WO2020155186A1 - 通信方法、装置及系统 - Google Patents

通信方法、装置及系统 Download PDF

Info

Publication number
WO2020155186A1
WO2020155186A1 PCT/CN2019/074719 CN2019074719W WO2020155186A1 WO 2020155186 A1 WO2020155186 A1 WO 2020155186A1 CN 2019074719 W CN2019074719 W CN 2019074719W WO 2020155186 A1 WO2020155186 A1 WO 2020155186A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
time
domain position
frequency resource
configured uplink
Prior art date
Application number
PCT/CN2019/074719
Other languages
English (en)
French (fr)
Inventor
苏俞婉
米翔
铁晓磊
金哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/074719 priority Critical patent/WO2020155186A1/zh
Priority to CN201980091177.8A priority patent/CN113383509B/zh
Priority to EP19914022.9A priority patent/EP3902177B1/en
Publication of WO2020155186A1 publication Critical patent/WO2020155186A1/zh
Priority to US17/391,622 priority patent/US12035341B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of communication, and in particular to communication methods, devices and systems.
  • the existing process usually includes: the terminal device has uplink data to arrive—the terminal device applies for uplink transmission resources from the network device—the network device sends uplink transmission scheduling information to the terminal device—the terminal device according to the uplink Transmission scheduling information for uplink transmission-the network device feeds back to the terminal device whether the uplink data is successfully received according to the demodulation of the uplink data.
  • NB-IoT narrowband Internet of things
  • the process includes: the terminal device has uplink data to arrive-the terminal device directly in the preconfigured resources (preconfigured resources) ) Uplink transmission is performed according to a predetermined sending mode—the network device feeds back to the terminal device whether the uplink data is successfully received according to the demodulation of the uplink data. It can be seen that for uplink scheduling-free transmission, since the terminal device does not need to apply for uplink transmission resources from the network device, and does not need to wait for the network device to send uplink transmission scheduling information to the terminal device, the process is reduced, and therefore the power consumption delay is reduced. , Reduce signaling overhead and other advantages.
  • the network device can configure different uplink scheduling-free transmission resources (dedicated resources) for different terminal devices, or configure the same or partially overlapping uplink scheduling-free transmission resources ( shared resource).
  • dedicated resources shared resources help reduce network resource overhead and improve spectrum utilization.
  • terminal equipment equipped with lower-cost crystal oscillators may produce crystal oscillator frequency offset during continuous long-term uplink transmission, which will seriously affect the uplink of terminal equipment.
  • the transmission performance thereby reducing the transmission efficiency of uplink data.
  • the prior art introduces an uplink gap, that is, a terminal device inserts a 40ms gap after every 256ms of uplink data transmission.
  • the existing uplink gap insertion mechanism when different terminal devices in the same cell transmit uplink data on a shared resource, if multiple terminal devices have different starting positions for sending uplink data, even if multiple terminal devices are inserted for 40ms Before the gap, the respective reference signals (such as a demodulation reference signal (DMRS)) are orthogonal, and there is no guarantee that multiple terminal devices will have their respective reference signals orthogonal after inserting the 40ms gap.
  • DMRS demodulation reference signal
  • the embodiments of the present application provide a communication method, device, and system, so that after a 40 ms gap is inserted into multiple terminal devices, their respective reference signals are orthogonal.
  • a communication method which is applicable to a wireless communication system
  • the wireless communication system includes a first cell
  • the first cell includes multiple terminal devices capable of transmitting uplink data on the same uplink time-frequency resource
  • the plurality of terminal devices include a first terminal device
  • the method includes: the first terminal device determines a reference time domain position according to a pre-configured uplink time-frequency resource, and the reference time domain position is compared with other terminal devices in the plurality of terminal devices The determined reference time domain position is the same; the first terminal device determines the time domain position from the reference time domain position (first time length*N+second time length*(N-1)) as the starting time domain of X time intervals Position, N is 1, 2, 3, 4,..., X, these X time intervals are not used to send uplink data, X is a positive integer; the first terminal device will be away from the reference time domain position (first time length*( The time domain position of M-1)+second duration*(M-1)) is determined as the starting time
  • the reference time-domain position is a time-domain position before the start time-domain position of the pre-configured uplink time-frequency resource in the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the first set value or the second set value is a positive number.
  • the reference time domain position is the starting time domain position of the pre-configured uplink time-frequency resource.
  • the first terminal device determines the reference time domain position according to the pre-configured uplink time-frequency resource, including: the first terminal device receives first indication information from the network device, and the first indication information is used for Indicate the first offset duration of the reference time domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource is located; the first terminal device is based on the first indication information and where the pre-configured uplink time-frequency resource is located The starting position of the cycle determines the reference time domain position. Based on this solution, the first terminal device can determine the reference time domain position.
  • the first terminal device determines the reference time domain position according to the pre-configured uplink time-frequency resource, including: the first terminal device receives second indication information from the network device, and the second indication information is used for Indicate the second offset duration of the start time domain position of the pre-configured uplink time-frequency resource relative to the reference time domain position; the first terminal device according to the second indication information and the start of the pre-configured uplink time-frequency resource Start time domain position, determine the reference time domain position. Based on this solution, the first terminal device can determine the reference time domain position.
  • a communication method is provided, which is applicable to a wireless communication system, the wireless communication system includes a first cell, and the first cell includes multiple terminal devices capable of transmitting uplink data on the same uplink time-frequency resource ,
  • the multiple terminal devices include a first terminal device, and the method includes: the network device determines a reference time domain position according to a pre-configured uplink time-frequency resource, the reference time domain position corresponds to the multiple terminal devices;
  • the time domain position of the time domain position (first time length*N+second time length*(N-1)) is determined as the starting time domain position of X time intervals, N is 1, 2, 3, 4,..., X, These X time intervals are not used to send uplink data, and X is a positive integer;
  • the network device will be away from the reference time domain position (first time length * (M-1) + second time length * (M-1)) time domain
  • the position is determined as the starting time domain position of the Y first durations; wherein, all or part of the time domain resources
  • the technical effects brought about by the second aspect can be referred to the technical effects brought about by the above-mentioned first aspect, which will not be repeated here.
  • the reference time-domain position is a time-domain position before the start time-domain position of the pre-configured uplink time-frequency resource in the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the first set value or the second set value is a positive number.
  • the reference time domain position is the starting time domain position of the pre-configured uplink time-frequency resource.
  • the network device determines the reference time-domain position according to the pre-configured uplink time-frequency resource, including: the network device determines that the reference time-domain position is relative to the start of the period in which the pre-configured uplink time-frequency resource is located The first offset duration of the location; the network device determines the reference time domain location according to the first offset duration and the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the network device determines the reference time domain position according to the pre-configured uplink time-frequency resource, including: the network device determines the starting time domain position of the pre-configured uplink time-frequency resource relative to the reference time domain position The network device determines the reference time domain position according to the second offset time length and the starting time domain position of the pre-configured uplink time-frequency resource.
  • the communication method provided in the embodiment of the present application may further include: the network device sends first indication information to the first terminal device, where the first indication information is used to indicate that the reference time domain position is relative to the The first offset duration of the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the communication method provided in the embodiment of the present application may further include: the network device sends second indication information to the first terminal device, where the second indication information is used to indicate the pre-configured uplink time frequency The second offset duration of the starting time domain position of the resource relative to the reference time domain position.
  • a communication method is provided, which is suitable for a wireless communication system.
  • the wireless communication system includes a first cell, and the first cell includes multiple terminal devices capable of transmitting uplink data on the same uplink time-frequency resource.
  • the plurality of terminal devices include a first terminal device, and the method includes: the first terminal device determines a reference time domain position, where the reference time domain position is the same as the reference time domain position determined by other terminal devices in the plurality of terminal devices; The first terminal device determines the time domain position from the reference time domain position (first time length*N+second time length*(N-1)) as the starting time domain position of X time intervals, where N is 1, 2, 3, 4,..., X, these X time intervals are not used to send uplink data, X is a positive integer; the first terminal device will be away from the reference time domain position (first duration * (M-1) + second duration) *(M-1)) is determined as the starting time domain position of Y first durations; wherein, all or part of the time domain
  • the reference time domain position in the embodiment of the present application may be related to the pre-configured uplink time-frequency resource, or may not be related to the pre-configured uplink time-frequency resource, and is an absolute position, which is described here in a unified manner.
  • the technical effects brought about by the third aspect can be referred to the technical effects brought about by the above-mentioned first aspect, which will not be repeated here.
  • a communication method which is applicable to a wireless communication system
  • the wireless communication system includes a first cell
  • the first cell includes multiple terminal devices capable of transmitting uplink data on the same uplink time-frequency resource
  • the plurality of terminal devices include a first terminal device
  • the method includes: the network device determines a reference time domain position, the reference time domain position corresponds to the plurality of terminal devices; the network device is separated from the reference time domain position (first time length* The time-domain position of N+second duration*(N-1)) is determined as the starting time-domain position of X time intervals, N is 1, 2, 3, 4,..., X, and the X time intervals are not used for Send uplink data, X is a positive integer; the network device determines the time domain position from the reference time domain position (first time length * (M-1) + second time length * (M-1)) as Y first time lengths The starting time domain position of the; wherein, all or part of the time domain resources corresponding to at least one of the
  • the reference time domain position in the embodiment of the present application may be related to the pre-configured uplink time-frequency resource, or may not be related to the pre-configured uplink time-frequency resource, and is an absolute position, which is described here in a unified manner.
  • the technical effects brought about by the fourth aspect may refer to the technical effects brought about by the above-mentioned first aspect, which will not be repeated here.
  • the first duration is a positive integer multiple of 256 ms.
  • the second duration is a positive integer multiple of 40 ms.
  • a communication device for implementing the above-mentioned various methods.
  • the communication device may be the first terminal device in the first aspect or the third aspect, or a device including the first terminal device; or, the communication device may be the network device in the second or fourth aspect, Or a device containing the aforementioned network equipment.
  • the communication device includes a module, unit, or means corresponding to the foregoing method, and the module, unit, or means can be implemented by hardware, software, or hardware executing corresponding software.
  • the hardware or software includes one or more modules or units corresponding to the above-mentioned functions.
  • a communication device including: a processor and a memory; the memory is used to store computer instructions, and when the processor executes the instructions, the communication device executes the method described in any of the above aspects.
  • the communication device may be the first terminal device in the first aspect or the third aspect, or a device including the first terminal device; or, the communication device may be the network device in the second or fourth aspect, Or a device containing the aforementioned network equipment.
  • a communication device including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the method according to any of the foregoing aspects according to the instruction.
  • the communication device may be the first terminal device in the first aspect or the third aspect, or a device including the first terminal device; or, the communication device may be the network device in the second or fourth aspect, Or a device containing the aforementioned network equipment.
  • a computer-readable storage medium stores instructions that, when run on a computer, enable the computer to execute the method described in any of the above aspects.
  • a computer program product containing instructions which when running on a computer, enables the computer to execute the method described in any of the above aspects.
  • a communication device for example, the communication device may be a chip or a chip system
  • the communication device includes a processor for implementing the functions involved in any of the above aspects.
  • the communication device further includes a memory for storing necessary program instructions and data.
  • the communication device is a chip system, it may be composed of chips, or may include chips and other discrete devices.
  • the technical effects brought about by any one of the design methods of the fifth aspect to the tenth aspect can be referred to the technical effects brought about by different design methods in the first aspect or the second aspect or the third aspect or the fourth aspect. I won't repeat them here.
  • a communication system which includes the first terminal device described in the foregoing aspect and the network device described in the foregoing aspect.
  • Figure 1a is a schematic diagram of the location of an existing DMRS
  • Figure 1b is a schematic diagram of data transmission of different terminal devices when the existing subcarrier spacing is 15kHz;
  • Figure 1c is a schematic diagram of data transmission of different terminal devices when the existing subcarrier spacing is 3.75kHz;
  • FIG. 2 is a schematic structural diagram of a communication system provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a terminal device and a network device provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of another structure of a terminal device provided by an embodiment of this application.
  • FIG. 5 is a communication method provided by an embodiment of this application.
  • FIG. 6 is a schematic diagram 1 of a reference time domain position provided by an embodiment of this application.
  • FIG. 7 is a second schematic diagram of a reference time domain position provided by an embodiment of this application.
  • FIG. 8 is a third schematic diagram of a reference time domain position provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of the first offset duration provided by an embodiment of the application.
  • FIG. 10 is a schematic diagram of a second offset duration provided by an embodiment of this application.
  • FIG. 11 is a fourth schematic diagram of a reference time domain position provided by an embodiment of this application.
  • FIG. 12 is a fifth schematic diagram of a reference time domain position provided by an embodiment of this application.
  • FIG. 13 is a schematic diagram 1 of the distribution of the first duration and the second duration provided by an embodiment of this application;
  • FIG. 14 is a second schematic diagram of the distribution of the first duration and the second duration provided by an embodiment of this application.
  • 15 is a schematic diagram 1 of data transmission provided by an embodiment of this application.
  • 16 is a second schematic diagram of data transmission provided by an embodiment of this application.
  • FIG. 17 is a third schematic diagram of data transmission provided by an embodiment of this application.
  • FIG. 18 is a schematic diagram of data transmission of different terminal devices provided by an embodiment of this application.
  • FIG. 19 is a schematic structural diagram of a first terminal device provided by an embodiment of this application.
  • FIG. 20 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • IoT is the "Internet of Things Connected”. It extends the user end of the Internet to any item and item, so that information can be exchanged and communicated between any item and item.
  • This communication method is also called machine type communications (MTC).
  • MTC machine type communications
  • the communication node is called MTC terminal or MTC device.
  • Typical IoT applications include smart grids, smart agriculture, smart transportation, smart homes, and environmental detection.
  • MTC terminals in certain scenarios are used in environments with poor coverage, such as electricity meters and water meters, which are usually installed indoors or even basements and other places with poor wireless network signals, coverage enhancement technologies are needed to solve them.
  • coverage enhancement technologies are needed to solve them.
  • the number of MTC terminals in some scenarios is much larger than the number of devices for human-to-human communication, that is to say, large-scale deployment is required, so it is required to obtain and use MTC terminals at a very low cost.
  • MTC terminals because the data packets transmitted by the MTC terminal in some scenarios are very small and are not sensitive to delay, it is required to support a low-rate MTC terminal. Or, because in most cases, MTC terminals are powered by batteries, but at the same time in many scenarios, MTC terminals are required to be able to use for more than ten years without changing the battery, which requires MTC terminals to be able to use extremely low Power consumption to work.
  • the mobile communication standardization organization 3GPP adopted a new research topic at the RAN#62 plenary meeting to study methods to support extremely low complexity and low-cost Internet of Things in cellular networks.
  • the project was established at the meeting as the NB-IoT topic.
  • NB-IoT uplink data transmission supports single-tone and multi-tone.
  • the number of sub-carriers corresponding to single-tone transmission is 1, which is mainly suitable for low-rate scenarios with enhanced coverage scenarios, which can provide lower implementation costs; the number of sub-carriers corresponding to multi-tone transmission is greater than 1, which can be compared to single-tone
  • the transmission provides a greater rate and can also support coverage enhancement.
  • the basic scheduling unit for uplink data transmission is a resource unit (RU).
  • RU resource unit
  • the NB-IoT system only supports single-tone, and 1 RU occupies 1 subcarrier in the frequency domain and 16 slots in the time domain; when the subcarrier interval is 15kHz , Table 1 defines the following RU ( Represents the number of sub-carriers occupied on 1 RU frequency domain, It represents the number of consecutive slots occupied in the time domain of 1 RU.
  • Each slot is composed of 7 single-carrier frequency-division multiple access (SC-FDMA) symbols.
  • SC-FDMA single-carrier frequency-division multiple access
  • uplink data transmission may have repetitions.
  • the NB-IoT narrowband physical uplink shared channel (narrowband physical uplink shared channel, NPUSCH) format 1 is used for uplink data transmission.
  • the terminal equipment will send DMRS at the same time, and the DMRS is used by the network equipment for channel estimation and channel equalization, so as to correctly demodulate the uplink data.
  • the guard period (GP) in FIG. 1a can refer to the existing related description, which will not be repeated here.
  • the DMRS can be generated by combining the following formula (1) and formula (2):
  • c() represents the gold (Gold) sequence
  • w() represents the Hadamard sequence;
  • ru (n) represents the DMRS sequence;
  • N RU represents the number of RUs occupied by one data block, and mod() represents the remainder.
  • the Gold sequence c(n) is generated as shown in the following formula (3):
  • the length of Gold is denoted as M PN , that is, the value range of n is: 0, 1, ... M PN -1, x 1 (n+N C ), x 2 (n+N C ) are generated c
  • the two sequences of (n), N C 1600, mod() represents the remainder.
  • x 2 (n+31) (x 2 (n+3)+x 2 (n+2)+x 2 (n+1)+x 2 (n))mod 2; formula (5)
  • the value of the initialization seed of the sequence x 2 (n+N C ) is related to the specific application.
  • the initialization seed of the sequence x 2 (n+N C ) is 35.
  • C init 35 can get the sequence x 2 (n+N C ).
  • u in Table 2 is the index of Hadamard sequence w().
  • the Hadamard sequences corresponding to the indexes of different Hadamard sequences w() are orthogonal to each other. For single tone, no matter what kind of subcarrier spacing, one RU occupies 16 slots, and these 16 slots can correspond to a 16-length Hadamard sequence w().
