WO2021098307A1 - 一种干式变压器剩余寿命的检测方法、装置及存储介质 - Google Patents

一种干式变压器剩余寿命的检测方法、装置及存储介质 Download PDF

Info

Publication number
WO2021098307A1
WO2021098307A1 PCT/CN2020/110006 CN2020110006W WO2021098307A1 WO 2021098307 A1 WO2021098307 A1 WO 2021098307A1 CN 2020110006 W CN2020110006 W CN 2020110006W WO 2021098307 A1 WO2021098307 A1 WO 2021098307A1
Authority
WO
WIPO (PCT)
Prior art keywords
dry
type transformer
temperature
life
remaining life
Prior art date
Application number
PCT/CN2020/110006
Other languages
English (en)
French (fr)
Inventor
陈智
田海涛
周永亮
赵奇
李久菊
万丽君
李宝宝
陈永杰
郗亮
王智梁
聂晓宇
霍高山
王旭
张志鹏
谭智勇
张旭冉
杨莉莉
Original Assignee
许继变压器有限公司
国家电网有限公司
许继集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 许继变压器有限公司, 国家电网有限公司, 许继集团有限公司 filed Critical 许继变压器有限公司
Publication of WO2021098307A1 publication Critical patent/WO2021098307A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/003Environmental or reliability tests

