WO2021097636A1 - 标物雷达散射截面积确定方法、装置和存储介质 - Google Patents

标物雷达散射截面积确定方法、装置和存储介质 Download PDF

Info

Publication number
WO2021097636A1
WO2021097636A1 PCT/CN2019/119309 CN2019119309W WO2021097636A1 WO 2021097636 A1 WO2021097636 A1 WO 2021097636A1 CN 2019119309 W CN2019119309 W CN 2019119309W WO 2021097636 A1 WO2021097636 A1 WO 2021097636A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
target
parameter values
sectional area
simulation object
Prior art date
Application number
PCT/CN2019/119309
Other languages
English (en)
French (fr)
Inventor
李恒
王春明
唐照成
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/119309 priority Critical patent/WO2021097636A1/zh
Priority to CN201980040011.3A priority patent/CN112689772A/zh
Publication of WO2021097636A1 publication Critical patent/WO2021097636A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section

Definitions

  • the present invention relates to the field of radar, and in particular to a method, device and storage medium for determining a radar cross section (Radar Cross section, RCS for short) of a target object.
  • a radar cross section Radar Cross section, RCS for short
  • the radar has been used in many detection scenarios.
  • the radar emits electromagnetic waves to illuminate the target object and receive its echo, so that information such as the position of the target object in space can be obtained.
  • RCS Radar Cross section
  • the present invention provides a method, a device and a storage medium for determining the radar cross-sectional area of a target object, and the accurate determination of the radar cross-sectional area of the target object is realized by establishing an accurate radar cross-sectional area model.
  • the first aspect of the present invention provides a method for determining the radar cross-sectional area of a target, including:
  • the second aspect of the present invention provides a device for determining the radar cross-sectional area of a target, including:
  • a memory storing executable code
  • the processor executes the executable code to realize:
  • the radar cross-sectional area model is corrected according to the multiple first parameter values, wherein the corrected radar cross-sectional area model is used to determine the radar cross-sectional area of the target object.
  • a third aspect of the present invention provides a computer-readable storage medium having executable code stored in the computer-readable storage medium, and the executable code is used to implement the radar scattering interception of the target object according to the first aspect. Area determination method.
  • the method, device and storage medium for determining the radar cross-sectional area of the target object provided by the present invention can make the determination accuracy of the target radar cross-sectional area higher.
  • FIG. 1 is a schematic flowchart of a method for determining RCS of a target provided by an embodiment of the present invention
  • FIG. 2 is a schematic diagram of the composition of a radar receiving link provided by an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the input and output relationship of a down-conversion module provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a test scenario provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a curve of attenuation of antenna gain as a function of angle according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart of a method for testing antenna gain attenuation according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart of another method for testing antenna gain attenuation according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a device for determining RCS of a target provided by an embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for determining RCS of a target provided by an embodiment of the present invention. As shown in FIG. 1, the method for determining RCS of a target may include the following steps:
  • radar will be mounted on many devices for target detection.
  • it can be mounted on drones and robots to detect obstacles or certain specific objects.
  • the target RCS determination method provided by the embodiment of the present invention is to determine the RCS of the target through radar, because RCS, as a basic attribute of the target, plays an important role in application scenarios such as target recognition and target tracking. .
  • an accurate RCS model needs to be established first for the radar to determine the RCS of the target based on the RCS model.
  • the influence of individual radar differences and the test environment on the RCS model will be considered.
  • the initial RCS model will be established based on the test data of the components in each individual radar, and then the radar will be placed in the actual application environment, corresponding to multiple model parameters of the radar in the actual application environment Revise the RCS model with multiple first parameter values.
  • R is the distance between the radar and the target, which can be measured by the radar
  • P r the received power of the radar receiving antenna
  • the wavelength of the radar
  • G r the receiving gain of the radar receiving antenna
  • G t the transmission gain of the radar transmitting antenna
  • P t the transmitting power of the radar transmitting antenna.
  • the RCS model can be established based on the test data of the radar components, the RCS solving equation, and the multiple second parameter values of the multiple parameters of the RCS solving equation obtained in the laboratory environment, and further, Then, the RCS model is corrected according to the multiple first parameter values corresponding to the multiple model parameters of the radar in the actual application environment.
  • the multiple parameters include at least one of the following parameters:
  • the receiving power of the radar receiving antenna, the receiving gain of the radar receiving antenna, the transmitting gain of the radar transmitting antenna, the superposition result of the transmitting gain of the radar transmitting antenna and the receiving gain of the radar receiving antenna, and the transmitting power of the radar transmitting antenna may be the product of the two.
  • the RCS solving equation is not equivalent to the RCS model.
  • the RCS solving equation only qualitatively describes which parameters are needed to solve the RCS, and the RCS model further describes the parameters of these parameters obtained from the radar test. Solving method, and the value range of these parameters.
  • the relationship between the RCS model and the RCS solution equation can be understood as: the RCS model includes multiple model parameters, and the value ranges of the multiple model parameters are determined according to the multiple second parameter values.
  • the multiple model parameters include at least one of the following parameters: the receiving power of the radar receiving antenna, the receiving gain of the radar receiving antenna, the transmitting gain of the radar transmitting antenna, the superposition of the transmitting gain of the radar transmitting antenna and the receiving gain of the radar receiving antenna As a result, as well as the transmit power of the radar transmit antenna.
  • the radar is placed in a laboratory environment to test multiple parameter values (corresponding to the second parameter value) of one or all of the above multiple parameters, according to multiple second parameter values corresponding to the same parameter Determine the value range of the parameter.
  • the parameter whose value range is determined is called the model parameter. For example, assuming that the received power is tested under different test conditions to obtain multiple received power values, and the range of the multiple received power values is 0.9W to 1.1W, the received power is a model parameter.
  • multiple parameters that affect the RCS calculation results can include such as the above receiving power, transmitting power, receiving gain, and transmitting gain, and individual radar differences will affect the calculation of these parameters.
  • the results have an impact.
  • the radar transmits a signal it can be known that the radar transmits a signal, and the received power is determined according to the received echo signal. Therefore, the above multiple parameters may also include the echo signal strength.
  • the individual difference of radar means that the performance of different radars is not completely the same during the mass production of radars. As the radar contains several devices, these devices can be independent components or integrated chips. These devices may exhibit different performance due to various factors during the production and assembly process, resulting in different radars. There will also be differences in performance. Based on this, considering the influence of individual radar differences on the RCS model modeling results, first, for each radar, the corresponding relationship between the test data of the radar device and the multiple parameters in the RCS solution equation is calibrated, that is, Obtain the calibration relationship between the test data of the components in the radar and the multiple parameters in the RCS solution equation. Secondly, an RCS model is established based on the calibration relationship and multiple second parameter values corresponding to multiple parameters obtained in the laboratory environment.
  • test data of the device may include the test data of an independent device, or may include the test data of multiple coupled devices as a whole.
  • Test data mainly refers to the input electrical signal and output electrical signal of the device, such as input power, output power; input voltage, output voltage.
  • the transmit power as an example. There may be multiple devices that have an impact on the transmit power.
  • the calibration relationship between the corresponding test data and the transmit power can be established independently for each device. In addition, optionally, these devices can also be used The result of coupling is regarded as a whole, and the calibration relationship between the whole test data and the transmission power is established.
  • the radar can be divided into a transmitting link and a receiving link from the data link, and the multiple parameters in the above-mentioned RCS solving equation can also be divided into two types, one is corresponding to the transmitting link Transmit power and transmit gain, and the other is the receive power and receive gain corresponding to the receive link. Therefore, optionally, the calibration relationship between obtaining the test data of the components in the radar and the multiple parameters in the RCS solution equation can be realized as:
  • the RCS model is established based on the first calibration relationship, the second calibration relationship, and multiple second parameter values of multiple parameters obtained in a laboratory environment.
  • FIG 2 is a schematic diagram of the composition of a radar receiving link provided by an embodiment of the present invention.
  • the radar receiving link may include a receiving antenna, a down-conversion module, a local oscillator, a low-noise amplifier, an operational amplifier, and an analog module. Digital converter, processor.
  • the echo signal output by the analog-to-digital converter can be finally obtained through the processing of multiple devices as shown in Figure 2, and the received power can be obtained based on the strength of the echo signal.
  • the following frequency conversion module is taken as an example. Assuming that when the temperature is 25 degrees, the modeling result of the input-output relationship of the down-conversion module is the curve shown in Figure 3: The difference between the input power (dBm) of the down-conversion module and its output voltage (V) The relationship curve between. Therefore, under different input powers, by measuring the output of the analog-to-digital converter, the influence of the input of the down-conversion module on the received power can be obtained, that is, the calibration relationship. Among them, the input-output relationship of the down-conversion module can be from the manual data of the manufacturer of the down-conversion module, or it can be measured when the radar is assembled. It should be noted that at different temperatures, the relationship between the input power of the down-conversion module and its output voltage (V) is also different.
  • the calibration relationship between the test data of the radar device and multiple parameters is used to establish the initial RCS model, and the multiple first parameter values obtained by testing the radar in the actual application environment are used to modify the RCS model .
  • the following still takes the receiving power of the receiving link and the radar receiving antenna as an example: for the receiving power of the radar receiving antenna included in the multiple first parameter values,
  • a model of the input physical quantity and the output physical quantity of the input physical quantity and output physical quantity of one or more modules in the receiving link part of the radar can be established, and then the receiving power of the radar receiving antenna can be determined according to the model. Correspondence between output physical quantities.
  • one or more modules here may be all the devices that constitute the receiving link indicated above, or may be one or several of them, such as analog-to-digital converters.
  • the external test environment will also affect the modeling results of the RCS model.
  • two test environments are provided to finally construct an accurate RCS model.
  • one kind of test environment is called a laboratory environment
  • the other kind of test environment is called an actual application environment.
  • the actual application environment is usually the outdoor environment where the radar will eventually be applied. That is, the surrounding environment when the radar actually works.
  • the radar is placed in the actual application environment, and the working process of the radar is simulated again in the actual application environment, that is, the radar is controlled to transmit signals to the target simulation object at different distances and different angles to obtain the radar
  • the multiple first parameter values of multiple model parameters corresponding to the signal are used to modify the initial RCS model according to the multiple first parameter values obtained in the actual application environment to obtain a more accurate RCS model.
  • controlling the radar to transmit signals to the target simulation object at different distances and angles may be by means of user input instruction adjustment and other means to change the distance and angle of the radar relative to the target simulation object.
  • the present invention is not limited to this.
  • the device for determining the radar cross-sectional area of the target object according to the embodiment of the present invention can automatically adjust or change the distance and angle of the radar relative to the target simulation object.
  • test operation in the laboratory environment is easy, and the test operation in the actual application environment is not easy, a large number of tests are performed in the laboratory environment to establish the initial RCS model, and then a small amount of testing is performed in the actual application environment to correct the initial RCS model.
  • the workload can be reduced, and the test results obtained in the actual application environment truly reflect the impact of the actual application environment, making the test results more accurate. Therefore, the number of distances and angles tested in the actual application environment can be set to be smaller than the number of distances and angles tested in the laboratory environment.
  • the RCS calculation result is still accurate when the radar has any angle relative to the target. There is no need to limit the radar to face the target, that is, the angle relative to the target is zero degrees.
