerative braking switch S 2 is closed to discharge the residual energy of the capacitor.
  • dynamic braking is required to be executed, the external AC input switch of the power electronic equipment is turned off, or the internal power input of the power electronic equipment is cut off (see the dotted box in Figure 6), the system AC input is cut off, and then the power-on soft start module is disconnected Switch S 1 , close the dynamic brake switch S 3 , the motor energy is rectified to the busbar P/N through the body diode of the inverter bridge module, and is consumed by the dynamic brake circuit to make the motor stop safely and reliably.
  • the dynamic brake module Since the positive terminal of the bus capacitor is not directly connected to the positive P of the bus, the dynamic brake module is not clamped by the bus voltage, the motor stops faster during dynamic braking, and the regenerative brake switch S 2 can be closed at the same time for the remaining bus capacitor bleed energies, residual energy bus capacitance is not full dynamic braking resistor R 3 consumed, avoids the resistance R 3 bear additional burdens, overload failure.
  • the motor dynamic brake circuit of the present invention to control the working process of the dynamic brake of the motor: when the dynamic brake is required to be executed, the first step is to cut off the module action to cut off the system AC input, and the second step to cut off the soft start
  • the module s power-on soft-start module switch S 1
  • the third step is to close the dynamic brake switch S 3 of the dynamic brake module, the motor energy is rectified to the busbar P/N through the body diode of the inverter bridge module, and is consumed by the dynamic brake circuit. Make the motor stop quickly and reliably.
  • the regenerative brake switch S 2 of the regenerative brake module can be closed to discharge the residual energy on the bus capacitor module.
  • the first step is to turn off the dynamic brake switch S 3 of the dynamic brake module
  • the second step is to prohibit the power-on cut-off module
  • the AC input power enters the system through the power-on buffer resistor R 1 Charge the bus capacitor. After the bus is charged, close the soft-start switch S 1 of the soft-start module, and the system is powered on.
  • dynamic brake switch S 3 is not limited to a relay or thyristor mentioned conventional method, the depletion type FET devices may be employed, most depletion FET
  • the obvious advantage is that it can break large DC currents, which cannot be achieved by relays or thyristors unless a relay that specifically breaks DC is selected, but this type of relay is larger in size and higher in cost.
  • the present invention proposes that depletion-type FETs can be used as the switch of the DC dynamic braking circuit, which meets the requirements of the dynamic braking circuit to still operate reliably under the system power loss or abnormal conditions, and can carry out large currents.
  • DC disconnection solves the problem of traditional relays and thyristors as switches.
  • the present invention can be applied to all common bus architectures, including Shared DC-Common, Shared AC/DC, Shared AC/DC Hybrid, etc.
  • a common dynamic braking module is allowed to be shared by multiple shafts with a common bus, which greatly reduces the cost and volume of dynamic braking of the system, and greatly reduces the PCB layout area. Compared with the solution shown in Fig.
  • the dynamic braking solution proposed by the present invention completely reuses the diodes of the inverter bridge module to achieve rectification without adding additional 3 diodes per axis, and for the common bus system, there is no need to increase Any additional wiring can realize the shared dynamic brake module, simplifying the system wiring and reducing the cost of diodes, wiring terminals, and cables.
  • the present invention can easily realize the shared dynamic brake module without adding any additional wiring, simplifies the system wiring, and reduces the cost of wiring terminals and cables.
  • Fig. 1 is a schematic diagram of the dynamic braking topology disclosed in Japanese Patent Document JP1989209970A.
  • Figure 2 is a power frame diagram of a traditional motor drive.
  • Figure 3 is a circuit diagram of the dynamic braking of the motor of the present invention.
  • Fig. 4 is a circuit diagram of the power-on soft start module of the motor dynamic braking circuit of the present invention.
  • Figure 5 is a circuit diagram of the regenerative braking module of the motor dynamic braking circuit of the present invention.
  • Fig. 6 is a circuit diagram of the dynamic braking module of the dynamic braking circuit of the motor of the present invention.
  • Fig. 7 is an example of the application of the dynamic brake circuit of the motor of the present invention in a multi-axis common bus.
  • FIG. 3 shows the motor dynamic braking circuit proposed by the present invention.
  • the power frame is composed of a rectifier bridge module, a power-on soft start module, a bus capacitor module, a regenerative braking module, an inverter bridge module, and a dynamic braking module.
  • the connection topology of the module is different from the traditional scheme. After the AC power is rectified by the rectifier bridge module, it is filtered by the bus capacitor and transformed into a DC bus P/N with stable voltage, and then the DC power is converted into AC power to drive the motor through the inverter bridge module.