Definitions

  • This application specifically relates to a method, device and storage medium for detecting the remaining life of a dry-type transformer.
  • the stability and safe operation of the power system are the key to ensuring the continuous and stable output of the power system.
  • users are pursuing basic electricity demand while putting forward higher requirements for the stability and reliability of the power system. Regardless of whether it is household electricity, industrial electricity, etc., once the power system fails, it will cause serious economic losses, so it is very important to improve the stability of the power system.
  • the transformer is an important part of the power system, and the life of the dry-type transformer is a key factor for the continuous, safe and stable power supply of the system.
  • the purpose of this application is to provide a method, device, and storage medium for detecting the remaining life of dry-type transformers, so as to solve the problem of inaccurate remaining life prediction of existing dry-type transformers, which causes potential safety hazards.
  • this application provides a method for detecting the remaining life of a dry-type transformer.
  • the steps include:
  • the beneficial effect of this application is: only need to collect the temperature of the dry-type transformer and the ambient temperature where the dry-type transformer is located, the remaining life of the dry-type transformer under the current sampling period can be calculated in real time.
  • the detection method is simple, fast, and Accurately detecting the remaining life of dry-type transformers can provide an accurate reference time for maintenance workers and other workers, avoiding safety hazards caused by inaccurate remaining life predictions.
  • the calculation formula of the service life in step (2) is:
  • S T is the service life of the dry-type transformer at the current own temperature
  • A is a constant, which is related to the coil insulation material of the dry-type transformer
  • T is the temperature of the dry-type transformer
  • B is the ambient temperature where the dry-type transformer is located
  • C Is the harmonic temperature coefficient.
  • the calculation formula of the remaining life in step (3) is:
  • S is the remaining life of the dry-type transformers
  • S '0 is the beginning of the current sampling cycle life before the start of the dry-type transformer life by subtracting the rated life period before the current sample obtained using life
  • S 0 dry The rated life of the type transformer
  • H is the current sampling period.
  • the self-temperature is collected by a temperature sensor arranged in the three-phase winding of the dry-type transformer.
  • the temperature sensor is set in the three-phase winding, and the collected dry-type transformer's own temperature is more accurate.
  • the temperature sensor is a platinum thermal resistance sensor.
  • the self temperature when the self temperature is less than the set temperature threshold, the self temperature is calculated according to the set temperature threshold.
  • the set temperature threshold is 96°C.
  • the present application provides a detection device for the remaining life of a dry-type transformer, which includes a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor is The method for detecting the remaining life of the dry-type transformer is realized when the computer program is run.
  • the embodiment of the present application also provides a storage medium storing an executable program, and when the executable program is executed by a processor, the above method for detecting the remaining life of the dry-type transformer is realized.
  • Figure 1 is a flow chart of the method for detecting the remaining life of a dry-type transformer according to the application
  • Figure 2 is a block diagram of the processing process of the detection device for the remaining life of the dry-type transformer of the application;
  • FIG. 3 is a schematic diagram of the hardware composition structure of the device for detecting the remaining life of a dry-type transformer in an embodiment of the present application.
  • the technical idea of this application simplifies the current life prediction, and only considers the influence of temperature factors on the life of dry-type transformers. This method first calculates the life of the current dry-type transformer at its own temperature, and then calculates the service life under the influence of the current temperature. The lifetime and the current sampling period can be calculated to determine the remaining lifetime in the current sampling period. This application is applicable to the calculation of the remaining life of all dry-type transformers whose coils are cast with epoxy resin.
  • the detection device for the remaining life of the dry-type transformer can collect the temperature signal of the transformer in real time, so that it can dynamically detect the life of the transformer and understand the remaining life of the transformer in real time. After the remaining life detection device of the dry-type transformer is completed, the calculated remaining life value of the dry-type transformer is displayed on the LCD screen and uploaded to the background through the RS485 communication interface.
  • the detection device specifically includes a memory, a processor, and a computer program that is stored in the memory and can be run on the processor.
  • the processor executes the following method for detecting the remaining life of a dry-type transformer when the computer program is running.
  • FIG. 1 is this application The flow chart of the detection method of the remaining life of dry-type transformer. With reference to Figure 1, the life detection method shown in the figure includes the following steps:
  • the temperature sensor arranged in the three-phase winding of the dry-type transformer collects the temperature of the dry-type transformer itself, and the temperature sensor arranged at a suitable position around the dry-type transformer collects the ambient temperature where the dry-type transformer is located.
  • the temperature sensor that collects the temperature of the dry-type transformer is a platinum thermal resistance sensor (Pt100). Specifically, three platinum thermal resistance sensors (Pt100) are pre-buried in In the three-phase winding of the dry-type transformer, the platinum thermal resistance sensor (Pt100) will generate a resistance signal corresponding to the temperature of the three-phase winding. The resistance signal is converted into a temperature by the filtering and A/D converter as shown in Figure 2. The value of the digital signal, the digital signal is the temperature of the dry-type transformer itself.
  • the temperature sensor that collects the ambient temperature where the dry-type transformer is located is an infrared sensor, which can be set reasonably according to the structural layout of the transformer and its surrounding components.
