WO2021097854A1 - Zcz序列的生成方法及装置 - Google Patents

Zcz序列的生成方法及装置 Download PDF

Info

Publication number
WO2021097854A1
WO2021097854A1 PCT/CN2019/120436 CN2019120436W WO2021097854A1 WO 2021097854 A1 WO2021097854 A1 WO 2021097854A1 CN 2019120436 W CN2019120436 W CN 2019120436W WO 2021097854 A1 WO2021097854 A1 WO 2021097854A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
zcz
identifiers
terminal device
zcz sequence
Prior art date
Application number
PCT/CN2019/120436
Other languages
English (en)
French (fr)
Inventor
史桢宇
王艺
方启平
王子龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/120436 priority Critical patent/WO2021097854A1/zh
Publication of WO2021097854A1 publication Critical patent/WO2021097854A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for generating a zero correlation zone (ZCZ) sequence.
  • ZCZ zero correlation zone
  • Positioning technology refers to the technology that uses the resources of the wireless communication network to obtain the location information of the mobile terminal to determine the geographic location of the mobile terminal.
  • measurement is usually based on pilot frequency, and the design of the sequence is a very important part of pilot frequency design.
  • the design requirement for the sequence is that the sequence needs to have good autocorrelation and cross-correlation. Because in the signal transmission process, due to the influence of noise and interference, the transmitted signal will be affected.
  • the transmitted signal is correlated with the received signal, and the transmission delay can be obtained by searching for the highest peak of the correlated signal.
  • Good autocorrelation can ensure the accuracy of the highest peak detection, thereby improving the robustness of the delay judgment. Sex.
  • good cross-correlation can ensure that the correlation between the received signal and the transmitted signal of the primary cell has the highest peak, while the correlation with the transmitted signal of other cells is an extremely low value close to zero, which can eliminate the interference caused by interference. influences.
  • the pilot sequence for downlink measurement is currently a pseudo-random sequence used in long term evolution (long term evolution, LTE).
  • LTE long term evolution
  • the autocorrelation of the sequence is good, but the cross-correlation cannot be guaranteed;
  • the pilot sequence for uplink measurement The sequence currently used in LTE is a constant envelope zero autocorrelation (CAZAC) sequence.
  • CAZAC sequence can obtain better autocorrelation and cross-correlation, but the required basic sequence is a perfect sequence. The requirements for sequence generation are high.
  • the embodiments of the present application provide a method and device for generating a ZCZ sequence, which are used to reduce the generation requirement of a sequence on the premise of meeting the design requirement of the sequence.
  • a method for generating a zone zero autocorrelation ZCZ sequence is provided.
  • the communication device that executes the method may be a terminal device or a module applied to the terminal device, such as a chip or a chip system.
  • the execution subject is the terminal device as an example for description.
  • the terminal device determines a constant modulus sequence of length M, and multiplies the constant modulus sequence by the base KM, and the exponent is the phase shift of the periodic function to obtain a ZCZ sequence set containing multiple ZCZ sequences, where the period The period of the sexual function is K, M is a positive integer, and K is a positive integer.
  • the ZCZ sequence set in the embodiment of this application is obtained by multiplying the constant modulus sequence by the base KM and the exponent as the phase shift of the periodic function, the phase shift can be understood as a physical meaning
  • the constant modulus sequence is periodically mapped to different subcarriers at equal intervals in the frequency domain, and the value on the subcarriers in other positions is zero. Since time-domain correlation can be regarded as multiplication in the frequency domain, different ZCZ sequences in the ZCZ sequence set have values on different subcarriers, and the values on subcarriers in other positions are zero.
  • the relative values of different ZCZ sequences in the ZCZ sequence set The result of the multiplication is zero, which ensures the orthogonality of the cross-correlation of the ZCZ sequences in the ZCZ sequence set.
  • the phase shift also ensures the autocorrelation of the ZCZ sequence in the ZCZ sequence set, so the autocorrelation and cross-correlation required by the ZCZ sequence can be obtained.
  • the basic sequence required to generate the ZCZ sequence set in the embodiment of the present application is a constant modulus sequence, and the design requirement of the constant modulus sequence is low, and the types are abundant, the generation complexity of the ZCZ sequence is reduced and expanded The expression form of the ZCZ sequence is shown.
  • the ZCZ sequence designed based on this design idea can reduce the generation requirements of the sequence and expand the expression form of the sequence under the premise of meeting the design requirements of the sequence.
  • the method further includes: the terminal device determines the length of the ZCZ sequence set according to the bandwidth of the pilot sequence transmission and the mapping manner of the pilot sequence in the frequency domain; and then according to the ZCZ sequence set The length determines the value of M and the value of K.
  • the method further includes: the terminal device receives a plurality of first identifiers from the positioning management device, where the first identifiers are cell identifiers or transmission reception point TRP identifiers or resource collection identifiers or resource identifiers; terminal equipment According to the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, determine the multiple ZCZ sequences corresponding to the multiple first identifiers in the ZCZ sequence set; Identify the corresponding multiple ZCZ sequences and determine multiple delays or delay differences; the terminal device reports the multiple delays or delay differences to the positioning management device.
  • the terminal device receives a plurality of first identifiers from the positioning management device, where the first identifiers are cell identifiers or transmission reception point TRP identifiers or resource collection identifiers or resource identifiers
  • terminal equipment According to the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, determine the multiple ZCZ sequences corresponding to the multiple first
  • the terminal device when positioning the terminal device, since the terminal device can store the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, after the positioning management device determines multiple first identifiers, Multiple first identifiers can be sent to the terminal device, and the terminal device determines the multiple ZCZ sequences corresponding to the multiple first identifiers in the ZCZ sequence set according to the mapping relationship, without the need for the positioning management device to directly send the multiple ZCZ sequences to the terminal device , Which reduces the signaling transmission overhead between the positioning management equipment and the terminal equipment.
  • the cell identifier and the time-frequency resource identifier can be decoupled, making the design more flexible.
  • the method further includes: the terminal device receives a plurality of first identifiers from the positioning management device, where the first identifiers are cell identifiers or TRP identifiers or resource collection identifiers or resource identifiers; the terminal equipment according to the ZCZ The mapping relationship between each ZCZ sequence in the sequence set and each first identifier determines the multiple ZCZ sequences corresponding to the multiple first identifiers in the ZCZ sequence set.
  • the terminal device when positioning the terminal device, since the terminal device can store the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, after the positioning management device determines multiple first identifiers, Multiple first identifiers can be sent to the terminal device, and the terminal device determines the multiple ZCZ sequences corresponding to the multiple first identifiers in the ZCZ sequence set according to the mapping relationship, without the need for the positioning management device to directly send the multiple ZCZ sequences to the terminal device , Which reduces the signaling transmission overhead between the positioning management equipment and the terminal equipment.
  • the cell identifier and the time-frequency resource identifier can be decoupled, making the design more flexible.
  • a method for generating zone zero autocorrelation ZCZ sequences is provided.
  • the communication device that executes the method may be a network device or a module applied to the network device, such as a chip or a chip system.
  • the following description will be given by taking the execution subject as the network device as an example.
  • the network equipment determines a constant modulus sequence of length M, and multiplies the constant modulus sequence by the base KM, and the exponent is the phase shift of the periodic function to obtain a ZCZ sequence set containing multiple ZCZ sequences, where the period The period of the sexual function is K, M is a positive integer, and K is a positive integer.
  • the technical effect of the second aspect can be referred to the above-mentioned first aspect, which will not be repeated here.
  • the method further includes: the network device determines the length of the ZCZ sequence set according to the bandwidth of the pilot sequence transmission and the mapping manner of the pilot sequence in the frequency domain; and then according to the ZCZ sequence set The length determines the value of M and the value of K.
  • the method further includes: the network device sends one or more first identifiers to the positioning management device, where the first identifiers are cell identifiers or TRP identifiers or resource collection identifiers or resource identifiers, and the first identifiers It is used to determine one or more sequences corresponding to the one or more first identifiers in the ZCZ sequence.
  • the terminal device when positioning the terminal device, can store the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, and the network device sends one or more to the positioning management device.
  • the first identifier after determining the multiple first identifiers, the positioning management device may send the multiple first identifiers to the terminal device, and the terminal device determines the multiple ZCZ sequences corresponding to the multiple first identifiers in the ZCZ sequence set according to the mapping relationship, There is no need for the location management device to directly send multiple ZCZ sequences to the terminal device, which reduces the signaling transmission overhead between the location management device and the terminal device.
  • the cell identifier and the time-frequency resource identifier can be decoupled, making the design more flexible.
  • the method further includes: the network device sends one or more first identifiers to the positioning management device, where the first identifiers are cell or TRP identifiers or resource collection identifiers or resource identifiers; the network equipment according to the ZCZ The mapping relationship between each ZCZ sequence in the sequence set and each first identifier determines the one or more ZCZ sequences corresponding to the one or more first identifiers in the ZCZ sequence set; the network device determines the one or more ZCZ sequences corresponding to the one or more first identifiers in the ZCZ sequence set; Sequence, determine one or more delays; the network device reports the one or more delays to the positioning management device.
  • the terminal device when positioning the terminal device, can store the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, and the network device sends one or more to the positioning management device.
  • the first identifier after determining the multiple first identifiers, the positioning management device may send the multiple first identifiers to the terminal device, and the terminal device determines the multiple ZCZ sequences corresponding to the multiple first identifiers in the ZCZ sequence set according to the mapping relationship, There is no need for the location management device to directly send multiple ZCZ sequences to the terminal device, which reduces the signaling transmission overhead between the location management device and the terminal device.
  • the cell identifier and the time-frequency resource identifier can be decoupled, making the design more flexible.
  • the network device includes a base station or TRP.
  • the ZCZ sequence satisfies the following formula:
  • c a (k) is the constant modulus sequence, a represents the sequence index of the constant modulus sequence, and the value range of a is 1 ⁇ a ⁇ K ;
  • h a (k + mM) indicates that the ZCZ sequence is a sequence index of ZCZ sequence;
  • k + mM indicates that a sequence index is the index of the position ZCZ sequence;
  • At least one of l and s is zero. That is to say, the formula satisfied by the ZCZ sequence provided in the embodiment of the present application can perform corresponding phase shift in the time domain, and the design is relatively flexible.
  • the autocorrelation of the ZCZ sequence satisfies: the autocorrelation value of any ZCZ sequence in the ZCZ sequence set at a set position of any period is not less than The first threshold, and the autocorrelation value at positions other than the set position is not greater than the second threshold; the cross-correlation of the ZCZ sequence satisfies: the cross-correlation value of any two ZCZ sequences in the ZCZ sequence set is not Greater than the third threshold. That is to say, the ZCZ sequence provided by the embodiment of the present application can better meet the requirements for autocorrelation and cross-correlation in the sequence design requirements.
  • the location management device includes a location management function LMF network element or a location management center LMC network element.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be realized by hardware, software, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send the signals from the processor to the communication device.
  • the processor is used to implement the method of any one of the above aspects through logic circuits or execution code instructions.
  • the communication device further includes a memory.
  • the memory is used to store computer instructions.
  • the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • the communication device may be the terminal device in the first aspect, or a module applied to the terminal device, such as a chip or a chip System; or, the communication device may be the network device in the second aspect described above, or a module applied to the network device, such as a chip or a chip system.
  • the communication device when it is a chip system, it may be composed of a chip, or may include a chip and other discrete devices.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method described in any of the above aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the method described in any of the above aspects.
  • the technical effects brought about by any of the design methods of the third aspect to the seventh aspect can be referred to the technical effects brought about by the different design methods in the first aspect or the second aspect, and will not be repeated here.
  • a communication system in an eighth aspect, includes a positioning management device, the terminal device described in the foregoing aspect, and one or more network devices described in the foregoing aspect.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a base station provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram 1 of the flow of a method for generating a ZCZ sequence provided by an embodiment of the application;
  • FIG. 6 is a schematic diagram of the mapping of the constant touch sequence in the frequency domain provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of the second flow of a method for generating a ZCZ sequence provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of another structure of a terminal device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • u a (u a (0),u a (1),...,u a (N-1))
  • u b (u b (0),u b (1),..., u b (N-1)) are two complex sequences of length N, then the definition of the cross-correlation value of u a and u b at position n can be as shown in formula (1):
  • ⁇ a,b (n) represents the cross-correlation value of u a and u b at position n
  • * represents the complex conjugate
  • autocorrelation refers to the convolution operation of the sequence and itself cyclically shifted, and the new sequence obtained is called the autocorrelation spectrum.
  • Cross-correlation refers to the convolution operation of a cyclic shift between a sequence and a sequence other than itself in the sequence set, and the new sequence obtained is called a cross-correlation spectrum.
  • the cross-correlation spectrum of the ZCZ sequence in the ZCZ sequence set provided by the implementation of this application has extremely low values everywhere, and the auto-correlation spectrum has a peak at the zero point, but also periodically has peaks in other positions.
  • the autocorrelation of the ZCZ sequence satisfies the following formula (3):
  • N zc is the length of the extremely low value between the peak and the peak.
  • M represents the number of ZCZ sequences in the ZCZ sequence set, and N is the length of the ZCZ sequence. It can be seen from the formula (3) that the number of ZCZ sequences in the ZCZ sequence set is affected by the length of the ZCZ sequence and the length of the extremely low value between the peak and the peak.
  • the ZCZ sequence can be based on the formula (3) to realize the ZCZ in the ZCZ sequence set. The number of sequences increases.
  • the constant touch sequence in the embodiment of the present application refers to a type of sequence in which the modulus length or absolute value of each element in the sequence is equal.
  • the constant touch sequence types are rich and the design is simple.
  • the constant touch sequence may be an m sequence, a Gold sequence, a ZadeoffChu sequence, etc., for example.
  • At least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same or similar items with substantially the same function and effect. Those skilled in the art can understand that words such as “first” and “second” do not limit the quantity and execution order, and words such as “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions. To be precise, words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems.
  • OFDMA orthogonal frequency-division multiple access
  • single carrier frequency-division multiple access single carrier frequency-division multiple access
  • SC-FDMA single carrier frequency-division multiple access
  • the term "system” can be used interchangeably with "network”.
  • the OFDMA system can implement wireless technologies such as evolved universal terrestrial radio access (E-UTRA) and ultra mobile broadband (UMB).
  • E-UTRA is an evolved version of the Universal Mobile Telecommunications System (UMTS).
  • the 3rd generation partnership project (3GPP) uses a new version of E-UTRA in LTE and various versions based on LTE evolution.
  • the fifth generation (5G) communication system is the next generation communication system under study.
  • 5G communication systems include non-standalone (NSA) 5G mobile communication systems, standalone (standalone, SA) 5G mobile communication systems, or NSA’s 5G mobile communication systems and SA’s 5G mobile communication system.
  • NSA non-standalone
  • SA standalone
  • 5G mobile communication systems or SA’s 5G mobile communication systems
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the above-mentioned communication system applicable to the present application is only an example, and the communication system applicable to the present application is not limited to this, and the description is unified here, and the details are not repeated below.
  • the communication system 10 includes a terminal device 101 and one or more network devices 102 that communicate with the terminal device 101 (in FIG. 1, multiple network devices include The network device 102a serving the terminal device 101 and the network device 102b and network device 102c adjacent to the network device 102a are taken as examples for illustration), and the positioning management device 103 communicating with the terminal device 101 and one or more network devices 102.
  • the terminal device 101 is used to determine a constant modulus sequence of length M, and multiply the constant modulus sequence by the phase offset of the base KM and exponent as the periodic function to obtain a ZCZ sequence set containing multiple ZCZ sequences.
  • Each network device 102 of one or more network devices 102 is used to determine a constant modulus sequence of length M, and multiply the constant modulus sequence by the base KM, and the exponent is the phase offset of the periodic function to obtain the A ZCZ sequence set of ZCZ sequences.
  • the period of the periodic function is K, K is a positive integer, and M is a positive integer.
  • Each network device 102 of the one or more network devices 102 is also used to send one or more first identifiers to the positioning management device 103, and according to the mapping between each ZCZ sequence in the ZCZ sequence set and each first identifier Relationship, determining one or more ZCZ sequences corresponding to one or more first identifiers in the ZCZ sequence set.
  • the positioning management device 103 is configured to receive multiple first identifiers from one or more network devices 102, and send the multiple first identifiers to the terminal device 101.
  • the terminal device 101 is configured to receive multiple first identifiers from the positioning management device 103, and according to the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, determine whether the ZCZ sequence set is in the multiple first identifiers.
  • One identifier corresponds to multiple sequences.
  • the terminal device 101 is further configured to report multiple time delays or time delay differences to the positioning management device 103 after determining multiple time delays or time delay differences according to multiple sequences corresponding to multiple first identifiers.
  • the positioning management device 103 is configured to receive multiple time delays or time delay differences from the terminal device 101, and perform positioning on the terminal device 101 according to the multiple time delays or time delay differences.
  • the first identifier is a cell identifier or a transmission and reception point (TRP) identifier or a resource set identifier or a resource identifier.
  • TRP transmission and reception point
  • Each network device 102 of the one or more network devices 102 is further configured to send one or more first identifiers to the positioning management device 103.
  • the positioning management device 103 is configured to receive multiple first identifiers from one or more network devices 102, and send the multiple first identifiers to the terminal device 101.
  • the terminal device 101 is configured to receive multiple first identifiers from the positioning management device 103, and according to the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, determine whether the ZCZ sequence set is in the multiple first identifiers.
  • One ID corresponds to multiple ZCZ sequences.
  • Each network device 102 in the one or more network devices 102 is further configured to determine that the ZCZ sequence set corresponds to one or more first identifiers according to the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier After determining one or more delays according to one or more ZCZ sequences corresponding to one or more first identifiers, report one or more delays to the positioning management device 103.
  • the positioning management device 103 is configured to receive multiple time delays from multiple network devices 102, and perform positioning on the terminal device 101 according to the multiple time delays.
  • the first identifier is a cell identifier or a TRP identifier or a resource set identifier or a resource identifier.
