WO2021097815A1 - 电池及用电装置 - Google Patents

电池及用电装置 Download PDF

Info

Publication number
WO2021097815A1
WO2021097815A1 PCT/CN2019/120327 CN2019120327W WO2021097815A1 WO 2021097815 A1 WO2021097815 A1 WO 2021097815A1 CN 2019120327 W CN2019120327 W CN 2019120327W WO 2021097815 A1 WO2021097815 A1 WO 2021097815A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
battery
negative electrode
silicon
welding head
Prior art date
Application number
PCT/CN2019/120327
Other languages
English (en)
French (fr)
Inventor
段岳廷
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2019/120327 priority Critical patent/WO2021097815A1/zh
Priority to CN201980086332.7A priority patent/CN113228366B/zh
Publication of WO2021097815A1 publication Critical patent/WO2021097815A1/zh
Priority to US17/743,306 priority patent/US20220271342A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0583Construction or manufacture of accumulators with folded construction elements except wound ones, i.e. folded positive or negative electrodes or separators, e.g. with "Z"-shaped electrodes or separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/538Connection of several leads or tabs of wound or folded electrode stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area

Definitions

  • This application relates to a battery and an electric device including the battery.
  • the mechanical stress not only causes the pole piece to expand in the thickness direction, but also includes significant lateral expansion.
  • the mechanical stress can easily cause the wrinkle and deformation of the pole piece during the cycle, and the wrinkle and deformation of the pole piece will cause tearing of the welding part of the tab.
  • the wrinkles and deformation of the pole pieces become more serious during the cycle, it will cause the welding of the tabs to be desoldered, which will cause the battery to fail to transmit electrons during the charging and discharging process, and ultimately cause the entire battery to fail.
  • the application also provides an electrical device, which includes the battery.
  • a battery includes a winding unit formed by winding a negative pole piece and a positive pole piece together.
  • the negative electrode piece includes a negative electrode current collector and a negative electrode active layer arranged on the negative electrode current collector, and the negative electrode active layer includes a silicon negative electrode material.
  • the battery also includes:
  • the tabs are welded to the negative current collector, wherein the gram capacity C of the silicon negative electrode material, the welding strength a of the tabs in the initial battery, and the welding strength b of the tabs in the battery after 300 cycles are as follows: relationship:
  • the silicon negative electrode material includes at least one of silicon element, silicon compound, and silicon alloy.
  • a horizontal tensile machine is used to test the welding strength of the tabs, and the tensile rate of the horizontal tensile machine is 1 mm/s.
  • the welding strength of the tabs in the initial battery is 18.7 N/m to 41.6 N/m.
  • the tab is welded to the negative current collector by an ultrasonic welding device
  • the ultrasonic welding device includes a welding socket and a welding head, wherein the welding head and the welding socket need to be heated before welding.
  • the single-sided coating mass of the silicon negative electrode material on the negative electrode current collector is 10 g/m 2 to 85 g/m 2 .
  • the temperature T of the welding head, the vibration frequency f of the welding head, and the gram capacity C of the silicon negative electrode material have the following relationship:
  • T ⁇ f 2 ⁇ 5.5 ⁇ C.
  • the temperature T of the welding head, the vibration frequency f of the welding head, and the gram capacity C of the silicon negative electrode material have the following relationship:
  • T ⁇ f 6 ⁇ 10.8 ⁇ C.
  • the temperature T of the welding head, the vibration frequency f of the welding head, and the gram capacity C of the silicon negative electrode material have the following relationship:
  • T ⁇ f 11.5 ⁇ 14.5 ⁇ C.
  • the temperature T of the welding head, the vibration frequency f of the welding head, and the gram capacity C of the silicon negative electrode material have the following relationship:
  • An electric device includes the above-mentioned battery.
  • the battery in this application limits the welding strength ratio of the tabs in the battery after 300 cycles, so as to effectively avoid the expansion and contraction of the anode material due to the expansion and contraction of the silicon anode material during the battery charge and discharge Desoldering of the tabs caused by the wrinkle and deformation of the pole pieces ensures the normal transmission of electrons during the charging and discharging of the battery.
  • FIG. 1 is a schematic diagram of a battery according to an embodiment of the application.
  • FIG. 2 is a schematic cross-sectional view of the negative pole piece shown in FIG. 1.
  • FIG. 3 is a schematic diagram of a module of an ultrasonic welding device according to an embodiment of the application.
  • FIG. 4 is a schematic cross-sectional view of the positive pole piece shown in FIG. 2.
  • FIG. 5 is a flowchart of a method for manufacturing a battery according to an embodiment of the application.
  • Fig. 6 is a schematic diagram of an electrical device according to an embodiment of the application.
  • Anode current collector 121 Anode current collector 121
