WO2021096318A1 - 캐리어 기판 및 이를 이용한 소자 전사방법 - Google Patents
캐리어 기판 및 이를 이용한 소자 전사방법 Download PDFInfo
- Publication number
- WO2021096318A1 WO2021096318A1 PCT/KR2020/016058 KR2020016058W WO2021096318A1 WO 2021096318 A1 WO2021096318 A1 WO 2021096318A1 KR 2020016058 W KR2020016058 W KR 2020016058W WO 2021096318 A1 WO2021096318 A1 WO 2021096318A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- laser beam
- energy absorbing
- base layer
- carrier substrate
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 124
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000010521 absorption reaction Methods 0.000 claims description 22
- 238000002360 preparation method Methods 0.000 claims description 13
- 239000000853 adhesive Substances 0.000 claims description 12
- 230000001070 adhesive effect Effects 0.000 claims description 12
- 230000001678 irradiating effect Effects 0.000 claims description 6
- 239000000463 material Substances 0.000 description 12
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 11
- 229910052594 sapphire Inorganic materials 0.000 description 9
- 239000010980 sapphire Substances 0.000 description 9
- 229910002601 GaN Inorganic materials 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000004593 Epoxy Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004299 exfoliation Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/7806—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
- H01L21/7813—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/7806—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/18—Working by laser beam, e.g. welding, cutting or boring using absorbing layers on the workpiece, e.g. for marking or protecting purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/53—Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/57—Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67092—Apparatus for mechanical treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67144—Apparatus for mounting on conductive members, e.g. leadframes or conductors on insulating substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/32—Holders for supporting the complete device in operation, i.e. detachable fixtures
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/018—Bonding of wafers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/36—Electric or electronic devices
- B23K2101/40—Semiconductor devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/16—Composite materials, e.g. fibre reinforced
- B23K2103/166—Multilayered materials
- B23K2103/172—Multilayered materials wherein at least one of the layers is non-metallic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
- B23K2103/56—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68318—Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68318—Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
- H01L2221/68322—Auxiliary support including means facilitating the selective separation of some of a plurality of devices from the auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68354—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68368—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used in a transfer process involving at least two transfer steps, i.e. including an intermediate handle substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/68381—Details of chemical or physical process used for separating the auxiliary support from a device or wafer
Definitions
- the present invention relates to a carrier substrate and a device transfer method using the same, and more particularly, to a carrier substrate that prevents damage to a device during a transfer process and improves a transfer yield and transfer precision, and a device transfer method using the same.
- GaN-based devices such as LEDs are widely spotlighted as high-performance solid-state lighting because they can obtain high internal quantum efficiency with low power consumption.
- sapphire Al 2 O 3
- the sapphire substrate has a high melting point and is suitable as a substrate for a thin film deposited at a high temperature such as a gallium nitride (GaN) layer, and a relatively high quality GaN thin film layer can be grown on the sapphire substrate.
- GaN gallium nitride
- the device transfer method requires a process of separating the sapphire substrate on which the gallium nitride thin film is grown and the gallium nitride thin film layer.
- a laser lift-off (LLO) process using light irradiated from a laser is used. This is because the laser exfoliation process passes the laser beam through the sapphire substrate to generate local heat at the interface between the sapphire substrate and the gallium nitride-based device, whereby the sapphire substrate can be easily separated.
- LLO laser lift-off
- the elastic wave caused by the laser beam incident on the incident surface of the device is reflected from the free surface, thereby creating a tensile stress on the incident surface of the device. It is generated, and there is a problem in that spallation damage may occur on the incident surface due to such tensile stress.
- bending stress may be generated in the device due to the shock wave caused by the laser beam incident on the device.
- the element's center displacement increases as more pressing force is applied to the edge of the device by the carrier film. There is a problem that can be damaged by bending.
- the technical problem to be achieved by the present invention is to provide a carrier substrate that prevents damage to a device during a transfer process, and improves a transfer yield and transfer precision, and a device transfer method using the same.
- an embodiment of the present invention is a base layer;
- An anti-reflection layer provided on one surface of the base layer and configured to transmit an acoustic wave generated by a first laser beam that is incident through the source substrate of the device to be adhered to and passes through the device to be transmitted to the base layer without being reflected in the direction of the device.
- a carrier substrate characterized in that it comprises an energy absorbing layer that is aligned with the device and evaporates when energy is absorbed.
- an embodiment of the present invention is a base layer; An anti-reflection layer provided on one surface of the base layer and configured to transmit an acoustic wave generated by a first laser beam that is incident through the source substrate of the device to be adhered to and passes through the device to be transmitted to the base layer without being reflected in the direction of the device. ; And it provides a carrier substrate comprising an energy absorbing layer provided between the anti-reflection layer and the device, and evaporated when energy is absorbed.
- the energy absorbing layer may be evaporated when the second laser beam transmitted through the base layer is irradiated.
- the energy absorbing layer to which the second laser beam is irradiated may be formed in an area smaller than the beam cross-sectional area of the second laser beam.
- the center of the energy absorbing layer may coincide with the center of the device.
- the energy absorbing layer may be formed to correspond to a shape of an opposite surface of the device.