  • the ZCZ sequence set containing multiple ZCZ sequences in the embodiment of the present application is obtained by multiplying the constant modulus sequence by the phase shift of the base KM and the exponent as the periodic function, the phase shift is obtained from the physical meaning It can be understood that a constant modulus sequence is mapped to different subcarriers periodically at equal intervals in the frequency domain, and the value on the subcarriers in other positions is zero. Since time-domain correlation can be regarded as multiplication in the frequency domain, different ZCZ sequences in the ZCZ sequence set have values on different subcarriers, and the values on subcarriers in other positions are zero.
  • the relative values of different ZCZ sequences in the ZCZ sequence set The result of the multiplication is zero, which ensures the orthogonality of the cross-correlation of different ZCZ sequences in the ZCZ sequence set.
  • the phase offset also ensures the autocorrelation of the ZCZ sequence in the ZCZ sequence set, so based on this scheme, the autocorrelation and cross-correlation required by the ZCZ sequence can be obtained.
  • the basic sequence required to generate the ZCZ sequence set in the embodiment of the present application is a constant modulus sequence, and the design requirement of the constant modulus sequence is low, and the types are abundant, the generation complexity of the ZCZ sequence is reduced and expanded The expression form of the ZCZ sequence is shown.
  • applying the ZCZ sequence provided in the embodiment of this application to the communication system provided in the embodiment of this application not only meets the auto-correlation and cross-correlation requirements required for the terminal equipment to perform positioning time sequence, but also reduces the ZCZ sequence
  • the complexity of generating the ZCZ sequence expands the expression form of the ZCZ sequence.
  • the positioning management device determines multiple first identifiers.
  • multiple first identifications can be sent to the terminal device, and the terminal device determines the multiple ZCZ sequences corresponding to the multiple first identifications in the ZCZ sequence set according to the mapping relationship, without the need for the positioning management device to directly send the multiple ZCZ sequences
  • the signaling transmission overhead between the positioning management equipment and the terminal equipment is reduced.
  • the cell identifier and the time-frequency resource identifier can be decoupled, making the design more flexible.
  • the location management device 103 in the embodiment of the present application may be a location management function (LMF) network element or a location management center (location management center, LMC) network element.
  • LMF location management function
  • LMC location management center
  • the terminal device 101 in the embodiment of the present application is a device used to implement a wireless communication function.
  • the terminal may also be called a mobile station or a mobile terminal.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and smart grids Wireless terminals in the world, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the network device 102 in the embodiment of the present application is a device that connects the terminal device 101 to a wireless network, and it can be a base station or TRP; it can also be a module or unit that completes part of the functions of the base station.
  • it may be a centralized unit (CU), a distributed unit (DU), or a remote radio unit (RRU) or a baseband unit ( baseband unit, BBU).
  • the network device 102 is used as a base station as an example for illustration.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device 102.
  • the base station in the embodiment of the present application may be a base transceiver station (BTS) in a global system for mobile communication (GSM) or a code division multiple access (CDMA) network.
  • BTS base transceiver station
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • NB NodeB
  • WCDMA wideband code division multiple access
  • CRAN cloud radio access network
  • gNB evolved base station in LTE
  • eNodeB evolved NodeB
  • gNB next generation NodeB
  • 5G mobile communication systems base stations in future mobile communication systems
  • Wi-Fi wireless-fidelity
  • the network device 102 and the terminal device 101 in the embodiment of the present application can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons, and man-made aircraft. On the satellite.
  • the embodiment of the present application does not limit the application scenarios of the network device 102 and the terminal device 101.
  • the network device 102 and the terminal device 101 in the embodiment of the present application may communicate through a licensed spectrum, or communicate through an unlicensed spectrum, or communicate through a licensed spectrum and an unlicensed spectrum at the same time.
  • the network equipment 102 and the terminal equipment 101 can communicate through the frequency spectrum below 6 gigahertz (gigahertz, GHz), communicate through the frequency spectrum above 6 GHz, and communicate using the frequency spectrum below 6 GHz and the frequency spectrum above 6 GHz at the same time.
  • the embodiment of the present application does not limit the spectrum resources used between the network device 102 and the terminal device 101.
  • the network device 102 and the terminal device 101 in the embodiment of the present application may also be referred to as a communication device, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • the related functions of the terminal device 101 or the network device 102 in the embodiments of the present application can be implemented by one device, or by multiple devices, or by one or more functional modules in one device.
  • the application embodiment does not specifically limit this. It is understandable that the above functions can be network elements in hardware devices, software functions running on dedicated hardware, or a combination of hardware and software, or instantiated on a platform (for example, a cloud platform) Virtualization function.
  • FIG. 2 is a schematic structural diagram of a communication device 200 provided by an embodiment of the application.
  • the communication device 200 includes one or more processors 201, a communication line 202, and at least one communication interface (in FIG. 2 it is only an example that includes a communication interface 204 and a processor 201 for illustration), optional
  • the memory 203 may also be included.
  • the processor 201 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 202 may include a path for connecting different components.
  • the communication interface 204 may be a transceiver module for communicating with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and so on.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 204 may also be a transceiver circuit located in the processor 201 to implement signal input and signal output of the processor.
  • the memory 203 may be a device having a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory may exist independently and is connected to the processor through the communication line 202. The memory can also be integrated with the processor.
  • the memory 203 is used to store computer-executable instructions for executing the solution of the present application, and the processor 201 controls the execution.
  • the processor 201 is configured to execute computer-executable instructions stored in the memory 203, so as to implement the method for generating the ZCZ sequence provided in the embodiment of the present application.
  • the processor 201 may also perform processing-related functions in the ZCZ sequence generation method provided in the following embodiments of the present application, and the communication interface 204 is responsible for communicating with other devices or communication networks.
  • This application implements The example does not make specific restrictions on this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2.
  • the communication device 200 may include multiple processors, such as the processor 201 and the processor 208 in FIG. 2. Each of these processors can be a single-CPU (single-CPU) processor or a multi-core (multi-CPU) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the communication apparatus 200 may further include an output device 205 and an input device 206.
  • the output device 205 communicates with the processor 201 and can display information in a variety of ways.
  • the aforementioned communication device 200 may be a general-purpose device or a dedicated device.
  • the communication device 200 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device with a similar structure in FIG. 4.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 200.
  • FIG. 3 is a specific structural form of the terminal device 101 provided by an embodiment of the application. .
  • the functions of the processor 201 in FIG. 2 may be implemented by the processor 110 in FIG. 3.
  • the function of the communication interface 204 in FIG. 2 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, etc. in FIG. 3.
  • antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device 101 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide wireless applications such as second generation (2G) networks, third generation (3G) networks, fourth generation (4G) networks, or 5G applications on the terminal device 101. Communication solutions.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive the signal to be sent from the processor 110, perform frequency modulation, amplify it, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the antenna 1 of the terminal device 101 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 101 can communicate with the network and other devices through wireless communication technology.
  • the function of the memory 203 in FIG. 2 may be implemented by an external memory (such as a Micro SD card) connected to the internal memory 121 or the external memory interface 120 in FIG. 3.
  • an external memory such as a Micro SD card
  • the function of the output device 205 in FIG. 2 may be implemented by the display screen 194 in FIG. 3.
  • the display screen 194 includes a display panel.
  • the function of the input device 206 in FIG. 2 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 3.
  • the terminal device 101 may also include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140,
  • One or more of the power management module 141 and the battery 142 is not specifically limited in the embodiment of the present application.
  • the structure shown in FIG. 3 does not constitute a specific limitation on the terminal device 101.
  • the terminal device 101 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • FIG. 4 is a specific structure of the base station 40 according to an embodiment of the application. form.
  • the base station 40 includes one or more radio frequency units (such as RRU401) and one or more BBU402.
  • the RRU 401 may be referred to as a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna feeder system (that is, an antenna) 411 and a radio frequency unit 412.
  • the RRU401 is mainly used for receiving and sending radio frequency signals and converting radio frequency signals and baseband signals.
  • the function of the communication interface 304 in FIG. 2 may be implemented by the RRU 401 in FIG. 4.
  • the BBU 402 is the control center of the base station, and can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU 402 may be composed of one or more single boards, and multiple single boards may jointly support a wireless access network (such as an LTE network) with a single access indication, or may respectively support wireless access networks of different access standards. Access network (such as LTE network, 4G network or other networks).
  • the BBU 402 also includes a memory 421 and a processor 422, and the memory 421 is used to store necessary instructions and data.
  • the processor 422 is used to control the base station to perform necessary actions.
  • the memory 421 and the processor 422 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor.
  • necessary circuits can be provided on each board.
  • the function of the processor 301 in FIG. 2 may be implemented by the processor 422 in FIG. 4
  • the function of the memory 303 in FIG. 2 may be implemented by the memory 421 in FIG.
  • the RRU 401 and the BBU 402 in FIG. 4 may be physically set together, or may be physically separated, for example, a distributed base station, which is not specifically limited in the embodiment of the present application.
  • a method for generating a ZCZ sequence includes the following steps:
  • the terminal device determines a constant modulus sequence of length M, and multiplies the constant modulus sequence by the phase offset of the base KM and the exponent as the periodic function to obtain a ZCZ sequence set containing multiple ZCZ sequences.
  • the period of the periodic function is K, K is a positive integer, and M is a positive integer.
  • the definition of the constant touch sequence can refer to the preamble part of the specific implementation, which will not be repeated here.
  • the constant touch sequence is determined as the basic sequence for generating the ZCZ sequence set.
  • the constant modulus sequence is multiplied
  • the base is KM and the exponent is the phase shift of the periodic function to adaptively adjust the autocorrelation and cross-correlation of the ZCZ sequence.
  • the phase offset has a physical meaning It can be understood that a constant modulus sequence is mapped to different subcarriers periodically at equal intervals in the frequency domain, and the value on the subcarriers in other positions is zero. For example, as shown in Figure 6, assuming that c a (k) is a constant modulus sequence, when the sequence indexes are 1, 2, 3, and 4, respectively, c a (1) and c a (2) can be placed in the frequency domain.
  • the phase shift also ensures the autocorrelation of the ZCZ sequence in the ZCZ sequence set, so the autocorrelation and cross-correlation required by the ZCZ sequence can be obtained.
  • the basic sequence required to generate the ZCZ sequence set in the embodiment of the present application is a constant modulus sequence
  • the design requirements of the constant modulus sequence are low and the types are abundant, thus reducing the complexity of generating the ZCZ sequence and expanding The expression form of the ZCZ sequence is shown.
  • the ZCZ sequence designed based on this design idea can reduce the generation requirements of the sequence and expand the expression form of the sequence under the premise of meeting the design requirements of the sequence.
  • the autocorrelation of the ZCZ sequence may satisfy: the autocorrelation value of any ZCZ sequence in the ZCZ sequence set at the set position of any period is not less than the first threshold, and the autocorrelation value is not less than the The autocorrelation value at positions other than the fixed position is not greater than the second threshold; the cross-correlation of the ZCZ sequence satisfies: the cross-correlation value of any two ZCZ sequences in the ZCZ sequence set is not greater than the third threshold.
  • the correlation calculation method of the auto-correlation value and the cross-correlation value can refer to the definition of auto-correlation and cross-correlation in the preamble part of the specific implementation, which will not be repeated here.
  • the autocorrelation of the ZCZ sequence can satisfy: in any period, the autocorrelation spectrum has a peak somewhere, and the other positions are extremely low values (can be 0), and the cross-correlation spectrum is everywhere All are extremely low values (can be 0). It should be noted that in the embodiment of the present application, in different periods, the position of the peak of the autocorrelation spectrum and the relative position in the period may be different or the same, which is not specifically limited in the embodiment of the present application.
  • the ZCZ sequence in the embodiment of the present application may satisfy the following formula (4):
  • c a (k) is the constant modulus sequence, a represents the sequence index of the constant modulus sequence, and the value range of a is 1 ⁇ a ⁇ K;
  • h a (k+mM) represents the ZCZ sequence with sequence index a in the ZCZ sequence;
  • k+mM represents the position index of the ZCZ sequence with sequence index a;
  • the base is KM, the exponent is the phase shift of i, i is a periodic function, and i is related to m, a, k, and K, exp() represents an exponential function with the natural constant e as the base.
  • c a (k) in the embodiment of the present application may be any constant modulus sequence in the preamble of the specific implementation manner, which is not specifically limited in the embodiment of the present application.
  • i may satisfy the following formula (5):
  • l is a positive integer
  • s is a real number
  • ⁇ a (k) represents the operation of randomly shuffling the sequence for the constant touch sequence.
  • At least one of l and s is 0.
  • formula (5) can be considered as formula (6) has a phase shift in the time domain
  • formula (5) can be considered as formula (7) has a phase shift in the time domain
  • the network device a determines a constant modulus sequence with a length of M, and multiplies the constant modulus sequence by the base KM, and the exponent is the phase offset of the periodic function, to obtain a ZCZ sequence set containing multiple ZCZ sequences.
  • the period of the periodic function is K
  • K is a positive integer
  • M is a positive integer.
  • the network device b determines a constant modulus sequence with a length of M, and multiplies the constant modulus sequence by the base KM, and the exponent is the phase offset of the periodic function, to obtain a ZCZ sequence set containing multiple ZCZ sequences.
  • the period of the periodic function is K
  • K is a positive integer
  • M is a positive integer.
  • the network device c determines a constant modulus sequence of length M, and multiplies the constant modulus sequence by the base KM, and the exponent is the phase offset of the periodic function, to obtain a ZCZ sequence set containing multiple ZCZ sequences.
  • the period of the periodic function is K
  • K is a positive integer
  • M is a positive integer.
  • step S502 to step S504 can refer to the above step S501, which will not be repeated here.
  • the terminal device and the network device may be based on the transmission bandwidth of the pilot sequence and the mapping of the pilot sequence in the frequency domain.
  • the length of the ZCZ sequence set is determined in a manner; and the value of M and the value of K are determined according to the length of the ZCZ sequence set, which is not specifically limited in the embodiment of the present application.
  • the value of M may be 10
  • the value of K may be 6, that is, the length of the ZCZ sequence set may be equal to KM 2 .
  • the ZCZ sequence generation method provided in the embodiment of the present application further includes the following steps:
  • the network device a sends x1 first identifiers to the positioning management device.
  • the positioning management device receives x1 first identifiers from the network device a, and x1 is a positive integer.
  • the first identifier in the embodiment of this application may be a cell ID (cell ID) or a TRP identifier (TRP ID) or a resource set ID (resource set ID) or resource identifier (resource ID), etc., in this embodiment of the application There is no specific restriction on this.
  • the network device a determines x1 ZCZ sequences corresponding to the x1 first identifiers in the ZCZ sequence set according to the mapping relationship between each ZCZ sequence and each first identifier in the ZCZ sequence set.
  • each first identifier may correspond to a ZCZ sequence in the ZCZ sequence set, and the corresponding relationship may be as shown in Table 1 or Table 2:
  • the difference between Table 1 and Table 2 above is that the first identifier and sequence in Table 1 have a one-to-one mapping relationship, and different first identifiers in Table 2 can be mapped to the same ZCZ sequence, for example, the first identifier in the network
  • the network device a After determining x1 pilot sequences according to x1 ZCZ sequences corresponding to the x1 first identifiers in the ZCZ sequence set, the network device a sends x1 pilot sequences to the terminal device. Correspondingly, the terminal device receives x1 pilot sequences from the network device a.
  • the manner of determining the pilot sequence according to the sequence in the ZCZ sequence may include, for example, when the length of the pilot sequence is less than the length of the ZCZ sequence, intercepting the ZCZ sequence to obtain the pilot sequence of the corresponding pilot length, when the length of the pilot sequence is greater than the ZCZ sequence
  • the ZCZ sequence can be zero-filled or shifted and cycled to obtain a pilot sequence corresponding to the pilot length.
  • the network device b sends x2 first identifiers to the positioning management device.
  • the positioning management device receives x2 first identifiers from the network device b, and x2 is a positive integer.
  • the network device b determines x2 ZCZ sequences corresponding to the x2 first identifiers in the ZCZ sequence set according to the mapping relationship between each ZCZ sequence and each first identifier in the ZCZ sequence set.
  • network device b After determining x2 pilot sequences according to x2 ZCZ sequences corresponding to x2 first identifiers in the ZCZ sequence set, network device b sends x2 pilot sequences to the terminal device. Correspondingly, the terminal device receives x2 pilot sequences from the network device a.
  • steps S508-S510 can refer to the above-mentioned steps S505-S507, which will not be repeated here.
  • the network device c sends x3 first identifiers to the positioning management device.
  • the positioning management device receives x3 first identifiers from the network device c, and x3 is a positive integer.
  • the network device c determines x3 ZCZ sequences corresponding to the x3 first identifiers in the ZCZ sequence set according to the mapping relationship between each ZCZ sequence and each first identifier in the ZCZ sequence set.
  • the network device c determines x3 pilot sequences according to the x3 ZCZ sequences corresponding to the x3 first identifiers in the ZCZ sequence set, and then sends x3 pilot sequences to the terminal device.
  • the terminal device receives x3 pilot sequences from the network device a.
  • steps S511-S513 please refer to the above-mentioned steps S505-S507, which will not be repeated here.
  • the parameter x1 in the above steps S505-S507 and the parameter x2 in the above steps S508-S510 and the parameter x3 in the steps S511-S513 may be equal or unequal, which is not specifically limited in the embodiment of the present application.
  • the positioning management device sends x1 first identifiers from the network device a, x2 first identifiers from the network device b, and x3 first identifiers from the network device c to the terminal device.
  • the terminal device receives multiple first identifiers from the positioning management device.
  • the network device a, the network device b, and the network device c participate in the positioning of the terminal device as an example for description. That is, in the embodiment of the present application, the network equipment communicating with the terminal equipment may include other network equipment besides network equipment a, network equipment b, and network equipment c. These network equipment may also send a corresponding one to the positioning management device. Or multiple first identifiers. The embodiment of the present application is only an example of taking the positioning management device to select the first identifier sent by the network device a, the network device b, and the network device c, and then perform the above step S514 as an example for description. .
  • network device a may send more than x1 first identifiers to the positioning management device
  • network device b may send more than x2 first identifiers to the positioning management device
  • network device c may send more than x2 first identifiers to the positioning management device. x3 first logo.
  • the embodiment of this application is only an example of using network device a to send x1 pilot sequences to the terminal device, network device b to send x2 pilot sequences to the terminal device, and network device c to send x3 pilot sequences to the terminal device for