  • One end of the power-on soft start module is connected to the positive P of the bus, the other end is connected to one end of the bus capacitor module and the regenerative braking module, the other end of the bus capacitor module and the regenerative braking module is connected to the negative N of the bus, and the dynamic braking module is directly connected On the DC bus P/N.
  • the function of the power-on soft start module is to limit the charging current of the bus capacitor when the power is on.
  • An example of the implementation of this module is shown in Figure 7. It consists of a power-on buffer resistor R 1 connected in parallel and a power-on soft-start module switch S 1. When power is on, the switch S 1 is off and passes through the power-on buffer resistor. R 1 charges the bus capacitor. When the charging is completed, the power-on soft-start module switch S 1 is closed, and the system is powered on.
  • the first function of the regenerative braking module is to prevent the bus voltage from rising too high when the negative torque of the motor stops, and the second function is to discharge the residual energy of the bus after the system is powered off.
  • An example of the implementation of this module is shown in Figure 5.
  • the regenerative braking resistor R 2 and the freewheeling diode D 2 are connected in parallel and then connected in series with the regenerative braking switch S 2. When the bus voltage rises to the pump rise point U 1 When the regenerative brake switch S 2 is turned on for discharge, when the bus voltage drops to the pump lower point U 2 , the regenerative brake switch S 2 is closed to stop the discharge.
  • the function of the freewheeling diode D 2 is to provide a freewheeling loop for the current on the resistor to avoid excessively high peak voltage induced when the switch is turned off.
  • the function of the dynamic brake module is to ensure the safe and reliable fast stop of the motor when an abnormal situation such as an emergency stop or a system power failure occurs.
  • the dynamic braking and dynamic braking resistor R 3 freewheeling diode D 3 is connected in parallel after the brake switch S 3 and the dynamic series, the diode effect above, since the dynamic system 6 shown in FIG.
  • the dynamic characteristics require that the dynamic brake switch S 3 be in a normally open state. Turn off the dynamic brake switch S 3 before powering on the system AC input power, and then charge the bus capacitor through the power-on buffer resistor R 1 after the system is powered on, and close the power-on soft start module switch S 1 after the bus is charged, and the system is powered on carry out.
  • the power-on soft-start module switch S 1 When the AC input power of the system is powered off, the power-on soft-start module switch S 1 is opened, and the regenerative braking switch S 2 is closed to discharge the residual energy of the capacitor.
  • the dynamic braking When the dynamic braking is required to be executed, the external AC input switch of the power electronic equipment is turned off, or the internal power input of the power electronic equipment is cut off (see the dotted box in Figure 3), the system AC input is cut off, and then the power-on soft start module is disconnected Switch S 1 , close the dynamic brake switch S 3 , the motor energy is rectified to the busbar P/N through the body diode of the inverter bridge module, and is consumed by the dynamic brake circuit to make the motor stop safely and reliably.
  • the dynamic brake module Since the positive terminal of the bus capacitor is not directly connected to the positive P of the bus, the dynamic brake module is not clamped by the bus voltage, the motor stops faster during dynamic braking, and the regenerative brake switch S 2 can be closed at the same time for the remaining bus capacitor bleed energies, residual energy bus capacitance is not full dynamic braking resistor R 3 consumed, avoids the dynamic braking resistor R 3 bear additional burdens, overload failure.
  • dynamic brake switch S 3 is not limited to a relay or thyristor mentioned conventional method, the depletion type FET devices may be employed, most depletion FET
  • the obvious advantage is that it can break large DC currents, which cannot be achieved by relays or thyristors unless a relay that specifically breaks DC is selected, but this type of relay is larger in size and higher in cost.
  • FIG. 7 is an example of applying the dynamic braking scheme of the present invention to a multi-axis common busbar scenario.
  • the present invention can be applied to all common busbar architectures, including Shared DC-Common, Shared AC/DC, Shared AC/DC Hybrid, etc.
  • Benefiting from the dynamic braking solution proposed by the present invention a common dynamic braking module is allowed to be shared by multiple shafts with a common bus, which greatly reduces the cost and volume of dynamic braking of the system, and greatly reduces the PCB layout area.
  • the dynamic braking solution proposed by the present invention is compared with the solution shown in the dynamic braking topology diagram disclosed in Japanese Patent Document JP1989209970A, which completely reuses the diodes of the inverter bridge module to achieve rectification without adding additional 3 diodes per axis.
  • the shared dynamic brake module can be realized without adding any additional wiring, which simplifies the system wiring and reduces the cost of diodes, wiring terminals, and cables.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