  • S T is the service life of the dry-type transformer at the current own temperature
  • A is a constant, which is related to the coil insulation material of the dry-type transformer
  • T is the temperature of the dry-type transformer
  • B is the ambient temperature where the dry-type transformer is located
  • C It is the harmonic temperature coefficient. The higher the harmonic order, the greater the harmonic temperature coefficient.
  • the dry-type transformer's own temperature is calculated according to the set temperature threshold of 96°C; when the collected dry-type transformer's own temperature is greater than the set temperature
  • the threshold is 96°C, the temperature of the dry-type transformer is calculated according to the actual temperature value collected.
  • S is the remaining life of the dry-type transformers
  • S '0 is the beginning of the current sampling cycle life before the start of the dry-type transformer life by subtracting the rated life period before the current sample obtained using life
  • S 0 dry The rated life of the type transformer
  • H is the current sampling period.
  • the sampling period can be one day as a sampling period, or one year as the sampling period H, or one hour as the sampling period, which can be specifically set according to requirements. This application does not limit the sampling period.
  • S 0 is the rated life of the dry-type transformer.
  • S 0 is 30 years (that is, 262,800 hours).
  • H the current sampling period
  • H the current sampling period
  • C the harmonic temperature coefficient
  • the steps of the method for detecting the remaining life of the dry-type transformer of the present application are: (1) Collect the temperature of the dry-type transformer and the ambient temperature where the dry-type transformer is located; (2) Calculate the dry-type transformer's temperature based on the temperature of the dry-type transformer and the ambient temperature. The service life at the own temperature; (3) Determine the remaining service life of the dry-type transformer according to the current sampling period, the service life used before the current sampling period, and the service life calculated in step 2).
  • the specific method for detecting the remaining life of the dry-type transformer is described in detail in the foregoing embodiment, and will not be repeated here.
  • the embodiment of the present application also provides a device for detecting the remaining life of a dry-type transformer, which includes a processor and a memory for storing a computer program that can run on the processor, wherein, when the processor is used to run the computer program, Perform the steps of the method for detecting the remaining life of the dry-type transformer described above.
  • FIG. 3 is a schematic diagram of the hardware composition structure of the device for detecting the remaining life of a dry-type transformer according to an embodiment of the present application.
  • the device 700 for detecting the remaining life of a dry-type transformer includes: at least one processor 701, a memory 702, and at least one network interface 703.
  • the components in the device 700 for detecting the remaining life of the dry-type transformer are coupled together through the bus system 704. It can be understood that the bus system 704 is used to implement connection and communication between these components.
  • the bus system 704 also includes a power bus, a control bus, and a status signal bus. However, for the sake of clear description, various buses are marked as the bus system 704 in FIG. 3.
  • the memory 702 may be a volatile memory or a non-volatile memory, and may also include both volatile and non-volatile memory.
  • non-volatile memory can be ROM, Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (EPROM), and electrically erasable Programmable read-only memory (EEPROM, Electrically Erasable Programmable Read-Only Memory), magnetic random access memory (FRAM, ferromagnetic random access memory), flash memory (Flash Memory), magnetic surface memory, optical disk, or CD-ROM -ROM, Compact Disc Read-Only Memory); Magnetic surface memory can be disk storage or tape storage.
  • the volatile memory may be a random access memory (RAM, Random Access Memory), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • SSRAM synchronous static random access memory
  • Synchronous Static Random Access Memory Synchronous Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SDRAM Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection dynamic random access memory
  • DRRAM Direct Rambus Random Access Memory
  • the memory 702 described in the embodiment of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 702 in the embodiment of the present application is used to store various types of data to support the operation of the detection device 700 for the remaining life of the dry-type transformer. Examples of these data include: any computer program, such as application program 7022, which is used to operate on the detection device 700 for detecting the remaining life of a dry-type transformer. A program for implementing the method of the embodiment of the present application may be included in the application program 7022.
  • the method disclosed in the foregoing embodiments of the present application may be applied to the processor 701 or implemented by the processor 701.
  • the processor 701 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 701 or instructions in the form of software.
  • the aforementioned processor 701 may be a general-purpose processor, a digital signal processor (DSP, Digital Signal Processor), or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, and the like.
  • the processor 701 may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a storage medium, and the storage medium is located in the memory 702.
  • the processor 701 reads the information in the memory 702 and completes the steps of the foregoing method in combination with its hardware.
  • the detection 700 of the remaining life of the dry-type transformer can be performed by one or more application specific integrated circuits (ASIC, Application Specific Integrated Circuit), DSP, programmable logic device (PLD, Programmable Logic Device), and complex A programmable logic device (CPLD, Complex Programmable Logic Device), FPGA, general-purpose processor, controller, MCU, MPU, or other electronic components are implemented to implement the foregoing methods.
  • ASIC Application Specific Integrated Circuit
  • DSP programmable logic device
  • PLD Programmable Logic Device
  • CPLD Complex Programmable Logic Device
  • FPGA general-purpose processor
  • controller MCU
  • MPU or other electronic components
  • the embodiment of the present application also provides a storage medium for storing a computer program that enables the computer to execute the corresponding process in the method for detecting the remaining life of the dry-type transformer in the embodiment of the present application. For the sake of brevity, it will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