  • the above-mentioned "different distances and different angles” should regard the distance and angle as a whole.
  • the difference means that the total distance and angle tested in the laboratory environment and the actual application environment are different. Based on this, the number of distances and angles tested in the actual application environment is less than the number of distances and angles tested in the laboratory environment, which can be the following situation: the distance tested in the laboratory environment is L1, L2, and the angle ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 8, ⁇ 9, ⁇ 10; the distance tested in the actual application environment is L3, L4, L5, L6, and the angle is ⁇ 1, ⁇ 5, ⁇ 8.
  • the total number of tests in the laboratory environment is more than the total number of tests in the actual application environment.
  • the angle value tested in the actual application environment may be a subset of the angle value tested in the laboratory environment.
  • the composition of a test environment is illustrated in conjunction with Figure 4.
  • the test environment can include radar and target simulation objects.
  • the radar and target simulation objects are separated by a certain distance (as shown in the figure, the distance For d meters).
  • the target simulation object is used to simulate the target object.
  • the target simulation object can be implemented as a simulation device or a standard reflector.
  • the test process is simply described as: the radar transmits a signal to the target simulation object, and the target simulation object responds to the received signal and feeds back the response signal to the radar.
  • the simulation device can simulate the RCS of multiple targets to respond to the signal emitted by the radar.
  • the radar can be placed on a program-controlled turntable, and the program-controlled turntable can adjust the rotation angle of the radar.
  • the program-controlled turntable is placed on a support frame with a certain height.
  • a wave-absorbing sponge can be attached to avoid the interference of the signal hitting the support frame on the test.
  • the standard reflector can also be placed on a support frame, and an absorbing sponge can also be attached to the side of the support frame opposite to the radar.
  • the setting of the test environment shown in FIG. 4 and the test method shown in FIG. 4 can be applied to the aforementioned laboratory environment and can also be applied to the aforementioned actual application environment.
  • the measurement and control of the radar can be the same or different.
  • the difference is mainly reflected in the previous article: the distance and angle tested in the actual application environment are different from the distance and angle tested in the laboratory environment.
  • the number of values of distances and angles tested in an actual application environment is smaller than the number of values of distances and angles tested in a laboratory environment.
  • control the radar to transmit signals to the target simulation object at different distances and different angles can be implemented as: control the distance between the radar and the target simulation object
  • the preset distance controls the radar to transmit signals to the target simulation object at a variety of different angles.
  • the distance between the radar and the target simulation object remains unchanged, and only the angle of the radar to the target simulation object is changed. For example, from the front of the radar to the target simulation object, that is, the angle is 0 degrees, and the test is performed every 1 degree.
  • the radar antenna gain can be measured (antenna gain refers to the superposition result or coupling result of the transmission gain and the reception gain, the superposition result is for example the product), received power and other parameters
  • antenna gain refers to the superposition result or coupling result of the transmission gain and the reception gain, the superposition result is for example the product
  • the radar is controlled to transmit signals to the target simulation object at different angles, and the corresponding antenna gain of the radar under the signal is obtained.
  • the control radar is controlled by a variety of In the measurement method of transmitting signals to the target simulation object at different angles, if the attenuation of the radar antenna gain with angle changes has no obvious relationship with the distance between the radar and the target simulation object (that is, the attenuation of the radar antenna gain with the angle change) If the situation does not fluctuate much with the distance between the radar and the target simulation object), you can keep the distance between the radar and the target simulation object as the preset distance and make one measurement without changing the distance to make multiple measurements. .
  • the above is only an embodiment of the present invention, and is not intended to limit the present invention.
  • Figure 5 shows the curve of the attenuation amplitude of the radar antenna gain obtained through the test process with the angle.
  • the abscissa represents the angle, and when the radar is facing the target simulation object, it is 0 degree. With 0 degree as the reference, clockwise and counterclockwise rotation of the radar are respectively represented as positive (+) and negative (-) angles.
  • the ordinate represents the attenuation of the antenna gain, in decibels (dB).
  • the test process can be summarized as follows: the above-mentioned program-controlled turntable can be controlled to make the angle of the radar relative to the target simulation object a certain angle value, and the distance It is a certain value, and then a certain signal is input at the input end of the radar transmission link, so that the radar transmits a signal to the target simulation object with a certain transmission power.
  • the radar receives the response signal of the target simulation object, and measures the corresponding received power based on the response signal.
  • FIG. 6 is a schematic flowchart of a method for testing antenna gain attenuation according to an embodiment of the present invention. As shown in FIG. 6, the method may include the following steps:
  • the control radar is at a first distance from the target simulation object.
  • control the radar to transmit signals to the target simulation object at different angles, and obtain the antenna gain corresponding to the radar under the signal.
  • control the radar to transmit signals to the target simulation object at different angles, and obtain the corresponding antenna gain of the radar under the signal.
  • the first distance and the second distance are used as an example for description.
  • the angle is measured with different angle values in turn. For example, taking a laboratory environment as an example, assuming that the distances are L1 and L2, and the angles are ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 8, ⁇ 9, ⁇ 10, then, in the distance When it is L1, set the angle values ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 8, ⁇ 9, ⁇ 10 respectively for testing. The same is true for L2.
  • FIG. 7 is a schematic flowchart of another method for testing antenna gain attenuation according to an embodiment of the present invention. As shown in FIG. 7, it may include the following steps:
  • the angle of the control radar relative to the target simulation object is a first angle, and the first angle is zero degrees.
  • control the radar to transmit signals to the target simulation object at different angles, and obtain the antenna gain corresponding to the radar under the signal.
  • the antenna gain determine the antenna gain when the radar is at a second distance from the target simulation object and the angle relative to the target simulation object is the second angle.
  • the antenna gain finally obtained includes the antenna gain obtained in step 702, the antenna gain obtained in step 704, and the antenna gain obtained in step 705.
  • the test scheme provided in this embodiment can reduce the total number of tests. Therefore, it is especially suitable for a laboratory environment because there are a large number of tests in the laboratory environment. Of course, it can also be applied to the actual application environment.
  • the distance to be tested in a laboratory environment includes: L1, L2, L3, L4, L5, L6, and the angles to be tested include: ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7 , ⁇ 8, ⁇ 9, ⁇ 10.
  • the first distance is L3
  • the first angle is ⁇ 1
  • ⁇ 1 is 0 degrees.
  • the distance with the best signal quality can be selected as the first distance.
  • the corresponding antenna gains are assumed to be G1, G2, G3, G4, G5, G6.
  • the measurement angles are respectively ⁇ 1 (for example, ⁇ 1 is 0 degrees), ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6, ⁇ 7, ⁇ 8, ⁇ 9, ⁇ 10, and the corresponding antenna gains are assumed It is Ga, Gb, Gc, Gd, Ge, Gf, Gg, Gh, Gi, Gj.
  • the antenna gain when the second distance between the radar and the target simulation object and the angle relative to the target simulation object are the second angle can be automatically calculated.
  • ⁇ 1 is 0 degrees. That is to say, when the measured angle is 0 degrees, the gains corresponding to different distances and the gains corresponding to different angles at another predetermined distance can be estimated based on the proportional relationship between the gains. Gain to reduce the number of tests.
  • the angle tested includes 0 degrees and other angles. Therefore, based on the obtained antenna gains corresponding to different angles, the proportional relationship between the antenna gain at any non-zero angle and the antenna gain at 0 degrees can be obtained.
  • the control radar transmits signals to the target simulation object at different distances, and the antenna gains corresponding to different distances at 0 degrees can be obtained.
  • the antenna gain corresponding to any angle at different distances can be calculated.
  • the angle of the radar relative to the target simulation object can be controlled to 0 degrees, and further, at this 0 degree, the radar is controlled to transmit signals to the target simulation object at different distances, and the corresponding antenna gain of the radar under the signal is obtained, that is, 0 The antenna gain corresponding to different distances in degrees.
  • the attenuation of antenna gain with angle change can also be measured in the following way:
  • the radar In a laboratory environment, first, control the radar to a preset distance from the target simulation object, and then, at the preset distance, control the radar to transmit signals to the target simulation object at different angles to obtain the corresponding radar signal Antenna gain.
  • the angle tested includes 0 degrees and other angles. Therefore, based on the obtained antenna gains corresponding to different angles, the proportional relationship between the antenna gain at any non-zero angle and the antenna gain at 0 degrees can be obtained.
  • the above-mentioned test schemes shown in Figs. 6 and 7 can be applied to both a laboratory environment and an actual application environment.
  • the test result in the laboratory environment reflects the correspondence between at least one of the distance, angle, and multiple second parameter values of multiple parameters and the RCS of the target simulation object.
  • the initial RCS model can be established.
  • the initial RCS model may be a mapping table that reflects these correspondences, or it may be a curve fitted according to these correspondences.
  • the multiple second parameter values of the multiple parameters include the above-mentioned transmitting power, receiving power, antenna gain of the radar receiving antenna, antenna gain of the radar transmitting and receiving antenna, antenna gain of the radar receiving antenna, and antenna of the radar transmitting and receiving antenna Multiple parameter values of at least one of the superimposed result of the gain and the intensity of the echo signal.
  • the test results in the actual application environment also reflect the correspondence between distance, angle, multiple first parameter values of multiple model parameters, and the RCS of the target simulation object. It should be noted that there are some interferences in the actual application environment when the radar is working. These disturbances can affect the value of RCS. Therefore, it is necessary to modify the initial RCS model with the test results in the actual application environment (the test results obtained by the test schemes shown in Figure 6 and Figure 7), and the final RCS model can be obtained. According to an embodiment of the present invention, the initial RCS model is modified according to the distance, angle, and the correspondence between at least one of the plurality of first parameter values of the plurality of model parameters and the RCS of the target simulation object to obtain the final RCS model.
  • the multiple first parameter values of the multiple model parameters include the transmit power, the received power, the antenna gain of the radar receiving antenna, the antenna gain of the radar transmitting and receiving antenna, the antenna gain of the radar receiving antenna, and the antenna gain of the radar receiving antenna. Multiple parameter values of at least one of the result of the superposition of the antenna gain and the strength of the echo signal.
  • the test operation in the laboratory environment is convenient.
  • you can first obtain an RCS model with slightly worse accuracy for example, the above-mentioned transmission power is only a range of values
  • a small amount of test data in the actual application environment can be used to obtain a more accurate RCS model reflecting the impact of the actual application environment of the radar (for example, the above-mentioned transmission power is finally determined as a certain value in the value range), and the workload is reduced at the same time , A more accurate RCS model can be obtained.
  • the revised RCS model can be stored in the radar as the basis for the radar's subsequent RCS detection of the target.
  • the radar obtains the detection data of the target, and then determines the RCS of the target according to the detection data of the target and the revised RCS model.
  • the detection data includes: the distance and angle of the radar relative to the target, and the echo signal strength of the target, where the echo signal strength of the target corresponds to the received power.
  • the obtained detection data can be substituted into the revised RCS model, and the RCS of the target can be obtained.
  • the substitution can be understood as obtaining the corresponding parameter values, such as the transmission power, the reception power, and the antenna gain, according to the above-mentioned correspondence obtained by the modeling by means of interpolation or table lookup.