  • the positioning management device only selects x1 first identifiers sent by the network device a to the positioning management device, and x2 first identifiers sent by the network device b to the positioning management device, and the network device c sends the positioning management device
  • the above step S514 is executed as an example for description, and the description is unified here, and the details are not repeated below.
  • S515 The terminal device determines multiple ZCZ sequences corresponding to the multiple first identifiers in the ZCZ sequence set according to the mapping relationship between each ZCZ sequence and each first identifier in the ZCZ sequence set.
  • the terminal device determines multiple pilot sequences according to multiple ZCZ sequences corresponding to multiple first identifiers in the ZCZ sequence set.
  • step S507 For the manner of determining the corresponding pilot sequence according to the sequence in the ZCZ sequence, refer to the foregoing step S507, which will not be repeated here.
  • the terminal device determines multiple time delays or time delay differences according to the multiple determined pilot sequences and multiple pilot sequences received from the network device a, the network device b, and the network device c.
  • the terminal device may correlate the determined multiple pilot sequences and multiple pilot sequences received from network device a, network device b, and network device c, by searching for the highest peak Obtain the delay corresponding to each first identifier or the delay difference corresponding to every two first identifiers in the form of.
  • the first identifier is the cell identifier
  • the first identifier sent by the network device a to the positioning management device is the cell identifier a
  • the first identifier sent by the network device b to the positioning management device is the cell identifier b
  • the network device c sends Taking the example that the first identifier sent by the positioning management device is the cell identifier c
  • the terminal device may correlate the determined pilot sequence corresponding to the cell identifier a with the pilot sequence corresponding to the cell identifier a received from the network device a, Obtain the time delay corresponding to the cell identifier a by searching for the highest peak;
  • the terminal device can correlate the determined pilot sequence corresponding to the cell identifier b with the pilot sequence corresponding to the cell identifier b received from the network device b, by The time delay corresponding to the cell identifier b is obtained by searching for the highest peak;
  • the terminal equipment can correlate the determined pilot sequence corresponding to the cell identifier c with the pilot sequence
  • the terminal device can obtain the difference between the delay corresponding to the cell identifier c and the delay corresponding to the cell identifier a, and the difference between the delay corresponding to the cell identifier b and the delay corresponding to the cell identifier a.
  • the terminal device sends multiple delays or delay differences to the positioning management device.
  • the positioning management device receives multiple delays or delay differences from the terminal device.
  • the terminal device when the terminal device determines multiple time delays in step S517, the terminal device sends multiple time delays to the positioning management device in step S518, and correspondingly, the positioning management device receives multiple time delays from the terminal device. Time delay. In the case where the terminal device determines multiple delay differences in step S517, the terminal device sends multiple delay differences to the positioning management device in step S518, and correspondingly, the positioning management device receives multiple delay differences from the terminal device.
  • the positioning management device performs positioning on the terminal device according to multiple delays or delay differences.
  • the location of the terminal device may be determined by the least square method or other location settlement methods based on the multiple delay differences.
  • the positioning management device receives multiple delays, it can first determine the multiple delay differences based on the multiple delays, and then determine the terminal based on the multiple delay differences through the least squares method or other location settlement methods
  • the positioning management device receives multiple delays, it can first determine the multiple delay differences based on the multiple delays, and then determine the terminal based on the multiple delay differences through the least squares method or other location settlement methods
  • related implementations can refer to the prior art, which will not be repeated here.
  • the terminal device may not send the determined multiple delays or delay differences to the positioning management device, and the positioning management device determines the multiple delays or delay differences according to For the time delay or time delay difference, positioning is performed on the terminal device, but the terminal device performs positioning on the terminal device according to multiple time delays or time delay differences, which is not specifically limited in the embodiment of the present application.
  • the ZCZ sequence set containing multiple ZCZ sequences in the embodiment of the present application is obtained by multiplying the constant modulus sequence by the phase shift of the base KM and the exponent as the periodic function, the phase shift is obtained from the physical meaning It can be understood that a constant modulus sequence is mapped to different subcarriers periodically at equal intervals in the frequency domain, and the value on the subcarriers in other positions is zero. Since time-domain correlation can be regarded as multiplication in the frequency domain, different ZCZ sequences in the ZCZ sequence set have values on different subcarriers, and the values on subcarriers in other positions are zero.
  • the relative values of different ZCZ sequences in the ZCZ sequence set The result of the multiplication is zero, which ensures the orthogonality of the cross-correlation of different ZCZ sequences in the ZCZ sequence set.
  • the phase offset also ensures the autocorrelation of the ZCZ sequence in the ZCZ sequence set, so based on this scheme, the autocorrelation and cross-correlation required by the ZCZ sequence can be obtained.
  • the basic sequence required to generate the ZCZ sequence set in the embodiment of this application is a constant modulus sequence, the design requirements of the constant modulus sequence are low and the types are abundant, thus reducing the complexity of generating the ZCZ sequence and expanding The expression form of the ZCZ sequence is shown.
  • applying the ZCZ sequence provided in the embodiments of this application to the positioning technology not only meets the auto-correlation and cross-correlation requirements of the sequence when performing positioning on the terminal device, but also reduces the complexity of generating the ZCZ sequence and expands The expression form of the ZCZ sequence is shown. Further, in this embodiment of the present application, when positioning the terminal device, since the terminal device can store the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, the positioning management device determines multiple first identifiers.
  • multiple first identifications can be sent to the terminal device, and the terminal device determines the multiple ZCZ sequences corresponding to the multiple first identifications in the ZCZ sequence set according to the mapping relationship, without the need for the positioning management device to directly send the multiple ZCZ sequences
  • the signaling transmission overhead between the positioning management equipment and the terminal equipment is reduced.
  • the cell identifier and the time-frequency resource identifier can be decoupled, making the design more flexible.
  • the actions of the network equipment in the above steps S501 to S519 may be executed by the processor 201 in the communication device 200 shown in FIG. 2 calling the application program code stored in the memory 203, or may be executed by the base station shown in FIG.
  • the actions of the terminal device in the above steps S501 to S519 can be executed by the processor 201 in the communication device 200 shown in FIG. 2 calling the application code stored in the memory 203, or can be executed by the application code stored in the memory 203 as shown in FIG.
  • the processor 110 in the terminal device invokes the application program code stored in the internal memory 121 or the external memory (for example, a Micro SD card) connected to the external memory interface 120 to execute.
  • the uplink communication scenario is taken as an example, assuming that the network device 102a can be recorded as network device a, and the network device 102b can be recorded as network device b.
  • the network device 102c can be denoted as the network device c.
  • a method for generating a ZCZ sequence provided in this embodiment of the application includes the following steps:
  • S701-S704 are the same as steps S501-S504 in the embodiment shown in FIG. 5, and related descriptions can refer to the embodiment shown in FIG. 5, which will not be repeated here.
  • S705-S706 are the same as steps S505-S506 in the embodiment shown in FIG. 5, and related descriptions can refer to the embodiment shown in FIG. 5, which will not be repeated here.
  • S707-S708 are the same as steps S508-S509 in the embodiment shown in FIG. 5, and related descriptions can refer to the embodiment shown in FIG. 5, which will not be repeated here.
  • S709-S710 are the same as steps S511-S512 in the embodiment shown in FIG. 5, and related descriptions can refer to the embodiment shown in FIG. 5, which will not be repeated here.
  • step S711 is the same as step S514 in the embodiment shown in FIG. 5.
  • step S514 in the embodiment shown in FIG. 5.
  • the terminal device determines the x1 ZCZ sequences corresponding to the x1 first identifiers in the ZCZ sequence set according to the mapping relationship between each ZCZ sequence and each first identifier in the ZCZ sequence set, and determines the x1 ZCZ sequences corresponding to the x1 first identifiers in the ZCZ sequence set. After identifying the corresponding x1 ZCZ sequences and determining x1 pilot sequences, send x1 pilot sequences to the network device a. Correspondingly, the network device a receives x1 pilot sequences from the terminal device.
  • step S507 For the manner of determining the pilot sequence according to the ZCZ sequence in the ZCZ sequence set, reference may be made to step S507 in the embodiment shown in FIG. 5, which will not be repeated here.
  • the network device a determines x1 time delays according to the determined x1 pilot sequences and the x1 pilot sequences received from the terminal device.
  • the network device a may correlate the determined x1 pilot sequences and the x1 pilot sequences received from the terminal device, and obtain each first identifier by searching for the highest peak. The corresponding delay.
  • the network device a may compare the determined pilot sequence corresponding to the determined cell identifier a with the slave The pilot sequence corresponding to the cell identifier a received by the terminal device is correlated, and the time delay corresponding to the cell identifier a is obtained by searching for the highest peak.
  • the network device a sends x1 delays to the positioning management device.
  • the positioning management device receives x1 delays from the network device a.
  • the terminal device determines the x2 ZCZ sequences corresponding to the x2 first identifiers in the ZCZ sequence set according to the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, and determines the x2 ZCZ sequences corresponding to the x2 first identifiers in the ZCZ sequence set.
  • the x2 pilot sequences are sent to the network device b.
  • the network device b receives x2 pilot sequences from the terminal device.
  • the network device b determines x2 time delays according to the determined x2 pilot sequences and the x2 pilot sequences received from the terminal device.
  • the network device b sends x2 delays to the positioning management device.
  • the positioning management device receives x2 delays from the network device b.
  • steps S715-S717 please refer to the above-mentioned steps S712-S714, which will not be repeated here.
  • the terminal device determines the x3 ZCZ sequences corresponding to the x3 first identifiers in the ZCZ sequence set according to the mapping relationship between each ZCZ sequence in the ZCZ sequence set and each first identifier, and determines the x3 ZCZ sequences corresponding to the x3 first identifiers in the ZCZ sequence set. After identifying the corresponding x3 ZCZ sequences and determining x3 pilot sequences, send x3 pilot sequences to the network device c. Correspondingly, the network device c receives x3 pilot sequences from the terminal device.
  • the network device c determines x3 time delays according to the determined x3 pilot sequences and the x3 pilot sequences received from the terminal device.
  • the network device c sends x3 delays to the positioning management device.
  • the positioning management device receives x3 delays from the network device c.
  • steps S718-S720 please refer to the above-mentioned steps S712-S714, which will not be repeated here.
  • the positioning management device performs positioning on the terminal device according to multiple time delays.
  • the positioning management device when it receives multiple delays, it may first determine multiple delay differences based on the multiple delays, and then determine the multiple delay differences according to the multiple delay differences through the least squares method.
  • the related implementation can refer to the prior art, which will not be repeated here.
  • the actions of the network equipment in the above steps S701 to S721 may be executed by the processor 201 in the communication device 200 shown in FIG. 2 calling the application code stored in the memory 203, or may be executed by the base station shown in FIG. 4
  • the actions of the terminal device in the above steps S501 to S519 can be executed by the processor 201 in the communication device 200 shown in FIG. 2 calling the application code stored in the memory 203, or can be executed by the application code stored in the memory 203 as shown in FIG.
  • the processor 110 in the terminal device invokes the application program code stored in the internal memory 121 or the external memory (for example, a Micro SD card) connected to the external memory interface 120 to execute.
  • the methods and/or steps implemented by the network device can also be implemented by components (such as chips or circuits) that can be used in the network device; the methods and/or steps implemented by the terminal device, It can also be implemented by components (such as chips or circuits) that can be used in terminal devices.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the terminal device in the foregoing method embodiment, or a device including the foregoing terminal device, or a component that can be used in the terminal device; or, the communication device may be the network device in the foregoing method embodiment, or include the foregoing A device of a network device, or a component that can be used in a network device, it can be understood that, in order to realize the above-mentioned functions, the communication device includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 8 shows a schematic structural diagram of a terminal device 80.
  • the terminal device 80 includes a processing module 802, and optionally includes a transceiver module 801.
  • the transceiver module 801 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 802 is used to determine a constant modulus sequence of length M, where M is a positive integer; the processing module 802 is also used to multiply the constant modulus sequence by the base KM and the exponent as the phase shift of the periodic function to obtain A ZCZ sequence set containing multiple zone zero autocorrelation ZCZ sequences, where the period of the periodic function is K, and K is a positive integer.
  • the processing module 802 is further configured to determine the length of the ZCZ sequence set according to the bandwidth of the pilot sequence transmission and the mapping mode of the pilot sequence in the frequency domain; the processing module 802 is further configured to determine the length of the ZCZ sequence set according to the length of the ZCZ sequence set Determine the value of M and the value of K.
  • the transceiver module 801 is configured to receive a plurality of first identifiers from the positioning management device, where the first identifiers are cell identifiers or TRP identifiers or resource collection identifiers or resource identifiers; the processing module 802 is also configured to focus according to the ZCZ sequence
  • the mapping relationship between each ZCZ sequence and each first identifier in the ZCZ sequence set determines the multiple ZCZ sequences corresponding to the multiple first identifiers in the ZCZ sequence set; the processing module 802 is further configured to determine the multiple ZCZ sequences corresponding to the multiple first identifiers according to the The ZCZ sequence determines multiple delays or delay differences; the transceiver module 801 is also used to report multiple delays or delay differences to the positioning management device.
  • the transceiver module 801 is configured to receive multiple first identifiers from the positioning management device, where the first identifiers are cell identifiers or TRP identifiers or resource collection identifiers or resource identifiers; the processing module 802 is configured to collect data according to the ZCZ sequence The mapping relationship between each ZCZ sequence and each first identifier determines multiple ZCZ sequences corresponding to the multiple first identifiers in the ZCZ sequence set.
  • the terminal device 80 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the terminal device 80 may take the form of the communication device 200 shown in FIG. 2.
  • the processor 201 in the communication device 200 shown in FIG. 2 may invoke the computer execution instructions stored in the memory 203 to cause the communication device 200 to execute the ZCZ sequence generation method in the foregoing method embodiment.
  • the functions/implementation process of the transceiver module 801 and the processing module 802 in FIG. 8 can be implemented by the processor 201 in the communication device 200 shown in FIG. 2 calling a computer execution instruction stored in the memory 203.
  • the function/implementation process of the processing module 802 in FIG. 8 can be implemented by the processor 201 in the communication device 200 shown in FIG. 2 calling a computer execution instruction stored in the memory 203, and the function of the transceiver module 801 in FIG. 8 /The realization process can be realized through the communication interface 204 in the communication device 200 shown in FIG. 2.
  • the terminal device 80 provided in this embodiment can execute the above-mentioned ZCZ sequence generation method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 9 shows a schematic structural diagram of a network device 90.
  • the network device 90 includes a processing module 902, and optionally includes a transceiver module 901.
  • the transceiver module 901 may also be referred to as a transceiver unit to implement a transceiver function, for example, it may be a transceiver circuit, a transceiver, a transceiver, or a communication interface.
  • the processing module 902 is used to determine a constant modulus sequence of length M, where M is a positive integer; the processing module 902 is also used to multiply the constant modulus sequence by the base KM and the exponent as the phase shift of the periodic function to obtain A ZCZ sequence set containing multiple zone zero autocorrelation ZCZ sequences, where the period of the periodic function is K, and K is a positive integer.
  • the processing module 902 is further configured to determine the length of the ZCZ sequence set according to the bandwidth of the pilot sequence transmission and the mapping mode of the pilot sequence in the frequency domain; the processing module 902 is further configured to determine the length of the ZCZ sequence set according to the length of the ZCZ sequence set. Determine the value of M and the value of K.
  • the transceiver module 901 is configured to send one or more first identifiers to the positioning management device.
  • the first identifiers are cell identifiers or TRP identifiers or resource collection identifiers or resource identifiers, and the first identifiers are used to determine the ZCZ sequence and One or more sequences corresponding to one or more first identifiers.
  • the transceiver module 901 is configured to send one or more first identifiers to the positioning management device, where the first identifiers are cell or TRP identifiers or resource collection identifiers or resource identifiers; the processing module 902 is configured to collect data according to the ZCZ sequence The mapping relationship between each ZCZ sequence and each first identifier determines one or more ZCZ sequences in the ZCZ sequence set corresponding to one or more first identifiers; the processing module 902 is also used to, based on the one or more ZCZ sequences, Determine one or more time delays; the transceiver module 901 is also used to report one or more time delays to the positioning management device.
  • the network device 90 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here may refer to a specific ASIC, a circuit, a processor and memory that executes one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the network device 90 may take the form of the communication device 200 shown in FIG. 2.
  • the processor 201 in the communication device 200 shown in FIG. 2 may invoke the computer execution instructions stored in the memory 203 to cause the communication device 200 to execute the ZCZ sequence generation method in the foregoing method embodiment.
  • the function/implementation process of the transceiver module 901 and the processing module 902 in FIG. 9 may be implemented by the processor 201 in the communication device 200 shown in FIG. 2 calling a computer execution instruction stored in the memory 203.
  • the function/implementation process of the processing module 902 in FIG. 9 can be realized by the processor 201 in the communication device 200 shown in FIG. 2 calling a computer execution instruction stored in the memory 203, and the function of the transceiver module 901 in FIG. 9 /The realization process can be realized through the communication interface 204 in the communication device 200 shown in FIG. 2.
  • the network device 90 provided in this embodiment can execute the above-mentioned ZCZ sequence generation method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • one or more of the above modules or units can be implemented by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and implement the above method flow.
  • the processor can be built in SoC (system on chip) or ASIC, or it can be an independent semiconductor chip.
  • SoC system on chip
  • ASIC application specific integrated circuit
  • the processor's internal processing is used to execute software instructions for calculations or processing, and may further include necessary hardware accelerators, such as field programmable gate array (FPGA), PLD (programmable logic device) , Or a logic circuit that implements dedicated logic operations.
  • FPGA field programmable gate array
  • PLD programmable logic device
  • the hardware can be a CPU, a microprocessor, a digital signal processing (digital signal processing, DSP) chip, a microcontroller unit (MCU), an artificial intelligence processor, an ASIC, Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • DSP digital signal processing
  • MCU microcontroller unit
  • an artificial intelligence processor an ASIC
  • Any one or any combination of SoC, FPGA, PLD, dedicated digital circuit, hardware accelerator, or non-integrated discrete device can run necessary software or do not rely on software to perform the above method flow.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or may include one or more data storage devices such as servers and data centers that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了ZCZ序列的生成方法及装置,用于在满足序列的设计要求的前提下,降低序列的生成要求。方法包括:确定长度为M的恒模序列,并将该恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个ZCZ序列的ZCZ序列集,其中,该周期性函数的周期为K,M为正整数,K为正整数。该ZCZ序列可以应用于定位技术中。