一种干式变压器剩余寿命的检测方法、检测装置(700)及存储介质,检测方法的检测步骤包括:采集干式变压器的自身温度和干式变压器所在的环境温度;根据自身温度和环境温度计算干式变压器在自身温度下的使用寿命;根据当前采样周期、当前采样周期前已使用的寿命、以及所计算的使用寿命确定干式变压器的剩余寿命。干式变压器剩余寿命的检测方法仅需采集干式变压器的自身温度和所在的环境温度,就能实时计算出干式变压器在当前采样周期下的剩余寿命,可以很好地为维修工作者及其他工作人员提供准确的参考时间。

Description

一种干式变压器剩余寿命的检测方法、装置及存储介质
相关申请的交叉引用
本申请基于申请号为201911129965.X、申请日为2019年11月18日的中国专利申请提出,并要求中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请具体涉及一种干式变压器剩余寿命的检测方法、装置及存储介质。
背景技术
电力系统稳定性以及安全运行是确保电力系统持续稳定输出电能的关键,随着我国电网规模的快速发展,用户在追求基本用电需求的同时,对电力系统稳定可靠性提出更高的需求。无论是生活用电、工业用电等,一旦出现电力系统故障则会造成严重的经济损失,所以提升电力系统稳定性至关重要。其中,变压器是电力系统的重要组成部分,而干式变压器的寿命是系统持续、安全、稳定供电的一个关键因素。
影响干式变压器寿命的因素包括温度、湿度、负载程度等,由于干式变压器负荷变动、外部环境条件变化等诸多因素的影响,变压器的损耗状态与其实际运行时间并不一致,目前仅根据运行时间直接计算变压器的剩余寿命不准确,还有的寿命预测利用浅层神经网络的参数预测误差较大而且比较复杂。
发明内容
本申请的目的是提供一种干式变压器的剩余寿命检测方法、装置及存储介质,以解决现有干式变压器的剩余寿命预测不准确导致存在安全隐患的问题。
本申请为解决上述技术问题而提供一种干式变压器剩余寿命的检测方法,步骤包括:
(1)采集干式变压器的自身温度和干式变压器所在的环境温度;
(2)根据所述自身温度和所述环境温度计算干式变压器在该自身温度下的使用寿命;
(3)根据当前采样周期、当前采样周期下已使用的寿命、步骤2)中所计算的使用寿命确定干式变压器的剩余寿命。
本申请的有益效果是:仅需要采集干式变压器的自身温度和干式变压器所在的环境温度,就能实时计算出干式变压器在当前采样周期下的剩余寿命,该检测方法简单,能够快速、准确的检测出干式变压器的剩余寿命,可以很好的为维修工作者及其他工作人员提供准确的参考时间,避免了剩余寿命预测不准带来的安全隐患。
在一些可选实施例中,步骤(2)中所述使用寿命的计算公式为:
Figure PCTCN2020110006-appb-000001
其中,S T为当前自身温度下干式变压器的使用寿命;A为常数,与干式变压器的线圈绝缘材质有关;T为干式变压器的自身温度;B为干式变压器所在的环境温度;C为谐波温度系数。
在一些可选实施例中,步骤(3)中所述剩余寿命的计算公式为:
Figure PCTCN2020110006-appb-000002
其中,S为干式变压器的剩余寿命;S′ 0为当前采样周期前的起始寿命,起始寿命通过干式变压器的额定寿命减去当前采样周期前已使用的寿命得到;S 0为干式变压器的额定寿命;H为当前的采样周期。
在一些可选实施例中,所述自身温度是通过设置在干式变压器三相绕组中的温度传感器采集得到。将温度传感器设置在三相绕组中,采集的干式变压器的自身温度更加准确。
在一些可选实施例中,所述温度传感器为铂热电阻传感器。
在一些可选实施例中,当所述自身温度小于设定温度阈值时,所述自身温度按设定温度阈值进行计算。
在一些可选实施例中,所述设定温度阈值为96℃。
本申请为解决上述技术问题而提供一种干式变压器剩余寿命的检测装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器在运行所述计算机程序时实现上述干式变压器剩余寿命的检测方法。
本申请实施例还提供一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现上述干式变压器剩余寿命的检测方法。
附图说明
图1为本申请的干式变压器剩余寿命的检测方法的流程图;
图2为本申请的干式变压器剩余寿命的检测装置处理过程框图;
图3是本申请实施例的干式变压器剩余寿命的检测装置的硬件组成结构示意图。
具体实施方式
为使本申请的目的、技术方案及优点更加清楚,下面结合附图及实施例,对本申请作在一些可选实施例中详细说明,但本申请的实施方式并不局限于此。
本申请的技术构思:简化了目前寿命预测,仅考虑温度因素对干式变压器寿命的影响,该方法首先计算在当前干式变压器自身温度下的使用寿命,然后再根据当前温度影响下的已使用寿命和当前采样周期,就能计算确定在当前采样周期的剩余寿命。本申请适用于所有线圈为环氧树脂浇注的干式变压器的剩余寿命的计算。
检测装置实施例:
干式变压器剩余寿命的检测装置能实时采集变压器温度信号,使其具备对变压器寿命进行动态检测,实时了解变压器剩余使用寿命。通过干式变压器剩余寿命的检测装置完成剩余寿命的检测后,将计算出的干式变压器的剩 余寿命值显示到液晶显示屏上,同时通过RS485通讯接口上传到后台。
检测装置具体包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,处理器在运行所述计算机程序时执行下述干式变压器剩余寿命的检测方法,图1为本申请干式变压器剩余寿命的检测方法的流程图。结合图1,图中所示的寿命检测方法包括以下步骤:
(1)采集干式变压器的自身温度和干式变压器所在的环境温度;
通过设置在干式变压器三相绕组中的温度传感器采集干式变压器的自身温度,通过设置在干式变压器周围合适位置处的温度传感器采集干式变压器所在的环境温度。
本申请对温度传感器的选择不做限制,在本实施例中,采集干式变压器的自身温度的温度传感器为铂热电阻传感器(Pt100),具体将三只铂热电阻传感器(Pt100)预埋在干式变压器的三相绕组中,铂热电阻传感器(Pt100)会产生与三相绕组温度值相应的电阻信号,该电阻信号经过如图2所示的滤波、A/D转换器转化成一个温度值的数字信号,该数字信号即为干式变压器的自身温度。采集干式变压器所在的环境温度的温度传感器为红外传感器,具体依据变压器及其周围器件的结构布局合理设置即可。
(2)根据步骤(1)采集的自身温度和环境温度计算干式变压器在该自身温度下的使用寿命;
使用寿命的计算公式为:
Figure PCTCN2020110006-appb-000003
其中,S T为当前自身温度下干式变压器的使用寿命;A为常数,与干式变压器的线圈绝缘材质有关;T为干式变压器的自身温度;B为干式变压器所在的环境温度;C为谐波温度系数,谐波次数越高,谐波温度系数越大。
当采集到的干式变压器的自身温度小于设定温度阈值96℃时,干式变压器的自身温度按设定温度阈值96℃进行计算;当采集到的干式变压器的自身温度大于于设定温度阈值96℃时,干式变压器的自身温度按实际采集的温度 值进行计算。
(3)确定干式变压器的剩余寿命;
当前采样周期后的干式变压器的剩余寿命的计算公式为:
Figure PCTCN2020110006-appb-000004
其中,S为干式变压器的剩余寿命;S′ 0为当前采样周期前的起始寿命,起始寿命通过干式变压器的额定寿命减去当前采样周期前已使用的寿命得到;S 0为干式变压器的额定寿命;H为当前的采样周期。