  • the radar will continuously change the rotation angle during the detection process of the target object by the radar. At each angle, it will send a signal to the target object, and the target object will be emitted from different angles. The signal pair is received by different positions on the target and feeds back the echo signal. Based on this, acquiring the detection data of the target by the radar is specifically realized as: controlling the radar to transmit signals to different locations on the target at different angles to obtain the detection data corresponding to the different locations. Therefore, the RCS corresponding to the different location points is determined according to the detection data corresponding to the different location points and the revised RCS model. In other words, the point cloud RCS information of the target can be finally obtained.
  • the RCS of the target can be used for target identification.
  • the target object can be identified according to the RCS corresponding to different location points of the target object.
  • the recognition of the target includes recognizing the type of the target. For example, suppose there is a stone on the ground, and the stone is used as the target. By obtaining the RCS corresponding to different positions of the target, if it is found that the RCSs corresponding to multiple adjacent positions are all the same and are the same as the stone If the RCS is equal, it is roughly determined that the target is a stone.
  • the target recognition result can be used to identify whether there is a specific target in the current scene of the radar, and it can also be used to track the target. Under the requirement of tracking the target, based on the determination of the RCS of the target, even if the trajectories of different targets are crossed, if the RCS of the different targets is different, it can ensure that the different targets are tracked accurately.
  • the RCS of the target can also be used to introduce the detection capabilities of the radar to the user.
  • the shape and RCS of the target can be determined according to the RCS corresponding to the different position points of the target, and then the shape and RCS of the target can be output to the user, so that the user can learn about the target object according to multiple pre-stored images of the target.
  • the radar can be carried on a drone for use, the drone can be used to detect certain specific targets in some practical application environments. At this time, different targets can be stored in the remote control of the drone. Image. It should be noted that the radar can also be carried on other movable platforms. For example, robots, drones, unmanned vehicles, etc.
  • the radar When controlling the drone to fly, take the current radar detecting an object of a certain regular shape (such as a cylinder) as an example. After the radar obtains the RCS of the different position points of the target, the different position points of the target correspond to The RCS of the target is the same, and the RCS of the target is different from that of other surrounding objects, so that the RCS of the target and its shape (or contour) can be determined.
  • the shape and RCS of the target are displayed to the user through the interface, and the user can clearly obtain the image of the target by comparing the detected target and the shape with which target image according to the stored images of the above-mentioned different targets. Know what the currently detected target is and what its RCS is, so that the user can clearly see the corresponding relationship between the target image and the RCS, so that the user can intuitively perceive that the radar can detect What object, and the RCS situation of each object.
  • FIG. 8 is a schematic structural diagram of a target RCS determination device provided by an embodiment of the present invention.
  • the target RCS determination device may be located in a radar.
  • the device for determining the target RCS includes: a memory 11, which stores executable codes; and, one or more processors 12, which work individually or collectively.
  • the one or more processors 12 execute the executable code stored in the memory 11 to implement:
  • the radar cross-sectional area model is corrected according to the multiple first parameter values, wherein the corrected radar cross-sectional area model is used to determine the radar cross-sectional area of the target object.
  • the processor 12 is specifically configured to:
  • the multiple parameters include at least one of the following parameters:
  • the radar cross-sectional area model includes multiple model parameters, and the value ranges of the multiple model parameters are determined according to the multiple second parameter values.
  • the multiple model parameters include at least one of the following parameters:
  • the processor 12 is specifically configured to: obtain the calibration relationship between the test data of the radar device and the multiple parameters in the radar cross-sectional area solution equation; and obtain the calibration relationship according to the calibration relationship and the laboratory environment.
  • the multiple second parameter values of the multiple parameters establish the radar cross-sectional area model.
  • the processor 12 is further configured to: in a laboratory environment, control the radar to transmit signals to the target simulation object at different distances and different angles, and obtain the radar corresponding to the signal under the radar.
  • the multiple second parameter values of each parameter, and the target simulation object is used to simulate a target object.
  • the processor 12 is further configured to: in the laboratory environment, control the angle of the radar relative to the target simulation object to be a first angle, and the first angle is zero degrees; Under one angle, control the radar to transmit signals to the target simulation object at different distances, and obtain multiple first candidate parameter values corresponding to the radar under the signal; control the relationship between the radar and the target simulation object Are separated by a first distance; at the first distance, control the radar to transmit signals to the target simulation object at different angles, and obtain multiple second candidate parameter values corresponding to the radar under the signal; The plurality of first candidate parameter values and the second candidate parameter value determine the third candidate when the radar is at the second distance from the target simulation object and the angle relative to the target simulation object is the second angle Parameter value; wherein, the plurality of second parameter values include the plurality of first candidate parameter values, the plurality of second candidate parameter values, and the third candidate parameter value.
  • the processor 12 is further configured to: in the laboratory environment, control a preset distance between the radar and the target simulation object; under the preset distance, control the radar Transmit signals to the target simulation object at different angles, and obtain multiple second parameter values corresponding to the radar under the signal.
  • the processor 12 is further configured to: in an actual application environment, control the radar to transmit signals to the target simulation object at different distances and different angles, and obtain the radar corresponding to the signal under the radar.
  • the first parameter value of each model parameter, and the target simulation object is used to simulate the target object.
  • the processor 12 is further configured to: in the actual application environment, control the angle of the radar relative to the target simulation object to be a first angle, and the first angle is zero degrees; Under one angle, control the radar to transmit signals to the target simulation object at different distances, and obtain multiple first candidate parameter values corresponding to the radar under the signal; control the relationship between the radar and the target simulation object Are separated by a first distance; at the first distance, control the radar to transmit signals to the target simulation object at different angles, and obtain multiple second candidate parameter values corresponding to the radar under the signal; The plurality of first candidate parameter values and the second candidate parameter value determine the third candidate when the radar is at the second distance from the target simulation object and the angle relative to the target simulation object is the second angle Parameter value; wherein, the plurality of first parameter values include the plurality of first candidate parameter values, the plurality of second candidate parameter values, and the third candidate parameter value.
  • the processor 12 is further configured to: under the actual application environment, control a preset distance between the radar and the target simulation object; under the preset distance, control the radar Transmit signals to the target simulation object at different angles, and obtain multiple first parameter values corresponding to the radar under the signal.
  • the number of values of distances and angles tested in the actual application environment is less than the number of values of distances and angles tested in the laboratory environment.
  • the test data includes first test data of a transmitting link related device in the radar and second test data of a receiving link related device.
  • the processor 12 is specifically configured to:
  • the radar cross-sectional area model is established according to the first calibration relationship, the second calibration relationship, and the multiple second parameter values of the multiple parameters obtained in the laboratory environment.
  • the processor 12 is further configured to: obtain the detection data of the target by the radar; determine the radar scattering of the target according to the detection data of the target and the corrected radar cross-sectional area model Cross-sectional area; wherein the detection data of the target includes: the distance and angle of the radar relative to the target, and the intensity of the echo signal of the target.
  • the processor 12 is specifically configured to: control the radar to transmit signals to different position points on the target at different angles to obtain detection data corresponding to the different position points; corresponding to the different position points And the corrected radar cross-sectional area model to determine the radar cross-sectional area corresponding to the different position points.
  • the processor 12 is further configured to: determine the shape and radar cross-sectional area of the target object according to the radar cross-sectional area corresponding to the different position points; output the shape and radar cross-sectional area of the target object to the user Cross-sectional area, so that the user can obtain the target image corresponding to the shape of the target and the radar scattering cross-sectional area according to a plurality of pre-stored target images.
  • the processor is further configured to:
  • the target object is identified according to the radar cross-sectional area corresponding to the different position points.
  • the multiple first parameter values include the received power of the radar receiving antenna; and, the processor 12 is further configured to: input physical quantities and output physical quantities of one or more modules in the receiving link part of the radar. Establish a model about the input physical quantity and the output physical quantity; according to the model, determine the correspondence between the received power of the radar receiving antenna and the output physical quantity; when the processor receives the output physical quantity, The received power of the radar receiving antenna is determined according to the output physical quantity.