  • the battery 100 includes a winding unit 10 formed by winding a negative pole piece 11 and a positive pole piece 12 together.
  • the negative electrode piece 11 includes a negative electrode current collector 111 and a negative electrode active layer 112 disposed on the negative electrode current collector 111.
  • the anode active layer 112 includes a silicon anode material.
  • the silicon negative electrode material includes at least one of silicon element, silicon compound, and silicon alloy.
  • the coating mass of the silicon negative electrode material on the negative electrode current collector 111 on one side is 10 g/m 2 -85 g/m 2 .
  • the battery 100 also includes tabs 20.
  • the tab 20 is welded to the negative current collector 111.
  • a horizontal tensile machine is used to test the welding strength of the tab 20.
  • the stretching rate of the horizontal tensile machine is 1 mm/s.
  • the welding strength a of the tab 20 in the initial battery 100 is 18.7 N/m to 41.6 N/m.
  • the gram capacity C of the silicon negative electrode material, the welding strength a of the tab 20 in the initial battery 100, and the welding strength b of the tab 20 in the battery 100 after 300 cycles have the following relationship:
  • the relationship between the gram capacity C of the silicon anode material and the welding strength ratio b/a of the tabs 20 in the battery 100 after 300 cycles is defined to effectively avoid the expansion of the silicon anode material during the charging and discharging process of the battery 100.
  • the shrinkage causes the wrinkle and deformation of the negative pole piece 11 to cause a problem of desoldering of the tab 20, thereby ensuring the normal transmission of electrons of the battery 100 during the charge and discharge process.
  • the battery 100 is charged to 4.45V with a constant current of 0.5C, and then it is allowed to stand for 2min; then, the battery 100 is discharged to 3.0V with a constant current of 0.5C, and then it is allowed to stand for 2min. 1 cycle.
  • the original battery 100 is an uncycled battery.
  • the tab 20 is welded to the negative electrode current collector 111 by an ultrasonic welding device 200.
  • the ultrasonic welding device 200 includes a welding socket 201 and a welding head 202.
  • the welding seat 201 plays a role of fixing and supporting the workpiece in ultrasonic welding, and the welding head 202 is in contact with the workpiece during ultrasonic welding, and is used to transmit ultrasonic vibration energy to the workpiece.
  • the tab 20 and the negative pole piece 11 are stacked and fixed to the welding seat 201; and then the welding head 202 is used to add the stacked tab 20 and the negative pole piece 11 Pressure to transfer ultrasonic vibration energy to the tab 20 and the negative pole piece 11, so that the tab 20 and the negative pole piece 11 rub against each other and fuse, thereby welding the tab 20 to the The negative current collector 111.
  • the welding socket 201 and the welding head 202 need to be heated before welding.
  • the heating method of the welding socket 201 and the welding head 202 is not limited to resistance heating, induction heating or laser heating. In one embodiment, the welding socket 201 and the welding head 202 need to be heated at the same time before welding.
  • the temperature T of the welding head 202, the vibration frequency f of the welding head 202, and the gram capacity C of the silicon negative electrode material have the following relationship:
  • the temperature T of the welding head 202, the vibration frequency f of the welding head 202, and the gram capacity C of the silicon anode material have the following relationship:
  • the positive pole piece 12 includes a positive electrode current collector 121 and a positive electrode active layer 122 disposed on the positive electrode current collector 121.
  • a tab 20 is welded on the positive electrode current collector 121.
  • the positive active layer 122 includes lithium cobaltate.
  • the battery 100 further includes a casing 30.
  • the winding unit 10 is housed in the casing 30.
  • the present application also provides a method for preparing the battery 100, which includes the following steps:
  • Step S1 the above-mentioned negative pole piece 11, positive pole piece 12 and tab 20 are provided.
  • step S2 the above-mentioned ultrasonic welding device 200 is provided.
  • Step S3 welding the tabs 20 to the negative electrode current collector 111 and the positive electrode current collector 121 respectively.
  • the tab 20 and the negative pole piece 11 are stacked and fixed to the welding socket 201.
  • the welding head 202 is used to pressurize the overlapped tab 20 and the negative pole piece 11 to transmit ultrasonic vibration energy to the tab 20 and the negative pole piece 11, so that the tab 20 and the negative pole piece 11 are fused with each other by friction, so that the tab 20 is welded to the negative current collector 111.
  • the tab 20 and the positive pole piece 12 are stacked and fixed to the welding seat 201; then the welding head 202 is used to press the stacked tab 20 and the positive pole piece 12 , To transmit ultrasonic vibration energy to the tab 20 and the positive pole piece 12, so that the tab 20 and the positive pole piece 12 rub against each other and fuse, thereby welding the tab 20 to the Positive current collector 121.
  • Step S4 stacking and winding the negative pole piece 11 and the positive pole piece 12 to form a winding unit 10.