本发明公开了一种电机动态制动电路及电机动态制动方法。交流电经过整流桥模块整流后,经过母线电容滤波,变换成电压稳定的直流母线P/N,再经过逆变桥模块将直流电转化为交流电拖动电机;上电软启模块的一端连接在母线正P上,另一端连接母线电容模块和再生制动模块的一端,母线电容模块和再生制动模块的另一端连接母线负N,动态制动模块直接连接在直流母线P/N上。本发明的动态制动电路完全复用逆变桥模块的体二极管实现整流,无需每轴再增加额外的3个二极管,降低系统成本,缩减PCB面积;无需增加任何额外接线即可支持多轴共母线系统共用动态制动模块,简化了系统接线,减少了接线端子、电缆的成本。

Description

一种电机动态制动电路及电机动态制动方法 技术领域
本发明涉及一种电机动态制动电路及电机动态制动方法。
背景技术
动态制动广泛应用于电机拖动电力电子变换设备中,在系统发生紧急报警,或系统掉电,或系统需要紧急停车的情况下,动态制动起作用,安全可靠的迅速停止电机,避免造成设备损坏、人员受伤等。动态制动常见的几种拓扑如下:
日本专利文献JP3863529B2中公开了一种动态制动拓扑图,也是最为简单常见的动态制动拓扑,当接到动态制动需求,系统停止PWM发送,随后启动动态制动回路,吸合继电器,将电机绕组中的能量在电阻回路中消耗,迅速停止电机。在小功率电机拖动场合,动态制动在拓扑上可以进一步简化,如直接采用1个继电器触点短接U、V两相,不需要任何串联电阻。
日本专利文献JP1994315287A公开了一种动态制动拓扑图,当接到动态制动需求,系统停止PWM发送,随后启动动态制动回路,吸合继电器,将电机绕组中的交流电经过整流后在电阻上消耗,迅速停止电机。该拓扑中相比于日本专利文献JP3863529B2中的动态制动拓扑功率电阻数目大大减少,设计更为简洁,但也存在不可回避的问题。通常情况下,可以等待动态制动完成再断开继电器,此时电流为零,继电器断开没有问题。但当动态制动回路过载发生,或极端情况,如电机处于反拖发电状态动态制动使能,这些情况下,继电器需要具备一定的直流分断能力,这大大增加了继电器的体积和成本。考虑到动态制动需要在系统失电情况下动作,因此通常选取常闭触点的继电器作为开关元件,当然也有选择晶闸管的做法, 机理相同,但同样不具备直流分断能力。
日本专利文献JP1989209970A公开了一种动态制动拓扑图,是对日本专利文献JP1994315287A公开的动态制动拓扑图的升级改进,具体原理见图1,复用下3路逆变桥体二极管,外加3个二极管,构成整流回路,将整流后的能量消耗在电阻上。该拓扑的好处是较日本专利文献JP1994315287A公开的动态制动拓扑节省3个二极管,且对于多轴拖动系统,可以通过日本专利文献JP1989209970A公开的动态制动拓扑图所示的连接方法方便的实现多轴共母线系统共用同一动态制动回路,极大的降低了系统总体的体积和成本。如机器人应用场合,每个轴都需要有动态制动回路,以简单的4轴3kg桌面机器人为例,动态制动回路的成本达到60RMB以上,且占用大量PCB布板面积,使用该拓扑可以降低67%的成本,且大大缩小PCB布板面积。但多轴共母线拖动系统共用动态制动回路,需要每个拖动装置额外引出一个端子才能实现外部连接,见日本专利文献JP1989209970A公开的动态制动拓扑图中的圆框,会增加一定接线成本和复杂度。该拓扑也可以演变成复用上3路体二极管。另,日本专利文献JP1989209970A公开的动态制动拓扑中的NMOS实际上并不符合动态制动的要求,动态制动要求系统掉电或异常情况下,依然能够保证动态制动回路的可靠动作,继电器和晶闸管是较好的选择,但如果使用继电器或晶闸管,依然无法回避直流分断的问题。