  • An embodiment of the present invention also provides a computer-readable storage medium, in which executable code is stored, and the executable code is used to implement the target RCS determination method provided in any of the foregoing embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种目标物雷达散射截面积确定、装置和存储介质,其中,该目标物雷达散射截面积确定方法包括:获取雷达散射截面积模型的多个模型参数(101);获取雷达在实际应用环境下的与多个模型参数对应的多个第一参数值(102);根据多个第一参数值,修正雷达散射截面积模型,其中,修正后的雷达散射截面积模型用于确定目标物的雷达散射截面积(103),其中,修正后的雷达散射截面积模型用于确定目标物的雷达散射截面积,可以使得目标物的雷达散射截面积确定结果更加准确。

Description

标物雷达散射截面积确定方法、装置和存储介质 技术领域
本发明涉及雷达领域,尤其涉及一种目标物雷达散射截面积(Radar Cross section,简称RCS)确定方法、装置和存储介质。
背景技术
目前,雷达已经被应用在很多探测场景中,雷达发射电磁波对目标物进行照射并接收其回波,由此可以获得目标物在空间中的位置等信息。
雷达散射截面积(Radar Cross section,简称RCS)是雷达隐身技术中最关键的概念。RCS是目标物的一种基本属性,在基于雷达进行目标跟踪、目标分类等应用中具有重要作用。因此,能够准确地测量出目标物的RCS是亟待解决的问题。
发明内容
本发明提供了一种目标物雷达散射截面积确定方法、装置和存储介质,通过建立准确的雷达散射截面积模型从而实现目标物雷达散射截面积的准确确定。
本发明的第一方面提供了一种目标物雷达散射截面积确定方法,包括:
获取雷达散射截面积模型的多个模型参数;获取所述雷达在实际应用环境下的与所述多个模型参数对应的多个第一参数值;根据所述多个第一参数值,修正所述雷达散射截面积模型,其中,修正后的雷达散射截面积模型用于确定目标物的雷达散射截面积。
本发明的第二方面提供了一种目标物雷达散射截面积确定装置,包括:
存储器,存储有可执行代码;以及,
处理器,执行所述可执行代码以用于实现:
获取雷达散射截面积模型的多个模型参数;
获取所述雷达在实际应用环境下的与所述多个模型参数对应的多个第一参数值;
根据所述多个第一参数值,修正所述雷达散射截面积模型,其中,修正后的雷达散射截面积模型用于确定目标物的雷达散射截面积。
本发明的第三方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现上述第一方面所述的目标物雷达散射截面积确定方法。
本发明提供的目标物雷达散射截面积确定方法、装置和存储介质,可使得目标物雷达散射截面积的确定精度更高。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本发明实施例提供的一种目标物RCS确定方法的流程示意图;
图2为本发明实施例提供的一种雷达接收链路的组成示意图;
图3为本发明实施例提供的一种下变频模块的输入输出关系示意图;
图4为本发明实施例提供的一种测试场景示意图;
图5为本发明实施例提供的一种天线增益的衰减随角度变化的曲线示意图;
图6为本发明实施例提供的一种天线增益衰减情况测试方法的流程示意图;
图7为本发明实施例提供的另一种天线增益衰减情况测试方法的流程示意图;
图8为本发明实施例提供的一种目标物RCS确定装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
图1为本发明实施例提供的一种目标物RCS确定方法的流程示意图,如图1所示,该目标物RCS确定方法可以包括如下步骤:
101、获取雷达散射截面积模型的多个模型参数。
102、获取雷达在实际应用环境下的与所述多个模型参数对应的多个第一参数值。
103、根据多个第一参数值,修正RCS模型,其中,修正后的RCS模型用于确定目标物的RCS。
实际应用中,雷达会被搭载在很多设备上进行目标物探测使用,比如可以搭载在无人机、机器人上,用以探测障碍物或某种特定物体。
本发明实施例提供的目标物RCS确定方法,即为通过雷达来确定出目标物的RCS,因为RCS作为目标物的一种基本属性,在目标物识别、目标物跟踪等应用场景下具有重要作用。
而要实现对目标物的RCS的准确确定,首先需要建立准确的RCS模型以供雷达基于该RCS模型进行目标物的RCS的确定。
本发明实施例中,为了建立更为准确的RCS模型,会考虑雷达个体差异以及测试环境对RCS模型的影响。其中,对于雷达个体差异的影响,会根据每个雷达个体中器件的测试数据先建立初始的RCS模型,进而,将雷达置于实际应用环境,根据雷达在实际应用环境下的多个模型参数对应的多个第一参数值 修正RCS模型。
建立RCS模型的理论基础为RCS求解方程,其中,RCS求解方程如下:
Figure PCTCN2019119309-appb-000001
其中:
R:为雷达与目标物的距离,可以由雷达测量得到;
P r::雷达接收天线的接收功率;
λ:雷达的波长;
G r:雷达接收天线的接收增益;
G t:雷达发射天线的发射增益;
P t:雷达发射天线的发射功率。
实际应用中,可选地,可以根据雷达中器件的测试数据、RCS求解方程、以及实验室环境下得到的关于RCS求解方程的多个参数的多个第二参数值,建立RCS模型,进而,再根据雷达在实际应用环境下的上述多个模型参数对应的多个第一参数值修正该RCS模型。
其中,所述多个参数包括以下参数中的至少一个:
雷达接收天线的接收功率,雷达接收天线的接收增益,雷达发射天线的发射增益,雷达发射天线的发射增益和雷达接收天线的接收增益的叠加结果,以及雷达发射天线的发射功率。其中,发射增益和接收增益的叠加结果可以是两者的乘积。
由此可知,RCS求解方程与RCS模型并不等同,概括来说,RCS求解方程仅为定性地描述了求解RCS需要使用到哪些参数,而RCS模型中进一步描述了对于雷达测试得到的这些参数的求解方式,以及这些参数的取值范围。
为便于理解,可以将RCS模型与RCS求解方程之间的关系理解为:RCS模型中包括多个模型参数,该多个模型参数的取值范围依据所述多个第二参数值而被确定。其中,多个模型参数包括以下参数中的至少一个:雷达接收天线的接收功率,雷达接收天线的接收增益,雷达发射天线的发射增益,雷达发射天线的发射增益和雷达接收天线的接收增益的叠加结果,以及雷达发射天 线的发射功率。简单来说就是,将雷达置于实验室环境中以测试上述多个参数中的一个或全部参数的多个参数值(对应于第二参数值),根据同一参数对应的多个第二参数值确定该参数的取值范围,此时,被确定出取值范围的该参数称为模型参数。举例来说,假设在不同测试条件下对接收功率进行测试得到多个接收功率值,这多个接收功率值的取值范围为0.9W~1.1W,则接收功率为一种模型参数。
由上述介绍可知,影响RCS建模结果的因素包括雷达个体差异以及测试环境,下面分别对这两个因素的作用进行说明。
对于雷达个体差异来说:由上述RCS求解方程可知,影响RCS计算结果的多个参数可以包括诸如上述接收功率、发射功率、接收增益、发射增益,而雷达的个体差异便会对这些参数的计算结果产生影响。另外,根据雷达的工作原理可知,雷达发射信号,根据接收到的回波信号进行接收功率的确定,因此,上述多个参数中还可以包括回波信号强度。
具体来说,雷达的个体差异是指在雷达量产的过程中,不同雷达的性能并非完全一致。由于雷达中会包含若干器件,这些器件可以是独立的元器件,也可以是集成芯片,这些器件在生产以及组装过程中,受到各种因素影响可能会表现出不同的性能,从而导致不同的雷达的性能也会存在差异。基于此,考虑到雷达个体差异对RCS模型建模结果的影响,首先,针对每个雷达,进行该雷达中器件的测试数据与RCS求解方程中多个参数之间对应关系的标定,也即是获取雷达中器件的测试数据与RCS求解方程中多个参数之间的标定关系。其次,再根据该标定关系和实验室环境下得到的多个参数对应的多个第二参数值建立RCS模型。
其中,这里的器件的测试数据可以包括独立的各个器件的测试数据,也可以包括耦合的多个器件作为一个整体的测试数据。测试数据主要是指器件的输入电信号、输出电信号,比如输入功率、输出功率;输入电压、输出电压。
以某个独立的器件为例,假设现在需要建立该器件的测试数据与发射功 率之间的标定关系,那么可以向该器件输入不同的电压,并在每输入一种电压值的时候,测量雷达的发射功率,从而,根据多组测试数据可以建立映射表或拟合曲线以得到该器件的测试数据与发射功率的标定关系。
以发射功率为例,对发射功率有影响的器件可能有多个,既可以独立地针对每个器件进行相应测试数据与发射功率的标定关系的建立,另外,可选地,也可以将这些器件的耦合结果视为一个整体,建立该整体的测试数据与发射功率间的标定关系。
实际应用中,雷达从数据链路上来说,可以划分为发射链路和接收链路,而上述RCS求解方程中的多个参数也恰好可以划分为两种,一种是与发射链路对应的发射功率、发射增益,另一种是与接收链路对应的接收功率、接收增益。因此,可选地,获取雷达中器件的测试数据与RCS求解方程中多个参数之间的标定关系,可以实现为:
获取雷达中发射链路相关器件的第一测试数据与发射功率和发射增益之间的第一标定关系;
获取雷达中接收链路相关器件的第二测试数据与接收功率和接收增益之间的第二标定关系。
进而,依据第一标定关系、第二标定关系、以及实验室环境下得到的多个参数的多个第二参数值,建立RCS模型。
图2为本发明实施例提供的一种雷达接收链路的组成示意图,如图2所示,雷达的接收链路可以包括接收天线、下变频模块、本振、低噪声放大器、运算放大器、模数转换器、处理器。
雷达通过接收天线接收信号后,经过图2中示意的多个器件的处理,最终可以得到模数转换器输出的回波信号,基于该回波信号的强度可以得到接收功率。
从而,如果仅考虑整个接收链路对接收功率的影响时,可以在下变频模块的输入端输入不同的功率,测量模数转换器的输出,由此建立相应的映射表或拟合曲线。
或者,如果考虑接收链路中各组成器件(例如下变频模块、本振、低噪声放大器、运算放大器、模数转换器.)对接收功率的影响,也可以对其中的每个器件的输入输出关系进行建模,最终得到一个从接收天线的射频信号到模数转换器输出的信号间的函数关系。
以下变频模块为例,假设在温度为25度时,下变频模块的输入输出关系的建模结果为如图3所示的曲线:下变频模块的输入功率(dBm)与其输出电压(V)之间的关系曲线。从而,在不同的输入功率下,测量模数转换器的输出,可以得到下变频模块的输入对接收功率的影响,即标定关系。其中,下变频模块的输入输出关系,可以来自于下变频模块的厂商的手册数据,也可以是在组装雷达时进行测量得到的。需要说明的是,在不同温度下,下变频模块的输入功率与其输出电压(V)之间的关系也不同。
综上,通过上述过程可以得到雷达个体的器件性能对求解RCS的多个参数的影响。
由前文描述可知,雷达中器件的测试数据与多个参数的标定关系用于建立初始的RCS模型,而对雷达在实际应用环境下进行测试得到的多个第一参数值用于修正该RCS模型。关于在实际应用环境下是如何使用该标定关系的方案,下面仍以接收链路和雷达接收天线的接收功率为例说明:针对多个第一参数值中包括的雷达接收天线的接收功率,由上文描述可知,可以对雷达中接收链路部分的一个或多个模块的输入物理量和输出物理量建立关于该输入物理量和输出物理量的模型,进而根据该模型可以确定雷达接收天线的接收功率与该输出物理量之间的对应关系。从而,当处理器接收到该输出物理量时,便可以根据该输出物理量确定雷达接收天线的接收功率。其中,这里的一个或多个模块可以是上文中指出的构成接收链路的全部器件,也可以是其中的某一个或几个器件,比如为模数转换器。
除了雷达本身的组成器件的性能会对求解RCS的多个参数产生影响(亦即影响RCS模型)外,外界测试环境也会对RCS模型的建模结果产生影响。为考虑测试环境的影响,本发明实施例中,提供了两种测试环境,以便最终构建 准确的RCS模型。其中,一种测试环境称为实验室环境,另一种测试环境称为实际应用环境。其中,该实际应用环境通常为雷达最终会被应用于的室外环境。即,雷达实际工作时周围的环境。
对于测试环境的影响来说:概括来说,先在简单的实验室环境中模拟雷达的工作过程,即控制雷达以不同距离和不同角度向目标模拟对象发射信号,获取雷达在该信号下对应的多个参数的多个第二参数值,以便根据前述雷达器件的测试数据与多个参数的标定关系和实验室环境下得到的多个参数的多个第二参数值建立初始的RCS模型。进而,为提高RCS模型的准确性,将雷达置于实际应用环境中,在实际应用环境中再次模拟雷达的工作过程,即控制雷达以不同距离和不同角度向目标模拟对象发射信号,获取雷达在该信号下对应的多个模型参数的多个第一参数值,以便根据在实际应用环境中得到的多个第一参数值修正初始的RCS模型,以得到更为准确的RCS模型。