  • the calculation formula for the index u of the Hadamard sequence w() in the group-hop scenario is different from the formula for the index u of the Hadamard sequence w() in the non-group-hop scenario.
  • the mapping relationship between the cell identity and the index u of the Hadamard sequence used by the RU can be as shown in the table Three shown. It can be seen from Table 3 that at this time, the index u of the Hadamard sequence used on each RU is the same; among cells of the same frequency, such as cell 0 and cell 16, the index u of the Hadamard sequence used is completely the same.
  • f gh (n s ) represents the group skip pattern (pattern); f ss represents the sequence shift pattern; mod represents the remainder; Indicates the length of one RU, which can be 16 for example.
  • c() represents the Gold sequence, and in the prior art, c() is initialized at the beginning of each RU, and the initialization seed is Means round down, Indicates the cell identity, Indicates the length of an RU, which can be 16 for example; n 's is the first slot number of each RU for a single tone; mod represents the remainder; Indicates the length of one RU, which can be 16 for example.
  • one data block occupies 2 RUs, NPUSCH is repeated twice, and a total of 4 RUs are used as an example.
  • f gh (n s ) and f ss determines the index u of the Hadamard sequence.
  • the mapping relationship between the cell identity and the index u of the Hadamard sequence used by the RU may be as shown in Table 4. It can be seen from Table 4 that at this time, the index u of the Hadamard sequence used on each RU is not the same; among cells of the same frequency, such as cell 0 and cell 16, the index u of the Hadamard sequence used is also different.
  • the value of the index u of the Hadamard sequence in Table 4 is only an indication.
  • f gh (n s ) is another value, the value of the index u of the Hadamard sequence may be different from Table 4, which is not specifically limited in the embodiment of the present application.
  • At least one item (a) refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • words such as “first” and “second” are used to distinguish the same items or similar items with substantially the same function and effect.
  • words “first”, “second” and the like do not limit the quantity and execution order, and the words “first” and “second” do not limit the difference.
  • words such as “exemplary” or “for example” are used as examples, illustrations, or illustrations. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present application should not be construed as being more preferable or advantageous than other embodiments or design solutions.
  • words such as “exemplary” or “for example” are used to present related concepts in a specific manner to facilitate understanding.
  • the embodiments of this application can be applied to LTE systems, such as NB-IoT systems; and can also be applied to other wireless communication systems, such as Global System for Mobile Communication (GSM), Universal Mobile Telecommunications System, UMTS), Code Division Multiple Access (CDMA) systems, Wideband Code Division Multiple Access (WCDMA), and future-oriented new network equipment systems, etc., this application embodiment
  • GSM Global System for Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • future-oriented new network equipment systems etc.
  • this application embodiment There is no specific limitation. Among them, the above-mentioned communication system to which this application is applied is only an example, and the communication system to which this application is applied is not limited to this, and it is explained here in a unified manner, and will not be repeated hereafter.
  • the term “system” can be replaced with "network”.
  • the value of n in the DMRS generation formula (1) and formula (2) corresponding to UE1 is 16m+16
  • the DMRS generation formula (1) and formula (2) corresponding to UE2 The value of n in formula (2) is 16m+16 ⁇ 6, and m is a positive integer. According to the above description of Hadamard sequence and Gold sequence, it can be known that at this time, the RU boundaries are aligned.
  • UE1 On the same time-frequency resource, UE1 The corresponding Hadamard sequence is orthogonal to the Hadamard sequence corresponding to UE2, but the Gold sequence corresponding to UE1 is different from the Gold sequence corresponding to UE2, which cannot guarantee that the DMRS corresponding to UE1 and the DMRS corresponding to UE2 are orthogonal after UE1 inserts a 40ms gap.
  • UE1 sends the uplink data.
  • the starting position is different from the starting position of UE2 sending uplink data.
  • the Hadamard sequences corresponding to UE1 and UE2 are orthogonal, and the Gold sequences corresponding to UE1 and UE2 are the same, so The DMRS corresponding to UE1 and the DMRS corresponding to UE2 are orthogonal.
  • the value of n in the DMRS generation formula (1) and formula (2) corresponding to UE1 is 16m+16, and the DMRS generation formula (1) and formula (2) corresponding to UE2
  • the value of n in formula (2) is 16m+16 ⁇ 1+5, and m is a positive integer.
  • the RU boundary is not aligned, and in the same time-frequency resource
  • the Hadamard sequence corresponding to UE1 and the Hadamard sequence corresponding to UE2 are not orthogonal, and the Gold sequence corresponding to UE1 is different from the Gold sequence corresponding to UE2, which cannot guarantee that the DMRS corresponding to UE1 and the DMRS corresponding to UE2 after UE1 inserts a 40ms gap. Orthogonal.
  • the communication system 20 includes a network device 30 and multiple terminal devices 40 in a first cell covered by the network device 30, and the multiple terminal devices 40 can transmit uplink data on the same uplink time-frequency resource.
  • different terminal devices among the multiple terminal devices 40 may communicate with each other.
  • the first cell may be any one of the one or more cells covered by the network device 30.
  • the first terminal device is based on a pre-configured uplink time frequency
  • the resource determines the reference time domain location, and the reference time domain location is the same as the reference time domain location determined by other terminal devices among the multiple terminal devices; the first terminal device will be away from the reference time domain location (first duration*N+second duration*
  • the time domain position of (N-1)) is determined as the starting time domain position of X time intervals, N is 1, 2, 3, 4,..., X, these X time intervals are not used to send uplink data, X It is a positive integer; the first terminal device determines the time domain position of the first time length * (M-1) + second time length * (M-1)) from the reference time domain position as the starting time domain of Y first time lengths Location; where all or part of the time domain resources corresponding to at least one of the Y first durations are the
  • the network device 30 determines the reference time domain position according to the pre-configured uplink time-frequency resources; the network device 30 will be distanced from the reference time domain position (first time length * N + second time length * (N-1)) time domain The position is determined as the starting time domain position of X time intervals; the network device 30 determines the time domain position from the reference time domain position for the first time length * (M-1) + second time length * (M-1)) as Y The starting time domain position of the first duration; the network device 30 receives the uplink data from the first terminal device on the first time-frequency resource.
  • the embodiments of the present application are intended to solve the problem of how to ensure that multiple terminal devices are inserted into the second time interval when their respective reference signals (such as DMRS) are orthogonal.
  • the respective reference signals are orthogonal, as to how to ensure that the respective reference signals of the multiple terminal devices are orthogonal before the time interval of the second duration is inserted
  • the embodiment of the present application does not specifically limit this.
  • any one of the multiple terminal devices may determine the time interval according to the reference time domain position and the starting time domain position of the reference signal transmission; and then generate the reference signal according to the time interval, which can ensure that the multiple terminal equipment Before inserting the second time interval, the respective reference signals are orthogonal. This is a unified description, and will not be repeated here.
  • the network device 30 in the embodiment of the present application is a device that connects the terminal device 40 to a wireless network, and may be an evolved Node B (evolutional Node B) in long term evolution (LTE). eNB or eNodeB); or the base station (Base Transceiver Station, BTS) in GSM or CDMA; or the base station (NodeB) in the WCDMA system; or the fifth generation (5G) network or the future evolved public land mobile network ( Base stations in the public land mobile network (PLMN), broadband network service gateways (BNG), aggregation switches or non-third generation partnership project (3rd generation partnership project, 3GPP) access equipment, etc., examples of this application There is no specific restriction on this.
  • the base stations in the embodiments of the present application may include various forms of base stations, such as macro base stations, micro base stations (also called small stations), relay stations, access points, etc., which are not specifically limited in the embodiments of the present application. .
  • the terminal device 40 in the embodiment of the present application may be a device used to implement a wireless communication function, such as a terminal or a chip that can be used in a terminal.
  • the terminal may be a user equipment (UE), an access terminal, a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, and a wireless communication in the 5G network or the future evolution of the PLMN Equipment, terminal agent or terminal device, etc.
  • the access terminal can be a cell phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control (industrial) control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety (transportation safety) Terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • the terminal can be mobile or fixed.
  • the network device 30 and the terminal device 40 in the embodiment of the present application may also be referred to as a communication device, which may be a general-purpose device or a dedicated device, which is not specifically limited in the embodiment of the present application.
  • FIG. 3 it is a schematic structural diagram of the network device 30 and the terminal device 40 provided in the embodiment of this application.
  • the terminal device 40 includes at least one processor (in FIG. 3 exemplarily includes a processor 401 as an example for illustration) and at least one transceiver (in FIG. 3 exemplarily includes a transceiver 403 as an example for illustration) ).
  • the terminal device 40 may also include at least one memory (in FIG. 3 exemplarily includes a memory 402 as an example for illustration), at least one output device (in FIG. 3 exemplarily, an output device 404 is included as an example.
  • an input device 405 is included as an example for description).
  • the processor 401, the memory 402, and the transceiver 403 are connected through a communication line.
  • the communication line may include a path to transmit information between the aforementioned components.
  • the processor 401 may be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more integrated circuits used to control the execution of the program of this application Circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the processor 401 may also include multiple CPUs, and the processor 401 may be a single-CPU processor or a multi-CPU processor.
  • the processor here may refer to one or more devices, circuits, or processing cores for processing data (for example, computer program instructions).
  • the memory 402 may be a device having a storage function. For example, it can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions. Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital universal discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be stored by a computer Any other media taken, but not limited to this.
  • the memory 402 may exist independently and is connected to the processor 401 through a communication line. The memory 402 may also be integrated with the processor 401.
  • the memory 402 is used to store computer execution instructions for executing the solution of the present application, and the processor 401 controls the execution.
  • the processor 401 is configured to execute computer-executable instructions stored in the memory 402, so as to implement the communication method described in the embodiment of the present application.
  • the processor 401 may also perform processing-related functions in the communication method provided in the following embodiments of the present application.
  • the transceiver 403 is responsible for communicating with other devices or communication networks. The embodiment does not specifically limit this.
  • the computer execution instructions in the embodiments of the present application may also be referred to as application program code or computer program code, which is not specifically limited in the embodiments of the present application.
  • the transceiver 403 can use any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, radio access network (RAN), or wireless local area networks (WLAN) Wait.
  • the transceiver 403 includes a transmitter (transmitter, Tx) and a receiver (receiver, Rx).
  • the output device 404 communicates with the processor 401 and can display information in a variety of ways.
  • the output device 404 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • LCD liquid crystal display
  • LED light emitting diode
  • CRT cathode ray tube
  • projector projector
  • the input device 405 communicates with the processor 401 and can accept user input in a variety of ways.
  • the input device 405 may be a mouse, a keyboard, a touch screen device, or a sensor device.
  • the network device 30 includes at least one processor (in FIG. 3 exemplarily includes a processor 301 as an example for description), at least one transceiver (in FIG. 3 exemplarily includes a transceiver 303 as an example for description), and At least one network interface (in FIG. 3, one network interface 304 is included as an example for illustration).
  • the network device 30 may further include at least one memory (in FIG. 3, one memory 302 is exemplarily described as an example).
  • the processor 301, the memory 302, the transceiver 303, and the network interface 304 are connected through a communication line.
  • the network interface 304 is used to connect to the core network device through a link (for example, the S1 interface), or to connect with the network interface of other network devices (not shown in FIG. 3) through a wired or wireless link (for example, the X2 interface).
  • the application embodiment does not specifically limit this.
  • the processor 301, the memory 302, and the transceiver 303 reference may be made to the description of the processor 401, the memory 402, and the transceiver 403 in the terminal device 40, which are not repeated here.
  • FIG. 4 is a specific structural form of the terminal device 40 provided in an embodiment of the application.
  • the functions of the processor 401 in FIG. 3 may be implemented by the processor 110 in FIG. 4.
  • the function of the transceiver 403 in FIG. 3 can be implemented by the antenna 1, antenna 2, mobile communication module 150, wireless communication module 160, etc. in FIG. 4.
  • antenna 1 and antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in the terminal device 40 can be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna can be used in combination with a tuning switch.
  • the mobile communication module 150 can provide a wireless communication solution including 2G/3G/4G/5G and the like applied to the terminal device 40.
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the mobile communication module 150 can receive electromagnetic waves by the antenna 1, and perform processing such as filtering, amplifying and transmitting the received electromagnetic waves to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modem processor, and convert it into electromagnetic wave radiation via the antenna 1.
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110.
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be provided in the same device.
  • the wireless communication module 160 can provide applications on the terminal device 40, including wireless local area networks (wireless local area networks, WLAN) (such as Wi-Fi networks), Bluetooth (blue tooth, BT), global navigation satellite system (global navigation satellite system, GNSS), frequency modulation (FM), near field communication (NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110.
  • the wireless communication module 160 may also receive the signal to be sent from the processor 110, perform frequency modulation, amplify, and convert it into electromagnetic waves to radiate through the antenna 2.
  • the wireless communication module 160 can provide a solution for NFC wireless communication applied to the terminal device 40, which means that the first device includes an NFC chip.
  • the NFC chip can improve the NFC wireless communication function.
  • the wireless communication module 160 can provide a NFC wireless communication solution applied to the terminal device 40, which means that the first device includes an electronic tag (such as radio frequency identification (RFID) tags). ).
  • RFID radio frequency identification
  • the antenna 1 of the terminal device 40 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal device 40 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time-division code division multiple access (TD-SCDMA), long term evolution (LTE), BT, GNSS, WLAN, NFC , FM, or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi -zenith satellite system, QZSS) or satellite-based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite-based augmentation systems
  • the function of the memory 402 in FIG. 3 may be implemented by an external memory (such as a Micro SD card) connected to the internal memory 121 or the external memory interface 120 in FIG. 4.
  • an external memory such as a Micro SD card
  • the function of the output device 404 in FIG. 3 may be implemented by the display screen 194 in FIG. 4.
  • the display screen 194 is used to display images, videos, and so on.
  • the display screen 194 includes a display panel.
  • the function of the input device 405 in FIG. 3 may be implemented by a mouse, a keyboard, a touch screen device, or the sensor module 180 in FIG. 4.
  • the sensor module 180 may include, for example, a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, and a fingerprint sensor 180H.
  • the terminal device 40 may also include an audio module 170, a camera 193, an indicator 192, a motor 191, a button 190, a SIM card interface 195, a USB interface 130, a charging management module 140, One or more of the power management module 141 and the battery 142, where the audio module 170 can be connected to a speaker 170A (also called a “speaker”), a receiver 170B (also called a “handset”), a microphone 170C (also called a “microphone”, “Microphone”) or the earphone interface 170D, etc., which are not specifically limited in the embodiment of the present application.
  • a speaker 170A also called a “speaker”
  • a receiver 170B also called a “handset”
  • a microphone 170C also called a “microphone”, "Microphone”
  • the earphone interface 170D etc.
  • the structure shown in FIG. 4 does not constitute a specific limitation on the terminal device 40.
  • the terminal device 40 may include more or fewer components than shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the communication method includes the following steps:
  • the first terminal device determines a reference time domain location according to a pre-configured uplink time-frequency resource, where the reference time domain location is the same as the reference time domain location determined by other terminal devices among the multiple terminal devices.
  • multiple terminal devices capable of transmitting uplink data on the same uplink time-frequency resource correspond to the same reference time domain location.
  • the reference time domain position is a time domain position before the start time domain position of the preconfigured uplink time-frequency resource in the period in which the pre-configured uplink time-frequency resource is located .
  • the reference time domain position may be the pre-configured uplink time-frequency resource within the period of the pre-configured uplink time-frequency resource 1.
  • the reference time domain position may be the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the reference time domain position is the starting time domain position of the pre-configured uplink time-frequency resource, as shown in FIG. 8.
  • the pre-configured uplink time-frequency resources here may be periodic or aperiodic, which is not specifically limited here.
  • the first terminal device determines the reference time domain position according to the pre-configured uplink time-frequency resource, which may include: the first terminal device receives first indication information from the network device, where the first indication information is used to indicate the reference time domain position The first offset duration relative to the start position of the period in which the pre-configured uplink time-frequency resource is located; the first terminal device determines the reference according to the first indication information and the start position of the period in which the pre-configured uplink time-frequency resource is located Time domain location.
  • the first indication information may be used to indicate the first offset duration P1 of the reference time domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource 1 is located, and further, The first terminal device can determine the reference time domain position according to the first indication information and the start position of the period in which the pre-configured uplink time-frequency resource 1 is located, as shown in FIG. 9.
  • the first terminal device determines the reference time domain position according to the pre-configured uplink time-frequency resource, which may include: the first terminal device receives second indication information from the network device, the second indication information is used to indicate the pre-configuration The second offset duration of the start time domain position of the uplink time-frequency resource relative to the reference time domain position; the first terminal device determines the reference according to the second indication information and the pre-configured start time domain position of the uplink time-frequency resource Time domain location.
  • the second indication information may be used to indicate the second offset duration P2 of the starting time domain position of the pre-configured uplink time-frequency resource 1 relative to the reference time domain position, and further, the first A terminal device can determine the reference time domain position according to the second indication information and the pre-configured starting time domain position of the uplink time-frequency resource 2, as shown in FIG. 10.
  • every N pre-configured uplink resources may correspond to a reference time domain position, and the reference time domain position is every N pre-configured In the period where the first pre-configured uplink time-frequency resource in the uplink time-frequency resource is located, a time-domain position before the start time-domain position of the first pre-configured uplink time-frequency resource, N is greater than 1. Positive integer.