Description

ZCZ序列的生成方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及区域零自相关(zero correlation zone,ZCZ)序列的生成方法及装置。
背景技术
定位技术是指利用无线通信网络的资源得到移动终端的位置信息以确定移动终端的地理位置的技术。目前的定位技术中,通常需要基于导频进行测量,而序列的设计是导频设计的一个非常重要的组成部分。
其中,对于序列的设计要求在于序列需要具有良好的自相关性和互相关性。因为在信号传输过程中,由于受到噪声和干扰等影响,发送的信号会受到影响。在接收端将发送信号与接收信号进行相关,可以通过搜索相关后的信号最高峰的方式得到发送时延,良好的自相关性可以保证最高峰检测的准确性,从而提高时延判断的鲁棒性。同时,良好的互相关性可以保证接收信号与主小区的发送信号的相关性有最高峰,而与其他小区的发送信号的相关性为接近于零的极低值,从而可以消除干扰带来的影响。
现有技术中,下行测量的导频序列目前在长期演进(long term evolution,LTE)中选用的是伪随机序列,该序列的自相关较好,但是互相关性无法保证;上行测量的导频序列目前在LTE中选用的为恒包络零自相关(constant amplitude zero auto correlation,CAZAC)序列,该CAZAC序列能够得到较好的自相关性和互相关性,但是需要的基础序列是完美序列,对于序列生成的要求较高。
发明内容
本申请实施例提供了ZCZ序列的生成方法及装置,用于在满足序列的设计要求的前提下,降低序列的生成要求。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种区域零自相关ZCZ序列的生成方法,执行该方法的通信装置可以为终端设备也可以为应用于终端设备中的模块,例如芯片或芯片系统。下面以执行主体为终端设备为例进行描述。其中,终端设备确定长度为M的恒模序列,并将该恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个ZCZ序列的ZCZ序列集,其中,该周期性函数的周期为K,M为正整数,K为正整数。一方面,由于本申请实施例中的ZCZ序列集是将恒模序列乘以底数为KM,指数为周期性函数的相位偏移得到的,该相位偏移,从物理含义上可以理解为将一个恒模序列在频域上周期性等间隔映射到不同的子载波上,其他位置的子载波上的值为零。由于时域相关在频域上可以看成是相乘,ZCZ序列集中不同ZCZ序列在不同的子载波上有值,其他位置的子载波上的值为零,因此ZCZ序列集中不同ZCZ序列的相乘结果为零,保证了该ZCZ序列集中ZCZ序列互相关的正交性。相位偏移也保证了ZCZ序列集中的ZCZ序列的自相关性,因此可以得到ZCZ序列所需要的自相关和互相关性。另一方面,由于本申请实施例中,生成ZCZ序列集所需的基础序列为恒模序列,而恒模序 列的设计要求较低,且类型丰富,因此降低了ZCZ序列的生成复杂度,扩展了ZCZ序列的表达形式。综上,也就是说,基于该设计思路设计出的ZCZ序列可以在满足序列的设计要求的前提下,降低序列的生成要求,扩展序列的表达形式。
在一种可能的设计中,该方法还包括:终端设备根据导频序列发送的带宽和该导频序列的在频域上的映射方式确定该ZCZ序列集的长度;进而根据该ZCZ序列集的长度确定M的取值和K的取值。
在一种可能的设计中,该方法还包括:终端设备接收来自定位管理设备的多个第一标识,该第一标识为小区标识或者传输接收点TRP标识或者资源集合标识或者资源标识;终端设备根据该ZCZ序列集中的每个ZCZ序列与每个该第一标识的映射关系,确定该ZCZ序列集中与该多个第一标识对应的多个ZCZ序列;终端设备根据该与该多个第一标识对应的多个ZCZ序列,确定多个时延或时延差;终端设备向定位管理设备上报该多个时延或时延差。本申请实施例中,在对终端设备执行定位时,由于终端设备中可以存储ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,进而定位管理设备确定多个第一标识之后,可以向终端设备发送多个第一标识,由终端设备根据该映射关系确定ZCZ序列集中与多个第一标识对应的多个ZCZ序列,不需要定位管理设备直接将多个ZCZ序列发送给终端设备,减少了定位管理设备和终端设备之间的信令传输开销。同时,相对于现有技术中将序列与小区标识和时频资源标识同时绑定的方案,本申请实施例中,可以将小区标识和时频资源标识进行解耦,使得设计更加灵活。
在一种可能的设计中,该方法还包括:终端设备接收来自定位管理设备的多个第一标识,该第一标识为小区标识或者TRP标识或者资源集合标识或者资源标识;终端设备根据该ZCZ序列集中的每个ZCZ序列与每个该第一标识的映射关系,确定该ZCZ序列集中与该多个第一标识对应的多个ZCZ序列。本申请实施例中,在对终端设备执行定位时,由于终端设备中可以存储ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,进而定位管理设备确定多个第一标识之后,可以向终端设备发送多个第一标识,由终端设备根据该映射关系确定ZCZ序列集中与多个第一标识对应的多个ZCZ序列,不需要定位管理设备直接将多个ZCZ序列发送给终端设备,减少了定位管理设备和终端设备之间的信令传输开销。同时,相对于现有技术中将序列与小区标识和时频资源标识同时绑定的方案,本申请实施例中,可以将小区标识和时频资源标识进行解耦,使得设计更加灵活。
第二方面,提供了一种区域零自相关ZCZ序列的生成方法,执行该方法的通信装置可以为网络设备也可以为应用于网络设备中的模块,例如芯片或芯片系统。下面以执行主体为网络设备为例进行描述。其中,网络设备确定长度为M的恒模序列,并将该恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个ZCZ序列的ZCZ序列集,其中,该周期性函数的周期为K,M为正整数,K为正整数。其中,第二方面的技术效果可参考上述第一方面,在此不再赘述。
在一种可能的设计中,该方法还包括:网络设备根据导频序列发送的带宽和该导频序列的在频域上的映射方式确定该ZCZ序列集的长度;进而根据该ZCZ序列集的长度确定M的取值和K的取值。
在一种可能的设计中,该方法还包括:网络设备向定位管理设备发送一个或多个第一标识,该第一标识为小区标识或者TRP标识或者资源集合标识或者资源标识,该第一标识用于确定该ZCZ序列中与该一个或多个第一标识对应的一个或多个序列。本申请实施例中,在对终端设备执行定位时,由于终端设备中可以存储ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,进而网络设备向定位管理设备发送一个或多个第一标识,定位管理设备确定多个第一标识之后,可以向终端设备发送多个第一标识,由终端设备根据该映射关系确定ZCZ序列集中与多个第一标识对应的多个ZCZ序列,不需要定位管理设备直接将多个ZCZ序列发送给终端设备,减少了定位管理设备和终端设备之间的信令传输开销。同时,相对于现有技术中将序列与小区标识和时频资源标识同时绑定的方案,本申请实施例中,可以将小区标识和时频资源标识进行解耦,使得设计更加灵活。
在一种可能的设计中,该方法还包括:网络设备向定位管理设备发送一个或多个第一标识,该第一标识为小区或者TRP标识或者资源集合标识或者资源标识;网络设备根据该ZCZ序列集中的每个ZCZ序列与每个该第一标识的映射关系,确定该ZCZ序列集中与该一个或多个第一标识对应的一个或多个ZCZ序列;网络设备根据该一个或多个ZCZ序列,确定一个或多个时延;网络设备向该定位管理设备上报该一个或多个时延。本申请实施例中,在对终端设备执行定位时,由于终端设备中可以存储ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,进而网络设备向定位管理设备发送一个或多个第一标识,定位管理设备确定多个第一标识之后,可以向终端设备发送多个第一标识,由终端设备根据该映射关系确定ZCZ序列集中与多个第一标识对应的多个ZCZ序列,不需要定位管理设备直接将多个ZCZ序列发送给终端设备,减少了定位管理设备和终端设备之间的信令传输开销。同时,相对于现有技术中将序列与小区标识和时频资源标识同时绑定的方案,本申请实施例中,可以将小区标识和时频资源标识进行解耦,使得设计更加灵活。
在一种可能的设计中,该网络设备包括基站或TRP。
结合上述第一方面或第二方面,在一种可能的设计中,该ZCZ序列满足如下公式:
Figure PCTCN2019120436-appb-000001
其中,0≤k≤M-1,0≤m≤KM-1;c a(k)为该恒模序列,a表示该恒摸序列的序列索引,a的取值范围为1≤a≤K;h a(k+mM)表示该ZCZ序列中序列索引为a的ZCZ序列;k+mM表示该序列索引为a的ZCZ序列的位置索引;
Figure PCTCN2019120436-appb-000002
表示该底数为KM,指数为i的相位偏移,i为该周期性函数,且i与m、a、k和K均相关,
Figure PCTCN2019120436-appb-000003
exp()表示以自然常数e为底的指数函数。
结合上述第一方面或第二方面,在一种可能的设计中,i满足:i=m(Kπ a(k)+a+l)+s;其中,l为正整数;s为实数;π a(k)表示对于该恒摸序列执行随机打乱顺序的操作。由于π a(k)表示对于恒摸序列进行随机打乱顺序的操作,因此可以保证ZCZ序列的多样性。
结合上述第一方面或第二方面,在一种可能的设计中,l和s中的至少一个为0。也就是说,本申请实施例提供的ZCZ序列满足的公式可以在时域上进行相应的相位偏移,设计较为灵活。
结合上述第一方面或第二方面,在一种可能的设计中,该ZCZ序列的自相关性满 足:该ZCZ序列集中的任一ZCZ序列在任一周期的设定位置处的自相关值不小于第一阈值,且在除该设定位置之外的其他位置处的自相关值不大于第二阈值;该ZCZ序列的互相关性满足:该ZCZ序列集中任意两个ZCZ序列的互相关值不大于第三阈值。也就是说,本申请实施例提供的ZCZ序列能够较好的满足序列设计要求中对于自相关性和互相关性的要求。
结合上述第一方面或第二方面,在一种可能的设计中,该定位管理设备包括定位管理功能LMF网元或者定位管理中心LMC网元。
第三方面,提供了一种通信装置用于实现上述各种方法。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第四方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。
在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。
第五方面,提供了一种通信装置,包括:处理器和接口电路,接口电路用于接收来自通信装置之外的其它通信装置的信号并传输至处理器或将来自处理器的信号发送给通信装置之外的其它通信装置,处理器通过逻辑电路或执行代码指令用于实现上述任一方面的方法。
在一种可能的设计中,该通信装置还包括存储器。该存储器用于存储计算机指令,当处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。
结合上述第三方面至第五方面中的任一方面,在一种可能的设计中,该通信装置可以为上述第一方面中的终端设备,或者应用于终端设备中的模块,例如芯片或芯片系统;或者,该通信装置可以为上述第二方面中的网络设备,或者应用于网络设备中的模块,例如芯片或芯片系统。
可选的,该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行如上述任一方面所述的方法。
第七方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行如上述任一方面所述的方法。
其中,第三方面至第七方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面中不同设计方式所带来的技术效果,此处不再赘述。
第八方面,提供了一种通信系统,该通信系统包括定位管理设备、上述方面所述的终端设备和一个或多个上述方面所述的网络设备。
附图说明
图1为本申请实施例提供的一种通信系统的结构示意图;
图2为本申请实施例提供的一种通信装置的结构示意图;
图3为本申请实施例提供的一种终端设备的结构示意图;
图4为本申请实施例提供的一种基站的结构示意图;
图5为本申请实施例提供的ZCZ序列的生成方法流程示意图一;
图6为本申请实施例提供的恒摸序列在频域上的映射示意图;
图7为本申请实施例提供的ZCZ序列的生成方法流程示意图二;
图8为本申请实施例提供的终端设备的另一种结构示意图;
图9为本申请实施例提供的网络设备的结构示意图。
具体实施方式
为了方便理解本申请实施例中的方案,首先给出相关技术的简要介绍或定义如下:
第一,互相关和自相关
定义S=u a:1≤a≤K是周期为N的K个复数序列的序列集。则序列的相关性可以定义如下:
定义u a=(u a(0),u a(1),...,u a(N-1)),u b=(u b(0),u b(1),...,u b(N-1))是两个长度为N的复数序列,则u a和u b在位置n处的互相关值定义可以如公式(1)所示:
Figure PCTCN2019120436-appb-000004
其中,0≤n≤N-1,θ a,b(n)表示u a和u b在位置n处的互相关值,*表示复共轭。
当a=b时,u a在位置n处的自相关值可如公式(2)所示:
Figure PCTCN2019120436-appb-000005
简单的说,自相关指的是序列与本身进行循环移位的卷积运算,得到的新的序列称为自相关谱。互相关指的是序列与序列集中的除本身以外的一个序列进行循环移位的卷积运算,得到的新的序列称为互相关谱。
第二,ZCZ序列
本申请实施提供的ZCZ序列集中ZCZ序列的互相关谱处处都是极低值,而自相关谱除了在零点处有个峰值,还会在其他位置周期性出现峰值。ZCZ序列的自相关满足如下公式(3):
Figure PCTCN2019120436-appb-000006
其中,N zc为峰值与峰值之间极低值的长度。M表示ZCZ序列集中ZCZ序列的个数,N为ZCZ序列的长度。从公式(3)可以看出,ZCZ序列集中ZCZ序列的个数受到ZCZ序列的长度和峰值与峰值之间极低值的长度的影响,ZCZ序列可以基于该公式(3)实现ZCZ序列集中ZCZ序列的个数的增加。
第三,恒摸序列
本申请实施例中的恒摸序列是指序列中每个元素的模长或绝对值都相等的一类序列。通常,恒摸序列类型丰富,且设计简单。示例性的,该恒摸序列例如可以为m序列、Gold序列、ZadeoffChu序列等。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或 其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例的技术方案可以应用于各种通信系统。例如:正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。术语“系统”可以和“网络”相互替换。OFDMA系统可以实现诸如演进通用无线陆地接入(evolved universal terrestrial radio access,E-UTRA)、超级移动宽带(ultra mobile broadband,UMB)等无线技术。E-UTRA是通用移动通信系统(universal mobile telecommunications system,UMTS)演进版本。第三代合作伙伴计划(3rd generation partnership project,3GPP)在LTE和基于LTE演进的各种版本是使用E-UTRA的新版本。第五代(the fifth generation,5G)通信系统是正在研究当中的下一代通信系统。其中,5G通信系统包括非独立组网(non-standalone,简称NSA)的5G移动通信系统,独立组网(standalone,简称SA)的5G移动通信系统,或者,NSA的5G移动通信系统和SA的5G移动通信系统。此外,通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。
如图1所示,为本申请实施例提供的一种通信系统,该通信系统10包括终端设备101、与终端设备101通信的一个或多个网络设备102(图1中以多个网络设备包括为终端设备101服务的网络设备102a以及该网络设备102a相邻的网络设备102b和网络设备102c为例进行示意)、以及与终端设备101和一个或多个网络设备102通信的定位管理设备103。
其中,终端设备101,用于确定长度为M的恒模序列,并将恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个ZCZ序列的ZCZ序列集。一个或多个网络设备102中的每个网络设备102,用于确定长度为M的恒模序列,并将恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个ZCZ序列的ZCZ序列集。其中,周期性函数的周期为K,K为正整数,M为正整数。
在下行通信的场景下:
一个或多个网络设备102中的每个网络设备102,还用于向定位管理设备103发送一个或多个第一标识,并根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与一个或多个第一标识对应的一个或多个ZCZ序列。定位管理设备103,用于接收来自一个或多个网络设备102的多个第一标识,并向终端 设备101发送多个第一标识。相应的,终端设备101,用于接收来自定位管理设备103的多个第一标识,并根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与多个第一标识对应的多个序列。终端设备101,还用于根据与多个第一标识对应的多个序列,确定多个时延或时延差之后,向定位管理设备103上报多个时延或时延差。定位管理设备103,用于接收来自终端设备101的多个时延或时延差,并根据多个时延或时延差,对终端设备101执行定位。其中,第一标识为小区标识或者传输接收点(transmission and reception point,TRP)标识或者资源集合标识或者资源标识。该方案的详细实现将在后续方法实施例中描述,在此不予赘述。
在上行通信的场景下:
一个或多个网络设备102中的每个网络设备102,还用于向定位管理设备103发送一个或多个第一标识。定位管理设备103,用于接收来自一个或多个网络设备102的多个第一标识,并向终端设备101发送多个第一标识。相应的,终端设备101,用于接收来自定位管理设备103的多个第一标识,并根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与多个第一标识对应的多个ZCZ序列。一个或多个网络设备102中的每个网络设备102,还用于根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与一个或多个第一标识对应的一个或多个ZCZ序列,并根据与一个或多个第一标识对应的一个或多个ZCZ序列,确定一个或多个时延之后,向定位管理设备103上报一个或多个时延。定位管理设备103,用于接收来自多个网络设备102的多个时延,并根据多个时延,对终端设备101执行定位。其中,第一标识为小区标识或者TRP标识或者资源集合标识或者资源标识。该方案的详细实现将在后续方法实施例中描述,在此不予赘述。