另外,图2展示了传统电机拖动的功率框架,一般由整流桥模块、上电软启模块、母线电容模块、再生制动模块、逆变桥模块和动态制动模块组成。传统系统中,动态制动模块只能放在交流侧,如果放在直流侧,动态制动模块端电压受到母线电容电压钳位,动态制动效果受到较大影响,电机停止缓慢,且动态制动电阻还要额外承担母线电容能量的泄放,增加了电阻负担。
发明内容
本发明所要解决的技术问题在于,克服现有技术存在的缺陷,提出了一种电机动态制动电路及电机动态制动方法。结合前端缓冲电路、再生制动电路,在P/N侧(直流侧)实现动态制动,不同于传统方法中在电机U/V/W侧(交流侧)实现动态制动,该技术方案的优势是能够复用逆变桥的6个体二极管,降低系统成本、缩小布板面积,同时能够支持多轴共母线系统不用额外接线即可实现共用动态制动,降低多轴系统的动态制动接线成本、复杂度。
本发明提出的电机动态制动电路,功率框架由整流桥模块、上电软启模块、母线电容模块、再生制动模块、逆变桥模块和动态制动模块组成,但各个模块的连接拓扑和传统方案有所不同。其特征是:交流电经过整流桥模块整流后,经过母线电容滤波,变换成电压稳定的直流母线P/N,再经过逆变桥模块将直流电转化为交流电拖动电机。上电软启模块的一段连接在母线正P上,另一端连接母线电容模块和再生制动模块的一端,母线电容模块和再生制动模块的另一端连接母线负N,动态制动模块直接连接在直流母线P/N上。
在部分应用时,还可以选择在交流输入与整流桥模块中间添加入电切断模块。
所述上电软启模块的作用是上电时限制母线电容充电电流。该模块其中一种实现方式是,由并联连接的上电缓冲电阻R 1和上电软启模块开关S 1组成,上电时,上电软启模块开关S 1断开,经过上电缓冲电阻R 1给母线电容充电,当充电完成后,上电软启模块开关S 1闭合,系统上电完成。也有其它实现方式,如上电软启模块开关S 1和电阻串联后再和再生制动开关S 2
并联,上电软启模块开关S 1和再生制动开关S 2可以是连锁机构,电阻可换成NTC。
所述再生制动模块的作用一是在电机负扭矩停止时阻止母线电压升的过高,作用二是在 系统下电后泄放母线残留能量。该模块其中一种实现方式是,再生制动电阻R 2和续流二极管D 2并联后再和再生制动开关S 2串联。当母线电压升高到泵升上点U 1时,打开再生制动开关S 2进行泄放,当母线电压降低到泵升下点U 2时,关闭再生制动开关S 2停止泄放。续流二极管D 2的作用是为电阻上的电流提供续流回路,避免开关关断时感应出过高的尖峰电压。系统下电时,检测到交流电断开后,上电软启模块开关S 1断开,再生制动再生制动开关S 2闭合,泄放母线残留能量。
所述再生制动模块,也有其它实现方式,如电压超过阈值1打开开关,开通固定时间后关闭,等等。
所述动态制动模块的作用是当紧急停车,或系统掉电等异常情况发生时,保证电机安全可靠的快速停车。该模块其中一种实现方式是,动态制动电阻R 3与动态制动续流二极管D 3并联连接后再和动态制动开关S 3串联。二极管的作用同上,由于动态制动的特性,需要动态制动开关S 3处于常态开通的状态。在系统交流输入电上电前断开动态制动开关S3,随后系统上电通过上电缓冲电阻R 1给母线电容充电,母线充电完毕后闭合上电软启模块开关S 1,系统上电完成。当系统交流输入电下电时,上电软启模块开关S 1断开,再生制动开关S 2闭合,对电容残余能量进行泄放。当动态制动被要求执行时,电力电子设备外部交流输入开关断开,或电力电子设备内部入电切断(见图6中虚线框)动作,切断系统交流输入,随后断开上电软启模块开关S 1,闭合动态制动开关S 3,电机能量通过逆变桥模块体二极管整流到母线P/N,经过动态制动回路消耗,使电机安全可靠停止。由于母线电容正端并没有直接和母线正P相连,动态制动模块并没有被母线电压钳位,动态制动时电机停止速度较快,且可以同时闭合再生制动开关S 2对母线电容残余能量进行泄放,母线电容的残余能量也不会全通过动态制动 电阻R 3消耗,避免了电阻R 3承受额外负担,过载失效。