  • the terminal device may also determine the reference time domain position according to the indication information sent by the network device, where the indication information is used to indicate that each reference time domain position is relative to every N pre-configured uplink time-frequency resources.
  • the fourth offset duration of the configured start position of the uplink time-frequency resource with respect to each reference time domain position please refer to the foregoing FIG. 9 or FIG. 10, and details are not described herein again.
  • every N pre-configured uplink resources may correspond to a reference time domain position, and the reference time domain position is every N pre-configured
  • the starting position of the first pre-configured uplink time-frequency resource in the uplink time-frequency resource, N is a positive integer greater than 1.
  • every 2 pre-configured uplink resources correspond to a reference time domain position.
  • N 2, that is, every 2 pre-configured uplink resources correspond to a reference time domain position.
  • the pre-configured uplink time-frequency resource 5 is pre-configured in the fifth cycle. If the uplink time-frequency resource 6 is in the 6th cycle, the pre-configured uplink time-frequency resource 7 is in the 7th cycle, and the pre-configured uplink time-frequency resource 8 is in the 8th cycle, then the pre-configured uplink time-frequency resource 8 is in the 8th cycle.
  • the resource 5 and the pre-configured uplink time-frequency resource 6 may correspond to the reference time domain position 3, and the pre-configured uplink time-frequency resource 7 and the pre-configured uplink time-frequency resource 8 may correspond to the reference time domain position 4.
  • the reference time domain position determined according to the pre-configured uplink time-frequency resource 8 It should be the reference time domain position 4 shown in FIG. 11, that is, the time domain position before the starting time domain position of the preconfigured uplink time-frequency resource 7 in the period in which the pre-configured uplink time-frequency resource 7 is located; or, Assuming that the pre-configured uplink time-frequency resource in step S501 is the pre-configured uplink time-frequency resource 5 shown in FIG. 11, the reference time domain position determined according to the pre-configured uplink time-frequency resource 5 should be as shown in FIG. 11
  • the reference time domain position 3 shown is a time domain position before the start time domain position of the preconfigured uplink time-frequency resource 5 in the period in which the pre-configured uplink time-frequency resource 5 is located.
  • the reference time domain position illustrated in FIG. 11 is that in every N pre-configured uplink time-frequency resources, the first pre-configured uplink time-frequency resource is located in the cycle. A position between the start time domain position of the time-frequency resource and the start position of the cycle in which the first pre-configured uplink time-frequency resource is located.
  • the reference time domain position can also be every N pre-configured uplink Among the time-frequency resources, the first pre-configured uplink time-frequency resource is the start position of the period; or, the reference time domain position can also be the first pre-configured uplink time-frequency resource in every N pre-configured uplink time-frequency resources The starting position of the uplink time-frequency resources of the, will not be illustrated one by one here.
  • the starting position of the period in which the pre-configured uplink time-frequency resource is located satisfies:
  • the first setting value may be 1; or, for example, if the unit of the period of the pre-configured uplink time-frequency resource is (10 ms), the first setting value here may be 10.
  • the second setting here may be 10; or, for example, if the unit of the period of the pre-configured uplink time-frequency resource is 10 ms, the second set value here may be 1.
  • the reference time domain position may also have nothing to do with the pre-configured uplink time-frequency resource.
  • the reference time domain position can be an absolute time domain position, which can be configured by the network device to the terminal device, or pre-configured on the terminal device in advance or specified by the agreement. The embodiments of this application do not specifically limit this.
  • the first terminal device determines the time domain position from the reference time domain position (first time length * N + second time length * (N-1)) as the starting time domain position of X time intervals, where N is 1, 2. , 3, 4,..., X, where X time intervals are not used to send uplink data, and X is a positive integer.
  • the first terminal device will determine the starting time domain position of the two time intervals, where the starting time domain position of the first time interval and the reference time domain The distance between the positions is the first time length, and the distance between the start time domain position of the second time interval and the reference time domain position is the first time length * 2 + the second time length.
  • X is greater than 2
  • the analogy can be used.
  • the first duration in the embodiment of the present application is a positive integer multiple of 256ms, for example, the first duration may be 256ms.
  • the second duration in the embodiment of the present application is a positive integer multiple of 40ms, for example, the second duration may be 40ms.
  • the first terminal device determines the time domain position from the reference time domain position (first time length * (M-1) + second time length * (M-1)) as Y start time domain positions of the first time length ;
  • the first terminal device will determine the start time domain positions of two first durations, where the start time of the first first duration The distance between the domain position and the reference time domain position is 0, and the distance between the start time domain position of the second first duration and the reference time domain position is the first duration + the second duration.
  • the analogy can be used.
  • the schematic diagrams of the positions of the two first durations and the insertion positions of the two time intervals may be as shown in FIG. 13.
  • the first terminal device will determine three start time domain positions of the first duration, where the first start time of the first duration The distance between the domain position and the reference time domain position is 0, and the distance between the start time domain position of the second first duration and the reference time domain position is the first duration + the second duration, and the third first duration The distance between the starting time domain position of and the reference time domain position is (first duration + second duration)*2.
  • X is greater than 2
  • the analogy can be used.
  • the schematic diagrams of the positions of the 3 first durations and the insertion positions of the 2 intervals can be as shown in Figure 14. Show.
  • the starting position of uplink data transmission may be the reference time domain position, or may be a certain position after the reference time domain position.
  • the starting position of the uplink data transmission is the S-th first time length among Y first time lengths, and S is a positive integer less than Y, which is not specifically limited in the embodiment of the present application.
  • the first terminal device may start transmitting uplink data at a position after the reference time domain position; on the other hand, it is considered that the uplink data and the random access channel (for example, it may be Physical random access channel (NPRACH) collision will delay the transmission of uplink data. Therefore, all or part of the time domain resources corresponding to at least one of the X first durations are used for uplink transmission.
  • the time domain resource in the first time-frequency resource of the data may be Physical random access channel (NPRACH) collision will delay the transmission of uplink data.
  • the uplink data is transmitted 256ms on the first first time length, and the first 40ms The time interval will be inserted; after a time interval of 40ms, the data transmission can end after the uplink data is transmitted 256ms on the second first duration.
  • the uplink data starts to be transmitted at (256+40+100) ms from the reference time domain position, that is, the starting position of the uplink data transmission It is 100ms away from the start position of the second first duration, assuming that 100ms after the uplink data transmission starts, the upstream data collides with NPRACH, and NPRACH needs to be transmitted 156ms, then the end position of the NPRACH transmission is at a distance of the third first duration The starting position is 60ms.
  • part of the time domain resources corresponding to the second first duration and the third first duration among the three first durations is The time domain resource in the first time-frequency resource used to transmit uplink data.
  • the pre-configured uplink time-frequency resource when there is a pre-configured uplink time-frequency resource, the pre-configured uplink time-frequency resource may include the first time-frequency resource, or may not include the first time-frequency resource. Resources are not specifically limited here.
  • step S502 can be executed first, and then step S503; or step S503 can be executed first, and then step S502 can be executed; Step S502 and step S503 may be performed simultaneously, which is not specifically limited in the embodiment of the present application.
  • the network device determines a reference time domain position according to the pre-configured uplink time-frequency resource.
  • the network device determines the time domain position from the reference time domain position (first time length * N + second time length * (N-1)) as the starting time domain position of X time intervals, where N is 1, 2, 3 , 4,..., X, where X time intervals are not used to send uplink data, and X is a positive integer.
  • steps S504-S506 please refer to the above-mentioned steps S501-S503, which will not be repeated here.
  • step S505 may be executed first, and then step S506; or step S506 may be executed first, and then step S505 may be executed; Step S505 and step S506 may be performed at the same time, which is not specifically limited in the embodiment of the present application.
  • steps S501-S503 and steps S504-S506 there is no necessary order of execution between steps S501-S503 and steps S504-S506.
  • Steps S501-S503 can be executed first, and then steps S504-S506; or steps S504-S506 can be executed first.
  • the first terminal device sends uplink data to the network device on the first time-frequency resource.
  • the network device receives the uplink data from the first terminal device on the first time-frequency resource.
  • the first terminal device when the first terminal device sends uplink data to the network device on the first time-frequency resource, it needs to send the reference signal for demodulating the uplink data to the network device on the first time-frequency resource.
  • DMRS Downlink Reference Signal
  • UE2 Although the transmission time of UE2 is less than 256ms, UE2 also inserts 40ms gap at the same position. In this way, on the first slot after the end of the 40ms gap, the value of n in the DMRS generation formula (1) and formula (2) corresponding to UE1 is 16m+16, and the DMRS generation formula corresponding to UE2 (1) And the value of n in formula (2) is 16m+16. According to the above description of Hadamard sequence and Gold sequence, it can be known that at this time, the RU boundary is aligned.
  • the Hadamard sequence corresponding to UE1 and UE2 The corresponding Hadamard sequence is still orthogonal, and the Gold sequence corresponding to UE1 is the same as the Gold sequence corresponding to UE2, which ensures that after UE1 inserts a 40ms gap, the DMRS corresponding to UE1 and the DMRS corresponding to UE2 are orthogonal.
  • the transmission duration of UE1 is also less than 256ms. That is, the starting time domain position of the first 40ms gap is 256ms away from the reference time domain position, and it does not depend on whether the transmission duration of UE1 or the transmission duration of UE2 is 256ms.
  • the actions of the network device in the above steps S501 to S507 can be executed by the processor 301 in the network device 30 shown in FIG. 3 calling the application code stored in the memory 302 to instruct the network device to execute.
  • the action of the first terminal device can be executed by the processor 401 in the terminal device 40 shown in FIG. 3 by calling the application code stored in the memory 402 to instruct the network device to execute, and this embodiment does not impose any limitation on this.
  • the methods and/or steps implemented by the first terminal device can also be implemented by components (such as chips or circuits) that can be used in the first terminal device, and the methods and/or steps implemented by the network device /Or steps can also be implemented by components that can be used in network devices.
  • an embodiment of the present application also provides a communication device, which is used to implement the foregoing various methods.
  • the communication device may be the first terminal device in the foregoing method embodiment, or a device including the foregoing first terminal device, or a component that can be used in the first terminal device; or, the communication device may be the foregoing method embodiment Network equipment, or a device containing the above-mentioned network equipment, or a component that can be used for network equipment.
  • the communication device includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the communication device into functional modules according to the foregoing method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 19 shows a schematic structural diagram of a first terminal device 190.
  • the first terminal device 190 includes a processing module 1901 and a transceiver module 1902.
  • the transceiver module 1902 may also be referred to as a transceiver unit to implement sending and/or receiving functions, and may be, for example, a transceiver circuit, transceiver, transceiver or communication interface.
  • the processing module 1901 is configured to determine a reference time domain position according to a pre-configured uplink time-frequency resource, and the reference time domain position is the same as that of multiple terminal devices in the first cell that can transmit uplink data on the same time-frequency resource
  • the reference time domain position determined by other terminal devices is the same; the processing module 1901 is also used to determine the time domain position from the reference time domain position (first time length * N + second time length * (N-1)) as X time intervals
  • the starting time domain position of, N is 1, 2, 3, 4,..., X, X time intervals are not used to send uplink data, X is a positive integer;
  • the processing module 1901 is also used to reference the distance to the time domain position
  • the time domain position of (first time length*(M-1)+second time length*(M-1)) is determined as the starting time domain position of Y first time lengths; among them, at least one of Y first time lengths All or part of the time domain resources corresponding to the first duration are the time domain resources in the
  • the processing module 1901 is configured to determine a reference time domain position according to a pre-configured uplink time-frequency resource, including: being configured to receive first indication information from a network device, the first indication information being used to indicate that the reference time domain position is relative to The first offset duration of the start position of the period in which the pre-configured uplink time-frequency resource is located; and the reference time domain position is determined according to the first indication information and the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the processing module 1901 is configured to determine a reference time domain position according to a pre-configured uplink time-frequency resource, including: being configured to receive second indication information from a network device, the second indication information being used to indicate a pre-configured uplink The second offset duration of the start time domain position of the time-frequency resource relative to the reference time domain position; the reference time domain position is determined according to the second indication information and the pre-configured start time domain position of the uplink time-frequency resource.
  • the first terminal device 190 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the first terminal device 190 may take the form of the terminal device 40 shown in FIG. 3.
  • the processor 401 in the terminal device 40 shown in FIG. 3 may invoke the computer execution instruction stored in the memory 402 to make the terminal device 40 execute the communication method in the foregoing method embodiment.
  • the function/implementation process of the processing module 1901 and the transceiver module 1902 in FIG. 19 can be implemented by the processor 401 in the terminal device 40 shown in FIG. 3 calling the computer execution instructions stored in the memory 402.
  • the function/implementation process of the processing module 1901 in FIG. 19 can be implemented by the processor 401 in the terminal device 40 shown in FIG. 3 calling a computer execution instruction stored in the memory 402, and the function of the transceiver module 1902 in FIG. 19 /The realization process can be realized by the transceiver 403 in the terminal device 40 shown in FIG. 3.
  • the first terminal device 190 provided in this embodiment can execute the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • FIG. 20 shows a schematic structural diagram of a network device 200.
  • the network device 200 includes a processing module 2001 and a transceiver module 2002.
  • the transceiver module 2002 may also be referred to as a transceiver unit to implement sending and/or receiving functions, for example, may be a transceiver circuit, transceiver, transceiver or communication interface.
  • the processing module 2001 is configured to determine a reference time domain position according to a pre-configured uplink time-frequency resource, and the reference time domain position corresponds to multiple terminal devices in the first cell that can transmit uplink data on the same time-frequency resource; processing;
  • the module 2001 is also used to determine the time domain position from the reference time domain position (first time length*N+second time length*(N-1)) as the starting time domain position of X time intervals, where N is 1, 2 , 3, 4,..., X, X time intervals are not used to send uplink data, and X is a positive integer;
  • the processing module 2001 is also used to reference the distance to the time domain position (first time length*(M-1)+th
  • the time domain position of two time lengths*(M-1)) is determined as the starting time domain position of Y first time lengths; among them, at least one of the Y first time lengths corresponds to all or all of the time domain resources corresponding to the first time length
  • the part is the time domain resource in the first time
  • the processing module 2001 is configured to determine a reference time-domain position according to a pre-configured uplink time-frequency resource, including: determining the first position of the reference time-domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource is located An offset duration; the reference time domain position is determined according to the first offset duration and the start position of the cycle in which the pre-configured uplink time-frequency resource is located.
  • the processing module 2001 is configured to determine a reference time domain position according to a pre-configured uplink time-frequency resource, including: determining the starting time domain position of the pre-configured uplink time-frequency resource relative to the reference time domain position The second offset duration; the reference time domain position is determined according to the second offset duration and the starting time domain position of the pre-configured uplink time-frequency resource.
  • the transceiver module 2002 is further configured to send first indication information to the first terminal device, where the first indication information is used to indicate the reference time domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the first offset duration is used to indicate the reference time domain position relative to the start position of the period in which the pre-configured uplink time-frequency resource is located.
  • the transceiver module 2002 is further configured to send second indication information to the first terminal device, where the second indication information is used to indicate that the starting time domain position of the pre-configured uplink time-frequency resource is relative to the reference time domain position The second offset duration.
  • the network device 200 is presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the network device 200 can take the form of the network device 30 shown in FIG. 3.
  • the processor 301 in the network device 30 shown in FIG. 3 may invoke the computer execution instructions stored in the memory 302 to make the network device 30 execute the communication method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 2001 and the transceiver module 2002 in FIG. 20 may be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling the computer execution instructions stored in the memory 302.
  • the function/implementation process of the processing module 2001 in FIG. 20 can be implemented by the processor 301 in the network device 30 shown in FIG. 3 calling a computer execution instruction stored in the memory 302, and the function of the transceiver module 2002 in FIG. /The implementation process can be implemented by the transceiver 303 in the network device 30 shown in FIG. 3.
  • the network device 200 provided in this embodiment can perform the above-mentioned communication method, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • an embodiment of the present application further provides a communication device (for example, the communication device may be a chip or a chip system), and the communication device includes a processor for implementing the method in any of the foregoing method embodiments.
  • the communication device further includes a memory.
  • the memory is used to store necessary program instructions and data, and the processor can call the program code stored in the memory to instruct the communication device to execute the method in any of the foregoing method embodiments.
  • the memory may not be in the communication device.
  • the communication device is a chip system, it may be composed of a chip, or may include a chip and other discrete devices, which is not specifically limited in the embodiment of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or include one or more data storage devices such as servers, data centers, etc. that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the computer may include the aforementioned device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、装置及系统,适用于包括第一小区的无线通信系统,第一小区包括能够在相同的时频资源上传输上行数据的多个终端设备,多个终端设备中的第一终端设备根据预配置的上行时频资源确定参考时域位置,该参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同;将距离参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置;将距离参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置,Y=X或者Y=X+1;在用于传输上行数据的第一时频资源上向网络设备发送上行数据。