  • Step S5 providing the aforementioned casing 30, and accommodating the winding unit 10 in the casing 30.
  • Step S6 injecting liquid into the winding unit 10, encapsulating, and preparing the battery 100 after forming.
  • steps S1-S6 can be adjusted adaptively according to actual conditions.
  • the preparation of the negative electrode piece 11 A copper foil with a thickness of 10 ⁇ m is used as the negative electrode current collector 111, and the negative electrode active slurry containing silicon negative electrode material is uniformly coated on both surfaces of the negative electrode current collector 111 to form the negative electrode active layer 112. Then, after drying and cold pressing, the negative pole piece 11 is produced. Wherein, the coating mass of the silicon negative electrode material on the negative electrode current collector 111 on one side is 10 g/m 2 -85 g/m 2 . In Comparative Example 1, the gram capacity C of the silicon anode material in the anode active layer 112 was 405 mAh/g.
  • the preparation of the positive electrode piece 12 use an aluminum foil with a thickness of 9 ⁇ m as the positive electrode current collector 121, and uniformly coat the positive electrode active slurry containing lithium cobaltate on both surfaces of the positive electrode current collector 121 to form the positive electrode active layer 122. Then, after drying and cold pressing, the positive pole piece 12 is produced.
  • the tab 20 is welded to the negative electrode current collector 111 and the positive electrode current collector 121 by using the ultrasonic welding device 200.
  • the ultrasonic welding device 200 was used, the welding seat 201 was heated at 300°C, and the welding head 202 was not heated.
  • the positive electrode current collector 121 is ultrasonically welded.
  • the vibration frequency f of the welding head 202 is 20 kHz, and the welding pressure is 25 kg.
  • the width of the tab 20 is 8 mm and the thickness is 100 ⁇ m.
  • the preparation of the battery the negative pole piece 11 and the positive pole piece 12, plus the separator 13, are wound into an 11-layer winding unit.
  • the winding unit can be liquid-filled, packaged, and formed to obtain a battery.
  • the battery has a length of 96mm, a width of 39mm, and a thickness of 33mm.
  • a horizontal tensile machine is used to test the welding strength of the tab 20 welded to the negative electrode current collector 111 in the initial battery 100.
  • the stretching rate of the horizontal tensile machine is 1 mm/s.
  • the welding strength a of the tab 20 welded to the negative electrode current collector 111 is 14.5 N/m.
  • the welding strength of the tab 20 welded to the negative electrode current collector 111 is b.
  • the welding strength ratio b/a of the tabs 20 in the battery 100 after 300 cycles is less than 50%.
  • Comparative Example 2 The difference between Comparative Example 2 and Comparative Example 1 lies in the gram capacity C of the silicon anode material in the anode active layer 112.
  • the gram capacity C of the silicon anode material in the anode active layer 112 was 580 mAh/g.
  • Comparative Example 3 The difference between Comparative Example 3 and Comparative Example 1 lies in the gram capacity C of the silicon anode material in the anode active layer 112 and the vibration frequency f of the welding tip 202.
  • the gram capacity C of the silicon negative electrode material in the negative electrode active layer 112 was 790 mAh/g, and the vibration frequency f of the welding head 202 was 30 kHz.
  • the welding strength a of the tab 20 in the initial battery 100 was 20.3 N/m.
  • Comparative Example 4 The difference between Comparative Example 4 and Comparative Example 1 lies in the gram capacity C of the silicon negative electrode material in the negative electrode active layer 112 and the vibration frequency f of the welding tip 202.
  • the gram capacity C of the silicon anode material in the anode active layer 112 was 990 mAh/g
  • the vibration frequency f of the welding head 202 was 40 kHz.
  • the welding strength a of the tab 20 in the initial battery 100 was 28.7 N/m.
  • Comparative Example 5 The difference between Comparative Example 5 and Comparative Example 1 lies in the gram capacity C of the silicon negative electrode material in the negative electrode active layer 112 and the vibration frequency f of the welding tip 202.
  • the gram capacity C of the silicon anode material in the anode active layer 112 is 1100 mAh/g
  • the vibration frequency f of the welding head 202 is 50 kHz.
  • the welding strength a of the tabs in the initial battery was 32.2 N/m.
  • Example 1 The difference between Example 1 and Comparative Example 1 is that in Example 1, an ultrasonic welding device 200 is used, and the welding head 202 and the welding seat 201 are heated to perform ultrasonic welding on the tab 20 and the negative electrode current collector 111 deal with.
  • the vibration frequency f of the welding head the vibration frequency f of the welding head, and the gram capacity C of the silicon negative electrode material, the following relationship exists:
  • T ⁇ f 2 ⁇ 5.5 ⁇ C.
  • the heating temperature of the selected welding head 202 is 100°C.
  • Example 1 the welding strength a of the tabs 20 in the initial battery 100 was 18.7 N/m.
  • Example 1 Compared with Comparative Example 1, in Example 1, there is no desoldering phenomenon at the welding place of the tab 20 in the battery 100 after 300 cycles.