其中,在一个实施方式中,控制雷达以不同距离和不同角度向目标模拟对象发射信号可以是通过用户输入指令调整等手段改变雷达相对目标模拟对象的距离、角度。然而本发明并非限于此,根据本发明的另一实施方式,根据本发明实施方式的目标物雷达散射截面积确定装置可以自动调整或改变雷达相对目标模拟对象的距离、角度。
由于实验室环境下测试操作容易,实际应用环境下测试操作不易,先在实验室环境下进行大量测试以建立初始的RCS模型,之后再在实际应用环境下进行少量测试以修正初始的RCS模型,可以降低工作量,而且,实际应用环境中进行测试,得到的测试结果真实地反映了实际应用环境的影响,使得测试结果更准确。因此,可以设置在实际应用环境中测试的距离和角度的取值数量小于在实验室环境测试的距离和角度的取值数量。
另外,通过改变雷达相对目标模拟对象的角度,测试不同角度对上述多个参数的影响,尤其是对多个参数中天线增益(发射增益、接收增益)的影响,使得使用最终建立的RCS模型进行目标物RCS计算时,在雷达相对目标物具有任意角度时RCS计算结果依旧准确,不需限定雷达需要正面朝向目标物, 即相对目标物的角度为零度。
值得说明的是,上述“不同距离和不同角度”应该将距离和角度视为一个整体,该不同是指在实验室环境中和实际应用环境中所测试的距离和角度的整体是不同的。基于此,在实际应用环境中测试的距离和角度的取值数量小于在实验室环境测试的距离和角度的取值数量,可以是如下情形:实验室环境下测试的距离为L1、L2,角度为θ1、θ2、θ3、θ4、θ5、θ6、θ7、θ8、θ9、θ10;实际应用环境下测试的距离为L3、L4、L5、L6,角度为θ1、θ5、θ8。简单来说,就是从总的测试次数上来说,实验室环境中的总测试次数多于实际应用环境中的总测试次数。另外,针对角度来说,进一步可选地,实际应用环境中所测试的角度值可以是实验室环境中所测试的角度值的子集。
下面来具体介绍在实验室环境和实际应用环境下对雷达的测试过程。
首先,结合图4来示例性说明一种测试环境的组成,如图4所示,测试环境中可以包括雷达和目标模拟对象,雷达和目标模拟对象相距一定的距离(如图所示,该距离为d米)。其中,目标模拟对象用于模拟目标物。可选地,目标模拟对象可以实现为模拟设备或者标准反射体。
测试过程简单描述为:雷达向目标模拟对象发射信号,目标模拟对象响应于接收到的信号,向雷达反馈响应信号。
可以理解的是,当需要模拟多个目标物,并且目标模拟对象是通过标准反射体来实现的时候,可以设置对应于多种目标物的多个标准反射体,每个标准反射体的RCS值已知。类似地,当需要模拟多个目标物,并且目标模拟对象是通过模拟设备来实现的时候,模拟设备可以模拟多个目标物的RCS对雷达发射的信号进行响应。
可选地,可以将雷达放置在程控转台上,由该程控转台来调节雷达的转动角度。程控转台放置在具有一定高度的支撑架上。在支撑架上相对目标模拟对象的一侧,可以贴设吸波海绵,以避免射到支撑架上的信号对测试的干扰。类似地,以目标模拟对象为标准反射体为例,标准反射体也可以被放置 在支撑架上,在该支撑架上相对雷达的一侧也可以贴设吸波海绵。
图4所示的测试环境的设置和图4所示的测试方法,可以适用于前述实验室环境,也可以适用于前述实际应用环境。
在实验室环境和实际应用环境中,对雷达的测量控制可以相同也可以有所不同。其中,不同点主要体现为前文中提到的:实际应用环境测试的距离和角度与实验室环境中测试的距离和角度的取值数量的不同。具体地,在实际应用环境测试的距离和角度的取值数量小于在实验室环境中测试的距离和角度的取值数量。
值得说明的是,在实验室环境下,雷达与目标模拟对象的距离受实验室空间尺寸的限制,即使是最大距离往往也比较短,比如为3米、5米,可能很难真实地模拟实际应用中雷达与目标物的距离。为提高测试效率,可选地,“在实验室环境中,控制雷达以不同距离和不同角度向目标模拟对象发射信号”中的不同距离和不同角度可以具体实现为:控制雷达与目标模拟对象相距预设距离,在此基础上,控制雷达以多种不同角度向目标模拟对象发射信号。也就是说,雷达与目标模拟对象的距离保持不变,仅改变雷达先对目标模拟对象的角度,比如从雷达正面朝向目标模拟对象即角度为0度开始,每隔1度测试一次。
如前文所述,通过改变雷达相对目标模拟对象的角度,可以测得雷达的天线增益(天线增益指发射增益和接收增益的叠加结果或者说耦合结果,叠加结果比如为乘积)、接收功率等参数随该角度变化的衰减情况。基于此,以天线增益来说,实验室环境下,可以通过如下过程实现对雷达的天线增益随该角度的变化情况的建模:
在预设距离下,控制雷达以不同角度向目标模拟对象发射信号,获取雷达在该信号下对应的天线增益。
值得说明的是,以测量雷达的天线增益随角度变化的衰减情况为例,当在实验室环境下采用上述“控制雷达与目标模拟对象相距预设距离,在此基础上,控制雷达以多种不同角度向目标模拟对象发射信号”的测量方式时, 若雷达的天线增益随角度变化的衰减情况和雷达相对目标模拟对象之间的距离无明显关系(即,雷达的天线增益随角度变化的衰减情况随雷达相对目标模拟对象之间的距离的变化波动不大时),则可以保持雷达相对目标模拟对象之间的距离为预设距离而做一次测量,而并不需要改变距离做多次测量。以上仅为本发明的一个实施方式,而并非用于限制本发明。
图5示意了经过该测试过程得到的雷达的天线增益的衰减幅度随该角度的变化曲线。其中,横坐标表示角度,雷达正面朝向目标模拟对象时为0度,以0度为基准,顺时针和逆时针转动雷达分别表示为正(+)、负(-)角度。纵坐标表示天线增益的衰减情况,单位为分贝(dB)。
由图5的示意可知,当雷达正面朝向目标模拟对象时(即角度为0度时),天线增益最高,随着雷达相对目标模拟对象的角度逐渐增加,天线增益衰减越来越大。
不管是在实验室环境中还是在实际应用环境中,以某一次测试为例,测试过程概括来说可以是:可以通过控制上述程控转台以使得雷达相对目标模拟对象的角度为某角度值,距离为某数值,进而在雷达的发射链路的输入端输入某信号,使得雷达以某发射功率向目标模拟对象发射信号。雷达接收目标模拟对象的响应信号,基于该响应信号测得相应的接收功率。由于测试过程中有距离、角度两个变量,关于在多次测试过程中具体如何进行测试的方案现以测量前述多个参数中的天线增益(即发射增益和接收增益的耦合结果)为例,下面提供了图6和图7两种可选的测试方案。
图6为本发明实施例提供的一种天线增益衰减情况测试方法的流程示意图,如图6所示,可以包括如下步骤:
601、控制雷达与目标模拟对象之间相距第一距离。
602、在第一距离下,控制雷达以不同角度向目标模拟对象发射信号,获取雷达在该信号下对应的天线增益。
603、控制雷达与目标模拟对象之间相距第二距离。
604、在第二距离下,控制雷达以不同角度向目标模拟对象发射信号,获 取雷达在该信号下对应的天线增益。
可以理解的是,本实施例中仅以第一距离和第二距离两种不同的距离为例进行说明。概括来说,当测试过程中,距离的取值为多种时,在每种距离取值下,角度依次取不同的角度值进行测量。举例来说,以实验室环境为例,假设距离的取值为L1和L2,角度的取值为θ1、θ2、θ3、θ4、θ5、θ6、θ7、θ8、θ9、θ10,那么,在距离为L1时,分别设定角度值为θ1、θ2、θ3、θ4、θ5、θ6、θ7、θ8、θ9、θ10进行测试。L2时同理。
可以理解的是,本实施例中仅以测量天线增益随角度(雷达相对目标模拟对象的角度)的变化情况为例进行了说明,同理可以测试影响目标物雷达散射截面积的其他参数的参数值比如雷达接收天线的接收功率,不再赘述。
图7为本发明实施例提供的另一种天线增益衰减情况测试方法的流程示意图,如图7所示,可以包括如下步骤:
701、控制雷达相对目标模拟对象的角度为第一角度,第一角度为零度。
702、在第一角度下,控制雷达以不同距离向目标模拟对象发射信号,获取雷达在该信号下对应的天线增益。
703、控制雷达与目标模拟对象之间相距第一距离。
704、在第一距离下,控制雷达以不同角度向目标模拟对象发射信号,获取雷达在所述信号下对应的天线增益。
705、根据上述天线增益,确定雷达与目标模拟对象相距第二距离以及相对目标模拟对象的角度为第二角度时的天线增益。
可以理解的是,最终得到的天线增益包括了步骤702中得到的天线增益、步骤704中得到的天线增益以及步骤705中得到的天线增益。
本实施例提供的测试方案可以降低总测试次数,因此,尤其适用于实验室环境下,因为实验室环境下的测试数量较多。当然,也可以适用于实际应用环境下。
为便于理解,举例来说,假设实验室环境下需要测试的距离包括:L1、L2、L3、L4、L5、L6,需要测试的角度包括:θ1、θ2、θ3、θ4、θ5、 θ6、θ7、θ8、θ9、θ10。假设上述第一距离为L3,第一角度为θ1,θ1为0度。实际上,可以选取信号质量最佳的距离作为第一距离。
当雷达与目标模拟对象的角度为θ1(例如,θ1为0度)时,测量距离分别为L1、L2、L3、L4、L5、L6时对应的天线增益,假设分别为G1、G2、G3、G4、G5、G6。
当雷达与目标模拟对象的距离为L3时,测量角度分别为θ1(例如,θ1为0度)、θ2、θ3、θ4、θ5、θ6、θ7、θ8、θ9、θ10时对应的天线增益,假设为Ga、Gb、Gc、Gd、Ge、Gf、Gg、Gh、Gi、Gj。
基于上述测量结果,可以自动计算出雷达与目标模拟对象之间相距第二距离以及相对目标模拟对象的角度为第二角度时的天线增益。
举例来说,如果需要计算第二距离为L1,第二角度为θ2的情况下,对应的天线增益,则先计算第一距离L3下测得的第一角度θ2与第二角度θ1各自对应的天线增益之间的比例:Gb/Ga;再以第一角度θ1下测得的与第二距离L1对应的天线增益G1乘以该比例,便得到与L1和θ2对应的天线增益:G1*Gb/Ga。根据本发明的一实施方式,θ1为0度。也就是说,在测得角度为0度情况下不同距离对应的增益,以及在其他一预定距离下各个不同角度对应的增益,可以依据各个增益之间的比例关系,预估其他角度时的天线增益,以减少测试次数。
基于上述举例,概括来说,当保持雷达与目标模拟对象之间相距预设距离(如上述第一距离)时,控制雷达以不同角度向目标模拟对象发射信号,可以获得不同角度各自对应的天线增益。其中,被测试的角度包括0度以及其他一些角度。从而,基于获得的不同角度对应的天线增益,可以得到任一非0角度下的天线增益与0度下的天线增益的比例关系。当保持控制雷达相对目标模拟对象的角度为0度时,在该0度下,控制雷达以不同距离向目标模拟对象发射信号,可以获得0度下不同距离对应的天线增益。最终,基于预设距离下得到的上述比例关系,以及0角度下不同距离对应的天线增益,可以计算得到不同距离下任一角度对应的天线增益。
基于此,在一可选实施例中,当采用本实施例提供的方案在实验室环境下完成天线增益随角度变化的衰减情况的测试后,在实际应用环境中,可选地,为降低测试工作量,可以控制雷达相对目标模拟对象的角度为0度,进而,在该0度下,控制雷达以不同距离向目标模拟对象发射信号,获取雷达在该信号下对应的天线增益,即获得0度下不同距离对应的天线增益。最终,基于实验室环境中得到的预设距离下的上述比例关系,以及实际应用环境中得到的0角度下不同距离对应的天线增益,可以计算得到实际应用环境中不同距离下任一角度各自对应的天线增益。
天线增益随角度变化的衰减情况还可以通过如下方式测量:
在实验室环境下,首先,控制雷达与目标模拟对象之间相距预设距离,进而,在该预设距离下,控制雷达以不同角度向目标模拟对象发射信号,获取雷达在该信号下对应的天线增益。其中,被测试的角度包括0度以及其他一些角度。从而,基于获得的不同角度对应的天线增益,可以得到任一非0角度下的天线增益与0度下的天线增益的比例关系。
在实际应用环境中,首先,控制雷达相对目标模拟对象的角度为0度,进而,在该0度下,控制雷达以不同距离向目标模拟对象发射信号,获取雷达在该信号下对应的天线增益。从而,可以获得0度下不同距离对应的天线增益。最终,基于实验室环境中得到的预设距离下的上述比例关系,以及实际应用环境中得到的0角度下不同距离对应的天线增益,可以计算得到实际应用环境中不同距离下不同角度各自对应的天线增益。
可以理解的是,本实施例中仅以测量天线增益为例进行了说明,同理可以测试影响目标物雷达散射截面积的其他参数的参数值比如雷达接收天线的接收功率,不再赘述。
综上,上述图6和图7所示的测试方案既可以适用于实验室环境中,也可以适用于实际应用环境中。实验室环境中的测试结果反映了:距离、角度、多个参数的多个第二参数值中的至少一个与目标模拟对象的RCS之间的对应关系。再结合前文中雷达的器件的测试数据与该多个参数间的标定关系(该 标定关系反映了多个参数的参数值与器件的测试数据之间的对应关系),可以建立初始的RCS模型。其中,初始的RCS模型可以是体现这些对应关系的映射表,也可以是根据这些对应关系拟合得到的曲线。其中,多个参数的多个第二参数值包括上文中的发射功率、接收功率、雷达接收天线的天线增益、雷达发射接收天线的天线增益、雷达接收天线的天线增益和雷达发射接收天线的天线增益的叠加结果、和回波信号强度中的至少一个的多个参数值。