Description

通信方法、装置及系统 技术领域
本申请涉及通信领域,尤其涉及通信方法、装置及系统。
背景技术
当终端设备有上行数据需要传输时,现有的流程通常包括:终端设备有上行数据到达—终端设备向网络设备申请上行传输资源—网络设备向终端设备发送上行传输调度信息—终端设备根据该上行传输调度信息进行上行传输—网络设备根据上行数据的解调情况向终端设备反馈上行数据是否接收成功。
随着物联网(internet of things,IoT)技术的发展,IoT应用对IoT设计的需求也越来越高。为了满足这些需求,移动通信标准化组织第三代合作伙伴计划(3rd generation partnership project,3GPP)在无线接入网络(radio access network,RAN)#62次全会上通过了一个新的研究课题来研究在蜂窝网络中支持极低复杂度和低成本的物联网的方法,并且在RAN#69次会议上立项为窄带物联网(narrow band internet of thing,NB-IoT)课题。目前,NB-IoT版本(release)16正在研究上行(uplink,UL)免调度传输(grant-free transmission),其流程包括:终端设备有上行数据到达—终端设备直接在预先配置的资源(preconfigured resources)上按照预先规定的发送方式进行上行传输—网络设备根据上行数据的解调情况向终端设备反馈上行数据是否接收成功。可以看出,对于上行免调度传输,由于终端设备不需要向网络设备申请上行传输资源,以及不需要等待网络设备向终端设备发送上行传输调度信息,即减少了流程,因此具有降低功耗时延、降低信令开销等优势。特别的,在上行免调度传输中,网络设备可以给不同的终端设备配置不同的上行免调度传输资源(dedicated resource),也可以给不同的终端设备配置相同或部分重叠的上行免调度传输资源(shared resource)。相对于dedicated resource,shared resources有利于降低网络资源的开销,提升频谱利用率。
此外,在NB-IoT系统中,由于终端设备的低成本需求,配备较低成本晶振的终端设备在连续长时间的上行传输时,可能会产生晶振频率偏移,这样会严重影响到终端设备上行的传输性能,进而降低上行数据的传输效率。为了纠正这种频率偏移,现有技术引入了上行gap,即终端设备在上行数据每传输256ms后会插入40ms的gap。
然而,按照现有的上行gap插入机制,当同一小区的不同终端设备在shared resource上传输上行数据时,若多个终端设备发送上行数据的起始位置不一样,即使多个终端设备在插入40ms gap之前,各自的参考信号(如解调参考信号(demodulation reference signal,DMRS))正交,也无法保证多个终端设备在插入40ms gap之后,各自的参考信号正交。
发明内容
本申请实施例提供通信方法、装置及系统,使得多个终端设备在插入40ms gap之后,各自的参考信号正交。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,提供了一种通信方法,该方法适用于无线通信系统,该无线通信系统包括第一小区,该第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,该多个终端设备包括第一终端设备,该方法包括:第一终端设备根据预配置的上行时频资源确定参考时域位置,该参考时域位置与该多个终端设备中的其他终端设备确定的参考时域位置相同;第一终端设备将距离该参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,该X个时间间隔均不用于发送上行数据,X为正整数;第一终端设备将距离该参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,该Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输该上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;第一终端设备在该第一时频资源上向网络设备发送上行数据。基于该方案,由于同一小区的能够在相同上行时频资源上传输上行数据的多个终端设备对应相同的参考时域位置,并且距离参考时域位置(第一时长*N+第二时长*(N-1))的时域位置为X个时间间隔的起始时域位置,因此对于同一小区的能够在相同上行时频资源上传输上行数据的多个终端设备来说,即使多个终端设备发送上行数据的起始位置不一样,也可以保证插入的第二时长的时间间隔的起始位置和结束位置均对齐,进而若多个终端设备在插入第二时长的时间间隔之前,各自的参考信号正交,也可以保证多个终端设备在插入第二时长的时间间隔之后,各自的参考信号正交。
在一种可能的设计中,该参考时域位置为该预配置的上行时频资源所在的周期内,该预配置的上行时频资源的起始时域位置前的一个时域位置。
在一种可能的设计中,该参考时域位置为该预配置的上行时频资源所在的周期的起始位置。
在一种可能的设计中,该预配置的上行时频资源所在的周期的起始位置满足:(该起始位置对应的子帧号)mod(该预配置的上行时频资源的周期/第一设定值)=0,或者,(该起始位置对应的帧号)mod(该预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,该第一设定值或该第二设定值为正数。
在一种可能的设计汇总,该参考时域位置为该预配置的上行时频资源的起始时域位置。
在一种可能的设计中,第一终端设备根据预配置的上行时频资源确定参考时域位置,包括:第一终端设备接收来自该网络设备的第一指示信息,该第一指示信息用于指示该参考时域位置相对于该预配置的上行时频资源所在的周期的起始位置的第一偏移时长;第一终端设备根据该第一指示信息和该预配置的上行时频资源所在的周期的起始位置,确定该参考时域位置。基于该方案,第一终端设备可以确定参考时域位置。
在一种可能的设计中,第一终端设备根据预配置的上行时频资源确定参考时域位置,包括:第一终端设备接收来自该网络设备的第二指示信息,该第二指示信息用于指示该预配置的上行时频资源的起始时域位置相对于该参考时域位置的第二偏移时长;第一终端设备根据该第二指示信息和该预配置的上行时频资源的起始时域位置,确定 该参考时域位置。基于该方案,第一终端设备可以确定参考时域位置。
第二方面,提供了一种通信方法,该方法适用于无线通信系统,该无线通信系统包括第一小区,该第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,该多个终端设备包括第一终端设备,该方法包括:网络设备根据预配置的上行时频资源确定参考时域位置,该参考时域位置对应该多个终端设备;网络设备将距离该参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,该X个时间间隔均不用于发送上行数据,X为正整数;网络设备将距离该参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,该Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输该上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;网络设备在该第一时频资源上接收来自该第一终端设备的上行数据。其中,第二方面所带来的技术效果可参见上述第一方面中所带来的技术效果,此处不再赘述。
在一种可能的设计中,该参考时域位置为该预配置的上行时频资源所在的周期内,该预配置的上行时频资源的起始时域位置前的一个时域位置。
在一种可能的设计中,该参考时域位置为该预配置的上行时频资源所在的周期的起始位置。
在一种可能的设计中,该预配置的上行时频资源所在的周期的起始位置满足:(该起始位置对应的子帧号)mod(该预配置的上行时频资源的周期/第一设定值)=0,或者,(该起始位置对应的帧号)mod(该预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,该第一设定值或该第二设定值为正数。
在一种可能的设计中,该参考时域位置为该预配置的上行时频资源的起始时域位置。
在一种可能的设计中,网络设备根据预配置的上行时频资源确定参考时域位置,包括:网络设备确定该参考时域位置相对于该预配置的上行时频资源所在的周期的起始位置的第一偏移时长;网络设备根据该第一偏移时长和该预配置的上行时频资源所在的周期的起始位置,确定该参考时域位置。
在一种可能的设计中,网络设备根据预配置的上行时频资源确定参考时域位置,包括:网络设备确定该预配置的上行时频资源的起始时域位置相对于该参考时域位置的第二偏移时长;网络设备根据该第二偏移时长和该预配置的上行时频资源的起始时域位置,确定该参考时域位置。
在一种可能的设计中,本申请实施例提供的通信方法还可以包括:网络设备向该第一终端设备发送第一指示信息,该第一指示信息用于指示该参考时域位置相对于该预配置的上行时频资源所在的周期的起始位置的第一偏移时长。
在一种可能的设计中,本申请实施例提供的通信方法还可以包括:该网络设备向该第一终端设备发送第二指示信息,该第二指示信息用于指示该预配置的上行时频资源的起始时域位置相对于该参考时域位置的第二偏移时长。
其中,第二方面任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方式所带来的技术效果,此处不再赘述。
第三方面,提供了一种通信方法,该方法适用于无线通信系统,该无线通信系统包括第一小区,该第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,该多个终端设备包括第一终端设备,该方法包括:第一终端设备确定参考时域位置,该参考时域位置与该多个终端设备中的其他终端设备确定的参考时域位置相同;第一终端设备将距离该参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,该X个时间间隔均不用于发送上行数据,X为正整数;第一终端设备将距离该参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,该Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输该上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;第一终端设备在该第一时频资源上向网络设备发送上行数据。
需要说明的是,本申请实施例中的参考时域位置可能和预配置的上行时频资源有关系,也可能和预配置的上行时频资源没有关系,是一个绝对位置,在此统一说明。
其中,第三方面所带来的技术效果可参见上述第一方面所带来的技术效果,此处不再赘述。
第四方面,提供了一种通信方法,该方法适用于无线通信系统,该无线通信系统包括第一小区,该第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,该多个终端设备包括第一终端设备,该方法包括:网络设备确定参考时域位置,该参考时域位置对应该多个终端设备;网络设备将距离该参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,该X个时间间隔均不用于发送上行数据,X为正整数;网络设备将距离该参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,该Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输该上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;网络设备在该第一时频资源上接收来自该第一终端设备的上行数据。
需要说明的是,本申请实施例中的参考时域位置可能和预配置的上行时频资源有关系,也可能和预配置的上行时频资源没有关系,是一个绝对位置,在此统一说明。
其中,第四方面所带来的技术效果可参见上述第一方面所带来的技术效果,此处不再赘述。
结合上述第一方面至第四方面中的任一方面,在一种可能的设计中,该第一时长为256ms的正整数倍。
结合上述第一方面至第四方面中的任一方面,在一种可能的设计中,该第二时长为40ms的正整数倍。
第五方面,提供了一种通信装置用于实现上述各种方法。该通信装置可以为上述第一方面或第三方面中的第一终端设备,或者包含上述第一终端设备的装置;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置。所述通信装置包括实现上述方法相应的模块、单元、或手段(means),该模块、单元、或means可以通过硬件实现,软件实现,或者通过硬件执行相应的软件实现。 该硬件或软件包括一个或多个与上述功能相对应的模块或单元。
第六方面,提供了一种通信装置,包括:处理器和存储器;该存储器用于存储计算机指令,当该处理器执行该指令时,以使该通信装置执行上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的第一终端设备,或者包含上述第一终端设备的装置;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置。
第七方面,提供了一种通信装置,包括:处理器;所述处理器用于与存储器耦合,并读取存储器中的指令之后,根据所述指令执行如上述任一方面所述的方法。该通信装置可以为上述第一方面或第三方面中的第一终端设备,或者包含上述第一终端设备的装置;或者,该通信装置可以为上述第二方面或第四方面中的网络设备,或者包含上述网络设备的装置。
第八方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述任一方面所述的方法。
第十方面,提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方面中所涉及的功能。在一种可能的设计中,该通信装置还包括存储器,该存储器,用于保存必要的程序指令和数据。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第五方面至第十方面中任一种设计方式所带来的技术效果可参见上述第一方面或第二方面或第三方面或第四方面中不同设计方式所带来的技术效果,此处不再赘述。
第十一方面,提供一种通信系统,该通信系统包括上述方面所述的第一终端设备和上述方面所述的网络设备。
附图说明
图1a为现有的DMRS的位置示意图;
图1b为现有的子载波间隔为15kHz时不同终端设备的数据传输示意图;
图1c为现有的子载波间隔为3.75kHz时不同终端设备的数据传输示意图;
图2为本申请实施例提供的一种通信系统的结构示意图;
图3为本申请实施例提供的终端设备和网络设备的结构示意图;
图4为本申请实施例提供的终端设备的另一种结构示意图;
图5为本申请实施例提供的一种通信方法;
图6为本申请实施例提供的参考时域位置示意图一;
图7为本申请实施例提供的参考时域位置示意图二;
图8为本申请实施例提供的参考时域位置示意图三;
图9为本申请实施例提供的第一偏移时长示意图;
图10为本申请实施例提供的第二偏移时长示意图;
图11为本申请实施例提供的参考时域位置示意图四;
图12为本申请实施例提供的参考时域位置示意图五;
图13为本申请实施例提供的第一时长和第二时长的分布示意图一;
图14为本申请实施例提供的第一时长和第二时长的分布示意图二;
图15为本申请实施例提供的数据传输示意图一;
图16为本申请实施例提供的数据传输示意图二;
图17为本申请实施例提供的数据传输示意图三;
图18为本申请实施例提供的不同终端设备的数据传输示意图;
图19为本申请实施例提供的第一终端设备的结构示意图;
图20为本申请实施例提供的网络设备的结构示意图。
具体实施方式
为了方便理解本申请实施例的技术方案,首先给出本申请相关技术或名词的简要介绍如下。
第一,IoT:
IoT是“物物相连的互联网”。它将互联网的用户端扩展到了任何物品与物品之间,使得在任何物品与物品之间可以进行信息交换和通信。这样的通信方式也称为机器间通信(machine type communications,MTC)。其中,通信的节点称为MTC终端或MTC设备。典型的IoT应用包括智能电网、智能农业、智能交通、智能家居以及环境检测等各个方面。
由于物联网需要应用在多种场景中,比如从室外到室内,从地上到地下,因而对物联网的设计提出了很多特殊的要求。比如,由于某些场景下的MTC终端应用在覆盖较差的环境下,如电表水表等通常安装在室内甚至地下室等无线网络信号很差的地方,因此需要覆盖增强的技术来解决。或者,由于某些场景下的MTC终端的数量要远远大于人与人通信的设备数量,也就是说需要大规模部署,因此要求能够以非常低的成本获得并使用MTC终端。或者,由于某些场景下的MTC终端传输的数据包很小,并且对延时并不敏感,因此要求支持低速率的MTC终端。或者,由于在大多数情况下,MTC终端是通过电池来供电的,但是同时在很多场景下,MTC终端又要求能够使用十年以上而不需要更换电池,这就要求MTC终端能够以极低的电力消耗来工作。
为了满足上述需求,移动通信标准化组织3GPP在RAN#62次全会上通过了一个新的研究课题来研究在蜂窝网络中支持极低复杂度和低成本的物联网的方法,并且在RAN#69次会议上立项为NB-IoT课题。
第二,上行数据传输:
和长期演进(long term evolution,LTE)不同,NB-IoT上行数据传输支持单频音(single-tone)和多频音(multi-tone)。single-tone传输对应的子载波个数为1,主要适用于低速率、覆盖场景增强的场景,可以提供更低实现成本;multi-tone传输对应的子载波个数大于1,可以比Single-tone传输提供更大速率,也可以支持覆盖增强。此外,NB-IoT上行传输的子载波间隔有15kHz和3.75kHz两种,当子载波个数为1(single-tone)时,支持15kHz和3.75kHz两种子载波间隔,当子载波个数大于1(multi-tone)时,只支持15kHz的子载波间隔。
上行数据传输的基本调度单位是资源单元(resource unit,RU)。当子载波间隔为3.75kHz时,NB-IoT系统只支持single-tone,1个RU在频域上占用1个子载波, 时域上占用16个时隙(slot);当子载波间隔为15kHz时,表一定义了以下几种RU(
Figure PCTCN2019074719-appb-000001
表示1个RU频域上占用的子载波数,
Figure PCTCN2019074719-appb-000002
表示1个RU时域上占用的连续slot数),每个slot由7个单载波频分多址(single-carrier frequency-division multiple access,SC-FDMA)符号(symbol)组成。
表一
Figure PCTCN2019074719-appb-000003
此外,上行数据传输可能有重复(repetition),一个数据块占M个RU,repetition数=N,则表示本次上行传输占据N*M个RU,即重复(repetition)是以M*RU为单位的。
第三,DMRS:
NB-IoT窄带物理上行共享信道(narrow band physical uplink shared channel,NPUSCH)格式(format)1用于上行数据传输。其中,在上行数据传输过程中,终端设备会同时发送DMRS,DMRS用于网络设备进行信道估计、信道均衡,以便正确解调上行数据。如图1a所示,在进行上行数据传输时,1个slot中有1个SC-FDMA symbol用于传输DMRS、其余6个SC-FDMA symbol用于传输上行数据。其中,图1a中的保护间隔(guard period,GP)可参考现有的相关描述,在此不予赘述。
如上所述,对于上行数据传输来说,有两种传输方式:single tone和multi tone。对于single tone来说,有3.75kHz和15kHz两种子载波间隔,不论是哪种子载波间隔,对于single tone,一个RU占用16个slot。single tone的3.75kHz和15kHz在DMRS的生成方式上是一样的,仅是DMRS在映射上有所不同。具体DMRS在上行数据传输时如何映射,可参考现有的相关描述,本申请实施例对此不作具体限定。
示例性的,可以结合下述公式(1)和公式(2)生成DMRS:
Figure PCTCN2019074719-appb-000004