使用本发明所述的电机动态制动电路控制电机动态制动的工作过程:当动态制动被要求执行时,第一步入电切断模块动作,切断系统交流输入,第二步断开软启模块的上电软启模块开关S 1,第三步闭合动态制动模块的动态制动开关S 3,电机能量通过逆变桥模块体二极管整流到母线P/N,经过动态制动回路消耗,使电机快速可靠停止。同时可以闭合再生制动模块的再生制动开关S 2,对母线电容模块上的残留能量进行泄放。当系统交流输入电上电时,第一步先断开动态制动模块的动态制动开关S 3,第二步禁止入电切断模块,交流输入电通入系统,通过上电缓冲电阻R 1给母线电容充电,母线充电完毕后闭合软启模块的上电软启模块开关S 1,系统上电完成。
另外,本发明提出针对动态制动的特点,动态制动开关S 3并不局限于传统方法中提及的继电器或晶闸管,可以采用耗尽型场效应管器件,使用耗尽型场效应管最明显的优势在于可以分断较大的直流电流,这一点继电器或晶闸管不能实现,除非选择专门分断直流的继电器,但此种继电器体积较大、成本较高。
另外,本发明提出可以使用但不限于耗尽型场效应管作为直流动态制动回路的开关,符合动态制动回路要求在系统失电或异常情况下仍然可靠动作的要求,且能够进行大电流直流分断,解决了传统继电器和晶闸管作为开关的问题。
本发明能够适用于所有共母线架构,包括Shared DC-Common,Shared AC/DC,Shared AC/DC Hybrid等。得益于本发明提出的动态制动方案,允许多个共母线的轴共用一个公共动态制动模块,大大缩小了系统动态制动的成本和体积,且大大缩小PCB布板面积。且本发明提出的动态制动方案相比于图3所示的方案,完全复用逆变桥模块的二极管实现整流,无需 每轴增加额外的3个二极管,且对于共母线系统而言无需增加任何额外接线即可实现共用动态制动模块,简化了系统接线,减少了二极管和接线端子、电缆的成本。
本发明的优点如下:
1.完全复用逆变桥模块的体二极管实现整流,无需每轴再增加额外的3个二极管,降低系统成本,缩减PCB面积。
2.支持多轴共母线系统共用动态制动模块,极大的降低系统成本,缩减PCB面积。
3.对于多轴共母线系统,本发明无需增加任何额外接线即可方便实现共用动态制动模块,简化了系统接线,减少了接线端子、电缆的成本。
附图说明
图1是日本专利文献JP1989209970A公开的动态制动拓扑原理图。
图2是传统电机拖动的功率框架图。
图3是本发明电机动态制动电路图。
图4是本发明电机动态制动电路的上电软启模块电路图。
图5是本发明电机动态制动电路的再生制动模块电路图。
图6是本发明电机动态制动电路的动态制动模块电路图。
图7是本发明电机动态制动电路应用于多轴共母线场合的示例。
具体实施方式
下面结合附图和实施例,对本发明作进一步详细说明。
实施例
图3所示为本发明提出的电机动态制动电路,功率框架由整流桥模块、上电软启模块、 母线电容模块、再生制动模块、逆变桥模块和动态制动模块组成,但各个模块的连接拓扑和传统方案有所不同。交流电经过整流桥模块整流后,经过母线电容滤波,变换成电压稳定的直流母线P/N,再经过逆变桥模块将直流电转化为交流电拖动电机。上电软启模块的一段连接在母线正P上,另一端连接母线电容模块和再生制动模块的一端,母线电容模块和再生制动模块的另一端连接母线负N,动态制动模块直接连接在直流母线P/N上。在部分应用时还需要在交流输入与整流桥模块中间添加入电切断模块。