采样周期可以以一天为一个采样周期,或者以一年为采样周期H,也可以以一小时为采样周期,具体可以根据需求设置,本申请对采样周期不做限制。
基于上述检测方法,给出具体的应用计算示例。
根据干式变压器铭牌确定S 0为干式变压器的额定寿命S 0为30年(即262800小时),假设当前的采样周期为一小时,即H=1h。谐波温度系数C=2.5,干式变压器的线圈绝缘材质为F级环氧树脂,因此,常数A=20475。
从干式变压器额定寿命开始投入使用,实时计算干式变压器的剩余寿命:
第一个采样周期:假设采集的干式变压器所在的环境温度B=20℃,采集干式变压器的自身温度T=97℃。
在干式变压器的自身温度下的使用寿命为
Figure PCTCN2020110006-appb-000005
第一个采样周期后的剩余寿命为
Figure PCTCN2020110006-appb-000006
第二个采样周期:假设采集的干式变压器所在的环境温度B=20℃,采集干式变压器的自身温度T=97℃。
在干式变压器的自身温度下的使用寿命为
Figure PCTCN2020110006-appb-000007
第二个采样周期后的剩余寿命为
Figure PCTCN2020110006-appb-000008
检测方法实施例:
本申请干式变压器剩余寿命的检测方法步骤为:(1)采集干式变压器的自身温度和干式变压器所在的环境温度;(2)根据所述自身温度和所述环境温度计算干式变压器在该自身温度下的使用寿命;(3)根据当前采样周期、当前采样周期前已使用的寿命、步骤2)中所计算的使用寿命确定干式变压器的剩余寿命。具体的干式变压器剩余寿命的检测方法以在上述实施例中详细介绍,此处不再赘述。
本申请实施例还提供一种干式变压器剩余寿命的检测装置,包括处理器和用于存储能够在处理器上运行的计算机程序的存储器,其中,所述处理器用于运行所述计算机程序时,执行上述的干式变压器剩余寿命的检测方法的步骤。
图3是本申请实施例的干式变压器剩余寿命的检测装置的硬件组成结构示意图,干式变压器剩余寿命的检测装置700包括:至少一个处理器701、存储器702和至少一个网络接口703。干式变压器剩余寿命的检测装置700中的各个组件通过总线系统704耦合在一起。可理解,总线系统704用于实现这些组件之间的连接通信。总线系统704除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图3中将各种总线都标为总线系统704。
可以理解,存储器702可以是易失性存储器或非易失性存储器,也可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、可编程只读存储器(PROM,Programmable Read-Only Memory)、可擦除可编程只读存储器(EPROM,Erasable Programmable Read-Only Memory)、电可擦除可编程只读存储器(EEPROM,Electrically Erasable Programmable Read-Only Memory)、磁性随机存取存储器(FRAM,ferromagnetic random access memory)、 快闪存储器(Flash Memory)、磁表面存储器、光盘、或只读光盘(CD-ROM,Compact Disc Read-Only Memory);磁表面存储器可以是磁盘存储器或磁带存储器。易失性存储器可以是随机存取存储器(RAM,Random Access Memory),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(SRAM,Static Random Access Memory)、同步静态随机存取存储器(SSRAM,Synchronous Static Random Access Memory)、动态随机存取存储器(DRAM,Dynamic Random Access Memory)、同步动态随机存取存储器(SDRAM,Synchronous Dynamic Random Access Memory)、双倍数据速率同步动态随机存取存储器(DDRSDRAM,Double Data Rate Synchronous Dynamic Random Access Memory)、增强型同步动态随机存取存储器(ESDRAM,Enhanced Synchronous Dynamic Random Access Memory)、同步连接动态随机存取存储器(SLDRAM,SyncLink Dynamic Random Access Memory)、直接内存总线随机存取存储器(DRRAM,Direct Rambus Random Access Memory)。本申请实施例描述的存储器702旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例中的存储器702用于存储各种类型的数据以支持干式变压器剩余寿命的检测装置700的操作。这些数据的示例包括:用于在干式变压器剩余寿命的检测装置700上操作的任何计算机程序,如应用程序7022。实现本申请实施例方法的程序可以包含在应用程序7022中。
上述本申请实施例揭示的方法可以应用于处理器701中,或者由处理器701实现。处理器701可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器701中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器701可以是通用处理器、数字信号处理器(DSP,Digital Signal Processor),或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。处理器701可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤,可以 直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于存储介质中,该存储介质位于存储器702,处理器701读取存储器702中的信息,结合其硬件完成前述方法的步骤。
在示例性实施例中,干式变压器剩余寿命的检测700可以被一个或多个应用专用集成电路(ASIC,Application Specific Integrated Circuit)、DSP、可编程逻辑器件(PLD,Programmable Logic Device)、复杂可编程逻辑器件(CPLD,Complex Programmable Logic Device)、FPGA、通用处理器、控制器、MCU、MPU、或其他电子元件实现,用于执行前述方法。
本申请实施例还提供了一种存储介质,用于存储计算机程序,该计算机程序使得计算机执行本申请实施例干式变压器剩余寿命的检测方法中的相应流程,为了简洁,在此不再赘述。
最后应当说明的是,以上实施例仅用于说明本申请的技术方案而非对其保护范围的限制,尽管参照上述实施例对本申请进行了详细的说明,所属领域的普通技术人员应当理解,本领域技术人员阅读本申请后依然可对申请的具体实施方式进行种种变更、修改或者等同替换,但这些变更、修改或者等同替换,均在本申请的权利要求保护范围之内。