- an embodiment of the present invention is a preparation step of preparing a source substrate having an element formed on one side; A base layer, an antireflection layer provided on one surface of the base layer and configured to transmit an acoustic wave generated by a first laser beam that is incident through the source substrate and passes through the device without being reflected in the direction of the device, and A carrier substrate preparation step of providing a carrier substrate having an energy absorbing layer provided between the base layer and the antireflection layer and evaporated when energy is absorbed; An adhesion step of adhering the device to the anti-reflection layer by positioning the anti-reflection layer to face the device and aligning the energy absorbing layer with the device; An element peeling step of exfoliating the element from the source substrate by irradiating the first laser beam onto the element; Then, the device is positioned above the target substrate, and a second laser beam is irradiated to the energy absorbing layer to evaporate the energy absorbing layer to remove the adhesive force between
- an embodiment of the present invention is a preparation step of preparing a source substrate on which an element having an energy absorbing layer evaporated when absorbing energy is disposed on one surface thereof;
- An antireflection layer provided on one side of the base layer and the base layer and configured to transmit the elastic waves generated by the first laser beam incident through the source substrate and passing through the device through the base layer without being reflected in the direction of the device.
- a carrier substrate preparing step of preparing a branch carrier substrate An adhesion step of adhering the device to the antireflection layer so that the energy absorbing layer is provided between the antireflection layer and the device; An element peeling step of exfoliating the element from the source substrate by irradiating the first laser beam onto the element; Then, the device is positioned above the target substrate, and a second laser beam is irradiated to the energy absorbing layer to evaporate the energy absorbing layer to remove the adhesive force between the device and the antireflection layer, so that the device is transferred to the target substrate. It provides a device transfer method using a carrier substrate, characterized in that it comprises a transfer step to enable.
- the beam cross-sectional area of the second laser beam may be larger than the area of the energy absorbing layer.
- the second laser beam in the transfer step, may pass through the base layer and be irradiated to the energy absorbing layer.
- a first mask is further disposed on the other surface of the source substrate, and the first laser beam is irradiated to a specific device among the devices through the first mask. Can only be made to peel off.
- a second mask is further disposed on the other surface of the base layer, and the second laser beam is irradiated to a specific energy absorbing layer among the energy absorbing layers through the second mask. Only devices that are aligned with a specific energy absorbing layer can be transferred.
- an antireflection layer for an acoustic wave is provided on one surface of the base layer, the acoustic wave generated by the first laser beam incident through the source substrate is not reflected by the antireflection layer but passes through the antireflection layer. In this way, sputtering damage of the device can be prevented.
- the energy absorbing layer is arranged in alignment with the element, the expansion space generated by the evaporation of the energy absorbing layer is most convex at the center of the element. Accordingly, the adhesive force between the antireflection layer and the device decreases from the outside of the device toward the center, and finally, the adhesive force at the center of the device is removed. Thus, the element can fall vertically downward and can be accurately transferred to the target position of the target substrate.
- FIG. 1 is a cross-sectional view showing a carrier substrate according to a first embodiment of the present invention.
- FIG. 2 is a flowchart illustrating a device transfer method using the carrier substrate of FIG. 1.
- FIG. 3 is an exemplary view showing a process of a device transfer method using the carrier substrate of FIG. 2.
- FIG. 4 is an exemplary view for explaining an example of using a mask during a process of a device transfer method using a carrier substrate of FIG. 3.
- FIG. 5 is a cross-sectional view showing a carrier substrate according to a second embodiment of the present invention.
- FIG. 6 is a flowchart illustrating a device transfer method using the carrier substrate of FIG. 5.
- FIG. 7 is an exemplary view showing a process of a device transfer method using the carrier substrate of FIG. 6.
- FIG. 1 is a cross-sectional view showing a carrier substrate according to a first embodiment of the present invention
- FIG. 2 is a flow chart showing a device transfer method using the carrier substrate of FIG. 1
- FIG. 3 is a device using the carrier substrate of FIG. It is an exemplary diagram showing the steps of the transfer method.
- the device transfer method using a carrier substrate includes a preparation step (S210), a carrier substrate preparation step (S220), an adhesion step (S230), a device peeling step (S240), and a transfer step (S250). It may include.
- the preparation step S210 may be a step of preparing the source substrate 20 having the element 10 formed thereon.
- the source substrate 20 is a substrate on which the device 10 is generated, and may be a sapphire substrate.
- the device 10 may be a target to be transferred from the source substrate 20 to the target substrate 30.
- the device 10 may be a light emitting diode (LED) based on gallium nitride (GaN), but is not limited thereto.
- the carrier substrate preparation step S220 may be a step of preparing the carrier substrate 100, and the carrier substrate 100 may include a base layer 110, an antireflection layer 120, and an energy absorption layer 130.
- the base layer 110 may be formed of a transparent material, and preferably may be formed of a material through which the second laser beam L2 to be described later can pass.
- the antireflection layer 120 may be provided on one surface of the base layer 110, and the interface between the source substrate 20 and the device 10 is separated by the first laser beam L1 that passes through the device 10.
- the elastic wave generated in the phenomenon may be transmitted through the device 10 without being reflected in the direction.
- the antireflection layer 120 may have an impedance of a specific range value compared to the impedance of the element 10 generated on the source substrate 20.
- impedance is acoustic impedance, and is defined as density ⁇ wave speed.
- the wave velocity is proportional to the square root of the modulus of elasticity, so the acoustic impedance can be used in the same meaning as the acoustic wave impedance.