Figure PCTCN2019074719-appb-000005
其中,c()表示金(Gold)序列,且现有技术中,c()在NPUSCH传输开始位置进行初始化,初始化种子为C init=35;w()表示哈达码(Hadamard)序列;r u(n)表示DMRS序列;
Figure PCTCN2019074719-appb-000006
表示NPUSCH的重复次数;
Figure PCTCN2019074719-appb-000007
表示一个RU占用的连续slot数目,示例性的可以为16;N RU表示一个数据块占用的RU数目,mod()表示取余。
下面对Gold序列的生成方法进行说明。
其中,Gold序列c(n)的生成方式如下述公式(3)所示:
c(n)=(x 1(n+N C)+x 2(n+N C))mod 2;                                 公式(3)
其中,将Gold的长度记为M PN,即n的取值范围为:0,1,……M PN-1,x 1(n+N C)、x 2(n+N C)为生成c(n)的两个序列,N C=1600,mod()表示取余。
上述的序列x 1(n+N C)可以通过如下公式(4)确定:
x 1(n+31)=(x 1(n+3)+x 1(n))mod 2;                                  公式(4)
其中,序列x 1(n+N C)的初始化种子为x 1(0)=1,x 1(n)=0,n=1,2,......30。
上述的序列x 2(n+N C)可以通过如下公式(5)确定:
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod 2;                公式(5)
其中,可选的,序列x 2(n+N C)的初始化种子的取值与具体的应用有关,在DMRS序列的生成中,序列x 2(n+N C)的初始化种子为35。通过公式
Figure PCTCN2019074719-appb-000008
以及C init=35可以得到序列x 2(n+N C)。
16长Hadamard序列w()如下表二所示:
表二
Figure PCTCN2019074719-appb-000009
其中,表二中的u为Hadamard序列w()的索引。不同的Hadamard序列w()的索引对应的Hadamard序列相互正交。对于single tone来说,不论是哪种子载波间隔,一个RU占用16个slot,这16个slot可以对应一个16长Hadamard序列w()。若同一小区的不同终端设备在shared resource上传输上行数据时,当不同终端设备的RU边界无法对齐时,即使不同终端设备对应不同的Hadamard序列索引u,不同终端设备在相同时频资源上使用的Hadamard序列不正交;当不同终端设备的RU边界对齐时,且不同终端设备对应不同的Hadamard序列索引u,不同终端设备在相同时频资源上使用的Hadamard序列正交。
现有技术中,组跳场景下Hadamard序列w()的索引u的计算公式与不组跳场景下 Hadamard序列w()的索引u的计算公式不同。
不组跳场景下Hadamard序列w()的索引u的计算公式如下述公式(6)所示:
Figure PCTCN2019074719-appb-000010
其中,
Figure PCTCN2019074719-appb-000011
表示小区标识;mod()表示取余。
根据上述公式(6),示例性的,以一个数据块占用2个RU、NPUSCH重复2次,共4个RU为例,则小区标识和RU使用的Hadamard序列的索引u的映射关系可以如表三所示。由表三可知,此时,每个RU上使用的Hadamard序列的索引u相同;同频小区之间,如0号小区和16号小区,使用的Hadamard序列的索引u完全相同。
表三
Figure PCTCN2019074719-appb-000012
组跳场景下Hadamard序列w()的索引u的计算公式如下述公式(7)所示:
Figure PCTCN2019074719-appb-000013
其中,f gh(n s)表示组跳图案(pattern);f ss表示序列移位图案;mod表示取余;
Figure PCTCN2019074719-appb-000014
表示一个RU的长度,示例性的可以为16。
f gh(n s)的计算公式如下述公式(8)所示:
Figure PCTCN2019074719-appb-000015
其中,c()表示Gold序列,且现有技术中,c()在每个RU开始位置进行初始化,初始化种子为
Figure PCTCN2019074719-appb-000016
Figure PCTCN2019074719-appb-000017
表示向下取整,
Figure PCTCN2019074719-appb-000018
表示小区标识,
Figure PCTCN2019074719-appb-000019
表示一个RU的长度,示例性的可以为16;n′ s对于single tone是每个RU的第一个slot号;mod表示取余;
Figure PCTCN2019074719-appb-000020
表示一个RU的长度,示例性的可以为16。
f ss的计算公式如下述公式(9)所示:
Figure PCTCN2019074719-appb-000021
其中,
Figure PCTCN2019074719-appb-000022
表示小区标识;mod()表示取余;
Figure PCTCN2019074719-appb-000023
表示一个RU的长度,示例性的可以为16;△ ss∈{0,1,...,29}是高层配置的参数,如果没有配置这个参数,默认为0。
根据上述公式(7)至公式(9),示例性的,以一个数据块占用2个RU、NPUSCH重复2次,共4个RU为例,此时,可以通过f gh(n s)和f ss确定Hadamard序列的索引u。其中,小区标识和RU使用的Hadamard序列的索引u的映射关系可以如表四所示。由表四可知,此时,每个RU上使用的Hadamard序列的索引u不相同;同频小区之间,如0号小区和16号小区,使用的Hadamard序列的索引u也不相同。
表四
Figure PCTCN2019074719-appb-000024
需要说明的是,表四中的Hadamard序列的索引u的数值仅是一个示意,以C init=0时,f gh(n s)=1、5、7、9;C init=1时,f gh(n s)=2、9、3、5)为例进行说明。当f gh(n s)为其它数值时,Hadamard序列的索引u的数值可能与表四不同,本申请实施例对此不作具体限定。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“/”表示前后关联的对象是一种“或”的关系,例如,A/B可以表示A或B;本申请中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
本申请实施例可以适用于LTE系统,如NB-IoT系统中;也可以适用于其他无线通信系统,例如全球移动通信系统(Global System for Mobile Communication,GSM),移动通信系统(Universal Mobile Telecommunications System,UMTS),码分多址接入(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access,WCDMA)以及面向未来的新的网络设备系统等,本申请实施例对此不作具体限定。其中,上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,在此统一说明,以下不再赘述。此外,术语“系统”可以和“网络”相互替换。
由上述公式(1)和上述公式(2)可知,当同一小区的不同终端设备在shared resource上传输上行数据时,若不同终端设备对应的Hadamard序列正交,Gold序列相同,则可以保证不同终端设备各自的参考信号正交。现有技术中,上行数据传输的时长和/或由于上行数据与随机接入信道碰撞所推迟的时长256ms之后,插入40ms用于推迟上行数据传输的gap。这样,当同一小区的不同终端设备在shared resource上传输上行数据时,若多个终端设备发送上行数据的起始位置不一样,即使多个终端设备在插入40ms gap之前,各自的参考信号(如DMRS)正交,也无法保证多个终端设备在插入40ms gap之后,各自的参考信号正交。
比如,以shared resource的子载波间隔为15kHz,一个RU=8ms为例,如图1b所示,假设同一小区的UE1和UE2在shared resource上传输上行数据时,UE1发送上行数据的起始位置与UE2发送上行数据的起始位置不同,UE1插入40ms(对应5个RU)gap之前,UE1和UE2对应的Hadamard序列正交,UE1和UE2对应的Gold序列相同,因此UE1对应的DMRS和UE2对应的DMRS正交。在UE1插入40ms gap之后的第一个slot上,UE1对应的DMRS的生成公式(1)和公式(2)中的n的取值为16m+16,UE2对应的DMRS的生成公式(1)和公式(2)中的n的取值为16m+16×6,m为正整数,则根据上述Hadamard序列和Gold序列的描述可知,此时,RU边界对齐,在相同的时频资源上,UE1对应的Hadamard序列和UE2对应的Hadamard序列正交,但是UE1对应的Gold序列和UE2对应的Gold序列不同,从而无法保证在UE1插入40ms gap之后,UE1对应的DMRS和UE2对应的DMRS正交。
或者,比如,以shared resource的子载波间隔为3.75kHz,一个RU=32ms为例,如图1c所示,假设同一小区的UE1和UE2在shared resource上传输上行数据时,UE1发送上行数据的起始位置与UE2发送上行数据的起始位置不同,UE1插入40ms gap(对应1个RU+4个时隙)之前,UE1和UE2对应的Hadamard序列正交,UE1和UE2对应的Gold序列相同,因此UE1对应的DMRS和UE2对应的DMRS正交。在UE1插入40ms gap之后的第一个slot上,UE1对应的DMRS的生成公式(1)和公式(2)中的n的取值为16m+16,UE2对应的DMRS的生成公式(1)和公式(2)中的n的取值为16m+16×1+5,m为正整数,则根据上述Hadamard序列和Gold序列的描述可知,此时,RU边界不对齐,在相同的时频资源上,UE1对应的Hadamard序列和UE2对应的Hadamard序列不正交,且UE1对应的Gold序列和UE2对应的Gold序列不同,从而无法保证在UE1插入40ms gap之后,UE1对应的DMRS和UE2对应的DMRS正交。
基于此,如图2所示,为本申请实施例提供的一种通信系统20。该通信系统20包括网络设备30以及该网络设备30所覆盖的第一小区内的多个终端设备40,该多个终端设备40能够在相同的上行时频资源上传输上行数据。可选的,多个终端设备40中的不同终端设备之间可以相互通信。第一小区可以为该网络设备30所覆盖的一个或多个小区中的任意一个小区。
以多个终端设备40中包括第一终端设备,该第一终端设备为多个终端设备40中的任一终端设备为例,本申请实施例中,第一终端设备根据预配置的上行时频资源确定参考时域位置,该参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同;第一终端设备将距离参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,该X个时间间隔均不用于发送上行数据,X为正整数;第一终端设备将距离参考时域位置第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;第一终端设备在第一时频资源上向网络设备30发送上行数据。相应的,网络设备30根据预配置的上行时频资源确定该参考时域位置;网络设备30将距离该参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置;网络设备30将距离参考时域位置第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;网络设备30在第一时频资源上接收来自第一终端设备的上行数据。基于该方案,由于同一小区的能够在相同上行时频资源上传输上行数据的多个终端设备对应相同的参考时域位置,并且距离参考时域位置(第一时长*N+第二时长*(N-1))的时域位置为X个时间间隔的起始时域位置,因此对于同一小区的能够在相同上行时频资源上传输上行数据的多个终端设备来说,即使多个终端设备发送上行数据的起始位置不一样,也可以保证插入的第二时长的时间间隔的起始位置和结束位置均对齐,进而若多个终端设备在插入第二时长的时间间隔之前,各自的参考信号正交,也可以保证多个终端设备在插入第二时长的时间间隔之后,各自的参考信号正交。
需要说明的是,本申请实施例中的“*”与“×”含义相同,均表示相乘,在此统一说明,以下不再赘述。
需要说明的是,本申请实施例旨在解决若多个终端设备在插入第二时长的时间间隔之前,各自的参考信号(如DMRS)正交,如何保证多个终端设备在插入第二时长的时间间隔之后,各自的参考信号正交的问题,对于如何保证多个终端设备在插入第二时长的时间间隔之前,各自的参考信号正交,本申请实施例对此不作具体限定。示例性的,多个终端设备中的任意一个终端设备可以根据参考时域位置和参考信号传输的起始时域位置确定时间间隔;进而根据时间间隔生成参考信号,这样可以保证多个终端设备在插入第二时长的时间间隔之前,各自的参考信号正交。在此统一说明,以下不再赘述。
可选的,本申请实施例中的网络设备30,是一种将终端设备40接入到无线网络的设备,可以是长期演进(long term evolution,LTE)中的演进型基站(evolutional Node  B,eNB或eNodeB);或者GSM或CDMA中的基站(Base Transceiver Station,BTS);或者WCDMA系统中的基站(NodeB);或者第五代(5th generation,5G)网络或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,宽带网络业务网关(broadband network gateway,BNG),汇聚交换机或非第三代合作伙伴项目(3rd generation partnership project,3GPP)接入设备等,本申请实施例对此不作具体限定。可选的,本申请实施例中的基站可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等,本申请实施例对此不作具体限定。
可选的,本申请实施例中的终端设备40,可以是用于实现无线通信功能的设备,例如终端或者可用于终端中的芯片等。其中,终端可以是5G网络或者未来演进的PLMN中的用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。终端可以是移动的,也可以是固定的。
可选的,本申请实施例中的网络设备30与终端设备40也可以称之为通信装置,其可以是一个通用设备或者是一个专用设备,本申请实施例对此不作具体限定。
可选的,如图3所示,为本申请实施例提供的网络设备30和终端设备40的结构示意图。
其中,终端设备40包括至少一个处理器(图3中示例性的以包括一个处理器401为例进行说明)和至少一个收发器(图3中示例性的以包括一个收发器403为例进行说明)。可选的,终端设备40还可以包括至少一个存储器(图3中示例性的以包括一个存储器402为例进行说明)、至少一个输出设备(图3中示例性的以包括一个输出设备404为例进行说明)和至少一个输入设备(图3中示例性的以包括一个输入设备405为例进行说明)。
处理器401、存储器402和收发器403通过通信线路相连接。通信线路可包括一通路,在上述组件之间传送信息。
处理器401可以是通用中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或者一个或多个用于控制本申请方案程序执行的集成电路。在具体实现中,作为一种实施例,处理器401也可以包括多个CPU,并且处理器401可以是单核(single-CPU)处理器或多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路或用于处理数据(例如计算机程序指令)的处理核。
存储器402可以是具有存储功能的装置。例如可以是只读存储器(read-only  memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备、随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器402可以是独立存在,通过通信线路与处理器401相连接。存储器402也可以和处理器401集成在一起。
其中,存储器402用于存储执行本申请方案的计算机执行指令,并由处理器401来控制执行。具体的,处理器401用于执行存储器402中存储的计算机执行指令,从而实现本申请实施例中所述的通信方法。
或者,可选的,本申请实施例中,也可以是处理器401执行本申请下述实施例提供的通信方法中的处理相关的功能,收发器403负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码或者计算机程序代码,本申请实施例对此不作具体限定。
收发器403可以使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网、无线接入网(radio access network,RAN)、或者无线局域网(wireless local area networks,WLAN)等。收发器403包括发射机(transmitter,Tx)和接收机(receiver,Rx)。
输出设备404和处理器401通信,可以以多种方式来显示信息。例如,输出设备404可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。
输入设备405和处理器401通信,可以以多种方式接受用户的输入。例如,输入设备405可以是鼠标、键盘、触摸屏设备或传感设备等。
网络设备30包括至少一个处理器(图3中示例性的以包括一个处理器301为例进行说明)、至少一个收发器(图3中示例性的以包括一个收发器303为例进行说明)和至少一个网络接口(图3中示例性的以包括一个网络接口304为例进行说明)。可选的,网络设备30还可以包括至少一个存储器(图3中示例性的以包括一个存储器302为例进行说明)。其中,处理器301、存储器302、收发器303和网络接口304通过通信线路相连接。网络接口304用于通过链路(例如S1接口)与核心网设备连接,或者通过有线或无线链路(例如X2接口)与其它网络设备的网络接口进行连接(图3中未示出),本申请实施例对此不作具体限定。另外,处理器301、存储器302和收发器303的相关描述可参考终端设备40中处理器401、存储器402和收发器403的描述,在此不再赘述。
结合图3所示的终端设备40的结构示意图,示例性的,图4为本申请实施例提供的终端设备40的一种具体结构形式。
其中,在一些实施例中,图3中的处理器401的功能可以通过图4中的处理器110实现。
在一些实施例中,图3中的收发器403的功能可以通过图4中的天线1,天线2,移动通信模块150,无线通信模块160等实现。
其中,天线1和天线2用于发射和接收电磁波信号。终端设备40中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端设备40上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
无线通信模块160可以提供应用在终端设备40上的包括无线局域网(wireless local area networks,WLAN)(如Wi-Fi网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。当终端设备40是第一设备时,无线通信模块160可以提供应用在终端设备40上的NFC无线通信的解决方案,是指第一设备包括NFC芯片。该NFC芯片可以提高NFC无线通信功能。当终端设备40是第二设备时,无线通信模块160可以提供应用在终端设备40上的NFC无线通信的解决方案,是指第一设备包括电子标签(如射频识别(radio frequency identification,RFID)标签)。其他设备的NFC芯片靠近该电子标签可以与第二设备进行NFC无线通信。