Claims (9)

  1. 一种干式变压器剩余寿命的检测方法,所述方法包括:
    采集干式变压器的自身温度和干式变压器所在的环境温度;
    根据所述自身温度和所述环境温度计算干式变压器在该自身温度下的使用寿命;
    根据当前采样周期、当前采样周期前已使用的寿命、以及所计算的使用寿命确定干式变压器的剩余寿命。
  2. 根据权利要求1所述的干式变压器剩余寿命的检测方法,其中,所述根据所述自身温度和所述环境温度计算干式变压器在该自身温度下的使用寿命中,所述使用寿命的计算公式为:
    Figure PCTCN2020110006-appb-100001
    其中,S T为当前自身温度下干式变压器的使用寿命;A为常数,与干式变压器的线圈绝缘材质有关;T为干式变压器的自身温度;B为干式变压器所在的环境温度;C为谐波温度系数。
  3. 根据权利要求1所述的干式变压器剩余寿命的检测方法,其中,所述根据当前采样周期、当前采样周期前已使用的寿命、以及所计算的使用寿命确定干式变压器的剩余寿命中,所述剩余寿命的计算公式为:
    Figure PCTCN2020110006-appb-100002
    其中,S为干式变压器的剩余寿命;S′ 0为当前采样周期前的起始寿命,起始寿命通过干式变压器的额定寿命减去当前采样周期前已使用的寿命得到;S 0为干式变压器的额定寿命;H为当前的采样周期。
  4. 根据权利要1所述的干式变压器剩余寿命的检测方法,其中,所述自身温度是通过设置在干式变压器三相绕组中的温度传感器采集得到。
  5. 根据权利要4所述的干式变压器剩余寿命的检测方法,其中,所述温度传感器为铂热电阻传感器。
  6. 根据权利要5所述的干式变压器剩余寿命的检测方法,其中,当所述自 身温度小于设定温度阈值时,所述自身温度按设定温度阈值进行计算。
  7. 根据权利要6所述的干式变压器剩余寿命的检测方法,其中,所述设定温度阈值为96℃。
  8. 一种干式变压器剩余寿命的检测装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器在运行所述计算机程序时实现权利要求1至7任一项所述的干式变压器剩余寿命的检测方法。
  9. 一种存储介质,存储有可执行程序,所述可执行程序被处理器执行时,实现权利要求1至7任一项所述的干式变压器剩余寿命的检测方法。
PCT/CN2020/110006 2019-11-18 2020-08-19 一种干式变压器剩余寿命的检测方法、装置及存储介质 WO2021098307A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911129965.XA CN110763942B (zh) 2019-11-18 2019-11-18 一种干式变压器剩余寿命的检测方法及装置
CN201911129965.X 2019-11-18