一方面,由于本申请实施例中包含多个ZCZ序列的ZCZ序列集是将恒模序列乘以底数为KM,指数为周期性函数的相位偏移得到的,该相位偏移,从物理含义上可以理解为将一个恒模序列在频域上周期性等间隔映射到不同的子载波上,其他位置的子载波上的值为零。由于时域相关在频域上可以看成是相乘,ZCZ序列集中不同ZCZ序列在不同的子载波上有值,其他位置的子载波上的值为零,因此ZCZ序列集中不同ZCZ序列的相乘结果为零,保证了该ZCZ序列集中不同ZCZ序列互相关的正交性。相位偏移也保证了ZCZ序列集中的ZCZ序列的自相关性,因此基于该方案,可以得到ZCZ序列所需要的自相关和互相关性。另一方面,由于本申请实施例中,生成ZCZ序列集所需的基础序列为恒模序列,而恒模序列的设计要求较低,且类型丰富,因此降低了ZCZ序列的生成复杂度,扩展了ZCZ序列的表达形式。综上,将本申请实施例提供的ZCZ序列应用于本申请实施例提供的通信系统,不仅满足了对终端设备执行定位时序列所需的自相关性和互相关性要求,且降低了ZCZ序列的生成复杂度,扩展了ZCZ序列的表达形式。进一步的,本申请实施例中,在对终端设备执行定位时,由于终端设备中可以存储ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,进而定位管理设备确定多个第一标识之后,可以向终端设备发送多个第一标识,由终端设备根据该映射关系确定ZCZ序列集中与多个第一标识对应的多个ZCZ序列,不需要定位管理设备直接将多个ZCZ序列发送给终端设备,减少了定位管理设备和终端设备之间的信令传输开销。同时,相对于现有技术中将序列与小区标识和时频资源标 识同时绑定的方案,本申请实施例中,可以将小区标识和时频资源标识进行解耦,使得设计更加灵活。
可选的,本申请实施例中的定位管理设备103可以是定位管理功能(location management function,LMF)网元或者定位管理中心(location management center,LMC)网元。
可选的,本申请实施例中的终端设备101,又称之为终端或用户设备(user equipment,UE),为用于实现无线通信功能的设备。其中,终端也可以称为移动台或移动终端等。终端可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可选的,本申请实施例中的网络设备102,是一种将终端设备101接入到无线网络的设备,可以是基站(base station)或者TRP;也可以是完成基站部分功能的模块或单元,例如,可以为集中式单元(central unit,CU),也可以为分布式单元(distributed unit,DU),还可以为分离式基站的远端射频单元(remote radio unit,RRU)或基带单元(baseband unit,BBU)。图1中以网络设备102为基站为例进行示意,本申请的实施例对网络设备102所采用的具体技术和具体设备形态不做限定。此外,本申请实施例中的基站可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS)、宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB)、云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、LTE中的演进型基站(evolved NodeB,eNodeB)、或者5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等,在此不作具体限定。
可选的,本申请实施例中的网络设备102和终端设备101可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备102和终端设备101的应用场景不做限定。
可选的,本申请实施例中的网络设备102和终端设备101之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备102和终端设备101之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备102和终端设备101之间所使用的频谱资源不做限定。
可选的,本申请实施例中的网络设备102与终端设备101也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
其中,本申请实施例中的终端设备101或网络设备102的相关功能可以由一个设备实现,也可以由多个设备共同实现,还可以是由一个设备内的一个或多个功能模块实现,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备 中的网络元件,也可以是在专用硬件上运行的软件功能,或者是硬件与软件的结合,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,本申请实施例中的终端设备101或网络设备102的相关功能可以通过图2中的通信装置200来实现。图2所示为本申请实施例提供的通信装置200的结构示意图。该通信装置200包括一个或多个处理器201,通信线路202,以及至少一个通信接口(图2中仅是示例性的以包括通信接口204,以及一个处理器201为例进行说明),可选的还可以包括存储器203。
处理器201可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路202可包括一通路,用于连接不同组件之间。
通信接口204,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口204也可以是位于处理器201内的收发电路,用以实现处理器的信号输入和信号输出。
存储器203可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路202与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器203用于存储执行本申请方案的计算机执行指令,并由处理器201来控制执行。处理器201用于执行存储器203中存储的计算机执行指令,从而实现本申请实施例中提供的ZCZ序列的生成方法。
或者,本申请实施例中,也可以是处理器201执行本申请下述实施例提供的ZCZ序列的生成方法中的处理相关的功能,通信接口204负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置200可以包括多个处理器,例如图2中的处理器201和处理器208。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置200还可以包括输出设备205和输入 设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。
上述的通信装置200可以是一个通用装置或者是一个专用装置。例如通信装置200可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或具有图4中类似结构的设备。本申请实施例不限定通信装置200的类型。
结合图2所示的通信装置200的结构示意图,以通信装置200为图1中的终端设备101为例,示例性的,图3为本申请实施例提供的终端设备101的一种具体结构形式。
其中,在一些实施例中,图2中的处理器201的功能可以通过图3中的处理器110实现。
在一些实施例中,图2中的通信接口204的功能可以通过图3中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备101中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备101上的包括第二代(2nd generation,2G)网络、第三代(3rd generation,3G)网络、第四代(4th generation,4G)网络或者5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端设备101的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备101可以通过无线通信技术与网络以及其他设备通信。
在一些实施例中,图2中的存储器203的功能可以通过图3中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图2中的输出设备205的功能可以通过图3中的显示屏194实现。显示屏194包括显示面板。
在一些实施例中,图2中的输入设备206的功能可以通过鼠标、键盘、触摸屏设备或图3中的传感器模块180来实现。在一些实施例中,如图3所示,该终端设备101还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接 口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,本申请实施例对此不作具体限定。
可以理解的是,图3所示的结构并不构成对终端设备101的具体限定。比如,在本申请另一些实施例中,终端设备101可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
或者,结合图2所示的通信装置200的结构示意图,以通信装置200为图1中的网络设备102为例,示例性的,图4为本申请实施例提供的基站40的一种具体结构形式。
其中,该基站40包括一个或多个射频单元(如RRU401)、以及一个或多个BBU402。
RRU401可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天馈系统(即天线)411和射频单元412。该RRU401主要用于射频信号的收发以及射频信号与基带信号的转换。在一些实施例中,图2中的通信接口304的功能可以通过图4中的RRU401实现。
该BBU402为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。
在一些实施例中,该BBU402可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,4G网或其它网络)。该BBU402还包括存储器421和处理器422,该存储器421用于存储必要的指令和数据。该处理器422用于控制基站进行必要的动作。该存储器421和处理器422可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。其中,在一些实施例中,图2中的处理器301的功能可以通过图4中的处理器422实现,图2中的存储器303的功能可以通过图4中的存储器421实现。
可选的,图4中的RRU401与BBU402可以是物理上设置在一起,也可以物理上分离设置的,例如,分布式基站,本申请实施例对此不作具体限定。
下面将结合图1至图4,对本申请实施例提供的ZCZ序列的生成方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
以本申请实施例提供的ZCZ序列的生成方法应用于如图1所示的通信系统,下行通信的场景为例,假设网络设备102a可以记作网络设备a、网络设备102b可以记作网络设备b、网络设备102c可以记作网络设备c,如图5所示,为本申请实施例提供的一种ZCZ序列的生成方法,包括如下步骤:
S501、终端设备确定长度为M的恒模序列,并将恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个ZCZ序列的ZCZ序列集。其中,周期性函数的周期为K,K为正整数,M为正整数。
其中,恒摸序列的定义可参考具体实施方式前序部分,在此不再赘述。
其中,本申请实施例中,考虑到背景技术的技术问题,首先,在设计包含多个ZCZ序列的ZCZ序列集时,需要找到一种设计简单的基础序列,在经过对各种序列的分析之后,确定恒摸序列具备类型丰富且设计简单的优点,因此本申请实施例中,将恒摸序列确定为生成ZCZ序列集的基础序列。其次,由于所需的ZCZ序列需要具备自相关性和互相关性,考虑到现有技术中可以通过相位偏移调整自相关性和互相关性,因此本申请实施例中,将恒模序列乘以底数为KM,指数为周期性函数的相位偏移,以适应性调整ZCZ序列的自相关性和互相关性。基于上述设计思路,一方面,由于本申请实施例中的ZCZ序列集是将恒模序列乘以底数为KM,指数为周期性函数的相位偏移得到的,该相位偏移,从物理含义上可以理解为将一个恒模序列在频域上周期性等间隔映射到不同的子载波上,其他位置的子载波上的值为零。比如如图6所示,假设c a(k)为恒模序列,则可以在序列索引分别为1、2、3和4时,将c a(1)和c a(2)在频域上周期性等间隔映射到不同的子载波上,从而可以得到不同的ZCZ序列,如序列1、序列2、序列3和序列4。由于时域相关在频域上可以看成是相乘,ZCZ序列集中不同ZCZ序列在不同的子载波上有值,其他位置的子载波上的值为零,因此ZCZ序列集中不同ZCZ序列的相乘结果为零,保证了该ZCZ序列集中ZCZ序列互相关的正交性。相位偏移也保证了ZCZ序列集中的ZCZ序列的自相关性,因此可以得到ZCZ序列所需要的自相关和互相关性。另一方面,由于本申请实施例中,生成ZCZ序列集所需的基础序列为恒模序列,而恒模序列的设计要求较低,且类型丰富,因此降低了ZCZ序列的生成复杂度,扩展了ZCZ序列的表达形式。综上,也就是说,基于该设计思路设计出的ZCZ序列可以在满足序列的设计要求的前提下,降低序列的生成要求,扩展序列的表达形式。
可选的,本申请实施例中,ZCZ序列的自相关性可以满足:ZCZ序列集中的任一ZCZ序列在任一周期的设定位置处的自相关值不小于第一阈值,且在除该设定位置之外的其他位置处的自相关值不大于第二阈值;ZCZ序列的互相关性满足:ZCZ序列集中任意两个ZCZ序列的互相关值不大于第三阈值。其中,自相关值和互相关值的相关计算方式可参考具体实施方式前序部分对于自相关和互相关的定义,在此不再赘述。
换言之,本申请实施例中,ZCZ序列的自相关性可以满足:在任一周期内,自相关谱除了在某处有个峰值,其余位置都是极低值(可以为0),互相关谱处处都是极低值(可以为0)。需要说明的是,本申请实施例中,在不同的周期内,自相关谱出现峰值的位置与在该周期内的相对位置可能不同,也可能相同,本申请实施例对此不作具体限定。
一种可能的实现方式中,本申请实施例中的ZCZ序列可以满足如下公式(4):
Figure PCTCN2019120436-appb-000007
其中,0≤k≤M-1,0≤m≤KM-1;c a(k)为恒模序列,a表示恒摸序列的序列索引,a的取值范围为1≤a≤K;h a(k+mM)表示ZCZ序列中序列索引为a的ZCZ序列;k+mM表示序列索引为a的ZCZ序列的位置索引;
Figure PCTCN2019120436-appb-000008
表示底数为KM,指数为i的相位偏移,i为周期性函数,且i与m、a、k和K均相关,
Figure PCTCN2019120436-appb-000009
exp()表示以自然常数e为底的指数函数。
需要说明的是,本申请实施例中的c a(k)可以为具体实施方式前序部分的任意一种恒模序列,本申请实施例对此不作具体限定。
可选的,本申请实施例中,i可以满足如下公式(5):
i=m(Kπ a(k)+a+l)+s;                    公式(5)
其中,l为正整数;s为实数;π a(k)表示对于恒摸序列执行随机打乱顺序的操作。
由于π a(k)表示对于恒摸序列进行随机打乱顺序的操作,因此可以保证ZCZ序列的多样性。
一种可能的实现方式中,l和s中的至少一个为0。
其中,当l=0时,公式(5)可以`等价于如下公式(6):
i=m(Kπ a(k)+a)+s;                  公式(6)
当l≠0时,公式(5)可以认为是公式(6)在时域上相位偏移了
Figure PCTCN2019120436-appb-000010
其中,当s=0时,公式(4)可以等价于如下公式(6):
i=m(Kπ a(k)+a+l);                  公式(7)
当s≠0时,公式(5)可以认为是公式(7)在时域上相位偏移了
Figure PCTCN2019120436-appb-000011
其中,当l=0且s=0时,公式(5)可以等价于如下公式(8):
i=m(Kπ a(k)+a)。                 公式(8)
S502、网络设备a确定长度为M的恒模序列,并将恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个ZCZ序列的ZCZ序列集。其中,周期性函数的周期为K,K为正整数,M为正整数。
S503、网络设备b确定长度为M的恒模序列,并将恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个ZCZ序列的ZCZ序列集。其中,周期性函数的周期为K,K为正整数,M为正整数。
S504、网络设备c确定长度为M的恒模序列,并将恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个ZCZ序列的ZCZ序列集。其中,周期性函数的周期为K,K为正整数,M为正整数。
其中,步骤S502至步骤S504中ZCZ序列的相关描述可参考上述步骤S501,在此不再赘述。
可选的,在上述步骤S501-S504中,终端设备和网络设备(包括网络设备a、网络设备b和网络设备c)可以根据导频序列发送的带宽和导频序列的在频域上的映射方式确定ZCZ序列集的长度;进而根据ZCZ序列集的长度确定M的取值和K的取值,本申请实施例对此不作具体限定。
示例性的,假设ZCZ序列集的长度为600,则M的取值可以为10,K的取值可以为6,即ZCZ序列集的长度可以等于KM 2
可选的,假设本申请实施例提供的ZCZ序列的生成方法应用于定位技术中,则本申请实施例提供的ZCZ序列的生成方法还包括如下步骤:
S505、网络设备a向定位管理设备发送x1个第一标识。相应的,定位管理设备接收来自网络设备a的x1个第一标识,x1为正整数。
可选的,本申请实施例中的第一标识可以为小区标识(cell ID)或者TRP标识(TRP ID)或者资源集合标识(resource set ID)或者资源标识(resource ID)等,本申请实 施例对此不作具体限定。
506、网络设备a根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与x1个第一标识对应的x1个ZCZ序列。
也就是说,本申请实施例中,可以使得每个第一标识对应ZCZ序列集中的一个ZCZ序列,该对应关系可以如表一或表二所示:
表一
第一标识 ZCZ序列
标识1 序列1
标识2 序列2
标识3 序列3
……. ……
标识K 序列K
表二
第一标识 ZCZ序列
标识1 序列1
标识2 序列2
标识3 序列3
……. ……
标识(y-1) 序列1
标识y 序列2
上述表一和表二的区别在于:表一中第一标识与序列为一一映射关系,表二中不同的第一标识可以映射到相同的ZCZ序列,比如,在网络中的第一标识的数量大于ZCZ序列集中ZCZ序列的数量K的情况下,可以通过i zcz=mod(i,K)的方式使得不同的标识对应到同一个ZCZ序列,其中i zcz表示ZCZ序列的序列索引,i为第一标识,mod()表示取摸运算。
S507、网络设备a根据ZCZ序列集中与x1个第一标识对应的x1个ZCZ序列确定x1个导频序列之后,向终端设备发送x1个导频序列。相应的,终端设备接收来自网络设备a的x1个导频序列。
其中,根据ZCZ序列中的序列确定导频序列的方式例如可以包括当导频序列长度小于ZCZ序列长度时,对ZCZ序列进行截取获得对应导频长度的导频序列,当导频序列长度大于ZCZ序列时,可以将ZCZ序列补零或者移位循环后得到对应导频长度的导频序列。
S508、网络设备b向定位管理设备发送x2个第一标识。相应的,定位管理设备接收来自网络设备b的x2个第一标识,x2为正整数。
S509、网络设备b根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与x2个第一标识对应的x2个ZCZ序列。