在一些实施例中,终端设备40的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端设备40可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统 (quasi-zenith satellite system,QZSS)或星基增强系统(satellite based augmentation systems,SBAS)。
在一些实施例中,图3中的存储器402的功能可以通过图4中的内部存储器121或者外部存储器接口120连接的外部存储器(例如Micro SD卡)等实现。
在一些实施例中,图3中的输出设备404的功能可以通过图4中的显示屏194实现。其中,显示屏194用于显示图像,视频等。显示屏194包括显示面板。
在一些实施例中,图3中的输入设备405的功能可以通过鼠标、键盘、触摸屏设备或图4中的传感器模块180来实现。示例性的,如图4所示,该传感器模块180例如可以包括压力传感器180A、陀螺仪传感器180B、气压传感器180C、磁传感器180D、加速度传感器180E、距离传感器180F、接近光传感器180G、指纹传感器180H、温度传感器180J、触摸传感器180K、环境光传感器180L、和骨传导传感器180M中的一个或多个,本申请实施例对此不作具体限定。
在一些实施例中,如图4所示,该终端设备40还可以包括音频模块170、摄像头193、指示器192、马达191、按键190、SIM卡接口195、USB接口130、充电管理模块140、电源管理模块141和电池142中的一个或多个,其中,音频模块170可以与扬声器170A(也称“喇叭”)、受话器170B(也称“听筒”)、麦克风170C(也称“话筒”,“传声器”)或耳机接口170D等连接,本申请实施例对此不作具体限定。
可以理解的是,图4所示的结构并不构成对终端设备40的具体限定。比如,在本申请另一些实施例中,终端设备40可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面将结合图2至图4,以图2所示的多个终端设备40中的第一终端设备与网络设备进行交互为例,对本申请实施例提供的通信方法进行展开说明。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
如图5所示,为本申请实施例提供的一种通信方法,该通信方法包括如下步骤:
S501、第一终端设备根据预配置的上行时频资源确定参考时域位置,其中,该参考时域位置与多个终端设备中的其他终端设备确定的参考时域位置相同。
也就是说,本申请实施例中,能够在相同的上行时频资源上传输上行数据的多个终端设备对应相同的参考时域位置。
一种可能的实现方式中,本申请实施例中,参考时域位置为预配置的上行时频资源所在的周期内,预配置的上行时频资源的起始时域位置前的一个时域位置。
示例性的,如图6所示,假设预配置的上行时频资源为上行时频资源1,则参考时域位置可以为预配置的上行时频资源1所在的周期内,预配置的上行时频资源1的起始时域位置与预配置的上行时频资源1所在的周期的起始位置之间的一个位置。
或者,示例性的,如图7所示,假设预配置的上行时频资源为上行时频资源1,则参考时域位置可以为预配置的上行时频资源所在的周期的起始位置。
另一种可能的实现方式中,本申请实施例中,参考时域位置为预配置的上行时频 资源的起始时域位置,如图8所示。
可选的,这里预配置的上行时频资源可以是周期性的,也可以是非周期性的,在此不作具体限定。
对于上述两种可能的实现方式:
可选的,第一终端设备根据预配置的上行时频资源确定参考时域位置,可以包括:第一终端设备接收来自网络设备的第一指示信息,第一指示信息用于指示参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长;第一终端设备根据第一指示信息和预配置的上行时频资源所在的周期的起始位置,确定参考时域位置。
示例性的,结合上述图6进行说明,第一指示信息可以用于指示参考时域位置相对于预配置的上行时频资源1所在的周期的起始位置的第一偏移时长P1,进而,第一终端设备根据第一指示信息和预配置的上行时频资源1所在的周期的起始位置,可以确定参考时域位置,如图9所示。
或者,可选的,第一终端设备根据预配置的上行时频资源确定参考时域位置,可以包括:第一终端设备接收来自网络设备的第二指示信息,第二指示信息用于指示预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长;第一终端设备根据第二指示信息和预配置的上行时频资源的起始时域位置,确定参考时域位置。
示例性的,结合上述图7进行说明,第二指示信息可以用于指示预配置的上行时频资源1的起始时域位置相对于参考时域位置的第二偏移时长P2,进而,第一终端设备根据第二指示信息和预配置的上行时频资源2的起始时域位置,可以确定参考时域位置,如图10所示。
再一种可能的实现方式中,若预配置的上行时频资源为周期性资源,则可以每N个预配置的上行资源对应一个参考时域位置,该参考时域位置为每N个预配置的上行时频资源中的第一个预配置的上行时频资源所在的周期内,第一个预配置的上行时频资源的起始时域位置前的一个时域位置,N为大于1的正整数。
可选的,该实现方式中,终端设备也可以根据网络设备发送的指示信息确定参考时域位置,该指示信息用于指示每个参考时域位置相对于每N个预配置的上行时频资源中的第一个预配置的上行时频资源所在的周期的起始位置的第三偏移时长,或者,该指示信息用于指示每N个预配置的上行时频资源中的第一个预配置的上行时频资源的起始位置相对于每个参考时域位置的第四偏移时长,相关示例可参考上述图9或图10,在此不再赘述。
再一种可能的实现方式中,若预配置的上行时频资源为周期性资源,则可以每N个预配置的上行资源对应一个参考时域位置,该参考时域位置为每N个预配置的上行时频资源中的第一个预配置的上行时频资源的起始位置,N为大于1的正整数。
示例性的,假设N=2,即每2个预配置的上行资源对应一个参考时域位置,则如图11所示,假设预配置的上行时频资源5在第5个周期内,预配置的上行时频资源6在第6个周期内,预配置的上行时频资源7在第7个周期内,预配置的上行时频资源8在第8个周期内,则预配置的上行时频资源5和预配置的上行时频资源6可以对应参考时域位置3,预配置的上行时频资源7和预配置的上行时频资源8可以对应参考 时域位置4。也就是说,假设步骤S501中的预配置的上行时频资源为图11中所示的预配置的上行时频资源8,则根据该预配置的上行时频资源8确定出的参考时域位置应该为图11所示的参考时域位置4,即预配置的上行时频资源7所在的周期内,预配置的上行时频资源7的起始时域位置前的一个时域位置;或者,假设步骤S501中的预配置的上行时频资源为图11中所示的预配置的上行时频资源5,则根据该预配置的上行时频资源5确定出的参考时域位置应该为图11所示的参考时域位置3,即预配置的上行时频资源5所在的周期内,预配置的上行时频资源5的起始时域位置前的一个时域位置。
需要说明的是,图11中示意出的参考时域位置为每N个预配置的上行时频资源中,第一个预配置的上行时频资源所在的周期内,第一个预配置的上行时频资源的起始时域位置与第一个预配置的上行时频资源所在的周期的起始位置之间的一个位置,当然,该参考时域位置也可以是每N个预配置的上行时频资源中,第一个预配置的上行时频资源所在的周期的起始位置;或者,该参考时域位置也可以是每N个预配置的上行时频资源中,第一个预配置的上行时频资源的起始位置,在此不再一一画图示意。
可选的,本申请实施例中,预配置的上行时频资源所在的周期的起始位置满足:
(起始位置对应的子帧号)mod(预配置的上行时频资源的周期/第一设定值)=0,或者,(起始位置对应的帧号)mod(预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,第一设定值或第二设定值为正数。
其中,若通过预配置的上行时频资源所在的周期的起始位置对应的子帧号计算,示例性的,若预配置的上行时频资源的周期的单位为毫秒(ms),则这里的第一设定值可以为1;或者,示例性的,若预配置的上行时频资源的周期的单位为(10ms),则这里的第一设定值可以为10。
或者,若通过预配置的上行时频资源所在的周期的起始位置对应的帧号计算,示例性的,若预配置的上行时频资源的周期的单位为ms,则这里的第二设定值可以为10;或者,示例性的,若预配置的上行时频资源的周期的单位为10ms,则这里的第二设定值可以为1。
可选的,本申请实施例中,参考时域位置也可能和预配置的上行时频资源没有关系。比如,如图12所示,参考时域位置可以为一个绝对时域位置,该绝对时域位置可以是网络设备配置给终端设备的,也可以是提前预配置在终端设备上或者协议规定的,本申请实施例对此不作具体限定。
S502、第一终端设备将距离参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,其中,X个时间间隔均不用于发送上行数据,X为正整数。
也就是说,本申请实施例中,若X=2,则第一终端设备将确定2个时间间隔的起始时域位置,其中,第1个时间间隔的起始时域位置与参考时域位置之间的距离为第一时长,第2个时间间隔的起始时域位置与参考时域位置之间的距离为第一时长*2+第二时长。当然,若X大于2,可以以此类推。
示例性的,本申请实施例中的第一时长为256ms的正整数倍,例如第一时长可以是256ms。
示例性的,本申请实施例中的第二时长为40ms的正整数倍,例如第二时长可以是40ms。
S503、第一终端设备将距离参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1。
也就是说,本申请实施例中,若X=2,Y=X,则第一终端设备将确定2个第一时长的起始时域位置,其中,第1个第一时长的起始时域位置与参考时域位置之间的距离为0,第2个第一时长的起始时域位置与参考时域位置之间的距离为第一时长+第二时长。当然,若X大于2,可以以此类推。
示例性的,假设第一时长为256ms,第二时长为40ms,X=2,Y=X,则2个第一时长的位置和2个时间间隔的插入位置的示意图可以如图13所示。
或者,本申请实施例中,若X=2,Y=X+1,则第一终端设备将确定3个第一时长的起始时域位置,其中,第1个第一时长的起始时域位置与参考时域位置之间的距离为0,第2个第一时长的起始时域位置与参考时域位置之间的距离为第一时长+第二时长,第3个第一时长的起始时域位置与参考时域位置之间的距离为(第一时长+第二时长)*2。当然,若X大于2,可以以此类推。
示例性的,假设第一时长为256ms,第二时长为40ms,X=2,Y=X+1,则3个第一时长的位置和2个时间间隔的插入位置的示意图可以如图14所示。
可选的,本申请实施例中,上行数据传输的起始位置可能为参考时域位置,也可能是参考时域位置之后的某一个位置。比如,上行数据传输的起始位置为Y个第一时长中第S个第一时长上,S为小于Y的正整数,本申请实施例对此不作具体限定。
此外,本申请实施例中,一方面,考虑到第一终端设备可能在参考时域位置之后的某个位置开始传输上行数据;另一方面,考虑到上行数据与随机接入信道(例如可以是物理随机接入信道(physical random access channel,NPRACH))碰撞将会推迟上行数据的传输,因此X个第一时长中的至少一个第一时长对应的时域资源的全部或部分为用于传输上行数据的第一时频资源中的时域资源。
示例性的,如图15所示,假设上行数据的总传输时长为512ms,上行数据在参考时域位置开始传输,则上行数据在第1个第一时长上传输256ms之后,第1个40ms的时间间隔将被插入;在1个40ms的时间间隔之后,上行数据在第2个第一时长上传输256ms之后,数据传输即可结束。可以看出,该示例中,X=2,Y=X,2个第一时长对应的时域资源的全部时域资源为用于传输上行数据的第一时频资源中的时域资源。
或者,示例性的,如图16所示,假设上行数据的总传输时长为300ms,上行数据在参考时域位置之后的第100ms开始传输,则上行数据在第1个第一时长上传输256-100=156ms之后,第1个40ms的时间间隔将被插入;假设在距离参考时域位置256+40=296ms的位置处,上行数据与NPRACH碰撞,NPRACH需要传输256ms,则此时第2个第一时长将用于传输NPRACH,在第2个第一时长结束之后,第2个40ms的时间间隔将被插入。在第2个40ms的时间间隔结束之后,若上行数据在第3个第 一时长的起始时域位置和其他NPRACH没有碰撞,则第3个第一时长可以用于传输上行数据。由于上行数据的总传输时长为300ms,在第1个第一时长上已经传输156ms,因此在第3个第一时长上传输300-156=144ms之后传输即可结束。可以看出,该示例中,X=2,Y=X+1,3个第一时长中的第1个第一时长和第3个第一时长对应的时域资源中的部分时域资源为用于传输上行数据的第一时频资源中的时域资源。
或者,示例性的,如图17所示,假设上行数据的总传输时长为200ms,上行数据在距离参考时域位置(256+40+100)ms处开始传输,即上行数据传输的起始位置为距离第2个第一时长的起始位置100ms处,则假设上行数据开始传输100ms之后,上行数据与NPRACH碰撞,NPRACH需要传输156ms,则NPRACH传输的结束位置在距离第3个第一时长的起始位置60ms处。此时,由于上行数据已经在第2个第一时长上传输100ms,因此上行数据继续传输100ms传输即可结束。可以看出,该示例中,X=2,Y=X+1,3个第一时长中的第2个第一时长和第3个第一时长对应的时域资源中的部分时域资源为用于传输上行数据的第一时频资源中的时域资源。
需要说明的是,本申请实施例中,在存在预配置的上行时频资源的情况下,预配置的上行时频资源中可以包括该第一时频资源,也可以不包括该第一时频资源,在此不作具体限定。
可选的,本申请实施例中,步骤S502与步骤S503之间没有必然的执行先后顺序,可以是先执行步骤S502,再执行步骤S503;也可以是先执行步骤S503,再执行步骤S502;还可以是同时执行步骤S502与步骤S503,本申请实施例对此不作具体限定。
S504、网络设备根据预配置的上行时频资源确定参考时域位置。
S505、网络设备将距离参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,其中,X个时间间隔均不用于发送上行数据,X为正整数。
S506、网络设备将距离参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1。
其中,步骤S504-S506的相关描述可参考上述步骤S501-S503,在此不再赘述。
可选的,本申请实施例中,步骤S505与步骤S506之间没有必然的执行先后顺序,可以是先执行步骤S505,再执行步骤S506;也可以是先执行步骤S506,再执行步骤S505;还可以是同时执行步骤S505与步骤S506,本申请实施例对此不作具体限定。
可选的,本申请实施例中,步骤S501-S503与步骤S504-S506之间没有必然的执行先后顺序,可以是先执行步骤S501-S503,再执行步骤S504-S506;也可以是先执行步骤S504-S506,再执行步骤S501-S503;还可以是同时执行步骤S501-S503与步骤S504-S506,本申请实施例对此不作具体限定。
S507、第一终端设备在第一时频资源上向网络设备发送上行数据。网络设备在第一时频资源上接收来自第一终端设备的上行数据。
当然,本申请实施例中,第一终端设备在第一时频资源上向网络设备发送上行数据的同时,需要在第一时频资源上向网络设备发送用于解调该上行数据的参考信号(如 DMRS),具体可参考现有的实现方式,在此不予赘述。
基于本申请实施例提供的通信方法,由于同一小区的能够在相同上行时频资源上传输上行数据的多个终端设备对应相同的参考时域位置,并且距离参考时域位置(第一时长*N+第二时长*(N-1))的时域位置为X个时间间隔的起始时域位置,因此对于同一小区的能够在相同上行时频资源上传输上行数据的多个终端设备来说,即使多个终端设备发送上行数据的起始位置不一样,也可以保证插入的第二时长的时间间隔的起始位置和结束位置均对齐,进而若多个终端设备在插入第二时长的时间间隔之前,各自的参考信号正交,也可以保证多个终端设备在插入第二时长的时间间隔之后,各自的参考信号正交。
示例性的,以shared resource的子载波间隔为15kHz,一个RU=8ms为例,如图18所示,假设同一小区的UE1和UE2在shared resource上传输上行数据时,UE1发送上行数据的起始位置与UE2发送上行数据的起始位置不同,UE1插入40ms(对应5个RU)gap之前,UE1和UE2对应的Hadamard序列正交,UE1和UE2对应的Gold序列相同,因此UE1对应的DMRS和UE2对应的DMRS正交。在UE1插入40ms gap的位置,虽然UE2传输的时长<256ms,此时UE2也在相同的位置插入40ms gap。这样,在40ms gap结束之后的第一个slot上,UE1对应的DMRS的生成公式(1)和公式(2)中的n的取值为16m+16,UE2对应的DMRS的生成公式(1)和公式(2)中的n的取值为16m+16,则根据上述Hadamard序列和Gold序列的描述可知,此时,RU边界对齐,在相同的时频资源上,UE1对应的Hadamard序列和UE2对应的Hadamard序列仍然正交,且UE1对应的Gold序列和UE2对应的Gold序列相同,从而可以保证在UE1插入40ms gap之后,UE1对应的DMRS和UE2对应的DMRS正交。
需要说明的是,若上述示例中UE1发送上行数据的起始位置不是参考时域位置,则在插入的第一个40ms gap的起始位置处,UE1传输的时长也是小于256ms。即第一个40ms gap的起始时域位置距离参考时域位置256ms,不依赖于UE1传输的时长或者UE2传输的时长是否为256ms。
其中,上述步骤S501至S507中的网络设备的动作可以由图3所示的网络设备30中的处理器301调用存储器302中存储的应用程序代码以指令该网络设备执行,上述步骤S501至S507中的第一终端设备的动作可以由图3所示的终端设备40中的处理器401调用存储器402中存储的应用程序代码以指令该网络设备执行,本实施例对此不作任何限制。
可以理解的是,以上各个实施例中,由第一终端设备实现的方法和/或步骤,也可以由可用于第一终端设备的部件(例如芯片或者电路)实现,由网络设备实现的方法和/或步骤,也可以由可用于网络设备的部件实现。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。相应的,本申请实施例还提供了通信装置,该通信装置用于实现上述各种方法。该通信装置可以为上述方法实施例中的第一终端设备,或者包含上述第一终端设备的装置,或者为可用于第一终端设备的部件;或者,该通信装置可以为上述方法实施例中的网络设备,或者包含上述网络设备的装置,或者为可用于网络设备的部件。可以理解的 是,该通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法实施例中对通信装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
比如,以通信装置为上述方法实施例中的第一终端设备为例。图19示出了一种第一终端设备190的结构示意图。该第一终端设备190包括处理模块1901和收发模块1902。所述收发模块1902,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,处理模块1901,用于根据预配置的上行时频资源确定参考时域位置,该参考时域位置与第一小区中能够在相同的时频资源上传输上行数据的多个终端设备中的其他终端设备确定的参考时域位置相同;处理模块1901,还用于将距离参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,X个时间间隔均不用于发送上行数据,X为正整数;处理模块1901,还用于将距离参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;收发模块1902,用于在第一时频资源上向网络设备发送上行数据。