依次介绍各个主要模块的作用、组成和工作原理,如下:
1、上电软启模块的作用是上电时限制母线电容充电电流。该模块其中一种实现方式举例如图7所示,由并联连接的上电缓冲电阻R 1和上电软启模块开关S 1组成,上电时,开关S 1断开,经过上电缓冲电阻R 1给母线电容充电,当充电完成后,上电软启模块开关S 1闭合,系统上电完成。
2、再生制动模块的作用一是在电机负扭矩停止时阻止母线电压升的过高,作用二是在系统下电后泄放母线残留能量。该模块其中一种实现方式举例如图5所示,再生制动电阻R 2和续流二极管D 2并联后再和再生制动开关S 2串联,当母线电压升高到泵升上点U 1时,打开再生制动开关S 2进行泄放,当母线电压降低到泵升下点U 2时,关闭再生制动开关S 2停止泄放。续流二极管D 2的作用是为电阻上的电流提供续流回路,避免开关关断时感应出过高的尖峰电压。系统下电时,检测到交流电断开后,上电软启模块开关S 1断开,再生制动开关S 2闭合,泄放母线残留能量。
3、动态制动模块的作用是当紧急停车,或系统掉电等异常情况发生时,保证电机安全可靠的快速停车。该模块其中一种实现方式举例如图6所示,动态制动电阻R 3与动态制动续流 二极管D 3并联连接后再和动态制动开关S 3串联,二极管的作用同上,由于动态制动的特性,需要动态制动开关S 3处于常态开通的状态。在系统交流输入电上电前断开动态制动开关S 3,随后系统上电通过上电缓冲电阻R 1给母线电容充电,母线充电完毕后闭合上电软启模块开关S 1,系统上电完成。当系统交流输入电下电时,上电软启模块开关S 1断开,再生制动开关S 2闭合,对电容残余能量进行泄放。当动态制动被要求执行时,电力电子设备外部交流输入开关断开,或电力电子设备内部入电切断(见图3中虚线框)动作,切断系统交流输入,随后断开上电软启模块开关S 1,闭合动态制动开关S 3,电机能量通过逆变桥模块体二极管整流到母线P/N,经过动态制动回路消耗,使电机安全可靠停止。由于母线电容正端并没有直接和母线正P相连,动态制动模块并没有被母线电压钳位,动态制动时电机停止速度较快,且可以同时闭合再生制动开关S 2对母线电容残余能量进行泄放,母线电容的残余能量也不会全通过动态制动电阻R 3消耗,避免了动态制动电阻R 3承受额外负担,过载失效。另外,本发明提出针对动态制动的特点,动态制动开关S 3并不局限于传统方法中提及的继电器或晶闸管,可以采用耗尽型场效应管器件,使用耗尽型场效应管最明显的优势在于可以分断较大的直流电流,这一点继电器或晶闸管不能实现,除非选择专门分断直流的继电器,但此种继电器体积较大、成本较高。
图7是本发明的动态制动方案应用于多轴共母线场合的示例,本发明能够适用于所有共母线架构,包括Shared DC-Common,Shared AC/DC,Shared AC/DC Hybrid等。得益于本发明提出的动态制动方案,允许多个共母线的轴共用一个公共动态制动模块,大大缩小了系统动态制动的成本和体积,且大大缩小PCB布板面积。且本发明提出的动态制动方案相比于日本专利文献JP1989209970A公开的动态制动拓扑图所示的方案,完全复用逆变桥模块的二极 管实现整流,无需每轴增加额外的3个二极管,且对于共母线系统而言无需增加任何额外接线即可实现共用动态制动模块,简化了系统接线,减少了二极管和接线端子、电缆的成本。