- the acoustic wave is a wave generated by a laser beam incident on the incident surface of the device 10, and when reflected from a free surface, a tensile stress may be generated on the incident surface of the device 10.
- the antireflection layer 120 may be formed of a material having an elastic modulus or density similar to the elastic modulus or density of the constituent material of the device 10.
- the antireflection layer 120 may be formed of a material having an elastic modulus unit corresponding to the elastic modulus unit of the element 10. Since gallium nitride (GaN), which is a constituent material of the device 10, has an elastic modulus unit of several hundred GPa, it is not a material having a small elastic modulus unit of MPa such as rubber or PDMS (polydimethylsiloxane). A material having an elastic modulus unit of several GPa, such as ), is more suitable as the antireflection layer 120.
- gallium nitride which is a constituent material of the element 10
- GaN gallium nitride
- air has an acoustic impedance of 0.0004 MRayl
- An acoustic wave generated by the single laser beam L1 may be reflected at the interface between the element 10 and air.
- epoxy has an acoustic impedance of 3.00 MRayl
- PVDF Polyvinylidene fluoride
- PMMA Polymethylmethacrylate
- one of the acrylic series has an acoustic impedance of 3.32 MRayl, so it has an acoustic impedance that is greater than that of air.
- An acoustic wave generated by the 1 laser beam L1 may be transmitted without being reflected.
- the antireflection layer 120 has an elastic modulus unit in the range of GPa like gallium nitride (GaN), which is a constituent material of the device 10, compared to the acoustic impedance of gallium nitride (GaN), which is a constituent material of the device 10. It is preferable to have an acoustic impedance of a specific range value of 1/15 or more and 1 or less, and may be made of an epoxy or PMMA material satisfying this.
- the energy absorption layer 130 may be provided between the base layer 110 and the antireflection layer 120.
- the energy absorption layer 130 may be formed to be aligned with the device 10 to be adhered.
- the energy absorption layer 130 may be evaporated when energy is absorbed.
- the energy absorption layer 130 may be formed of a polymer material that absorbs the second laser beam L2 to be described later.
- the energy absorbing layer 130 may be a metal layer such as gold (Au) or platinum (Pt) having a thickness of several to tens of nanometers, and zinc oxide (ZnO) (band gap energy of 3.37 eV, at a wavelength of 375 nm). It may be formed of a metal oxide capable of absorbing the second laser beam L2, which will be described later, such as).
- the wavelength of the second laser beam L2 is preferably shorter than the wavelength corresponding to the band gap energy of the metal oxide.
- the anti-reflection layer 120 is positioned to face the device 10, and the energy absorbing layer 130 is aligned with the device 10 to adhere the device 10 to the anti-reflection layer 120.
- the antireflection layer 120 is adhered to the device 10 so that the first center C1 of the energy absorption layer 130 coincides with the second center C2 of the device 10, and thus the energy absorption layer It is possible to have 130 aligned with the device 10.
- the energy absorbing layer 130 may be formed to correspond to the shape of the opposite surface 11 of the device 10.
- the energy absorbing layer 130 is vertically above the device 10 to the projection area of the device 10. Can be arranged to match.
- the device peeling step S240 may be a step of exfoliating the device 10 from the source substrate 20 by irradiating the first laser beam L1 onto the device 10.
- the first laser beam L1 passes through the source substrate 20 to transmit the device. It can be investigated as (10).
- the first laser beam L1 may be irradiated to focus on the bonding surface of the source substrate 20 and the device 10. Meanwhile, the first laser beam incident on the device 10 and passing through the device 10 may be defocused and moved to the interface between the device 10 and the anti-reflection layer 120.
- the acoustic wave generated by the first laser beam is the interface between the element 10 and the base layer 110 Will be reflected in.
- the reflected elastic wave may generate a tensile stress on the bonding surface of the element 10 in contact with the source substrate 20, and thus spallation damage may occur.
- the antireflection layer 120 since the antireflection layer 120 is provided, the elastic wave generated by the first laser beam L1 that passes through the element 10 and then moves to the interface between the element 10 and the antireflection layer 120 is reflected. It is not possible to pass through the anti-reflection layer 120. Accordingly, according to the present invention, it is possible to prevent the occurrence of sputtering damage of the device 10.
- the first laser beam L1 is defocused and transmits through the device 10, energy sufficient to evaporate the energy absorbing layer 130 cannot be provided to the energy absorbing layer 130. That is, the energy absorption layer 130 may not be affected by the first laser beam L1.
- the first laser beam L1 may be a laser beam emitted from an excimer laser or a diode pumped solid state (DPSS) laser.
- DPSS diode pumped solid state
- the device 10 is positioned above the point to be transferred from the target substrate 30, and the second laser beam L2 is irradiated to the energy absorbing layer 130 so that the energy absorbing layer 130 is It may be a step of allowing the device 10 to be transferred to the target substrate 30 by removing the adhesive force between the device 10 and the antireflection layer 120 as it evaporates.
- the second laser beam L2 may pass through the base layer 110 and be irradiated to the energy absorbing layer 130.
- the second laser beam L2 may be a UV laser beam
- the base layer 110 may be formed of transparent quartz or sapphire so that the second laser beam L2 can be transmitted.
- the energy absorbing layer 130 may be evaporated.