可选的,处理模块1901用于根据预配置的上行时频资源确定参考时域位置,包括:用于接收来自网络设备的第一指示信息,第一指示信息用于指示参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长;根据第一指示信息和预配置的上行时频资源所在的周期的起始位置,确定参考时域位置。
或者,可选的,处理模块1901用于根据预配置的上行时频资源确定参考时域位置,包括:用于接收来自网络设备的第二指示信息,第二指示信息用于指示预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长;根据第二指示信息和预配置的上行时频资源的起始时域位置,确定参考时域位置。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本实施例中,该第一终端设备190以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该第一终端设备190可以采用图3所示的终端 设备40的形式。
比如,图3所示的终端设备40中的处理器401可以通过调用存储器402中存储的计算机执行指令,使得终端设备40执行上述方法实施例中的通信方法。
具体的,图19中的处理模块1901和收发模块1902的功能/实现过程可以通过图3所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现。或者,图19中的处理模块1901的功能/实现过程可以通过图3所示的终端设备40中的处理器401调用存储器402中存储的计算机执行指令来实现,图19中的收发模块1902的功能/实现过程可以通过图3中所示的终端设备40中的收发器403来实现。
由于本实施例提供的第一终端设备190可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
或者,比如,以通信装置为上述方法实施例中的网络设备为例。图20示出了一种网络设备200的结构示意图。该网络设备200包括处理模块2001和收发模块2002。所述收发模块2002,也可以称为收发单元用以实现发送和/或接收功能,例如可以是收发电路,收发机,收发器或者通信接口。
其中,处理模块2001,用于根据预配置的上行时频资源确定参考时域位置,该参考时域位置对应第一小区中能够在相同的时频资源上传输上行数据的多个终端设备;处理模块2001,还用于将距离参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,X个时间间隔均不用于发送上行数据,X为正整数;处理模块2001,还用于将距离参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;收发模块2002,用于在第一时频资源上接收来自第一终端设备的上行数据。
可选的,处理模块2001用于根据预配置的上行时频资源确定参考时域位置,包括:用于确定参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长;根据第一偏移时长和预配置的上行时频资源所在的周期的起始位置,确定参考时域位置。
或者,可选的,处理模块2001用于根据预配置的上行时频资源确定参考时域位置,包括:用于确定预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长;根据第二偏移时长和预配置的上行时频资源的起始时域位置,确定参考时域位置。
可选的,收发模块2002,还用于向第一终端设备发送第一指示信息,第一指示信息用于指示参考时域位置相对于预配置的上行时频资源所在的周期的起始位置的第一偏移时长。
或者,可选的,收发模块2002,还用于向第一终端设备发送第二指示信息,第二指示信息用于指示预配置的上行时频资源的起始时域位置相对于参考时域位置的第二偏移时长。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块 的功能描述,在此不再赘述。
在本实施例中,该网络设备200以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该网络设备200可以采用图3所示的网络设备30的形式。
比如,图3所示的网络设备30中的处理器301可以通过调用存储器302中存储的计算机执行指令,使得网络设备30执行上述方法实施例中的通信方法。
具体的,图20中的处理模块2001和收发模块2002的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现。或者,图20中的处理模块2001的功能/实现过程可以通过图3所示的网络设备30中的处理器301调用存储器302中存储的计算机执行指令来实现,图20中的收发模块2002的功能/实现过程可以通过图3中所示的网络设备30中的收发器303来实现。
由于本实施例提供的网络设备200可执行上述通信方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
可选的,本申请实施例还提供了一种通信装置(例如,该通信装置可以是芯片或芯片系统),该通信装置包括处理器,用于实现上述任一方法实施例中的方法。在一种可能的设计中,该通信装置还包括存储器。该存储器,用于保存必要的程序指令和数据,处理器可以调用存储器中存储的程序代码以指令该通信装置执行上述任一方法实施例中的方法。当然,存储器也可以不在该通信装置中。该通信装置是芯片系统时,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。本申请实施例中,计算机可以包括前面所述的装置。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看所述附图、公开内容、以及所附权利要求书,可理解并实现所述公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他 单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种通信方法,其特征在于,所述方法适用于无线通信系统,所述无线通信系统包括第一小区,所述第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,所述多个终端设备包括第一终端设备,所述方法包括:
    所述第一终端设备根据预配置的上行时频资源确定参考时域位置,所述参考时域位置与所述多个终端设备中的其他终端设备确定的参考时域位置相同;
    所述第一终端设备将距离所述参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,所述X个时间间隔均不用于发送上行数据,X为正整数;
    所述第一终端设备将距离所述参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,所述Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输所述上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;
    所述第一终端设备在所述第一时频资源上向网络设备发送上行数据。
  2. 根据权利要求1所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期内,所述预配置的上行时频资源的起始时域位置前的一个时域位置。
  3. 根据权利要求2所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期的起始位置。
  4. 根据权利要求3所述的方法,其特征在于,所述预配置的上行时频资源所在的周期的起始位置满足:
    (所述起始位置对应的子帧号)mod(所述预配置的上行时频资源的周期/第一设定值)=0,或者,
    (所述起始位置对应的帧号)mod(所述预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,所述第一设定值或所述第二设定值为正数。
  5. 根据权利要求1所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源的起始时域位置。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一终端设备根据预配置的上行时频资源确定参考时域位置,包括:
    所述第一终端设备接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述参考时域位置相对于所述预配置的上行时频资源所在的周期的起始位置的第一偏移时长;
    所述第一终端设备根据所述第一指示信息和所述预配置的上行时频资源所在的周期的起始位置,确定所述参考时域位置。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一终端设备根据预配置的上行时频资源确定参考时域位置,包括:
    所述第一终端设备接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述预配置的上行时频资源的起始时域位置相对于所述参考时域位置的第二偏移时长;
    所述第一终端设备根据所述第二指示信息和所述预配置的上行时频资源的起始时域位置,确定所述参考时域位置。
  8. 一种通信方法,其特征在于,所述方法适用于无线通信系统,所述无线通信系统包括第一小区,所述第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,所述多个终端设备包括第一终端设备,所述方法包括:
    网络设备根据预配置的上行时频资源确定参考时域位置,所述参考时域位置对应所述多个终端设备;
    所述网络设备将距离所述参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,所述X个时间间隔均不用于发送上行数据,X为正整数;
    所述网络设备将距离所述参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,所述Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输所述上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;
    所述网络设备在所述第一时频资源上接收来自所述第一终端设备的上行数据。
  9. 根据权利要求8所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期内,所述预配置的上行时频资源的起始时域位置前的一个时域位置。
  10. 根据权利要求9所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期的起始位置。
  11. 根据权利要求10所述的方法,其特征在于,所述预配置的上行时频资源所在的周期的起始位置满足:
    (所述起始位置对应的子帧号)mod(所述预配置的上行时频资源的周期/第一设定值)=0,或者,
    (所述起始位置对应的帧号)mod(所述预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,所述第一设定值或所述第二设定值为正数。
  12. 根据权利要求8所述的方法,其特征在于,所述参考时域位置为所述预配置的上行时频资源的起始时域位置。
  13. 根据权利要求8-12任一项所述的方法,其特征在于,所述网络设备根据预配置的上行时频资源确定参考时域位置,包括:
    所述网络设备确定所述参考时域位置相对于所述预配置的上行时频资源所在的周期的起始位置的第一偏移时长;
    所述网络设备根据所述第一偏移时长和所述预配置的上行时频资源所在的周期的起始位置,确定所述参考时域位置。
  14. 根据权利要求8-12任一项所述的方法,其特征在于,所述网络设备根据预配置的上行时频资源确定参考时域位置,包括:
    所述网络设备确定所述预配置的上行时频资源的起始时域位置相对于所述参考时域位置的第二偏移时长;
    所述网络设备根据所述第二偏移时长和所述预配置的上行时频资源的起始时域位 置,确定所述参考时域位置。
  15. 一种第一终端设备,其特征在于,所述第一终端设备适用于无线通信系统,所述无线通信系统包括第一小区,所述第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,所述多个终端设备包括所述第一终端设备;
    其中,所述第一终端设备包括收发模块和处理模块;
    所述处理模块,用于根据预配置的上行时频资源确定参考时域位置,所述参考时域位置与所述多个终端设备中的其他终端设备确定的参考时域位置相同;
    所述处理模块,还用于将距离所述参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,所述X个时间间隔均不用于发送上行数据,X为正整数;
    所述处理模块,还用于将距离所述参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,所述Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输所述上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;
    所述收发模块,用于在所述第一时频资源上向网络设备发送上行数据。
  16. 根据权利要求15所述的第一终端设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期内,所述预配置的上行时频资源的起始时域位置前的一个时域位置。
  17. 根据权利要求16所述的第一终端设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期的起始位置。
  18. 根据权利要求17所述的第一终端设备,其特征在于,所述预配置的上行时频资源所在的周期的起始位置满足:
    (所述起始位置对应的子帧号)mod(所述预配置的上行时频资源的周期/第一设定值)=0,或者,
    (所述起始位置对应的帧号)mod(所述预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,所述第一设定值或所述第二设定值为正数。
  19. 根据权利要求15所述的第一终端设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源的起始时域位置。
  20. 根据权利要求15-19任一项所述的第一终端设备,其特征在于,所述处理模块用于根据预配置的上行时频资源确定参考时域位置,包括:
    用于接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述参考时域位置相对于所述预配置的上行时频资源所在的周期的起始位置的第一偏移时长;根据所述第一指示信息和所述预配置的上行时频资源所在的周期的起始位置,确定所述参考时域位置。
  21. 根据权利要求15-19任一项所述的第一终端设备,其特征在于,所述处理模块用于根据预配置的上行时频资源确定参考时域位置,包括:
    用于接收来自所述网络设备的第二指示信息,所述第二指示信息用于指示所述预配置的上行时频资源的起始时域位置相对于所述参考时域位置的第二偏移时长;根据所述第二指示信息和所述预配置的上行时频资源的起始时域位置,确定所述参考时域 位置。
  22. 一种网络设备,其特征在于,所述网络设备适用于无线通信系统,所述无线通信系统包括第一小区,所述第一小区包括能够在相同的上行时频资源上传输上行数据的多个终端设备,所述多个终端设备包括第一终端设备;
    其中,所述网络设备包括处理模块和收发模块;
    所述处理模块,用于根据预配置的上行时频资源确定参考时域位置,所述参考时域位置对应所述多个终端设备;
    所述处理模块,还用于将距离所述参考时域位置(第一时长*N+第二时长*(N-1))的时域位置确定为X个时间间隔的起始时域位置,N为1,2,3,4,…,X,所述X个时间间隔均不用于发送上行数据,X为正整数;
    所述处理模块,还用于将距离所述参考时域位置(第一时长*(M-1)+第二时长*(M-1))的时域位置确定为Y个第一时长的起始时域位置;其中,所述Y个第一时长中的至少一个第一时长对应的时域资源中的全部或部分为用于传输所述上行数据的第一时频资源中的时域资源,M为1,2,3,4,…,Y,Y=X或者Y=X+1;
    所述收发模块,用于在所述第一时频资源上接收来自所述第一终端设备的上行数据。
  23. 根据权利要求22所述的网络设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期内,所述预配置的上行时频资源的起始时域位置前的一个时域位置。
  24. 根据权利要求23所述的网络设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源所在的周期的起始位置。
  25. 根据权利要求24所述的网络设备,其特征在于,所述预配置的上行时频资源所在的周期的起始位置满足:
    (所述起始位置对应的子帧号)mod(所述预配置的上行时频资源的周期/第一设定值)=0,或者,
    (所述起始位置对应的帧号)mod(所述预配置的上行时频资源的周期/第二设定值)=0;其中,mod()表示取余,所述第一设定值或所述第二设定值为正数。
  26. 根据权利要求22所述的网络设备,其特征在于,所述参考时域位置为所述预配置的上行时频资源的起始时域位置。
  27. 根据权利要求22-26任一项所述的网络设备,其特征在于,所述处理模块用于根据预配置的上行时频资源确定参考时域位置,包括:
    用于确定所述参考时域位置相对于所述预配置的上行时频资源所在的周期的起始位置的第一偏移时长;根据所述第一偏移时长和所述预配置的上行时频资源所在的周期的起始位置,确定所述参考时域位置。
  28. 根据权利要求22-26任一项所述的网络设备,其特征在于,所述处理模块用于根据预配置的上行时频资源确定参考时域位置,包括:
    用于确定所述预配置的上行时频资源的起始时域位置相对于所述参考时域位置的第二偏移时长;根据所述第二偏移时长和所述预配置的上行时频资源的起始时域位置,确定所述参考时域位置。
  29. 根据权利要求1-28任一项所述的方法或第一终端设备或网络设备,其特征在于,所述第一时长为256ms的正整数倍。
  30. 根据权利要求1-29任一项所述的方法或第一终端设备或网络设备,其特征在于,所述第二时长为40ms的正整数倍。
PCT/CN2019/074719 2019-02-03 2019-02-03 通信方法、装置及系统 WO2020155186A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/074719 WO2020155186A1 (zh) 2019-02-03 2019-02-03 通信方法、装置及系统
CN201980091177.8A CN113383509B (zh) 2019-02-03 2019-02-03 通信方法、装置及系统
EP19914022.9A EP3902177B1 (en) 2019-02-03 2019-02-03 Communications method, apparatus, and system
US17/391,622 US12035341B2 (en) 2019-02-03 2021-08-02 Communication method, apparatus, and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/074719 WO2020155186A1 (zh) 2019-02-03 2019-02-03 通信方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/391,622 Continuation US12035341B2 (en) 2019-02-03 2021-08-02 Communication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2020155186A1 true WO2020155186A1 (zh) 2020-08-06