  • Example 2 The difference between Example 2 and Comparative Example 2 is that in Example 2, an ultrasonic welding device 200 is used, and a welding method in which the welding head 202 and the welding seat 201 are heated is adopted to connect the tab 20 and the negative electrode current collector 111.
  • a welding method in which the welding head 202 and the welding seat 201 are heated is adopted to connect the tab 20 and the negative electrode current collector 111.
  • T ⁇ f 2 ⁇ 5.5 ⁇ C.
  • the heating temperature of the selected welding head 202 is 100°C.
  • Example 2 the welding strength a of the tabs 20 in the initial battery 100 was 18.7 N/m.
  • Example 2 Compared with Comparative Example 2, in Example 2, there is no desoldering phenomenon at the welding place of the tab 20 in the battery 100 after 300 cycles.
  • Example 3 The difference between Example 3 and Comparative Example 3 is that in Example 3, an ultrasonic welding device 200 is used, and the welding head 202 and the welding seat 201 are heated to perform ultrasonic welding on the tab 20 and the negative electrode current collector 111 deal with.
  • the vibration frequency f of the welding head the vibration frequency f of the welding head, and the gram capacity C of the silicon negative electrode material, the following relationship exists:
  • T ⁇ f 6 ⁇ 10.8 ⁇ C.
  • the heating temperature of the selected welding head 202 is 200°C.
  • Example 3 the welding strength a of the tabs 20 in the initial battery 100 was 29.4 N/m.
  • Example 3 Compared with Comparative Example 3, in Example 3, there is no desoldering phenomenon at the welding place of the tab 20 in the battery 100 after 300 cycles.
  • Example 4 The difference between Example 4 and Comparative Example 4 is that in Example 4, an ultrasonic welding device 200 is used, and the welding head 202 and the welding seat 201 are heated to perform ultrasonic welding on the tab 20 and the negative electrode current collector 111 deal with.
  • T of the welding head the vibration frequency f of the welding head, and the gram capacity C of the silicon negative electrode material, the following relationship exists:
  • T ⁇ f 11.5 ⁇ 14.5 ⁇ C.
  • the heating temperature of the selected welding head 202 is 300°C.
  • Example 4 the welding strength a of the tabs 20 in the initial battery 100 was 35.8 N/m.
  • Example 4 Compared with Comparative Example 4, in Example 4, there is no desoldering phenomenon at the welding place of the tab 20 in the battery 100 after 300 cycles.
  • Example 5 The difference between Example 5 and Comparative Example 5 is that, in Example 5, an ultrasonic welding device 200 is used, and a welding method in which the welding head 202 and the welding seat 201 are heated is adopted to connect the tab 20 and the negative electrode current collector 111.
  • a welding method in which the welding head 202 and the welding seat 201 are heated is adopted to connect the tab 20 and the negative electrode current collector 111.
  • the heating temperature of the selected welding head 202 is 350°C.
  • Example 5 the welding strength a of the tabs 20 in the initial battery 100 was 41.6 N/m.
  • the welding strength ratio b/a of the tabs 20 in the battery 100 after 300 cycles is greater than 90%.
  • Table 1 shows the preparation conditions and corresponding test results of Comparative Examples 1-5 and Examples 1-5.
  • the ultrasonic welding device 200 is used to heat the welding base 201 and the welding head 202, which can increase the welding strength a of the tabs 20 in the initial battery 100 and 300 cycles
  • the welding strength ratio of the tabs 20 in the battery 100 is b/a.
  • Example 1 and Comparative Example 3 and Comparative Example 2 and Comparative Example 3 and Comparative Example 4, and Comparative Example 4 and Comparative Example 5 it can be seen that the gram capacity C of the silicon anode material is compared with 300
  • the relationship between the welding strength ratio b/a of the tabs 20 in the battery 100 after three cycles is limited, which can effectively avoid the expansion and contraction of the silicon negative electrode material during the charging and discharging process of the battery 100.
  • the ear 20 has a problem of desoldering, so as to ensure the normal transmission of electrons of the battery 100 during the charging and discharging process.
  • the heating temperature T and the vibration frequency f corresponding to the welding head 202 can be selected to improve the initial welding strength a of the tabs 20 in the battery 100 and the welding strength ratio b/a of the tabs 20 in the battery 100 after 300 cycles.
  • Example 1 and Example 2 under the premise that the temperature T and vibration frequency f of the welding head 202 are constant, increasing the gram capacity C of the silicon anode material within a certain range will not change the initial battery 100.
  • the electrical device 300 includes the battery 100 described above.
  • the electrical device 300 may be mobile electronic equipment, energy storage equipment, electric vehicles, hybrid electric vehicles, and the like.
  • the mobile electronic device may be a mobile phone, a wearable electronic device, a tablet computer, a notebook computer, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种电池,包括由负极极片和正极极片一起卷绕形成的卷绕单元。所述负极极片包括负极集流体及设置于所述负极集流体上的负极活性层,所述负极活性层包括硅负极材料。所述电池还包括极耳。所述极耳焊接于所述负极集流体。其中,所述硅负极材料的克容量C、初始的电池中极耳的焊接强度a及经300个循环后的电池中极耳的焊接强度b存在以下关系:当400mAh/g<C≤600mAh/g时,50%<b/a<65%;当600mAh/g<C≤800mAh/g时,65%<b/a<80%;当800mAh/g<C≤1000mAh/g时,80%<b/a<90%;当C>1000mAh/g时,b/a>90%。本申请还提供了一种用电装置,其包括所述电池。