- the space in which the energy absorbing layer 130 was located may be expanded.
- the antireflection layer 120 is pushed out by the expansion space 135, and the adhesive area between the pushed portion and the element 10 decreases, and finally the element 10 falls to the target substrate 30. Can be transferred.
- the energy absorbing layer 130 since the energy absorbing layer 130 is aligned with the device 10, even if the second laser beam L2 is irradiated to any part of the energy absorbing layer 130, the energy absorbing layer 130 evaporates. , The evaporated gas is filled in the limited space in which the energy absorbing layer 130 is provided, and the expansion space 135 that is expanded accordingly becomes the most convex at the center position of the element 10.
- the adhesive force between the antireflection layer 120 and the device 10 decreases from the outside of the device 10 toward the center, and finally, the adhesive force at the center of the device 10 is removed. Accordingly, the element 10 can fall vertically and downwardly, and can be accurately transferred to the target position of the target substrate 30.
- the beam cross-sectional area LA of the second laser beam L2 may be larger than the area 131 of the energy absorbing layer 130.
- a process of peeling the element 10 from the source substrate 20 and transferring the peeled element 10 to the target substrate 30 may be performed by a single carrier substrate 100. Therefore, a process such as preparing a separate substrate for rearranging devices after the LLO process is unnecessary, and the production process can be shortened.
- FIG. 4 is an exemplary view for explaining an example of using a mask during a process of a device transfer method using a carrier substrate of FIG. 3.
- a first mask 150 is further disposed on the other surface of the source substrate 20, and the first laser beam L1 is A specific element 10a among the elements 10a and 10b is irradiated through the mask 150, and only the corresponding element can be peeled off.
- the first laser beam L1 is Even if the entirety is irradiated to 150, the first laser beam L1 may be irradiated only to the specific element 10a through the open portion of the first mask 150.
- a second mask 160 is further disposed on the other surface of the base layer 110, and the second laser beam L2 is a second mask. Only the element 10a irradiated to the specific energy absorption layer 130 among the energy absorption layers 130 and 130a and aligned with the specific energy absorption layer 130 may be transferred through 160.
- the second laser beam L2 becomes the second mask. Even if the entirety is irradiated to 160, the second laser beam L2 may be irradiated only to the specific energy absorbing layer 130 through the open portion of the second mask 160.
- FIG. 5 is a cross-sectional view showing a carrier substrate according to a second embodiment of the present invention
- FIG. 6 is a flow chart showing a device transfer method using the carrier substrate of FIG. 5
- FIG. 7 is a device using the carrier substrate of FIG. 6 It is an exemplary diagram showing the steps of the transfer method.
- the location of the energy absorbing layer is different, and there may be a difference in the process part related thereto. Since the other configuration is the same as that of the first embodiment described above, repeated content is omitted as much as possible.
- the device transfer method using a carrier substrate includes a preparation step (S610), a carrier substrate preparation step (S620), an adhesion step (S630), a device peeling step (S640), and It may include a transfer step (S650).
- the preparation step S610 may be a step of preparing the source substrate 20 on which the device 10 having the energy absorbing layer 530 that is evaporated when energy is absorbed is disposed.
- the energy absorbing layer 530 may be formed on the device 10 and then provided on one surface of the device 10 through a separate process.
- an acoustic wave generated by the first laser beam L1 that is provided on one surface of the base layer 510 and the base layer 510 and passes through the device 10 is directed toward the device 10. It may be a step of preparing a carrier substrate 500 having an anti-reflection layer 520 to be transmitted without being reflected.
- the base layer 510 and the antireflection layer 520 may be the same as the base layer 110 and the antireflection layer 120 described in the first embodiment.
- the adhesion step S630 may be a step of adhering the device 10 to the antireflection layer 520 so that the energy absorbing layer 530 is provided between the antireflection layer 520 and the device 10.
- the energy absorbing layer 530 is adhered to the antireflection layer 520 while being provided on one surface of the device 10, so that the energy absorbing layer 530 is provided between the antireflection layer 520 and the device 10. I can. Accordingly, even if the process for aligning the energy absorbing layer 530 with the element 10 as described in the first embodiment is omitted, the energy absorbing layer 530 and the element 10 may be in an aligned state.
- the device peeling step S640 may be a step of exfoliating the device 10 from the source substrate 20 by irradiating the first laser beam L1 onto the device 10.
- the energy absorbing layer 530 may have the same acoustic impedance range value as the antireflection layer 520, and accordingly, the first laser beam L1 may transmit the energy absorbing layer 530 and the antireflection layer 520.
- the device 10 is positioned above the target substrate 30, and the second laser beam L2 is irradiated to the energy absorbing layer 530 so that the energy absorbing layer 530 is evaporated and the device 10 And a step of transferring the device 10 to the target substrate 30 by removing the adhesive force between the antireflection layer 520.
- the energy absorbing layer 530 is evaporated and the space in which the energy absorbing layer 530 was located becomes the evaporation space 536 and is removed, so that the adhesive force provided to the element 10 is also removed, so that the element 10 falls. It can be transferred to the target substrate 30.
- a metal terminal formed on one surface of the device 10 may be used as the energy absorbing layer 530, and in this case, a process of generating a separate energy absorbing layer 530 on the device 10 may be omitted.