而实际应用环境中的测试结果也反映了:距离、角度、多个模型参数的多个第一参数值、目标模拟对象的RCS之间的对应关系。需要说明的是,在雷达工作时的实际应用环境中存在的一些干扰。这些干扰能够影响RCS的值。因此,需要以实际应用环境中的测试结果(图6和图7所示的测试方案得到的测试结果)修正初始RCS模型,可以得到最终的RCS模型。根据本发明的一实施方式,根据距离、角度、和多个模型参数的多个第一参数值中的至少一个与目标模拟对象的RCS之间的对应关系,修正初始RCS模型,可以得到最终的RCS模型。其中,多个模型参数的多个第一参数值包括上文中的发射功率、接收功率、雷达接收天线的天线增益、雷达发射接收天线的天线增益、雷达接收天线的天线增益和雷达发射接收天线的天线增益的叠加结果、和回波信号强度中的至少一个的多个参数值。
其中,为便于理解,举例说明修正作用:假设初始RCS模型中反映在角度为0度时,发射功率的取值范围为0.9W~1.2W。假设实际应用环境中测试得到的结果为:角度为0度时,发射功率的取值为1W,则最终修正结果为:角度为0度时,发射功率的取值为1W。
实验室环境下测试操作方便,通过结合实验室环境下测试得到的大量数据进行建模,可以先得到一个精度略差的RCS模型(比如体现为上述发射功率仅为一个取值范围),再基于实际应用环境下的少量测试数据便可以得到更为精确的反映雷达实际应用环境影响的RCS模型(比如体现为上述发射功率最终被确定为取值范围中的某个数值),工作量减少的同时,可以获得更准确的RCS模型。
在得到修正后的RCS模型后,该修正后的RCS模型可以存储在雷达中,作为雷达后续探测目标物的RCS的依据。
概括来说,在后续实际使用雷达进行目标物的探测过程中,雷达获取对目标物的检测数据,进而根据目标物的检测数据和修正后的RCS模型,确定该目标物的RCS。其中,检测数据包括:雷达相对目标物的距离、角度和目标物的回波信号强度,其中,目标物的回波信号强度与接收功率对应。可以将得到的检测数据代入修正后的RCS模型,便可以得到目标物的RCS。其中,该代入可以理解为是通过插值或查表的方式,根据建模得到的上述对应关系得到对应的参数值,如发射功率、接收功率、天线增益。
上述仅对目标物的RCS的确定过程进行了原理性的概说。实际上,以旋转雷达来说,基于雷达的工作原理可知,在雷达对目标物的探测过程,雷达会不断改变转动角度,在每个角度下,会向目标物发射信号,而不同角度发射的信号对被目标物上的不同位置接收并反馈回波信号。基于此,获取雷达对目标物的检测数据,具体实现为:控制雷达以不同角度向目标物上的不同位置点发射信号,以获取不同位置点对应的检测数据。从而,根据不同位置点对应的检测数据和修正后的RCS模型,确定不同位置点对应的RCS。也就是说,最终可以获得目标物的点云RCS信息。
在一可选实施例中,目标物的RCS可以用于目标物的识别。具体地,可以根据目标物的不同位置点对应的RCS识别目标物。其中,对目标物的识别包括识别目标物的类型。举例来说,假设在地面上有一块石头,该石头作为目标物,通过获取该目标物的不同位置点对应的RCS,如果发现相邻的多个位置点所对应的RCS均相同,并且与石头的RCS相等,则大致确定该目标物为石头。
实际应用中,目标物的识别结果比如可以用于识别雷达当前所处场景中是否具有某种特定的目标物,还可以用于对目标物的跟踪。在对目标物进行跟踪的需求下,基于对目标物RCS的确定,即使不同目标物的航迹有所交叉,但是如果该不同目标物的RCS不同,便可以保证准确地跟踪不同目标物。
在另一可选实施例中,目标物的RCS还可以用于向用户介绍雷达的探测性 能。具体地,根据目标物不同位置点对应的RCS可以确定目标物的形状和RCS,进而向用户输出该目标物的形状和RCS,以使用户根据预先存储的多个目标物图像获知与该目标物的形状和RCS对应的目标物图像。
其中,假设雷达被搭载在无人机上使用,无人机在一些实际应用环境下可以被用于进行某些特定目标物的探测,此时,可以在无人机的遥控器中存储不同目标物的图像。需要说明的是,雷达也可被搭载在其他可移动平台上。例如,机器人,无人机,无人车等。
当控制无人机飞行时,以当前雷达探测到某种规则形状(如圆柱体)的物体为例来说,雷达获取得到该目标物不同位置点的RCS后,该目标物的不同位置点对应的RCS相同,且该目标物与周围其他物体的RCS不同,从而可以确定出该目标物的RCS以及其形状(或者称为轮廓)。将该目标物的形状和RCS通过界面显示给用户,用户便可以根据已经存储的上述不同目标物的图像,通过对比探测到的目标物和形状与哪个目标物图像相匹配,便可以清楚地得知当前探测到的目标物是什么,以及其RCS是多少,从而,对于用户来说,便可以清楚地看到目标物图像与RCS间的对应关系,使得用户能够直观地感知到雷达能够探测到什么物体,以及各物体的RCS情况。
图8为本发明实施例提供的一种目标物RCS确定装置的结构示意图,该目标物RCS确定装置可以位于雷达中。如图8所示,该目标物RCS确定装置包括:存储器11,存储有可执行代码;以及,一个或多个处理器12,单独地或共同地工作。该一个或多个处理器12执行存储器11中存储的可执行代码,以用于实现:
获取雷达散射截面积模型的多个模型参数;
获取所述雷达在实际应用环境下的所述多个模型参数对应的多个第一参数值;
根据所述多个第一参数值,修正所述雷达散射截面积模型,其中,修正后的雷达散射截面积模型用于确定目标物的雷达散射截面积。
可选地,所述处理器12具体用于:
根据雷达中器件的测试数据、雷达散射截面积求解方程、以及实验室环境下得到的关于雷达散射截面积求解方程的多个参数的多个第二参数值,建立所述雷达散射截面积模型;
其中,所述多个参数包括以下参数中的至少一个:
雷达接收天线的接收功率,雷达接收天线的接收增益,雷达发射天线的发射增益,所述雷达发射天线的发射增益和所述雷达接收天线的接收增益的叠加结果,以及雷达发射天线的发射功率。
可选地,所述雷达散射截面积模型中包括多个模型参数,所述多个模型参数的取值范围依据所述多个第二参数值而被确定。
可选地,所述多个模型参数包括以下参数中的至少一个:
雷达接收天线的接收功率,雷达接收天线的接收增益,雷达发射天线的发射增益,所述雷达发射天线的发射增益和所述雷达接收天线的接收增益的叠加结果,以及雷达发射天线的发射功率。
可选地,所述处理器12具体用于:获取雷达中器件的测试数据与雷达散射截面积求解方程中多个参数之间的标定关系;根据所述标定关系和所述实验室环境下得到的所述多个参数的所述多个第二参数值,建立所述雷达散射截面积模型。
可选地,所述处理器12还用于:在实验室环境中,控制所述雷达以不同距离和不同角度向目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个参数的所述多个第二参数值,所述目标模拟对象用于模拟目标物。
可选地,所述处理器12还用于:在所述实验室环境下,控制所述雷达相对所述目标模拟对象的角度为第一角度,所述第一角度为零度;在所述第一角度下,控制所述雷达以不同距离向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第一候选参数值;控制所述雷达与所述目标模拟对象之间相距第一距离;在所述第一距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第二候 选参数值;根据所述多个第一候选参数值和所述第二候选参数值,确定所述雷达与所述目标模拟对象相距第二距离以及相对所述目标模拟对象的角度为第二角度时的第三候选参数值;其中,所述多个第二参数值包括所述多个第一候选参数值、所述多个第二候选参数值、以及所述第三候选参数值。
可选地,所述处理器12还用于:在所述实验室环境下,控制所述雷达与所述目标模拟对象之间相距预设距离;在所述预设距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第二参数值。
可选地,所述处理器12还用于:在实际应用环境中,控制所述雷达以不同距离和不同角度向目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个模型参数的第一参数值,所述目标模拟对象用于模拟目标物。
可选地,所述处理器12还用于:在所述实际应用环境下,控制所述雷达相对所述目标模拟对象的角度为第一角度,所述第一角度为零度;在所述第一角度下,控制所述雷达以不同距离向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第一候选参数值;控制所述雷达与所述目标模拟对象之间相距第一距离;在所述第一距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第二候选参数值;根据所述多个第一候选参数值和所述第二候选参数值,确定所述雷达与所述目标模拟对象相距第二距离以及相对所述目标模拟对象的角度为第二角度时的第三候选参数值;其中,所述多个第一参数值包括所述多个第一候选参数值、所述多个第二候选参数值、以及所述第三候选参数值。
可选地,所述处理器12还用于:在所述实际应用环境下,控制所述雷达与所述目标模拟对象之间相距预设距离;在所述预设距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第一参数值。
可选地,在所述实际应用环境测试的距离和角度的取值数量小于在所述实验室环境中测试的距离和角度的取值数量。
可选地,所述测试数据包括雷达中发射链路相关器件的第一测试数据和接收链路相关器件的第二测试数据。此时,所述处理器12具体用于:
获取雷达中发射链路相关器件的第一测试数据与雷达发射天线的发射功率和发射增益之间的第一标定关系;
获取雷达中接收链路相关器件的第二测试数据与雷达接收天线的接收功率和接收增益之间的第二标定关系;
依据所述第一标定关系、所述第二标定关系、以及所述实验室环境下得到的所述多个参数的所述多个第二参数值,建立所述雷达散射截面积模型。
可选地,所述处理器12还用于:获取所述雷达对目标物的检测数据;根据所述目标物的检测数据和修正后的雷达散射截面积模型,确定所述目标物的雷达散射截面积;其中,所述目标物的检测数据包括:所述雷达相对所述目标物的距离、角度和所述目标物的回波信号强度。
可选地,所述处理器12具体用于:控制所述雷达以不同角度向目标物上的不同位置点发射信号,以获取所述不同位置点对应的检测数据;根据所述不同位置点对应的检测数据和修正后的雷达散射截面积模型,确定所述不同位置点对应的雷达散射截面积。
可选地,所述处理器12还用于:根据所述不同位置点对应的雷达散射截面积确定所述目标物的形状和雷达散射截面积;向用户输出所述目标物的形状和雷达散射截面积,以使所述用户根据预先存储的多个目标物图像获知与所述目标物的形状和雷达散射截面积对应的目标物图像。
可选地,所述处理器还用于:
根据所述不同位置点对应的雷达散射截面积识别所述目标物。
可选地,所述多个第一参数值包括雷达接收天线的接收功率;以及,所述处理器12还用于:对雷达中接收链路部分的一个或多个模块的输入物理量和输出物理量建立关于所述输入物理量和所述输出物理量的模型;根据所述模型,确定所述雷达接收天线的接收功率与所述输出物理量之间的对应关系;当处理器接收到所述输出物理量时,根据所述输出物理量确定所述雷达接收 天线的接收功率。本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现前述任一实施例中提供的目标物RCS确定方法。
以上各个实施例中的技术方案、技术特征在不相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (37)

  1. 一种目标物雷达散射截面积确定方法,其特征在于,包括:
    获取雷达散射截面积模型的多个模型参数;
    获取所述雷达在实际应用环境下的与所述多个模型参数对应的多个第一参数值;
    根据所述多个第一参数值,修正所述雷达散射截面积模型,其中,修正后的雷达散射截面积模型用于确定目标物的雷达散射截面积。
  2. 根据权利要求1所述的方法,其特征在于,进一步包括,
    根据雷达中器件的测试数据、雷达散射截面积求解方程、以及实验室环境下得到的关于雷达散射截面积求解方程的多个参数的多个第二参数值,建立所述雷达散射截面积模型;
    其中,所述多个参数包括以下参数中的至少一个:
    雷达接收天线的接收功率,雷达接收天线的接收增益,雷达发射天线的发射增益,所述雷达发射天线的发射增益和所述雷达接收天线的接收增益的叠加结果,以及雷达发射天线的发射功率。
  3. 根据权利要求2所述的方法,其特征在于,所述雷达散射截面积模型中包括多个模型参数,所述多个模型参数的取值范围依据所述多个第二参数值而被确定。
  4. 根据权利要求3所述的方法,其特征在于,所述多个模型参数包括以下参数中的至少一个:
    雷达接收天线的接收功率,雷达接收天线的接收增益,雷达发射天线的发射增益,所述雷达发射天线的发射增益和所述雷达接收天线的接收增益的叠加结果,以及雷达发射天线的发射功率。