Description

电池及用电装置 技术领域
本申请涉及电池及包括所述电池的用电装置。
背景技术
近年来,随着3C业务的快速发展以及3C产品的集成化需求,对电池的体积能量密度提出了更高的要求,而为使电池达到更高的体积能量密度要求,目前的纯石墨负极体系已经无法满足。另外,硅基材料由于硅的可逆容量高达4200mAh/g,被认为是最有可能被大规模应用于锂电池的负极材料,以继续提高电池的体积能量密度。不过,硅基材料在经过数次的充放电循环之后,随着锂离子的嵌入和脱出,会发生巨大的体积变化,体积膨胀率甚至能达到300%,从而产生巨大的机械应力。其中,该机械应力除了使极片向厚度方向膨胀外,还包括显著的横向膨胀。此外,该机械应力在循环过程中还容易导致极片的褶皱变形,而极片的褶皱变形会对极耳的焊接处造成撕裂。随着循环过程中极片的褶皱变形越发严重,会导致极耳的焊接处脱焊,进而导致电池在充放电过程中电子无法传输,最终造成整个电池的失效。
发明内容
有鉴于此,有必要提供一种电池,以解决多次循环后电池中极耳脱焊的问题。
本申请还提供了一种用电装置,其包括所述电池。
一种电池,包括由负极极片和正极极片一起卷绕形成的卷绕单元。所述负极极片包括负极集流体及设置于所述负极集流体上的负极活性层,所述负极活性层包括硅负极材料。所述电池还包括:
极耳,焊接于所述负极集流体,其中,所述硅负极材料的克容量C、初始的电池中极耳的焊接强度a及经300个循环后的电池中极耳的焊接强度b存在以下关系:
当400mAh/g<C≤600mAh/g时,50%<b/a<65%;
当600mAh/g<C≤800mAh/g时,65%<b/a<80%;
当800mAh/g<C≤1000mAh/g时,80%<b/a<90%;
当C>1000mAh/g时,b/a>90%。
可选地,所述硅负极材料包含硅单质、硅化合物、硅合金中的至少一种。
可选地,采用卧式拉力机对所述极耳的焊接强度进行测试,所述卧式拉力机的拉伸速率为1mm/s。
可选地,初始的电池中极耳的焊接强度为18.7N/m~41.6N/m。
可选地,所述极耳通过超声波焊接装置焊接于所述负极集流体,所述超声波焊接装置包括焊座和焊头,其中,所述焊头和所述焊座在焊接前需加热。
可选地,所述硅负极材料在所述负极集流体上的单面涂布质量为10g/m 2-85g/m 2
可选地,所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
当400mAh/g<C≤600mAh/g时,T×f=2~5.5×C。
可选地,所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
当600mAh/g<C≤800mAh/g时,T×f=6~10.8×C。
可选地,所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
当800mAh/g<C≤1000mAh/g时,T×f=11.5~14.5×C。
可选地,所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
当C>1000mAh/g时,T×f=15~20.8×C。
一种用电装置,包括上述所述的电池。
本申请中的电池根据不同的硅负极材料的克容量C,限定300个循环后的电池中极耳的焊接强度比,以有效避免由于硅负极材料在电池充放电过程中,因膨胀收缩致使负极极片褶皱变形所引发的极耳脱焊问题,从而保证电池在充放电过程中电子的正常传输。
附图说明
图1为本申请一实施方式的电池的示意图。
图2为图1所示负极极片的剖面示意图。
图3为本申请一实施方式的超声波焊接装置的模块示意图。
图4为图2所示正极极片的剖面示意图。
图5为本申请一实施方式的电池的制备方法的流程图。
图6为本申请一实施方式的用电装置的示意图。
主要元件符号说明
电池                         100
卷绕单元                     10
负极极片                     11
负极集流体                   111
负极活性层                   112
正极极片                     12
正极集流体                   121
正极活性层                   122
隔膜                         13
极耳                         20
壳体                         30
超声波焊接装置               200
焊座                         201
焊头                         202
用电装置                     300
如下具体实施方式将结合上述附图进一步说明本申请。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
参图1,本申请实施方式提供了一种电池100。所述电池100包括由负极极片11和正极极片12一起卷绕形成的卷绕单元10。
参图2,所述负极极片11包括负极集流体111及设置于所述负极集流体111上的负极活性层112。在本实施方式中,所述负极活性层112包括硅负极材料。所述硅负极材料包含硅单质、硅化合物、硅合金中的至少一种。其中,所述硅负极材料在所述负极集流体111上的单面涂布质量为10g/m 2-85g/m 2
所述电池100还包括极耳20。所述极耳20焊接于所述负极集流体111。其中,采用卧式拉力机对所述极耳20的焊接强度进行测试。所述卧式拉力机的拉伸速率为1mm/s。初始的电池100中极耳20的焊接强度a为18.7N/m~41.6N/m。
在本实施方式中,所述硅负极材料的克容量C、初始的电池100中极耳20的焊接强度a及经300个循环后的电池100中极耳20的焊接强度b存在以下关系:
当400mAh/g<C≤600mAh/g时,50%<b/a<65%;
当600mAh/g<C≤800mAh/g时,65%<b/a<80%;
当800mAh/g<C≤1000mAh/g时,80%<b/a<90%;
当C>1000mAh/g时,b/a>90%。
如此,通过硅负极材料的克容量C与300个循环后的电池100中极耳20的焊接强度比b/a的关系限定,以有效避免由于硅负极材料在电池100充放电过程中,因膨胀收缩致使负极极片11褶皱变形所引发的极耳20脱焊问题,从而保证电池100在充放电过程中电子的正常传输。
其中,在25℃下,以0.5C恒定电流将电池100充电至4.45V后,静置2min;然后,再以0.5C的恒定电流将电池100放电至3.0V后,静置2min,以此为1个循环。初始的电池100则为未经循环的电池。