- the present invention can be used industrially in the field of device transfer technology to prevent damage to the device during the transfer process, and to improve the transfer yield and transfer precision.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Laser Beam Processing (AREA)
- Thin Film Transistor (AREA)
Abstract
본 발명의 일실시예는 전사공정 시 소자의 파손을 방지하고, 전사 수율 및 전사 정밀도가 향상되도록 하는 캐리어 기판 및 이를 이용한 소자 전사방법을 제공한다. 여기서, 캐리어 기판은 베이스층, 반사방지층 그리고 에너지 흡수층을 포함한다. 반사방지층은 베이스층의 일면에 마련되고, 점착되는 소자의 소스기판을 통해 입사되어 소자를 투과되는 제1레이저빔에 의해 발생되는 탄성파가 소자 방향으로 반사되지 않고 베이스층으로 투과되도록 한다. 에너지 흡수층은 베이스층 및 반사방지층의 사이에 마련되되, 소자와 정렬되며, 에너지를 흡수하면 증발된다.
Description
본 발명은 캐리어 기판 및 이를 이용한 소자 전사방법에 관한 것으로, 더욱 상세하게는 전사공정 시 소자의 파손을 방지하고, 전사 수율 및 전사 정밀도가 향상되도록 하는 캐리어 기판 및 이를 이용한 소자 전사방법에 관한 것이다.
LED와 같은 질화갈륨 기반(GaN based)의 소자는 낮은 소비 전력으로 높은 내부 양자 효율을 얻을 수 있어 고성능의 고체조명으로 널리 각광받고 있다. 이러한 소자의 성장을 위해 일반적으로 사파이어(Al
2O
3)를 소스기판으로 사용하고 있다. 이는, 사파이어 기판은 융점이 높아 질화갈륨(GaN) 층과 같은 고온에서 증착되는 박막의 기판으로 적합하여, 사파이어 기판 상에서 비교적 고품질의 GaN 박막층을 성장시킬 수 있기 때문이다.
소자 전사 방법에는 질화갈륨 박막층을 성장시킨 사파이어 기판과 질화갈륨 박막층을 분리하는 과정이 요구된다. 사파이어 기판을 분리하기 위해, 레이저로부터 조사되는 광을 사용하는 레이저 박리(Laser Lift-Off, LLO) 공정을 이용한다. 이는, 레이저 박리 공정이 레이저 빔을 사파이어 기판에 통과시켜 사파이어 기판과 질화갈륨 기반의 소자 접합계면에서 국소적인 열이 발생하게 되고, 이에 의해 사파이어 기판이 용이하게 분리될 수 있기 때문이다.
그러나, 레이저 박리(LLO) 공정을 사용하여 소자를 소스기판과 분리할 때, 소자의 입사면으로 입사된 레이저빔에 의한 탄성파가 자유면(Free surface)에서 반사되어 소자의 입사면에 인장응력을 발생시키고, 이러한 인장응력에 의해 입사면에 스펄레이션(Spallation) 파손이 발생할 수 있는 문제점이 있다.
레이저빔의 탄성파에 의해 소자가 스펄레이션 파손되면, 소자의 입사면에 스펄레이션 파손에 의한 복수의 판상 파손물이 생성될 수 있다.
또한, 소자로 입사되는 레이저빔에 의한 충격파로 인하여 소자에 굽힘 응력이 발생할 수 있는데, 피킹(Picking) 공정 시에 캐리어필름에 의해 소자의 테두리에 가압력이 더 가해지면서 소자의 중심부 변위가 증가하여 소자가 굽힘 파손될 수 있는 문제점이 있다.
상기와 같은 문제점을 해결하기 위하여, 본 발명이 이루고자 하는 기술적 과제는 전사공정 시 소자의 파손을 방지하고, 전사 수율 및 전사 정밀도가 향상되도록 하는 캐리어 기판 및 이를 이용한 소자 전사방법을 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 베이스층; 상기 베이스층의 일면에 마련되고, 점착되는 소자의 소스기판을 통해 입사되어 상기 소자를 투과하는 제1레이저빔에 의해 발생되는 탄성파가 상기 소자 방향으로 반사되지 않고 상기 베이스층으로 투과되도록 하는 반사방지층; 그리고 상기 베이스층 및 상기 반사방지층의 사이에 마련되되, 상기 소자와 정렬되며, 에너지를 흡수하면 증발되는 에너지 흡수층을 포함하는 것을 특징으로 하는 캐리어 기판을 제공한다.
한편, 상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 베이스층; 상기 베이스층의 일면에 마련되고, 점착되는 소자의 소스기판을 통해 입사되어 상기 소자를 투과하는 제1레이저빔에 의해 발생되는 탄성파가 상기 소자 방향으로 반사되지 않고 상기 베이스층으로 투과되도록 하는 반사방지층; 그리고 상기 반사방지층 및 상기 소자의 사이에 마련되고, 에너지를 흡수하면 증발되는 에너지 흡수층을 포함하는 것을 특징으로 하는 캐리어 기판을 제공한다.
본 발명의 실시예에 있어서, 상기 에너지 흡수층은 상기 베이스층을 투과하여 조사되는 제2레이저빔이 조사되면 증발될 수 있다.
본 발명의 실시예에 있어서, 상기 제2레이저빔이 조사되는 상기 에너지 흡수층은 상기 제2레이저빔의 빔 단면적보다 작은 면적으로 형성될 수 있다.