  5. 根据权利要求2所述的方法,其特征在于,所述根据雷达中器件的测试数据,建立雷达散射截面积模型,包括:
    获取雷达中器件的测试数据与雷达散射截面积求解方程中多个参数之间的标定关系;
    根据所述标定关系和所述实验室环境下得到的所述多个参数的所述多个第二参数值,建立所述雷达散射截面积模型。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    在实验室环境中,控制所述雷达以不同距离和不同角度向目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个参数的所述多个第二参数值,所述目标模拟对象用于模拟目标物。
  7. 根据权利要求6所述的方法,其特征在于,所述控制所述雷达以不同距离和不同角度向目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个参数的所述多个第二参数值,包括:
    在所述实验室环境下,控制所述雷达相对所述目标模拟对象的角度为第一角度,所述第一角度为零度;
    在所述第一角度下,控制所述雷达以不同距离向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第一候选参数值;
    控制所述雷达与所述目标模拟对象之间相距第一距离;
    在所述第一距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第二候选参数值;
    根据所述多个第一候选参数值和所述第二候选参数值,确定所述雷达与所述目标模拟对象相距第二距离以及相对所述目标模拟对象的角度为第二角度时的第三候选参数值;其中,所述第一角度和所述第二角度不同,所述第一距离和所述第二距离不同;
    其中,所述多个第二参数值包括所述多个第一候选参数值、所述多个第二候选参数值、以及所述第三候选参数值。
  8. 根据权利要求6所述的方法,其特征在于,所述控制所述雷达以不同距离和不同角度向目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个参数的所述多个第二参数值,包括:
    在所述实验室环境下,控制所述雷达与所述目标模拟对象之间相距预设距离;
    在所述预设距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第二参数值。
  9. 根据权利要求1所述的方法,其特征在于,所述获取所述雷达在实际应用环境中的所述多个模型参数对应的多个第一参数值,包括:
    在实际应用环境中,控制所述雷达以不同距离和不同角度向目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个模型参数的所述多个第一参数值,所述目标模拟对象用于模拟目标物。
  10. 根据权利要求9所述的方法,其特征在于,所述控制所述雷达以不同距离和不同角度向目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个模型参数的所述多个第一参数值,包括:
    在所述实际应用环境下,控制所述雷达相对所述目标模拟对象的角度为第一角度,所述第一角度为零度;
    在所述第一角度下,控制所述雷达以不同距离向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第一候选参数值;
    控制所述雷达与所述目标模拟对象之间相距第一距离;
    在所述第一距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第二候选参数值;
    根据所述多个第一候选参数值和所述第二候选参数值,确定所述雷达与所述目标模拟对象相距第二距离以及相对所述目标模拟对象的角度为第二角度时的第三候选参数值;其中,所述第一角度和所述第二角度不同,所述第一距离和所述第二距离不同;
    其中,所述多个第一参数值包括所述多个第一候选参数值、所述多个第二候选参数值、以及所述第三候选参数值。
  11. 根据权利要求9所述的方法,其特征在于,所述控制所述雷达以不同距离和不同角度向目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个模型参数的所述多个第一参数值,包括:
    在所述实际应用环境下,控制所述雷达与所述目标模拟对象之间相距预 设距离;
    在所述预设距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第一参数值。
  12. 根据权利要求9所述的方法,其特征在于,在所述实际应用环境测试的距离和角度的取值数量小于在所述实验室环境中测试的距离和角度的取值数量。
  13. 根据权利要求2所述的方法,其特征在于,所述测试数据包括雷达中发射链路相关器件的第一测试数据和接收链路相关器件的第二测试数据;
    所述根据雷达中器件的测试数据、雷达散射截面积求解方程、以及实验室环境下得到的关于雷达散射截面积求解方程的多个参数的多个第二参数值,建立所述雷达散射截面积模型,包括:
    获取雷达中发射链路相关器件的第一测试数据与雷达发射天线的发射功率和发射增益之间的第一标定关系;
    获取雷达中接收链路相关器件的第二测试数据与雷达接收天线的接收功率和接收增益之间的第二标定关系;
    依据所述第一标定关系、所述第二标定关系、以及所述实验室环境下得到的所述多个参数的所述多个第二参数值,建立所述雷达散射截面积模型。
  14. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取所述雷达对目标物的检测数据;
    根据所述目标物的检测数据和修正后的雷达散射截面积模型,确定所述目标物的雷达散射截面积;其中,所述目标物的检测数据包括:所述雷达相对所述目标物的距离、角度和所述目标物的回波信号强度。
  15. 根据权利要求14所述的方法,其特征在于,所述获取所述雷达对目标物的检测数据,包括:
    控制所述雷达以不同角度向目标物上的不同位置点发射信号,以获取所述不同位置点对应的检测数据;
    所述根据所述目标物的检测数据和修正后的雷达散射截面积模型,确定 所述目标物的雷达散射截面积,包括:
    根据所述不同位置点对应的检测数据和修正后的雷达散射截面积模型,确定所述不同位置点对应的雷达散射截面积。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    根据所述不同位置点对应的雷达散射截面积确定所述目标物的形状和雷达散射截面积;
    向用户输出所述目标物的形状和雷达散射截面积,以使所述用户根据预先存储的多个目标物图像获知与所述目标物的形状和雷达散射截面积对应的目标物图像。
  17. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    根据所述不同位置点对应的雷达散射截面积识别所述目标物。
  18. 根据权利要求1所述的方法,其特征在于,所述多个第一参数值包括雷达接收天线的接收功率;以及,
    所述方法还包括:
    对雷达中接收链路部分的一个或多个模块的输入物理量和输出物理量建立关于所述输入物理量和所述输出物理量的模型;
    根据所述模型,确定所述雷达接收天线的接收功率与所述输出物理量之间的对应关系;
    当处理器接收到所述输出物理量时,根据所述输出物理量确定所述雷达接收天线的接收功率。
  19. 一种目标物雷达散射截面积确定装置,其特征在于,包括:
    存储器,存储有可执行代码;
    处理器,执行所述可执行代码以用于实现:
    获取雷达散射截面积模型的多个模型参数;
    获取所述雷达在实际应用环境下的与所述多个模型参数对应的多个第一参数值;
    根据所述多个第一参数值,修正所述雷达散射截面积模型,其中,修正 后的雷达散射截面积模型用于确定目标物的雷达散射截面积。
  20. 根据权利要求19所述的装置,其特征在于,所述处理器具体用于:
    根据雷达中器件的测试数据、雷达散射截面积求解方程、以及实验室环境下得到的关于雷达散射截面积求解方程的多个参数的多个第二参数值,建立所述雷达散射截面积模型;
    其中,所述多个参数包括以下参数中的至少一个:
    雷达接收天线的接收功率,雷达接收天线的接收增益,雷达发射天线的发射增益,所述雷达发射天线的发射增益和所述雷达接收天线的接收增益的叠加结果,以及雷达发射天线的发射功率。
  21. 根据权利要求20所述的装置,其特征在于,所述雷达散射截面积模型中包括多个模型参数,所述多个模型参数的取值范围依据所述多个第二参数值而被确定。
  22. 根据权利要求21所述的装置,其特征在于,所述多个模型参数包括以下参数中的至少一个:
    雷达接收天线的接收功率,雷达接收天线的接收增益,雷达发射天线的发射增益,所述雷达发射天线的发射增益和所述雷达接收天线的接收增益的叠加结果,以及雷达发射天线的发射功率。
  23. 根据权利要求20所述的装置,其特征在于,所述处理器具体用于:
    获取雷达中器件的测试数据与雷达散射截面积求解方程中多个参数之间的标定关系;
    根据所述标定关系和所述实验室环境下得到的所述多个参数的所述多个第二参数值,建立所述雷达散射截面积模型。
  24. 根据权利要求23所述的装置,其特征在于,所述处理器还用于:
    在实验室环境中,控制所述雷达以不同距离和不同角度向目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个参数的所述多个第二参数值,所述目标模拟对象用于模拟目标物。
  25. 根据权利要求24所述的装置,其特征在于,所述处理器还用于:
    在所述实验室环境下,控制所述雷达相对所述目标模拟对象的角度为第一角度,所述第一角度为零度;
    在所述第一角度下,控制所述雷达以不同距离向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第一候选参数值;
    控制所述雷达与所述目标模拟对象之间相距第一距离;
    在所述第一距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第二候选参数值;
    根据所述多个第一候选参数值和所述第二候选参数值,确定所述雷达与所述目标模拟对象相距第二距离以及相对所述目标模拟对象的角度为第二角度时的第三候选参数值;其中,所述第一角度和所述第二角度不同,所述第一距离和所述第二距离不同;
    其中,所述多个第二参数值包括所述多个第一候选参数值、所述多个第二候选参数值、以及所述第三候选参数值。
  26. 根据权利要求24所述的装置,其特征在于,所述处理器还用于:
    在所述实验室环境下,控制所述雷达与所述目标模拟对象之间相距预设距离;
    在所述预设距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第二参数值。
  27. 根据权利要求19所述的装置,其特征在于,所述处理器还用于:
    在实际应用环境中,控制所述雷达以不同距离和不同角度向目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个模型参数的所述多个第一参数值,所述目标模拟对象用于模拟目标物。
  28. 根据权利要求27所述的装置,其特征在于,所述处理器还用于:
    在所述实际应用环境下,控制所述雷达相对所述目标模拟对象的角度为第一角度,所述第一角度为零度;
    在所述第一角度下,控制所述雷达以不同距离向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第一候选参数值;
    控制所述雷达与所述目标模拟对象之间相距第一距离;
    在所述第一距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的多个第二候选参数值;
    根据所述多个第一候选参数值和所述第二候选参数值,确定所述雷达与所述目标模拟对象相距第二距离以及相对所述目标模拟对象的角度为第二角度时的第三候选参数值;其中,所述第一角度和所述第二角度不同,所述第一距离和所述第二距离不同;
    其中,所述多个第一参数值包括所述多个第一候选参数值、所述多个第二候选参数值、以及所述第三候选参数值。
  29. 根据权利要求27所述的装置,其特征在于,所述处理器还用于:
    在所述实际应用环境下,控制所述雷达与所述目标模拟对象之间相距预设距离;
    在所述预设距离下,控制所述雷达以不同角度向所述目标模拟对象发射信号,获取所述雷达在所述信号下对应的所述多个第一参数值。
  30. 根据权利要求27所述的装置,其特征在于,在所述实际应用环境测试的距离和角度的取值数量小于在所述实验室环境中测试的距离和角度的取值数量。