在本实施方式中,所述极耳20通过超声波焊接装置200焊接于所述负极集流体111。其中,所述超声波焊接装置200包括焊座201和焊头202。所述焊座201在超声波焊接中起固定和支撑工件的作用,所述焊头202在超声波焊接中与工件相接触,用于将超声波振动能量传递给工件。
具体地,将所述极耳20和所述负极极片11叠设,并固定于所述焊座201;再利用焊头202对叠设的所述极耳20和所述负极极片11加压,以将超声波振动能量传递给所述极耳20和所述负极极片11,使得所述极耳20和所述负极极片11相互摩擦而熔合,从而将所述极耳20焊接于所述负极集流体111。在本实施方式中,所述焊座201和所述焊头202在焊接前需加热。其中,所述焊座201和所述焊头202的加热方式不限于电阻加热、感应加热或激光加热。一实施方式中,所述焊座201和所述焊头202在焊接前需同时加热。
其中,所述焊头202的温度T、所述焊头202的振动频率f及所述硅负极材料的克容量C存在以下关系:
当400mAh/g<C≤600mAh/g时,T×f=2~5.5×C;
当600mAh/g<C≤800mAh/g时,T×f=6~10.8×C;
当800mAh/g<C≤1000mAh/g时,T×f=11.5~14.5×C;
当C>1000mAh/g时,T×f=15~20.8×C。
如此,通过硅负极材料的克容量C与焊头202的温度T和振动频率f的关系限定,以在不同的硅负极材料的克容量C下,选定对应的焊头202的温度T和振动频率f来对所述极耳20和所述负极极片11进行焊接,从而保证极耳20与负极集流体111之间的焊接强度。
可选地,所述焊头202的温度T、所述焊头202的振动频率f及所述硅负极材料的克容量C存在以下关系:
当400mAh/g<C≤600mAh/g时,T×f=3.3~5×C;
当600mAh/g<C≤800mAh/g时,T×f=6.5~10×C;
当800mAh/g<C≤1000mAh/g时,T×f=12~14×C;
当C>1000mAh/g时,T×f=15.5~18×C。
参图1和图4,所述正极极片12包括正极集流体121及设置于所述正极集流体121上的正极活性层122。所述正极集流体121上焊接有极耳20。一实施方式中,所述正极活性层122包括钴酸锂。
进一步地,参图1,所述电池100还包括壳体30。所述卷绕单元10收容于所述壳体30内。
参图5,本申请还提供了一种电池100的制备方法,包括如下步骤:
步骤S1,提供上述所述的负极极片11、正极极片12以及极耳20。
步骤S2,提供上述所述的超声波焊接装置200。
步骤S3,将所述极耳20分别焊接于负极集流体111和正极集流体121。
具体地,首先,将所述极耳20和所述负极极片11叠设,并固定于所述焊座201。接着,利用焊头202对叠设的所述极耳20和所述负极极片11加压,以将超声波振动能量传递给所述极耳20和所述负极极片11,使得所述极耳20和所述负极极片11相互摩擦而熔合,从而将所述极耳20焊接于所述负极集流体111。然后,将所述 极耳20和所述正极极片12叠设,并固定于所述焊座201;再利用焊头202对叠设的所述极耳20和所述正极极片12加压,以将超声波振动能量传递给所述极耳20和所述正极极片12,使得所述极耳20和所述正极极片12相互摩擦而熔合,从而将所述极耳20焊接于所述正极集流体121。
步骤S4,将所述负极极片11和所述正极极片12叠设并卷绕,以形成卷绕单元10。
步骤S5,提供上述所述的壳体30,并将所述卷绕单元10容置于所述壳体30内。
步骤S6,对所述卷绕单元10进行注液,封装,化成后制备得到所述电池100。
其中,步骤S1-S6中的个别步骤顺序可依据实际情况进行适应性调整。
下面通过实施例与对比例对本申请进行具体说明。
对比例1
负极极片11的制备:使用厚度为10μm的铜箔作为负极集流体111,并将含硅负极材料的负极活性浆料均匀涂覆于所述负极集流体111的两表面形成负极活性层112。接着,进行烘干及冷压处理后,制得所述负极极片11。其中,所述硅负极材料在所述负极集流体111上的单面涂布质量为10g/m 2-85g/m 2。在对比例1中,所述负极活性层112中的硅负极材料的克容量C为405mAh/g。
正极极片12的制备:使用厚度为9μm的铝箔作为正极集流体121,并将含钴酸锂的正极活性浆料均匀涂覆于所述正极集流体121的两表面形成正极活性层122。接着,进行烘干及冷压处理后,制得所述正极极片12。
极耳20的焊接:利用超声波焊接装置200,将极耳20分别焊接于负极集流体111和正极集流体121上。在对比例1中,利用超声波焊接装置200,采用焊座201加热300℃,焊头202不加热的焊接方式,对所述极耳20和所述负极集流体111以及所述极耳20和 所述正极集流体121进行超声波焊接处理。其中,焊头202的振动频率f为20kHz,焊接压力为25kg。所述极耳20的宽度为8mm,厚度为100μm。
电池的制备:将所述负极极片11和正极极片12,加上隔膜13,通过卷绕的方式做成11层的卷绕单元。所述卷绕单元经注液,封装,化成后可得到电池。其中,所述电池的长度为96mm,宽度为39mm,厚度为33mm。
其中,采用卧式拉力机对初始的电池100中焊接于负极集流体111上的极耳20的焊接强度进行测试。所述卧式拉力机的拉伸速率为1mm/s。其中,初始的电池100中,焊接于负极集流体111上的极耳20的焊接强度a为14.5N/m。经300个循环后的电池100中,焊接于负极集流体111上的极耳20的焊接强度为b。300个循环后的电池100中极耳20的焊接强度比b/a小于50%。
在对比例1中,经300个循环后的电池100中极耳20的焊接处有脱焊现象。其中,将经300个循环后的电池100中的极耳20与初始的电池100中的极耳20进行比对,若极耳20上的任何一处焊点脱落,则判断极耳20有脱焊现象。
对比例2
对比例2与对比例1的区别在于,负极活性层112中硅负极材料的克容量C。在对比例2中,所述负极活性层112中的硅负极材料的克容量C为580mAh/g。
相较于对比例1,在对比例2中,初始的电池100中极耳20的焊接强度以及300个循环后的电池100中极耳20的焊接强度比b/a均没有发生变化。
在对比例2中,经300个循环后的电池100中极耳20的焊接处有脱焊现象。
对比例3
对比例3与对比例1的区别在于,负极活性层112中硅负极材料的克容量C及焊头202的振动频率f。在对比例3中,所述负极 活性层112中的硅负极材料的克容量C为790mAh/g,所述焊头202的振动频率f为30kHz。
在对比例3中,初始的电池100中极耳20的焊接强度a为20.3N/m。300个循环后的电池100中极耳20的焊接强度比b/a:50%<b/a<65%。
在对比例3中,经300个循环后的电池100中极耳20的焊接处有脱焊现象。
对比例4
对比例4与对比例1的区别在于,负极活性层112中硅负极材料的克容量C及焊头202的振动频率f。在对比例4中,所述负极活性层112中的硅负极材料的克容量C为990mAh/g,所述焊头202的振动频率f为40kHz。