S510、网络设备b根据ZCZ序列集中与x2个第一标识对应的x2个ZCZ序列确定x2个导频序列之后,向终端设备发送x2个导频序列。相应的,终端设备接收来自网络设备a的x2个导频序列。
其中,步骤S508-S510中的相关描述可参考上述步骤S505-S507,在此不再赘述。
S511、网络设备c向定位管理设备发送x3个第一标识。相应的,定位管理设备接收来自网络设备c的x3个第一标识,x3为正整数。
S512、网络设备c根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与x3个第一标识对应的x3个ZCZ序列。
S513、网络设备c根据ZCZ序列集中与x3个第一标识对应的x3个ZCZ序列确定x3个导频序列之后,向终端设备发送x3个导频序列。相应的,终端设备接收来自网络设备a的x3个导频序列。
其中,步骤S511-S513中的相关描述可参考上述步骤S505-S507,在此不再赘述。
可选的,上述步骤S505-S507中的参数x1与上述步骤S508-S510中的参数x2、步骤S511-S513中的参数x3可以相等,也可以不相等,本申请实施例对此不作具体限定。
S514、定位管理设备向终端设备发送来自网络设备a的x1个第一标识、来自网络设备b的x2个第一标识以及来自网络设备c的x3个第一标识。相应的,终端设备接收来自定位管理设备的多个第一标识。
需要说明的是,本申请实施例以网络设备a、网络设备b和网络设备c参与终端设备的定位为例进行说明。即,本申请实施例中,与终端设备通信的网络设备除了网络设备a、网络设备b和网络设备c之外,还可能包括其他网络设备,这些网络设备也可能向定位管理设备发送对应的一个或多个第一标识。本申请实施例仅是示例性的以定位管理设备选择网络设备a、网络设备b和网络设备c发送的第一标识之后,执行上述步骤S514为例进行说明,在此统一说明,以下不再赘述。
此外,本申请实施例中,网络设备a可能向定位管理设备发送大于x1个第一标识,网络设备b可能向定位管理设备发送大于x2个第一标识,网络设备c可能向定位管理设备发送大于x3个第一标识。本申请实施例仅是示例性的以网络设备a向终端设备发送x1个导频序列,网络设备b向终端设备发送x2个导频序列,网络设备c向终端设备发送x3个导频序列用于终端设备的定位,相应的,定位管理设备仅选择网络设备a向定位管理设备发送的x1个第一标识,网络设备b向定位管理设备发送的x2个第一标识,网络设备c向定位管理设备发送的x3个第一标识之后,执行上述步骤S514为例进行说明,在此统一说明,以下不再赘述。
S515、终端设备根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与多个第一标识对应的多个ZCZ序列。
其中,ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系的相关描述可参考上述步骤S506,在此不再赘述。
S516、终端设备根据ZCZ序列集中与多个第一标识对应的多个ZCZ序列确定多个导频序列。
其中,根据ZCZ序列中的序列确定对应的导频序列的方式可参考上述步骤S507,在此不再赘述。
S517、终端设备根据确定出的多个导频序列以及从网络设备a、网络设备b和网络设备c接收到的多个导频序列,确定多个时延或时延差。
可选的,本申请实施例中,终端设备可以将确定出的多个导频序列以及从网络设备a、网络设备b和网络设备c接收到的多个导频序列进行相关,通过搜索最高峰的形式获得每个第一标识对应的时延或者每两个第一标识对应的时延差。
示例性的,以第一标识为小区标识,网络设备a向定位管理设备发送的第一标识为小区标识a,网络设备b向定位管理设备发送的第一标识为小区标识b,网络设备c向定位管理设备发送的第一标识为小区标识c为例,则终端设备可以将确定出的小区标识a对应的导频序列与从网络设备a接收到的小区标识a对应的导频序列进行相关,通过搜索最高峰的形式获得小区标识a对应的时延;终端设备可以将确定出的小区标识b对应的导频序列与从网络设备b接收到的小区标识b对应的导频序列进行相关,通过搜索最高峰的形式获得小区标识b对应的时延;终端设备可以将确定出的小区标识c对应的导频序列与从网络设备c接收到的小区标识c对应的导频序列进行相关,通过搜索最高峰的形式获得小区标识c对应的时延。可选的,进一步的,终端设备可以获得小区标识c对应的时延与小区标识a对应的时延的差值,以及小区标识b对应的时延与小区标识a对应的时延的差值。
S518、终端设备向定位管理设备发送多个时延或时延差。相应的,定位管理设备接收来自终端设备的多个时延或时延差。
其中,本申请实施例中,在步骤S517中终端设备确定多个时延的情况下,步骤S518中终端设备向定位管理设备发送多个时延,相应的,定位管理设备接收来自终端设备的多个时延。在步骤S517中终端设备确定多个时延差的情况下,步骤S518中终端设备向定位管理设备发送多个时延差,相应的,定位管理设备接收来自终端设备的多个时延差。
S519、定位管理设备根据多个时延或时延差,对终端设备执行定位。
其中,本申请实施例中,在定位管理设备接收到多个时延差的情况下,可以根据多个时延差,通过最小二乘法或者其他位置结算方法确定出终端设备的位置。在定位管理设备接收到多个时延的情况下,可以先根据多个时延,确定出多个时延差,进而根据多个时延差,通过最小二乘法或者其他位置结算方法确定出终端设备的位置,相关实现可参考现有技术,在此不予赘述。
可选的,本申请实施例中,终端设备确定多个时延或时延差之后,也可以不将确定多个时延或时延差发送给定位管理设备,由定位管理设备根据确定多个时延或时延差,对终端设备执行定位,而是由终端设备根据多个时延或时延差,对终端设备执行定位,本申请实施例对此不作具体限定。
一方面,由于本申请实施例中包含多个ZCZ序列的ZCZ序列集是将恒模序列乘以底数为KM,指数为周期性函数的相位偏移得到的,该相位偏移,从物理含义上可以理解为将一个恒模序列在频域上周期性等间隔映射到不同的子载波上,其他位置的子载波上的值为零。由于时域相关在频域上可以看成是相乘,ZCZ序列集中不同ZCZ序列在不同的子载波上有值,其他位置的子载波上的值为零,因此ZCZ序列集中不同ZCZ序列的相乘结果为零,保证了该ZCZ序列集中不同ZCZ序列互相关的正交性。相位偏移也保证了ZCZ序列集中的ZCZ序列的自相关性,因此基于该方案,可以得到ZCZ序列所需要的自相关和互相关性。另一方面,由于本申请实施例中,生成ZCZ 序列集所需的基础序列为恒模序列,而恒模序列的设计要求较低,且类型丰富,因此降低了ZCZ序列的生成复杂度,扩展了ZCZ序列的表达形式。综上,将本申请实施例提供的ZCZ序列应用于定位技术,不仅满足了对终端设备执行定位时序列所需的自相关性和互相关性要求,且降低了ZCZ序列的生成复杂度,扩展了ZCZ序列的表达形式。进一步的,本申请实施例中,在对终端设备执行定位时,由于终端设备中可以存储ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,进而定位管理设备确定多个第一标识之后,可以向终端设备发送多个第一标识,由终端设备根据该映射关系确定ZCZ序列集中与多个第一标识对应的多个ZCZ序列,不需要定位管理设备直接将多个ZCZ序列发送给终端设备,减少了定位管理设备和终端设备之间的信令传输开销。同时,相对于现有技术中将序列与小区标识和时频资源标识同时绑定的方案,本申请实施例中,可以将小区标识和时频资源标识进行解耦,使得设计更加灵活。
其中,上述步骤S501至S519中的网络设备的动作可以由图2所示的通信装置200中的处理器201调用存储器203中存储的应用程序代码来执行,或者可以由图4所示的基站中的BBU402实现;上述步骤S501至S519中的终端设备的动作可以由图2所示的通信装置200中的处理器201调用存储器203中存储的应用程序代码来执行,或者可以由图3所示的终端设备中的处理器110调用内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)中存储的应用程序代码来执行。
以本申请实施例提供的ZCZ序列的生成方法应用于如图1所示的通信系统,上行通信的场景为例,假设网络设备102a可以记作网络设备a、网络设备102b可以记作网络设备b、网络设备102c可以记作网络设备c,如图7所示,为本申请实施例提供的一种ZCZ序列的生成方法,包括如下步骤:
S701-S704、同图5所示的实施例中的步骤S501-S504,相关描述可参考图5所示的实施例,在此不再赘述。
S705-S706、同图5所示的实施例中的步骤S505-S506,相关描述可参考图5所示的实施例,在此不再赘述。
S707-S708、同图5所示的实施例中的步骤S508-S509,相关描述可参考图5所示的实施例,在此不再赘述。
S709-S710、同图5所示的实施例中的步骤S511-S512,相关描述可参考图5所示的实施例,在此不再赘述。
S711、同图5所示的实施例中的步骤S514,相关描述可参考图5所示的实施例,在此不再赘述。
S712、终端设备根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与x1个第一标识对应的x1个ZCZ序列,并根据ZCZ序列集中与x1个第一标识对应的x1个ZCZ序列确定x1个导频序列之后,向网络设备a发送x1个导频序列。相应的,网络设备a接收来自终端设备的x1个导频序列。
其中,根据ZCZ序列集中的ZCZ序列确定导频序列的方式可参考图5所示的实施例中的步骤S507,在此不再赘述。
S713、网络设备a根据确定出的x1个导频序列以及从终端设备接收到的x1个导频序列,确定x1个时延。
可选的,本申请实施例中,网络设备a可以将确定出的x1个导频序列以及从终端设备接收到的x1个导频序列进行相关,通过搜索最高峰的形式获得每个第一标识对应的时延。
示例性的,以第一标识为小区标识,网络设备a向定位管理设备发送的第一标识为小区标识a为例,则网络设备a可以将确定出的小区标识a对应的导频序列与从终端设备接收到的小区标识a对应的导频序列进行相关,通过搜索最高峰的形式获得小区标识a对应的时延。
S714、网络设备a向定位管理设备发送x1个时延。相应的,定位管理设备接收来自网络设备a的x1个时延。
S715、终端设备根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与x2个第一标识对应的x2个ZCZ序列,并根据ZCZ序列集中与x2个第一标识对应的x2个ZCZ序列确定x2个导频序列之后,向网络设备b发送x2个导频序列。相应的,网络设备b接收来自终端设备的x2个导频序列。
S716、网络设备b根据确定出的x2个导频序列以及从终端设备接收到的x2个导频序列,确定x2个时延。
S717、网络设备b向定位管理设备发送x2个时延。相应的,定位管理设备接收来自网络设备b的x2个时延。
其中,步骤S715-S717的相关描述可参考上述步骤S712-S714,在此不再赘述。
S718、终端设备根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与x3个第一标识对应的x3个ZCZ序列,并根据ZCZ序列集中与x3个第一标识对应的x3个ZCZ序列确定x3个导频序列之后,向网络设备c发送x3个导频序列。相应的,网络设备c接收来自终端设备的x3个导频序列。
S719、网络设备c根据确定出的x3个导频序列以及从终端设备接收到的x3个导频序列,确定x3个时延。
S720、网络设备c向定位管理设备发送x3个时延。相应的,定位管理设备接收来自网络设备c的x3个时延。
其中,步骤S718-S720的相关描述可参考上述步骤S712-S714,在此不再赘述。
S721、定位管理设备根据多个时延,对终端设备执行定位。
其中,本申请实施例中,定位管理设备接收到多个时延的情况下,可以先根据多个时延,确定出多个时延差,进而根据多个时延差,通过最小二乘法确定出终端设备的位置,相关实现可参考现有技术,在此不予赘述。
其中,图7所示的实施例的技术效果可参考图5所示的实施例,在此不再赘述。
其中,上述步骤S701至S721中的网络设备的动作可以由图2所示的通信装置200中的处理器201调用存储器203中存储的应用程序代码来执行,或者可以由图4所示的基站中的BBU402实现;上述步骤S501至S519中的终端设备的动作可以由图2所示的通信装置200中的处理器201调用存储器203中存储的应用程序代码来执行,或者可以由图3所示的终端设备中的处理器110调用内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)中存储的应用程序代码来执行。
可以理解的是,以上各个实施例中,由网络设备实现的方法和/或步骤,也可以由 可用于网络设备的部件(例如芯片或者电路)实现;由终端设备实现的方法和/或步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的终端设备,或者包含上述终端设备的装置,或者为可用于终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件可以理解的是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的终端设备为例,图8示出了一种终端设备80的结构示意图。该终端设备80包括处理模块802,可选的包括收发模块801。所述收发模块801,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,处理模块802,用于确定长度为M的恒模序列,M为正整数;处理模块802,还用于将恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个区域零自相关ZCZ序列的ZCZ序列集,其中,周期性函数的周期为K,K为正整数。
可选的,处理模块802,还用于根据导频序列发送的带宽和导频序列的在频域上的映射方式确定ZCZ序列集的长度;处理模块802,还用于根据ZCZ序列集的长度确定M的取值和K的取值。
可选的,收发模块801,用于接收来自定位管理设备的多个第一标识,第一标识为小区标识或者TRP标识或者资源集合标识或者资源标识;处理模块802,还用于根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与多个第一标识对应的多个ZCZ序列;处理模块802,还用于根据与多个第一标识对应的多个ZCZ序列,确定多个时延或时延差;收发模块801,还用于向定位管理设备上报多个时延或时延差。
可选的,收发模块801,用于接收来自定位管理设备的多个第一标识,第一标识为小区标识或者TRP标识或者资源集合标识或者资源标识;处理模块802,用于根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与多个第一标识对应的多个ZCZ序列。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块 的功能描述,在此不再赘述。
在本实施例中,该终端设备80以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该终端设备80可以采用图2所示的通信装置200的形式。
比如,图2所示的通信装置200中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置200执行上述方法实施例中的ZCZ序列的生成方法。
具体的,图8中的收发模块801和处理模块802的功能/实现过程可以通过图2所示的通信装置200中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图8中的处理模块802的功能/实现过程可以通过图2所示的通信装置200中的处理器201调用存储器203中存储的计算机执行指令来实现,图8中的收发模块801的功能/实现过程可以通过图2中所示的通信装置200中的通信接口204来实现。
由于本实施例提供的终端设备80可执行上述的ZCZ序列的生成方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的网络设备为例,图9示出了一种网络设备90的结构示意图。该网络设备90包括处理模块902,可选的包括收发模块901。所述收发模块901,也可以称为收发单元用以实现收发功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,处理模块902,用于确定长度为M的恒模序列,M为正整数;处理模块902,还用于将恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个区域零自相关ZCZ序列的ZCZ序列集,其中,周期性函数的周期为K,K为正整数。
可选的,处理模块902,还用于根据导频序列发送的带宽和导频序列的在频域上的映射方式确定ZCZ序列集的长度;处理模块902,还用于根据ZCZ序列集的长度确定M的取值和K的取值。
可选的,收发模块901,用于向定位管理设备发送一个或多个第一标识,第一标识为小区标识或者TRP标识或者资源集合标识或者资源标识,第一标识用于确定ZCZ序列中与一个或多个第一标识对应的一个或多个序列。
可选的,收发模块901,用于向定位管理设备发送一个或多个第一标识,第一标识为小区或者TRP标识或者资源集合标识或者资源标识;处理模块902,用于根据ZCZ序列集中的每个ZCZ序列与每个第一标识的映射关系,确定ZCZ序列集中与一个或多个第一标识对应的一个或多个ZCZ序列;处理模块902,还用于根据一个或多个ZCZ序列,确定一个或多个时延;收发模块901,还用于向定位管理设备上报一个或多个时延。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该网络设备90以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该网络设备90可以采用图2所示的通信装置200的形式。
比如,图2所示的通信装置200中的处理器201可以通过调用存储器203中存储的计算机执行指令,使得通信装置200执行上述方法实施例中的ZCZ序列的生成方法。
具体的,图9中的收发模块901和处理模块902的功能/实现过程可以通过图2所示的通信装置200中的处理器201调用存储器203中存储的计算机执行指令来实现。或者,图9中的处理模块902的功能/实现过程可以通过图2所示的通信装置200中的处理器201调用存储器203中存储的计算机执行指令来实现,图9中的收发模块901的功能/实现过程可以通过图2中所示的通信装置200中的通信接口204来实现。
由于本实施例提供的网络设备90可执行上述的ZCZ序列的生成方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
需要说明的是,以上模块或单元的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块或单元以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列(field programmable gate array,FPGA)、PLD(可编程逻辑器件)、或者实现专用逻辑运算的逻辑电路。
当以上模块或单元以硬件实现的时候,该硬件可以是CPU、微处理器、数字信号处理(digital signal processing,DSP)芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行以上方法流程。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体 介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (40)