본 발명의 실시예에 있어서, 상기 에너지 흡수층의 중심은 상기 소자의 중심과 일치될 수 있다.
본 발명의 실시예에 있어서, 상기 에너지 흡수층은 상기 소자의 대향면의 형상에 대응되도록 형성될 수 있다.
한편, 상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 일면에 소자가 형성된 소스기판을 준비하는 준비단계; 베이스층, 상기 베이스층의 일면에 마련되고 상기 소스기판을 통해 입사되어 상기 소자를 투과하는 제1레이저빔에 의해 발생되는 탄성파가 상기 소자 방향으로 반사되지 않고 상기 베이스층을 투과하도록 하는 반사방지층 및 상기 베이스층 및 상기 반사방지층의 사이에 마련되고 에너지를 흡수하면 증발되는 에너지 흡수층을 가지는 캐리어 기판을 마련하는 캐리어 기판 마련단계; 상기 반사방지층이 상기 소자에 대향되도록 위치시키고, 상기 에너지 흡수층이 상기 소자와 정렬되도록 하여 상기 소자를 상기 반사방지층에 점착시키는 점착단계; 상기 제1레이저빔을 상기 소자에 조사하여 상기 소스기판으로부터 상기 소자를 박리시키는 소자 박리단계; 그리고 타깃기판의 상측에 상기 소자를 위치시키고, 제2레이저빔을 상기 에너지 흡수층에 조사하여 상기 에너지 흡수층이 증발되면서 상기 소자 및 상기 반사방지층 사이의 점착력이 제거되도록 하여 상기 소자가 상기 타깃기판에 전사되도록 하는 전사단계를 포함하는 것을 특징으로 하는 캐리어 기판을 이용한 소자 전사방법을 제공한다.
한편, 상기 기술적 과제를 달성하기 위하여, 본 발명의 일실시예는 에너지를 흡수하면 증발되는 에너지 흡수층이 일면에 마련된 소자가 배치된 소스기판을 준비하는 준비단계; 베이스층 및 상기 베이스층의 일면에 마련되고 상기 소스기판을 통해 입사되어 상기 소자를 투과하는 제1레이저빔에 의해 발생되는 탄성파가 상기 소자 방향으로 반사되지 않고 상기 베이스층을 투과하도록 하는 반사방지층을 가지는 캐리어 기판을 마련하는 캐리어 기판 마련단계; 상기 소자를 상기 반사방지층에 점착시켜 상기 에너지 흡수층이 상기 반사방지층 및 상기 소자의 사이에 마련되도록 하는 점착단계; 상기 제1레이저빔을 상기 소자에 조사하여 상기 소스기판으로부터 상기 소자를 박리시키는 소자 박리단계; 그리고 타깃기판의 상측에 상기 소자를 위치시키고, 제2레이저빔을 상기 에너지 흡수층에 조사하여 상기 에너지 흡수층이 증발되면서 상기 소자 및 상기 반사방지층 사이의 점착력이 제거되도록 하여 상기 소자가 상기 타깃기판에 전사되도록 하는 전사단계를 포함하는 것을 특징으로 하는 캐리어 기판을 이용한 소자 전사방법을 제공한다.
본 발명의 실시예에 있어서, 상기 전사단계에서, 상기 제2레이저빔의 빔 단면적은 상기 에너지 흡수층의 면적보다 클 수 있다.
본 발명의 실시예에 있어서, 상기 전사단계에서, 상기 제2레이저빔은 상기 베이스층을 투과하여 상기 에너지 흡수층에 조사될 수 있다.
본 발명의 실시예에 있어서, 상기 소자 박리단계에서, 상기 소스기판의 타면에는 제1마스크가 더 배치되고, 상기 제1레이저빔은 상기 제1마스크를 통해 상기 소자 중 특정 소자에 조사되며 해당 소자만 박리되도록 할 수 있다.
본 발명의 실시예에 있어서, 상기 전사단계에서, 상기 베이스층의 타면에는 제2마스크가 더 배치되고, 상기 제2레이저빔은 상기 제2마스크를 통해 상기 에너지 흡수층 중 특정 에너지 흡수층에 조사되며 상기 특정 에너지 흡수층과 정렬되는 소자만 전사되도록 할 수 있다.
본 발명의 실시예에 따르면, 베이스층의 일면에 탄성파에 대한 반사방지층이 마련되기 때문에, 소스기판을 통해 입사되는 제1레이저빔에 의해 발생되는 탄성파가 반사방지층에서 반사되지 않고 반사방지층을 투과할 수 있으며, 이를 통해 소자의 스펄레이션 파손 발생이 방지될 수 있다.
또한, 본 발명의 실시예에 따르면, 에너지 흡수층은 소자와 정렬되어 마련되기 때문에, 에너지 흡수층이 증발되어 발생하는 팽창공간은 소자의 중심에서 가장 볼록하게 된다. 이에 따라, 반사방지층과 소자 사이의 점착력은 소자의 외측에서부터 중심방향으로 감소하게 되고, 최종적으로 소자 중심에서의 점착력이 제거된다. 따라서, 소자는 수직 하방으로 낙하할 수 있고, 타깃기판의 목표위치로 정확하게 전사될 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 제1실시예에 따른 캐리어 기판을 나타낸 단면예시도이다.