在对比例4中,初始的电池100中极耳20的焊接强度a为28.7N/m。300个循环后的电池100中极耳20的焊接强度比b/a:65%<b/a<80%。
在对比例4中,经300个循环后的电池100中极耳20的焊接处有脱焊现象。
对比例5
对比例5与对比例1的区别在于,负极活性层112中硅负极材料的克容量C及焊头202的振动频率f。在对比例5中,所述负极活性层112中的硅负极材料的克容量C为1100mAh/g,所述焊头202的振动频率f为50kHz。
在对比例5中,初始的电池中极耳的焊接强度a为32.2N/m。300个循环后的电池100中极耳20的焊接强度比b/a:80%<b/a<90%。
在对比例5中,经300个循环后的电池100中极耳20的焊接处有脱焊现象。
实施例1
实施例1与对比例1的区别在于,实施例1中利用超声波焊接装置200,采用焊头202和焊座201加热的焊接方式,对所述极耳 20和所述负极集流体111进行超声波焊接处理。其中,根据所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
当400mAh/g<C≤600mAh/g时,T×f=2~5.5×C。
选定焊头202的加热温度为100℃。
在实施例1中,初始的电池100中极耳20的焊接强度a为18.7N/m。300个循环后的电池100中极耳20的焊接强度比b/a:50%<b/a<65%。
相较于对比例1,在实施例1中,经300个循环后的电池100中极耳20的焊接处无脱焊现象。
实施例2
实施例2与对比例2的区别在于,实施例2中利用超声波焊接装置200,采用焊头202和焊座201加热的焊接方式,对所述极耳20和所述负极集流体111。其中,根据所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
当400mAh/g<C≤600mAh/g时,T×f=2~5.5×C。
选定焊头202的加热温度为100℃。
在实施例2中,初始的电池100中极耳20的焊接强度a为18.7N/m。300个循环后的电池100中极耳20的焊接强度比b/a:50%<b/a<65%。
相较于对比例2,在实施例2中,经300个循环后的电池100中极耳20的焊接处无脱焊现象。
实施例3
实施例3与对比例3的区别在于,实施例3中利用超声波焊接装置200,采用焊头202和焊座201加热的焊接方式,对所述极耳20和所述负极集流体111进行超声波焊接处理。其中,根据所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
当600mAh/g<C≤800mAh/g时,T×f=6~10.8×C。
选定焊头202的加热温度为200℃。
在实施例3中,初始的电池100中极耳20的焊接强度a为29.4N/m。300个循环后的电池100中极耳20的焊接强度比b/a:65%<b/a<80%。
相较于对比例3,在实施例3中,经300个循环后的电池100中极耳20的焊接处无脱焊现象。
实施例4
实施例4与对比例4的区别在于,实施例4中利用超声波焊接装置200,采用焊头202和焊座201加热的焊接方式,对所述极耳20和所述负极集流体111进行超声波焊接处理。其中,根据所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
当800mAh/g<C≤1000mAh/g时,T×f=11.5~14.5×C。
选定焊头202的加热温度为300℃。
在实施例4中,初始的电池100中极耳20的焊接强度a为35.8N/m。300个循环后的电池100中极耳20的焊接强度比b/a:80%<b/a<90%。
相较于对比例4,在实施例4中,经300个循环后的电池100中极耳20的焊接处无脱焊现象。
实施例5
实施例5与对比例5的区别在于,实施例5中利用超声波焊接装置200,采用焊头202和焊座201加热的焊接方式,对所述极耳20和所述负极集流体111。其中,根据所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
当C>1000mAh/g时,T×f=15~20.8×C。
选定焊头202的加热温度为350℃。
在实施例5中,初始的电池100中极耳20的焊接强度a为41.6N/m。300个循环后的电池100中极耳20的焊接强度比b/a大于90%。
相较于对比例5,经300个循环后的电池100中极耳20的焊接处无脱焊现象。
表1
Figure PCTCN2019120327-appb-000001
其中,表1为对比例1-5及实施例1-5的制备条件以及对应的测试结果。
由表1可知,比对实施例1与对比例1、比对实施例2对比例2、比对实施例3对比例3比对实施例4对比例4及比对实施例5对比例5可知,在硅负极材料的克容量C一定的条件下,利用超声波焊接装置200,采用焊座201和焊头202加热的方式,可以提高初始的电池100中极耳20的焊接强度a以及300个循环后的电池100中极耳20的焊接强度比b/a。另外,比对实施例1和对比例3、对比实施例2和对比例3、对比实施例3和对比例4以及对比实施例4和对比例5可知,通过硅负极材料的克容量C与300个循环后的电池100中极耳20的焊接强度比b/a的关系限定,可有效避免由于硅负极材料在电池100充放电过程中,因膨胀收缩致使负极极片11 褶皱变形所引发的极耳20脱焊问题,从而保证电池100在充放电过程中电子的正常传输。此外,根据实施例1-5可知,随着硅负极材料的克容量C的不断增加,通过所述焊头202的温度T、所述焊头202的振动频率f及所述硅负极材料的克容量C存在的以下关系:
当400mAh/g<C≤600mAh/g时,T×f=2~5.5×C;
当600mAh/g<C≤800mAh/g时,T×f=6~10.8×C;
当800mAh/g<C≤1000mAh/g时,T×f=11.5~14.5×C;
当C>1000mAh/g时,T×f=15~20.8×C。
可以选定焊头202对应的加热温度T及振动频率f,以提高初始的电池100中极耳20的焊接强度a以及300个循环后的电池100中极耳20的焊接强度比b/a。另外,比对实施例1和实施例2可知,在焊头202的温度T及振动频率f一定的前提下,在一定范围内提高硅负极材料的克容量C,也不会改变初始的电池100中极耳20的焊接强度a以及300个循环后的电池100中极耳20的焊接强度比b/a。
参图6,本申请还提供了一种用电装置300。所述用电装置300包括上述所述的电池100。其中,所述用电装置300可以是移动电子设备、储能设备、电动汽车、混合动力电动汽车等。所述移动电子设备可以是移动电话、穿戴式电子设备、平板电脑、笔记本电脑等。
以上实施例仅用以说明本申请的技术方案而非限制,尽管参照较佳实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换,而不脱离本申请技术方案的精神和实质。