  1. 一种区域零自相关ZCZ序列的生成方法,其特征在于,所述方法包括:
    确定长度为M的恒模序列,M为正整数;
    将所述恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个ZCZ序列的ZCZ序列集,其中,所述周期性函数的周期为K,K为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述ZCZ序列满足如下公式:
    Figure PCTCN2019120436-appb-100001
    其中,
    0≤k≤M-1,0≤m≤KM-1;c a(k)为所述恒模序列,a表示所述恒摸序列的序列索引,a的取值范围为1≤a≤K;h a(k+mM)表示所述ZCZ序列中序列索引为a的ZCZ序列;k+mM表示所述序列索引为a的ZCZ序列的位置索引;
    Figure PCTCN2019120436-appb-100002
    表示所述底数为KM,指数为i的相位偏移,i为所述周期性函数,且i与m、a、k和K均相关,
    Figure PCTCN2019120436-appb-100003
    exp( )表示以自然常数e为底的指数函数。
  3. 根据权利要求2所述的方法,其特征在于,i满足:
    i=m(Kπ a(k)+a+l)+s;其中,
    l为正整数;s为实数;π a(k)表示对于所述恒摸序列执行随机打乱顺序的操作。
  4. 根据权利要求3所述的方法,其特征在于,l和s中的至少一个为0。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述ZCZ序列的自相关性满足:所述ZCZ序列集中的任一ZCZ序列在任一周期的设定位置处的自相关值不小于第一阈值,且在除所述设定位置之外的其他位置处的自相关值不大于第二阈值;
    所述ZCZ序列的互相关性满足:所述ZCZ序列集中任意两个ZCZ序列的互相关值不大于第三阈值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述方法还包括:
    根据导频序列发送的带宽和所述导频序列的在频域上的映射方式确定所述ZCZ序列集的长度;
    根据所述ZCZ序列集的长度确定M的取值和K的取值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    终端设备接收来自定位管理设备的多个第一标识,所述第一标识为小区标识或者传输接收点TRP标识或者资源集合标识或者资源标识;
    所述终端设备根据所述ZCZ序列集中的每个ZCZ序列与每个所述第一标识的映射关系,确定所述ZCZ序列集中与所述多个第一标识对应的多个ZCZ序列;
    所述终端设备根据所述与所述多个第一标识对应的多个ZCZ序列,确定多个时延或时延差;
    所述终端设备向定位管理设备上报所述多个时延或时延差。
  8. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    终端设备接收来自定位管理设备的多个第一标识,所述第一标识为小区标识或者TRP标识或者资源集合标识或者资源标识;
    所述终端设备根据所述ZCZ序列集中的每个ZCZ序列与每个所述第一标识的映射关系,确定所述ZCZ序列集中与所述多个第一标识对应的多个ZCZ序列。
  9. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    网络设备向定位管理设备发送一个或多个第一标识,所述第一标识为小区标识或者TRP标识或者资源集合标识或者资源标识,所述第一标识用于确定所述ZCZ序列中与所述一个或多个第一标识对应的一个或多个序列。
  10. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    网络设备向定位管理设备发送一个或多个第一标识,所述第一标识为小区或者TRP标识或者资源集合标识或者资源标识;
    所述网络设备根据所述ZCZ序列集中的每个ZCZ序列与每个所述第一标识的映射关系,确定所述ZCZ序列集中与所述一个或多个第一标识对应的一个或多个ZCZ序列;
    所述网络设备根据所述一个或多个ZCZ序列,确定一个或多个时延;
    所述网络设备向所述定位管理设备上报所述一个或多个时延。
  11. 根据权利要求9或10所述的方法,其特征在于,所述网络设备包括基站或TRP。
  12. 根据权利要求7-11任一项所述的方法,其特征在于,所述定位管理设备包括定位管理功能LMF网元或者定位管理中心LMC网元。
  13. 一种终端设备,其特征在于,所述终端设备包括:处理模块;
    所述处理模块,用于确定长度为M的恒模序列,M为正整数;
    所述处理模块,还用于将所述恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个区域零自相关ZCZ序列的ZCZ序列集,其中,所述周期性函数的周期为K,K为正整数。
  14. 根据权利要求13所述的终端设备,其特征在于,所述ZCZ序列满足如下公式:
    Figure PCTCN2019120436-appb-100004
    其中,
    0≤k≤M-1,0≤m≤KM-1;c a(k)为所述恒模序列,a表示所述恒摸序列的序列索引,a的取值范围为1≤a≤K;h a(k+mM)表示所述ZCZ序列中序列索引为a的ZCZ序列;k+mM表示所述序列索引为a的ZCZ序列的位置索引;
    Figure PCTCN2019120436-appb-100005
    表示所述底数为KM,指数为i的相位偏移,i为所述周期性函数,且i与m、a、k和K均相关,
    Figure PCTCN2019120436-appb-100006
    exp( )表示以自然常数e为底的指数函数。
  15. 根据权利要求14所述的终端设备,其特征在于,i满足:
    i=m(Kπ a(k)+a+l)+s;其中,
    l为正整数;s为实数;π a(k)表示对于所述恒摸序列执行随机打乱顺序的操作。
  16. 根据权利要求15所述的终端设备,其特征在于,l和s中的至少一个为0。
  17. 根据权利要求13-16任一项所述的终端设备,其特征在于,所述ZCZ序列的自相关性满足:所述ZCZ序列集中的任一ZCZ序列在任一周期的设定位置处的自相关值不小于第一阈值,且在除所述设定位置之外的其他位置处的自相关值不大于第二阈值;
    所述ZCZ序列的互相关性满足:所述ZCZ序列集中任意两个ZCZ序列的互相关值不大于第三阈值。
  18. 根据权利要求13-17任一项所述的终端设备,其特征在于,所述处理模块, 还用于根据导频序列发送的带宽和所述导频序列的在频域上的映射方式确定所述ZCZ序列集的长度;
    所述处理模块,还用于根据所述ZCZ序列集的长度确定M的取值和K的取值。
  19. 根据权利要求13-18任一项所述的终端设备,其特征在于,所述终端设备还包括:收发模块;
    所述收发模块,用于接收来自定位管理设备的多个第一标识,所述第一标识为小区标识或者传输接收点TRP标识或者资源集合标识或者资源标识;
    所述处理模块,还用于根据所述ZCZ序列集中的每个ZCZ序列与每个所述第一标识的映射关系,确定所述ZCZ序列集中与所述多个第一标识对应的多个ZCZ序列;
    所述处理模块,还用于根据所述与所述多个第一标识对应的多个ZCZ序列,确定多个时延或时延差;
    所述收发模块,还用于向定位管理设备上报所述多个时延或时延差。
  20. 根据权利要求13-18任一项所述的终端设备,其特征在于,所述终端设备还包括:收发模块;
    所述收发模块,用于接收来自定位管理设备的多个第一标识,所述第一标识为小区标识或者TRP标识或者资源集合标识或者资源标识;
    所述处理模块,用于根据所述ZCZ序列集中的每个ZCZ序列与每个所述第一标识的映射关系,确定所述ZCZ序列集中与所述多个第一标识对应的多个ZCZ序列。
  21. 根据权利要求19或20所述的终端设备,其特征在于,所述定位管理设备包括定位管理功能LMF网元或者定位管理中心LMC网元。
  22. 一种网络设备,其特征在于,所述网络设备包括:处理模块;
    所述处理模块,用于确定长度为M的恒模序列,M为正整数;
    所述处理模块,还用于将所述恒模序列乘以底数为KM,指数为周期性函数的相位偏移,得到包含多个区域零自相关ZCZ序列的ZCZ序列集,其中,所述周期性函数的周期为K,K为正整数。
  23. 根据权利要求22所述的网络设备,其特征在于,所述ZCZ序列满足如下公式:
    Figure PCTCN2019120436-appb-100007
    其中,
    0≤k≤M-1,0≤m≤KM-1;c a(k)为所述恒模序列,a表示所述恒摸序列的序列索引,a的取值范围为1≤a≤K;h a(k+mM)表示所述ZCZ序列中序列索引为a的ZCZ序列;k+mM表示所述序列索引为a的ZCZ序列的位置索引;
    Figure PCTCN2019120436-appb-100008
    表示所述底数为KM,指数为i的相位偏移,i为所述周期性函数,且i与m、a、k和K均相关,
    Figure PCTCN2019120436-appb-100009
    exp( )表示以自然常数e为底的指数函数。
  24. 根据权利要求23所述的网络设备,其特征在于,i满足:
    i=m(Kπ a(k)+a+l)+s;其中,
    l为正整数;s为实数;π a(k)表示对于所述恒摸序列执行随机打乱顺序的操作。
  25. 根据权利要求24所述的网络设备,其特征在于,l和s中的至少一个为0。
  26. 根据权利要求22-25任一项所述的网络设备,其特征在于,所述ZCZ序列的自相关性满足:所述ZCZ序列集中的任一ZCZ序列在任一周期的设定位置处的自相 关值不小于第一阈值,且在除所述设定位置之外的其他位置处的自相关值不大于第二阈值;
    所述ZCZ序列的互相关性满足:所述ZCZ序列集中任意两个ZCZ序列的互相关值不大于第三阈值。
  27. 根据权利要求22-26任一项所述的网络设备,其特征在于,所述处理模块,还用于根据导频序列发送的带宽和所述导频序列的在频域上的映射方式确定所述ZCZ序列集的长度;
    所述处理模块,还用于根据所述ZCZ序列集的长度确定M的取值和K的取值。
  28. 根据权利要求22-27任一项所述的网络设备,其特征在于,所述网络设备还包括:收发模块;
    所述收发模块,用于向定位管理设备发送一个或多个第一标识,所述第一标识为小区标识或者传输接收点TRP标识或者资源集合标识或者资源标识,所述第一标识用于确定所述ZCZ序列中与所述一个或多个第一标识对应的一个或多个序列。
  29. 根据权利要求22-27任一项所述的网络设备,其特征在于,所述网络设备还包括:收发模块;
    所述收发模块,用于向定位管理设备发送一个或多个第一标识,所述第一标识为小区或者TRP标识或者资源集合标识或者资源标识;
    所述处理模块,用于根据所述ZCZ序列集中的每个ZCZ序列与每个所述第一标识的映射关系,确定所述ZCZ序列集中与所述一个或多个第一标识对应的一个或多个ZCZ序列;
    所述处理模块,还用于根据所述一个或多个ZCZ序列,确定一个或多个时延;
    所述收发模块,还用于向所述定位管理设备上报所述一个或多个时延。
  30. 根据权利要求28或29所述的网络设备,其特征在于,所述网络设备包括基站或TRP。
  31. 根据权利要求28-30任一项所述的网络设备,其特征在于,所述定位管理设备包括定位管理功能LMF网元或者定位管理中心LMC网元。
  32. 一种终端设备,其特征在于,包括处理器,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-8或12中任一项所述的方法。
  33. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被终端设备执行时,实现如权利要求1-8或12中任一项所述的方法。
  34. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1-8或12中任一项所述的方法。
  35. 一种芯片系统,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,使得安装有所述芯片系统的终端设备执行如权利要求1-8或12中任一项所述的方法。
  36. 一种网络设备,其特征在于,包括处理器,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-6任一项或9-12中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被网络设备执行时,实现如权利要求1-6任一项或9-12中任一项所述的方法。
  38. 一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得计算机执行如权利要求1-6任一项或9-12中任一项所述的方法。
  39. 一种芯片系统,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于从所述存储器调用并运行所述计算机程序,使得安装有所述芯片系统的网络设备执行如权利要求1-6任一项或9-12中任一项所述的方法。
  40. 一种通信系统,其特征在于,所述通信系统包括定位管理设备、如权利要求13-21或32任一项所述的终端设备、以及一个或多个如权利要求22-31或36任一项所述的网络设备。
PCT/CN2019/120436 2019-11-22 2019-11-22 Zcz序列的生成方法及装置 WO2021097854A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120436 WO2021097854A1 (zh) 2019-11-22 2019-11-22 Zcz序列的生成方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120436 WO2021097854A1 (zh) 2019-11-22 2019-11-22 Zcz序列的生成方法及装置