Family

ID=71840708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074719 WO2020155186A1 (zh) 2019-02-03 2019-02-03 通信方法、装置及系统

Country Status (4)

Country Link
US (1) US12035341B2 (zh)
EP (1) EP3902177B1 (zh)
CN (1) CN113383509B (zh)
WO (1) WO2020155186A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3897054B1 (en) * 2019-02-03 2022-12-28 Huawei Technologies Co., Ltd. Communication method and apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282879A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置
US20190007969A1 (en) * 2017-06-28 2019-01-03 Fujitsu Limited Wireless communication system, wireless communication device, and communication method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104488213A (zh) * 2012-05-11 2015-04-01 光学无线技术有限责任公司 用于特殊子帧配置的参考信号设计
EP3419201A1 (en) * 2014-06-24 2018-12-26 Huawei Technologies Co., Ltd. Method and apparatus for multiple access in a wireless communication system
US10405334B2 (en) * 2015-12-18 2019-09-03 Qualcomm Incorporated Techniques for switching between downlink and uplink communications
WO2017173881A1 (zh) * 2016-04-08 2017-10-12 华为技术有限公司 参考信号的传输方法、设备和系统
CN109644169B (zh) 2016-12-19 2021-01-12 Oppo广东移动通信有限公司 传输信号的方法、网络设备和终端设备
WO2018127112A1 (zh) * 2017-01-06 2018-07-12 华为技术有限公司 数据传输方法及装置
US9818462B1 (en) * 2017-01-19 2017-11-14 Micron Technology, Inc. Apparatuses and methods for providing internal clock signals of different clock frequencies in a memory device
US10721755B2 (en) * 2017-06-15 2020-07-21 Ofinno, Llc Grant free for large data size
CN117354097A (zh) * 2018-04-04 2024-01-05 三菱电机株式会社 通信系统、基站及终端装置
CN113261226B (zh) * 2019-01-10 2024-08-13 索尼集团公司 通信装置、基础设施设备及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282879A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 数据传输方法及装置
US20190007969A1 (en) * 2017-06-28 2019-01-03 Fujitsu Limited Wireless communication system, wireless communication device, and communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Corrections on PRACH Formats", 3GPP TSG RAN WG1 MEETING ADHOC#1 R1-1800417, 13 January 2018 (2018-01-13), XP051384854 *
See also references of EP3902177A4 *
ZTE ET AL.: "Overview of Duplexing and Interference Management", 3GPP TSG RAN WG1 MEETING#88BIS R1-1704433, 24 March 2017 (2017-03-24), XP051250504 *

Also Published As

Publication number Publication date
US20210360637A1 (en) 2021-11-18
US12035341B2 (en) 2024-07-09
CN113383509A (zh) 2021-09-10
CN113383509B (zh) 2023-03-03
EP3902177A1 (en) 2021-10-27
EP3902177A4 (en) 2021-12-29
EP3902177B1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
CN113261320B (zh) 通信方法、装置及系统
WO2020164616A1 (zh) 随机接入的方法、装置及系统
WO2020155188A1 (zh) 通信方法、装置及系统
CN111867096B (zh) 通信方法、设备及系统
WO2021056707A1 (zh) 通信方法、设备及系统
WO2020155186A1 (zh) 通信方法、装置及系统
US20210359822A1 (en) Method for receiving and sending reference signal, apparatus, and system
WO2020168723A1 (zh) 参考信号接收与发送方法、设备及系统
CN111181887B (zh) 一种序列的生成及处理方法和装置
WO2021007809A1 (zh) 信道质量上报方法、装置及系统
US20220173953A1 (en) Communication method and apparatus
WO2020253597A1 (zh) 调度请求信息的传输方法、装置及系统
WO2020215994A1 (zh) 通信方法、设备及系统
WO2020155450A1 (zh) 数据调度方法、装置及系统
WO2021062841A1 (zh) 一种通信方法及装置
CN114365534A (zh) 信息处理方法、通信设备及存储介质
JP7548387B2 (ja) 端末デバイス及び方法
US11997027B2 (en) Signal sending method, signal receiving method, and apparatus
WO2020155660A1 (zh) 数据调度方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019914022

Country of ref document: EP

Effective date: 20210723

NENP Non-entry into the national phase

Ref country code: DE