도 2는 도 1의 캐리어 기판을 이용한 소자 전사방법을 나타낸 흐름도이다.
도 3은 도 2의 캐리어 기판을 이용한 소자 전사방법의 공정을 나타낸 예시도이다.
도 4는 도 3의 캐리어 기판을 이용한 소자 전사방법의 공정 중 마스크를 활용하는 예를 설명하기 위한 예시도이다.
도 5는 본 발명의 제2실시예에 따른 캐리어 기판을 나타낸 단면예시도이다.
도 6은 도 5의 캐리어 기판을 이용한 소자 전사방법을 나타낸 흐름도이다.
도 7은 도 6의 캐리어 기판을 이용한 소자 전사방법의 공정을 나타낸 예시도이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 “연결(접속, 접촉, 결합)”되어 있다고 할 때, 이는 “직접적으로 연결”되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 “간접적으로 연결”되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, “포함하다” 또는 “가지다” 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 제1실시예에 따른 캐리어 기판을 나타낸 단면예시도이고, 도 2는 도 1의 캐리어 기판을 이용한 소자 전사방법을 나타낸 흐름도이고, 도 3은 도 2의 캐리어 기판을 이용한 소자 전사방법의 공정을 나타낸 예시도이다.
이하에서는 도 1 내지 도 3을 참조하여, 캐리어 기판(100) 및 캐리어 기판을 이용한 소자 전사방법을 함께 설명한다.
도 1 내지 도 3에서 보는 바와 같이, 캐리어 기판을 이용한 소자 전사방법은 준비단계(S210), 캐리어 기판 마련단계(S220), 점착단계(S230), 소자 박리단계(S240) 그리고 전사단계(S250)를 포함할 수 있다.
준비단계(S210)는 일면에 소자(10)가 형성된 소스기판(20)을 준비하는 단계일 수 있다.
소스기판(20)은 소자(10)가 생성되는 기판으로서, 사파이어 기판일 수 있다.
그리고 소자(10)는 소스기판(20)에서 타깃기판(30)으로 전사시키고자 하는 대상일 수 있다. 소자(10)는 질화갈륨 기반(GaN based)의 발광 다이오드(LED)일 수 있으나, 반드시 이에 한정되는 것은 아니다.
캐리어 기판 마련단계(S220)는 캐리어 기판(100)을 마련하는 단계일 수 있으며, 캐리어 기판(100)은 베이스층(110), 반사방지층(120) 그리고 에너지 흡수층(130)을 포함할 수 있다.
베이스층(110)은 투명한 소재로 형성될 수 있는데, 바람직하게는 후술할 제2레이저빔(L2)이 투과할 수 있는 소재로 형성될 수 있다.
반사방지층(120)은 베이스층(110)의 일면에 마련될 수 있으며, 소자(10)를 투과하는 제1레이저빔(L1)에 의해 소스기판(20)과 소자(10) 사이의 계면의 박리현상에서 발생되는 탄성파가 소자(10) 방향으로 반사되지 않고 투과되도록 할 수 있다.
이를 위해, 반사방지층(120)은 소스기판(20)에 생성된 소자(10)의 임피던스 대비 특정 범위값의 임피던스를 가질 수 있다. 여기서, 임피던스는 음향 임피던스이며, 밀도 × 파동속도로 정의된다. 파동속도는 탄성계수의 제곱근에 비례하며, 따라서 음향 임피던스는 탄성파 임피던스와 동일한 의미로 사용될 수 있다.
탄성파는 소자(10)의 입사면으로 입사된 레이저빔에 의해 발생되는 파로서 자유면(Free surface)에서 반사되는 경우 소자(10)의 입사면에 인장응력을 발생시킬 수 있다.
반사방지층(120)은 소자(10)의 구성물질의 탄성계수 또는 밀도와 유사한 탄성계수 또는 밀도의 물질이 사용될 수 있다. 예를 들면, 반사방지층(120)은 소자(10)의 탄성계수 단위에 대응되는 탄성계수 단위의 소재로 형성될 수 있다. 소자(10)의 구성물질인 질화갈륨(GaN)은 수백 GPa 의 탄성계수 단위를 가지기 때문에, 고무 또는 PDMS(polydimethylsiloxane)와 같이 MPa의 작은 탄성계수 단위를 가지는 물질보다는 폴리머 중에 아크릴 계열이나 에폭시(Epoxy) 등과 같이 수 GPa 의 탄성계수 단위를 가지는 물질이 반사방지층(120)으로 더 적합하다.
또한, 소자(10)의 구성물질인 질화갈륨(GaN)은 42.43 MRayl의 음향 임피던스를 가지는 반면, 공기는 0.0004 MRayl의 음향 임피던스를 가지기 때문에, 큰 음향 임피던스의 차로 인해 소자(10)를 투과한 제1레이저빔(L1)에 의해 발생되는 탄성파는 소자(10)와 공기의 경계면에서 반사될 수 있다.
한편, 에폭시는 3.00 MRayl, PVDF(Polyvinylidene fluoride)는 4.20 MRayl, 아크릴 계열 중 하나인 PMMA(Polymethylmethacrylate)는 3.32 MRayl의 음향 임피던스를 가져 공기보다 큰 음향 임피던스를 가지기 때문에, 소자(10)를 투과한 제1레이저빔(L1)에 의해 발생되는 탄성파는 반사되지 않고 투과될 수 있다.