Publications (1)

Publication Number Publication Date
WO2021097854A1 true WO2021097854A1 (zh) 2021-05-27

Family

ID=75980086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120436 WO2021097854A1 (zh) 2019-11-22 2019-11-22 Zcz序列的生成方法及装置

Country Status (1)

Country Link
WO (1) WO2021097854A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925191A (zh) * 2008-04-22 2010-12-22 华为技术有限公司 确定零相关区长度集合的方法、装置及移动通信系统
CN108075858A (zh) * 2016-11-18 2018-05-25 深圳市中兴微电子技术有限公司 一种zc序列的生成方法和装置
CN109479304A (zh) * 2016-07-15 2019-03-15 华为技术有限公司 一种生成和处理用户设备到用户设备探测信号的方法和系统
WO2019096268A1 (zh) * 2017-11-16 2019-05-23 华为技术有限公司 基于序列的信号处理方法及信号处理装置
US20190274172A1 (en) * 2017-05-03 2019-09-05 Lg Electronics Inc. Method and apparatus for transmitting and receiving random access channel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101925191A (zh) * 2008-04-22 2010-12-22 华为技术有限公司 确定零相关区长度集合的方法、装置及移动通信系统
CN109479304A (zh) * 2016-07-15 2019-03-15 华为技术有限公司 一种生成和处理用户设备到用户设备探测信号的方法和系统
CN108075858A (zh) * 2016-11-18 2018-05-25 深圳市中兴微电子技术有限公司 一种zc序列的生成方法和装置
US20190274172A1 (en) * 2017-05-03 2019-09-05 Lg Electronics Inc. Method and apparatus for transmitting and receiving random access channel
WO2019096268A1 (zh) * 2017-11-16 2019-05-23 华为技术有限公司 基于序列的信号处理方法及信号处理装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Generalized construction of ZCZ-GCL random access preambles", 3GPP TSG RAN WG1 MEETING #46 R1-062128, 1 September 2006 (2006-09-01), XP050102672 *

Similar Documents

Publication Publication Date Title
US10615929B2 (en) Apparatus, system and method of multi user (MU) range measurement
CN108282305A (zh) 参考信号的传输方法和设备
JP7142721B2 (ja) 通信方法および通信装置
US11082935B2 (en) Signal transmission method and apparatus
WO2019080120A1 (zh) 无线通信方法和设备
WO2019096282A1 (zh) 检测窗指示方法及装置
WO2021204293A1 (zh) 定位信号处理方法及装置
WO2019028991A1 (zh) 随机接入前导码传输方法及装置
CN104202712A (zh) 设备到设备同步信号的发送方法及装置、用户设备
CN111213408A (zh) 用于同步信号传输的方法和装置
WO2020155188A1 (zh) 通信方法、装置及系统
WO2019029548A1 (zh) 传输同步信号的方法和装置
CN117546568A (zh) 用于通信的方法、设备和计算机存储介质
CN113302867B (zh) 用于多种参数集的公共信号结构
CN111181887B (zh) 一种序列的生成及处理方法和装置
WO2021097854A1 (zh) Zcz序列的生成方法及装置
WO2022012387A1 (zh) 信号处理和信息配置方法、装置、设备和存储介质
US20210195568A1 (en) Communication method and apparatus
WO2021031874A1 (zh) 信号传输方法和通信装置
CN109474404A (zh) 信号传输方法及装置
WO2020155186A1 (zh) 通信方法、装置及系统
WO2020088080A1 (zh) 传输参考信号的方法与设备
US10306633B2 (en) Apparatus and method for operating resource in wireless communication system
WO2024032693A1 (zh) 探测参考信号的传输方法及装置、终端、网络设备
CN113366896B (zh) 参考信号接收与发送方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952957

Country of ref document: EP

Kind code of ref document: A1