Claims (11)

  1. 一种电池,包括由负极极片和正极极片一起卷绕形成的卷绕单元,其特征在于,所述负极极片包括负极集流体及设置于所述负极集流体上的负极活性层,所述负极活性层包括硅负极材料,所述电池还包括:
    极耳,焊接于所述负极集流体,其中,所述硅负极材料的克容量C、初始的电池中极耳的焊接强度a及经300个循环后的电池中极耳的焊接强度b存在以下关系:
    当400mAh/g<C≤600mAh/g时,50%<b/a<65%;
    当600mAh/g<C≤800mAh/g时,65%<b/a<80%;
    当800mAh/g<C≤1000mAh/g时,80%<b/a<90%;
    当C>1000mAh/g时,b/a>90%。
  2. 如权利要求1所述的电池,其特征在于,所述硅负极材料包含硅单质、硅化合物、硅合金中的至少一种。
  3. 如权利要求1所述的电池,其特征在于,采用卧式拉力机对所述极耳的焊接强度进行测试,所述卧式拉力机的拉伸速率为1mm/s。
  4. 如权利要求3所述的电池,其特征在于,初始的电池中极耳的焊接强度为18.7N/m~41.6N/m。
  5. 如权利要求1所述的电池,其特征在于,所述极耳通过超声波焊接装置焊接于所述负极集流体,所述超声波焊接装置包括焊座和焊头,其中,所述焊头和所述焊座在焊接前需加热。
  6. 如权利要求5所述的电池,其特征在于,所述硅负极材料在所述负极集流体上的单面涂布质量为10g/m 2-85g/m 2
  7. 如权利要求6所述的电池,其特征在于,所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
    当400mAh/g<C≤600mAh/g时,T×f=2~5.5×C。
  8. 如权利要求6所述的电池,其特征在于,所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
    当600mAh/g<C≤800mAh/g时,T×f=6~10.8×C。
  9. 如权利要求6所述的电池,其特征在于,所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
    当800mAh/g<C≤1000mAh/g时,T×f=11.5~14.5×C。
  10. 如权利要求6所述的电池,其特征在于,所述焊头的温度T、所述焊头的振动频率f及所述硅负极材料的克容量C存在以下关系:
    当C>1000mAh/g时,T×f=15~20.8×C。
  11. 一种用电装置,其特征在于,所述用电装置包括如权利要求1-10中任一项所述的电池。
PCT/CN2019/120327 2019-11-22 2019-11-22 电池及用电装置 WO2021097815A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2019/120327 WO2021097815A1 (zh) 2019-11-22 2019-11-22 电池及用电装置
CN201980086332.7A CN113228366B (zh) 2019-11-22 2019-11-22 电池及用电装置
US17/743,306 US20220271342A1 (en) 2019-11-22 2022-05-12 Batteries and electrical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/120327 WO2021097815A1 (zh) 2019-11-22 2019-11-22 电池及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/743,306 Continuation US20220271342A1 (en) 2019-11-22 2022-05-12 Batteries and electrical devices

Publications (1)

Publication Number Publication Date
WO2021097815A1 true WO2021097815A1 (zh) 2021-05-27

Family

ID=75981124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120327 WO2021097815A1 (zh) 2019-11-22 2019-11-22 电池及用电装置

Country Status (3)

Country Link
US (1) US20220271342A1 (zh)
CN (1) CN113228366B (zh)
WO (1) WO2021097815A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593849A (zh) * 2009-06-17 2009-12-02 广州丰江电池新技术股份有限公司 一种锂电池及其制造方法
US20140299652A1 (en) * 2013-04-04 2014-10-09 Samsung Sdi Co., Ltd. Welding horn for secondary battery
JP2017228418A (ja) * 2016-06-22 2017-12-28 プライムアースEvエナジー株式会社 電池の製造方法及び電池
CN207757066U (zh) * 2017-12-21 2018-08-24 宁德新能源科技有限公司 焊接装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207320232U (zh) * 2017-11-13 2018-05-04 深圳市比克动力电池有限公司 一种锂离子电池负极极片及锂离子电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101593849A (zh) * 2009-06-17 2009-12-02 广州丰江电池新技术股份有限公司 一种锂电池及其制造方法
US20140299652A1 (en) * 2013-04-04 2014-10-09 Samsung Sdi Co., Ltd. Welding horn for secondary battery
JP2017228418A (ja) * 2016-06-22 2017-12-28 プライムアースEvエナジー株式会社 電池の製造方法及び電池
CN207757066U (zh) * 2017-12-21 2018-08-24 宁德新能源科技有限公司 焊接装置

Also Published As

Publication number Publication date
CN113228366A (zh) 2021-08-06
US20220271342A1 (en) 2022-08-25
CN113228366B (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
US8276695B2 (en) Battery electrode sheet
WO2014010708A1 (ja) 集電体、電極、二次電池およびキャパシタ
JP2002184364A (ja) 角型電池およびその外装方法
KR20010015414A (ko) 외장막 전지를 제조하는 방법
CN107275557A (zh) 一种采用锂离子电芯构成的通用型充电电池及其组装方法
CN109980230A (zh) 卷绕式电芯及电化学装置
CN101140980A (zh) 具有表面处小凹槽的电池单元和包括该电池单元的电池包
JP2014517458A (ja) パウチ型二次電池のシール方法およびシール装置
CN111564634A (zh) 导电胶、圆柱锂离子二次电池及其制备方法
CN105958124A (zh) 一种锂离子电池及其制备方法
JP2023509174A (ja) 電池セル、電池および電子装置
JP2001297798A (ja) 扁平型電池の製造方法
JP2016189354A (ja) 二次電池
WO2024152977A1 (zh) 电池和用电设备
WO2023179210A1 (zh) 一种极芯、电池装置及电子设备
EP3793016B1 (en) Battery electrode sheet and preparation method therefor, battery management method and related apparatus
CN211150663U (zh) 一种电芯、电池及电子设备
CN216488280U (zh) 一种具有新型电池盖板连接结构的电芯
JP2006019199A (ja) 二次電池用電極板、その製造方法及び前記電極板を用いた二次電池
JP2013025912A (ja) 捲回式二次電池およびその製造方法
CN202019028U (zh) 锂电池的电芯及锂电池
CN207009532U (zh) 一种采用锂离子电芯构成的通用型充电电池
WO2021097815A1 (zh) 电池及用电装置
JP2001229904A (ja) 密閉形電池
CN217387475U (zh) 一种极芯、电池装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953325

Country of ref document: EP

Kind code of ref document: A1