  31. 根据权利要求20所述的装置,其特征在于,所述测试数据包括雷达中发射链路相关器件的第一测试数据和接收链路相关器件的第二测试数据;
    所述处理器具体用于:
    获取雷达中发射链路相关器件的第一测试数据与雷达发射天线的发射功率和发射增益之间的第一标定关系;
    获取雷达中接收链路相关器件的第二测试数据与雷达接收天线的接收功率和接收增益之间的第二标定关系;
    依据所述第一标定关系、所述第二标定关系、以及所述实验室环境下得到的所述多个参数的所述多个第二参数值,建立所述雷达散射截面积模型。
  32. 根据权利要求19所述的装置,其特征在于,所述处理器还用于:
    获取所述雷达对目标物的检测数据;
    根据所述目标物的检测数据和修正后的雷达散射截面积模型,确定所述目标物的雷达散射截面积;其中,所述目标物的检测数据包括:所述雷达相对所述目标物的距离、角度和所述目标物的回波信号强度。
  33. 根据权利要求32所述的装置,其特征在于,所述处理器具体用于:
    控制所述雷达以不同角度向目标物上的不同位置点发射信号,以获取所述不同位置点对应的检测数据;
    根据所述不同位置点对应的检测数据和修正后的雷达散射截面积模型,确定所述不同位置点对应的雷达散射截面积。
  34. 根据权利要求33所述的装置,其特征在于,所述处理器还用于:
    根据所述不同位置点对应的雷达散射截面积确定所述目标物的形状和雷达散射截面积;
    向用户输出所述目标物的形状和雷达散射截面积,以使所述用户根据预先存储的多个目标物图像获知与所述目标物的形状和雷达散射截面积对应的目标物图像。
  35. 根据权利要求33所述的装置,其特征在于,所述处理器还用于:
    根据所述不同位置点对应的雷达散射截面积识别所述目标物。
  36. 根据权利要求19所述的装置,其特征在于,所述多个第一参数值包括雷达接收天线的接收功率;以及,所述处理器还用于:
    对雷达中接收链路部分的一个或多个模块的输入物理量和输出物理量建立关于所述输入物理量和所述输出物理量的模型;
    根据所述模型,确定所述雷达接收天线的接收功率与所述输出物理量之间的对应关系;
    当处理器接收到所述输出物理量时,根据所述输出物理量确定所述雷达接收天线的接收功率。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有可执行代码,所述可执行代码用于实现权利要求1至18中任一项所述 的目标物雷达散射截面积确定方法。
PCT/CN2019/119309 2019-11-19 2019-11-19 标物雷达散射截面积确定方法、装置和存储介质 WO2021097636A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/119309 WO2021097636A1 (zh) 2019-11-19 2019-11-19 标物雷达散射截面积确定方法、装置和存储介质
CN201980040011.3A CN112689772A (zh) 2019-11-19 2019-11-19 标物雷达散射截面积确定方法、装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/119309 WO2021097636A1 (zh) 2019-11-19 2019-11-19 标物雷达散射截面积确定方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2021097636A1 true WO2021097636A1 (zh) 2021-05-27

Family

ID=75445510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119309 WO2021097636A1 (zh) 2019-11-19 2019-11-19 标物雷达散射截面积确定方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN112689772A (zh)
WO (1) WO2021097636A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114674256B (zh) * 2022-04-02 2023-08-22 四川豪智融科技有限公司 一种基于雷达极化方向判定目标旋转角度的方法
CN116449327B (zh) * 2023-04-25 2023-10-13 中国计量科学研究院 一种基于脉冲压缩方法的外推法测量雷达散射截面积的方法和系统
CN116299297B (zh) * 2023-05-05 2024-01-12 南京隼眼电子科技有限公司 雷达散射截面积的计算方法、装置及存储介质
CN116908807B (zh) * 2023-09-13 2023-12-08 北京航空航天大学 基于信号耦合模型的蜂群无人机雷达散射截面计算方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777185A (zh) * 2014-01-15 2014-05-07 北京环境特性研究所 基于暗室扫频获取目标体雷达散射截面的方法及装置
CN106093892A (zh) * 2016-05-23 2016-11-09 中国人民解放军63921部队 基于标校卫星同时开展雷达rcs标定与外测标定系统
CN106291487A (zh) * 2016-08-04 2017-01-04 上海无线电设备研究所 一种基于agc电压和回波数据的雷达接收功率和rcs估计方法
CN106707251A (zh) * 2016-08-31 2017-05-24 中国人民解放军空军装备研究院雷达与电子对抗研究所 应答机功率校准方法及装置
CN107192990A (zh) * 2017-06-20 2017-09-22 中国计量科学研究院 外推法测雷达散射截面积
CN109444837A (zh) * 2019-01-04 2019-03-08 北京环境特性研究所 一种雷达回波仿真方法和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4222185B2 (ja) * 2003-10-31 2009-02-12 株式会社日立製作所 補正機能付きレーダ装置
RU2488135C1 (ru) * 2011-12-21 2013-07-20 Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации Способ измерения эффективной поверхности рассеяния крупногабаритных массивных объектов в безэховой камере
CN104215949B (zh) * 2014-08-26 2016-10-19 上海无线电设备研究所 一种基于自动增益控制电压修正的目标rcs标定方法
CN105388467B (zh) * 2015-11-03 2017-08-08 南京信息工程大学 一种修正多普勒天气雷达回波衰减的方法
CN107656264B (zh) * 2017-08-02 2021-04-27 南京航空航天大学 杂波环境下的机会阵雷达多目标跟踪的功率资源管理方法
CN107544063B (zh) * 2017-08-08 2020-05-01 西安电子科技大学 一种雷达跟踪状态下的目标rcs的预测方法
CN109581307B (zh) * 2018-11-22 2023-03-21 西安八阵图电子科技有限公司 回波强度z参数标定方法、装置、计算机设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777185A (zh) * 2014-01-15 2014-05-07 北京环境特性研究所 基于暗室扫频获取目标体雷达散射截面的方法及装置
CN106093892A (zh) * 2016-05-23 2016-11-09 中国人民解放军63921部队 基于标校卫星同时开展雷达rcs标定与外测标定系统
CN106291487A (zh) * 2016-08-04 2017-01-04 上海无线电设备研究所 一种基于agc电压和回波数据的雷达接收功率和rcs估计方法
CN106707251A (zh) * 2016-08-31 2017-05-24 中国人民解放军空军装备研究院雷达与电子对抗研究所 应答机功率校准方法及装置
CN107192990A (zh) * 2017-06-20 2017-09-22 中国计量科学研究院 外推法测雷达散射截面积
CN109444837A (zh) * 2019-01-04 2019-03-08 北京环境特性研究所 一种雷达回波仿真方法和装置

Also Published As

Publication number Publication date
CN112689772A (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2021097636A1 (zh) 标物雷达散射截面积确定方法、装置和存储介质
US11656356B2 (en) Ranging method based on laser radar system, device and readable storage medium
WO2022095510A1 (zh) 阵列天线的校准方法、装置及存储介质
EP3936895A1 (en) Distance measurement method, apparatus and device
JP5577223B2 (ja) アンテナなどの高周波特性試験対象物の特性測定のための高周波特性測定システム及び方法
CN104730503B (zh) 确定高分辨率sar参考目标rcs对定标影响的方法及补偿方法
CN108717181B (zh) 一种新型室外场静态rcs前置联动标校测试方法
US10527714B2 (en) Calibration device and calibration method for calibrating antenna arrays
CN110568414B (zh) 基于w波段雷达系统的半实物仿真延时校准方法及系统
CN113092915B (zh) 一种射频设备电磁环境适应性边界场景快速推演方法
CN112230190B (zh) 一种针对目标摆放位置误差的目标rcs相位校准方法
JP6545369B2 (ja) ルックアップ・テーブル生成方法
CN110622024A (zh) 室内定位方法、装置和设备
CN112946569A (zh) 测量距离校正方法、装置、介质及电子设备
CN113344954A (zh) 边界检测方法、装置、计算机设备、存储介质和传感器
US20230017555A1 (en) Over the air calibration of an advanced antenna system
US11978158B2 (en) Determining minimum region for finding planar surfaces
CN115718281A (zh) 探测设备的校准方法、系统、存储介质和电子装置
WO2022252059A1 (zh) 雷达截获因子的测试方法、装置、存储介质及处理器
KR101222531B1 (ko) 다중표적처리장치에서 거리 구간별 다른 가중치의 융합 기준을 가지는 표적 융합 방법
CN102768310B (zh) 采用距离偏移技术消减天线测试环境中多径干扰的方法
CN117055061B (zh) 测距方法、激光雷达、机器人及存储介质
Koyuncu et al. A study of indoor positioning by using trigonometric and weight centroid localization techniques
US20230184911A1 (en) Method and system for evaluating point cloud quality of lidar, and apparatus
US20190391225A1 (en) Method and system for determining an angle of arrival of a radioelectric signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19953680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19953680

Country of ref document: EP

Kind code of ref document: A1