Publications (1)

Publication Number Publication Date
WO2021098307A1 true WO2021098307A1 (zh) 2021-05-27

Family

ID=69338293

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110006 WO2021098307A1 (zh) 2019-11-18 2020-08-19 一种干式变压器剩余寿命的检测方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN110763942B (zh)
WO (1) WO2021098307A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554773A (zh) * 2024-01-11 2024-02-13 青岛中微创芯电子有限公司 一种ipm模块寿命预测系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110763942B (zh) * 2019-11-18 2021-12-31 许继变压器有限公司 一种干式变压器剩余寿命的检测方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227644A (ja) * 1991-05-13 1993-09-03 Mitsubishi Electric Corp 変圧器の診断装置
CN104008288A (zh) * 2014-05-23 2014-08-27 清华大学 一种变压器寿命仿真估计方法
CN104698323A (zh) * 2015-03-27 2015-06-10 国家电网公司 一种干式配电变压器加速老化试验方法
CN106874534A (zh) * 2016-12-28 2017-06-20 国网内蒙古东部电力有限公司检修分公司 一种变压器过载能力评估方法
CN109598061A (zh) * 2018-12-03 2019-04-09 西南交通大学 一种变压器群平均寿命损失的监测方法
CN110763942A (zh) * 2019-11-18 2020-02-07 许继变压器有限公司 一种干式变压器剩余寿命的检测方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003185690A (ja) * 2001-12-18 2003-07-03 Toshiba Corp 電力用変圧器
WO2008147903A1 (en) * 2007-05-22 2008-12-04 Marvell World Trade Ltd. Control of delivery of current through one or more discharge lamps
CN102053634A (zh) * 2009-10-27 2011-05-11 苏州金山门变压器有限公司 干式变压器智能温控仪
CN102096030B (zh) * 2010-12-10 2013-04-17 西安交通大学 一种基于运行数据评估电力变压器绝缘剩余寿命的方法
US8781756B2 (en) * 2011-07-19 2014-07-15 Arizona Public Service Company Method and system for estimating transformer remaining life
CN102759670A (zh) * 2011-12-31 2012-10-31 重庆大学 干式变压器运行状态检测评估方法
CN202404201U (zh) * 2012-01-09 2012-08-29 华东电力试验研究院有限公司 用于油浸式电力变压器的热寿命在线监测系统
CN202938928U (zh) * 2012-11-22 2013-05-15 武陟县电业总公司 一种变压器绕组温度在线检测系统
CN103245857B (zh) * 2013-04-23 2015-06-03 浙江大学 一种油浸式电力变压器可载性指标的评估方法
CN203535514U (zh) * 2013-10-31 2014-04-09 河北工业大学 一种具有自检测功能的干式变压器温度控制装置
TWI544226B (zh) * 2014-07-02 2016-08-01 中原大學 變壓器殘餘生命裝置
CN104537237A (zh) * 2014-12-25 2015-04-22 云南电网公司电力科学研究院 多种时变应力作用下输变电设备寿命评估方法
CN106199263B (zh) * 2016-06-28 2019-03-15 杭州电力设备制造有限公司 一种变压器的在线监测方法及系统
CN106199305B (zh) * 2016-07-01 2018-12-28 太原理工大学 煤矿井下供电系统用干式变压器绝缘健康状态评估方法
CN106597176A (zh) * 2016-12-30 2017-04-26 北京金风科创风电设备有限公司 电解电容器剩余寿命的预测方法及系统
CN107202960A (zh) * 2017-05-25 2017-09-26 安徽江淮汽车集团股份有限公司 动力电池寿命预测方法
CN107367694A (zh) * 2017-07-31 2017-11-21 重庆金山医疗器械有限公司 一种锂电池使用寿命的评估方法和系统
CN108181110A (zh) * 2017-12-15 2018-06-19 佛山租我科技有限公司 基于Arrhenius模型的新能源汽车车载监控终端寿命测试方法
CN109188130A (zh) * 2018-08-31 2019-01-11 广州市世科高新技术有限公司 一种油浸式电力变压器寿命监测及故障诊断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05227644A (ja) * 1991-05-13 1993-09-03 Mitsubishi Electric Corp 変圧器の診断装置
CN104008288A (zh) * 2014-05-23 2014-08-27 清华大学 一种变压器寿命仿真估计方法
CN104698323A (zh) * 2015-03-27 2015-06-10 国家电网公司 一种干式配电变压器加速老化试验方法
CN106874534A (zh) * 2016-12-28 2017-06-20 国网内蒙古东部电力有限公司检修分公司 一种变压器过载能力评估方法
CN109598061A (zh) * 2018-12-03 2019-04-09 西南交通大学 一种变压器群平均寿命损失的监测方法
CN110763942A (zh) * 2019-11-18 2020-02-07 许继变压器有限公司 一种干式变压器剩余寿命的检测方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, JIE: "Analysis of Thermal Aging Problem of Cast-Resin Dry-Type Transformer", TRANSFORMER, vol. 49, no. 3, 31 March 2012 (2012-03-31), pages 14 - 16, XP055814317, ISSN: 1001-8425 *
LI, ZHENZHU ET AL.: "Transformer Health Condition Assessment Considering Insulation Remaining Life", ELECTRIC POWER AUTOMATION EQUIPMENT, vol. 36, no. 8, 31 August 2016 (2016-08-31), pages 137 - 142,169, XP055814319, ISSN: 1006-6047 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117554773A (zh) * 2024-01-11 2024-02-13 青岛中微创芯电子有限公司 一种ipm模块寿命预测系统
CN117554773B (zh) * 2024-01-11 2024-03-29 青岛中微创芯电子有限公司 一种ipm模块寿命预测系统