Claims (7)

  1. 一种电机动态制动电路,功率框架由整流桥模块、上电软启模块、母线电容模块、再生制动模块、逆变桥模块和动态制动模块组成;其特征是:交流电经过整流桥模块整流后,经过母线电容滤波,变换成电压稳定的直流母线P/N,再经过逆变桥模块将直流电转化为交流电拖动电机;上电软启模块的一段连接在母线正P上,另一端连接母线电容模块和再生制动模块的一端,母线电容模块和再生制动模块的另一端连接母线负N,动态制动模块直接连接在直流母线P/N上。
  2. 根据权利要求1所述的电机动态制动电路,其特征是:在交流输入与整流桥模块中间添加入电切断模块。
  3. 根据权利要求1或2所述的电机动态制动电路,其特征是:所述上电软启模块,由并联连接的上电缓冲电阻R 1和上电软启模块开关S 1组成,上电时,上电软启模块开关S 1断开,经过上电缓冲电阻R 1给母线电容充电,当充电完成后,上电软启模块开关S 1闭合,系统上电完成。
  4. 根据权利要求1或2所述的电机动态制动电路,其特征是:所述再生制动模块,再生制动电阻R 2和续流二极管D 2并联后再和再生制动开关S 2串联;
    当母线电压升高到泵升上点U 1时,打开再生制动开关S 2进行泄放,当母线电压降低到泵升下点U 2时,关闭再生制动开关S 2停止泄放;
    续流二极管D 2的作用是为电阻上的电流提供续流回路,避免开关关断时感应出过高的尖峰电压;
    系统下电时,检测到交流电断开后,上电软启模块开关S 1断开,再生制动开关S 2闭合,泄放母线残留能量。
  5. 根据权利要求1或2所述的电机动态制动电路,其特征是:所述动态制动模块,动态制动电阻R 3与动态制动续流二极管D 3并联连接后再和动态制动开关S 3串联。
  6. 根据权利要求5所述的电机动态制动电路,其特征是:所述动态制动开关S 3处于常态开通的状态,为继电器、晶闸管或耗尽型场效应管。
  7. 一种用权利要求1-6之一所述的电机动态制动电路进行电机动态制动的方法,其步骤如下:当动态制动被要求执行时
    第一步,入电切断模块动作,切断系统交流输入;
    第二步,断开软启模块的上电软启模块开关S 1
    第三步,闭合动态制动模块的动态制动开关S 3,电机能量通过逆变桥模块体二极管整流到母线P/N,经过动态制动回路消耗,使电机快速可靠停止;同时可以闭合再生制动模块的再生制动开关S 2,对母线电容模块上的残留能量进行泄放;
    当系统交流输入电上电时
    第一步,先断开动态制动模块的动态制动开关S 3
    第二步,禁止入电切断模块,交流输入电通入系统,通过上电缓冲电阻R 1给母线电容充电,母线充电完毕后闭合软启模块的上电软启模块开关S 1,系统上电完成。
PCT/CN2020/110296 2019-11-20 2020-08-20 一种电机动态制动电路及电机动态制动方法 WO2021098311A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911141947.3 2019-11-20
CN201911141947.3A CN110838806B (zh) 2019-11-20 2019-11-20 一种电机动态制动电路及电机动态制动方法

Publications (1)

Publication Number Publication Date
WO2021098311A1 true WO2021098311A1 (zh) 2021-05-27

Family

ID=69576865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110296 WO2021098311A1 (zh) 2019-11-20 2020-08-20 一种电机动态制动电路及电机动态制动方法