Also Published As

Publication number Publication date
CN110763942A (zh) 2020-02-07
CN110763942B (zh) 2021-12-31

Similar Documents

Publication Publication Date Title
WO2021098307A1 (zh) 一种干式变压器剩余寿命的检测方法、装置及存储介质
US10527704B2 (en) Detection of deteriorated electrical connections in a meter using adjusted temperature sensing
US10788542B2 (en) Detection of deteriorated electrical connections in a meter using temperature sensing and time variable thresholds
WO2021109517A1 (zh) 一种检测负荷辨识设备的结果可信度的方法
EP4133294A1 (en) Probabilistic determination of transformer end of life
CN103207633B (zh) 一种温湿度监控方法和系统
CN111965545A (zh) 锂电池自放电检测方法、装置及系统
CN103344937B (zh) 智能电能表功耗检测设备及检测方法
KR102192067B1 (ko) 태양광 발전기의 발전량 예측 장치 및 방법
CN111025223B (zh) 电能表的时钟修正方法、装置、设备及存储介质
CN116896064B (zh) 一种用电负载的用电特征分析系统及方法
CN112330195A (zh) 适用于电力数据质量评估与规则校验的方法与装置
Soltanbayev et al. Automated dry-type transformer aging evaluation: A simulation study
CN115392140B (zh) 功率变换器中功率器件结温预测模型建立方法及装置
CN107255528A (zh) 一种医用电气设备直流绕组温升测试装置及测试方法
CN116087762A (zh) 基于阵列空间电场的断路器非接触式绝缘监测方法及系统
CN111679105B (zh) 一种用于电表的量程切换方法、电表及存储介质
CN109375104A (zh) 一种应用在网源平台的机组avr模型的在线校核方法
CN202562654U (zh) 温度变送器检测仪
CN117849494B (zh) 小电流映射大电流的变压器快速温升预测方法及装置
CN112113678A (zh) 一种基于pt100铂电阻的计量设备接线端子实时温度检测方法及系统
JP4685438B2 (ja) 電力量計
CN207663028U (zh) 一种电池电量测量设备
CN118392967B (zh) 血糖仪数据处理方法、电子设备及存储介质
CN113657872B (zh) 电力用户的档案信息异常分析方法、装置和计算机设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889451

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889451

Country of ref document: EP

Kind code of ref document: A1