Country Status (2)

Country Link
CN (1) CN110838806B (zh)
WO (1) WO2021098311A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110838806B (zh) * 2019-11-20 2020-09-15 南京埃斯顿自动化股份有限公司 一种电机动态制动电路及电机动态制动方法
CN111478627B (zh) * 2020-04-13 2021-11-05 珠海格力电器股份有限公司 一种伺服电机动态制动电路及其控制方法
CN112803397B (zh) * 2021-01-07 2023-07-28 配天机器人技术有限公司 一种机器人的供电控制系统及供电控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005112598A (ja) * 2003-10-10 2005-04-28 Meidensha Corp エレベータ制御用制御電源装置
CN1305213C (zh) * 2003-05-16 2007-03-14 三星电子株式会社 电动机电源设备
CN103391042A (zh) * 2012-05-09 2013-11-13 台达电子工业股份有限公司 避免突波电流的马达驱动装置
CN107994781A (zh) * 2017-12-25 2018-05-04 西安西驰电气股份有限公司 一种变频装置及其控制方法
CN110838806A (zh) * 2019-11-20 2020-02-25 南京埃斯顿自动化股份有限公司 一种电机动态制动电路及电机动态制动方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876842B2 (ja) * 1991-09-12 1999-03-31 株式会社明電舎 インバータ負荷の回生制動方法
JPH05219778A (ja) * 1992-02-07 1993-08-27 Copal Electron Co Ltd 直流モータの制動回路
JP3225008B2 (ja) * 1997-08-29 2001-11-05 株式会社東芝 洗濯機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1305213C (zh) * 2003-05-16 2007-03-14 三星电子株式会社 电动机电源设备
JP2005112598A (ja) * 2003-10-10 2005-04-28 Meidensha Corp エレベータ制御用制御電源装置
CN103391042A (zh) * 2012-05-09 2013-11-13 台达电子工业股份有限公司 避免突波电流的马达驱动装置
CN107994781A (zh) * 2017-12-25 2018-05-04 西安西驰电气股份有限公司 一种变频装置及其控制方法
CN110838806A (zh) * 2019-11-20 2020-02-25 南京埃斯顿自动化股份有限公司 一种电机动态制动电路及电机动态制动方法

Also Published As

Publication number Publication date
CN110838806A (zh) 2020-02-25
CN110838806B (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
WO2021098311A1 (zh) 一种电机动态制动电路及电机动态制动方法
CN110224381B (zh) 一种光伏逆变器及其光伏发电系统
US8581535B2 (en) Drive unit
CN106849635B (zh) 级联多电平换流器子模块失控强制旁路电路
JP6469894B2 (ja) 電力変換装置
CN110912386B (zh) 主动放电电路
US20140211524A1 (en) Power converter and pre-charging circuit of same
US20190074149A1 (en) DC Voltage Switch
TWI661642B (zh) 不斷電運行裝置
CN110073600A (zh) 半导体开关的控制装置、电源系统
JP3572915B2 (ja) 突入電流防止機能と過電圧防止機能および放電機能とを備えた制御回路並びにその制御回路を備えた電力変換装置
CN108667297B (zh) 一种电动车用复合电源装置及其工作方法
CN112886640A (zh) 限流电路和储能系统
CN105322773B (zh) 缓启动电路及其操作方法
EP3367405B1 (en) Protective device
CN116476663A (zh) 用于传送电力的转换器系统
JP5389221B2 (ja) 車両用電源装置
JPH11355905A (ja) 電力変換装置の遮断システム
CN111628538A (zh) 一种电池系统、电机驱动装置以及供电控制方法
CN113196641A (zh) 电压调节模块、充电模组和充电桩
JP2016127782A (ja) 電力変換装置
CN214506569U (zh) 限流电路和储能系统
WO2017122317A1 (ja) 電力変換装置
CN215580898U (zh) 变频器的母线电容快速放电装置
CN114726220A (zh) 用于传输电力的转换器系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889628

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889628

Country of ref document: EP

Kind code of ref document: A1