종합해보면, 반사방지층(120)은 소자(10)의 구성물질인 질화갈륨(GaN)과 같이 GPa 범위의 탄성계수 단위를 가지고, 소자(10)의 구성물질인 질화갈륨(GaN)의 음향 임피던스 대비 1/15 이상 1 이하의 특정 범위값의 음향 임피던스를 가짐이 바람직하며, 이를 만족시키는 에폭시 또는 PMMA 소재로 이루어질 수 있다.
에너지 흡수층(130)은 베이스층(110) 및 반사방지층(120)의 사이에 마련될 수 있다. 에너지 흡수층(130)은 점착될 소자(10)와 정렬되도록 형성될 수 있다. 에너지 흡수층(130)은 에너지를 흡수하면 증발될 수 있다. 에너지 흡수층(130)은 후술할 제2레이저빔(L2)을 흡수하는 폴리머 소재로 형성될 수 있다. 또한, 에너지 흡수층(130)은 두께가 수~수십 나노미터 수준의 금(Au) 또는 백금(Pt)과 같은 금속층이 될 수도 있으며, 산화아연(ZnO)(밴드갭에너지 3.37 eV, 375 nm 파장에 해당) 등과 같이 후술할 제2레이저빔(L2)을 흡수할 수 있는 금속 산화물로 형성될 수도 있다. 이때 제2레이저빔(L2)의 파장은 금속산화물의 밴드갭에너지에 해당하는 파장보다 짧은 것이 바람직하다.
점착단계(S230)는 반사방지층(120)이 소자(10)에 대향되도록 위치시키고, 에너지 흡수층(130)이 소자(10)와 정렬되도록 하여 소자(10)를 반사방지층(120)에 점착시키는 단계일 수 있다.
점착단계(S230)에서, 반사방지층(120)은 에너지 흡수층(130)의 제1중심(C1)이 소자(10)의 제2중심(C2)과 일치되도록 소자(10)에 점착됨으로써, 에너지 흡수층(130)이 소자(10)와 정렬되도록 할 수 있다.
또한, 에너지 흡수층(130)은 소자(10)의 대향면(11)의 형상에 대응되도록 형성될 수 있다.
에너지 흡수층(130)의 제1중심(C1)과 소자(10)의 제2중심(C2)이 일치되면, 에너지 흡수층(130)은 소자(10)의 수직 상방에서 소자(10)의 투영영역에 일치되도록 배치될 수 있다.
소자 박리단계(S240)는 제1레이저빔(L1)을 소자(10)에 조사하여 소스기판(20)으로부터 소자(10)를 박리시키는 단계일 수 있다.
소스기판(20)에 생성된 소자(10)를 소스기판(20)에서 분리하기 위해 레이저 박리(LLO) 공정이 수행될 때, 제1레이저빔(L1)은 소스기판(20)을 투과하여 소자(10)로 조사될 수 있다.
제1레이저빔(L1)은 소스기판(20)과 소자(10)의 접합면에 포커스되도록 조사될 수 있다. 한편, 소자(10)에 입사된 후 소자(10)를 투과하는 제1레이저빔은 디포커스되어 소자(10)와 반사방지층(120)의 경계면으로 이동될 수 있다.
만약 반사방지층(120)이 없다면, 소자(10)와 베이스층(110)과의 임피던스 차이가 크기 때문에, 제1레이저빔에 의해 발생되는 탄성파는 소자(10)와 베이스층(110)과의 경계면에서 반사되게 된다. 이렇게 반사되는 탄성파는 소스기판(20)과 접하는 소자(10)의 접합면에 인장응력을 발생시킬 수 있고, 이 때문에 스펄레이션(Spallation) 파손이 발생할 수 있다.
본 발명에서는 반사방지층(120)이 마련되기 때문에, 소자(10)를 투과한 후 소자(10)와 반사방지층(120)의 경계면으로 이동되는 제1레이저빔(L1)에 의해 발생되는 탄성파는 반사되지 않고 반사방지층(120)을 투과할 수 있다. 따라서, 본 발명에 따르면, 소자(10)의 스펄레이션 파손 발생이 방지될 수 있다.
한편, 제1레이저빔(L1)은 디포커스되어 소자(10)를 투과하기 때문에, 에너지 흡수층(130)에 에너지 흡수층(130)이 증발할 정도의 에너지를 제공할 수 없다. 즉, 에너지 흡수층(130)은 제1레이저빔(L1)에 의해 영향을 받지 않을 수 있다.
제1레이저빔(L1)은 엑시머(Eximer) 레이저 또는 다이오드 펌핑 솔리드 스테이트(DPSS) 레이저로부터 출사되는 레이저빔일 수 있다.
전사단계(S250)는 타깃기판(30)에서 전사시키고자 하는 지점의 상측에 소자(10)를 위치시키고, 제2레이저빔(L2)을 에너지 흡수층(130)에 조사하여 에너지 흡수층(130)이 증발되면서 소자(10) 및 반사방지층(120) 사이의 점착력이 제거되도록 하여 소자(10)가 타깃기판(30)에 전사되도록 하는 단계일 수 있다.
전사단계(S250)에서, 제2레이저빔(L2)은 베이스층(110)을 투과하여 에너지 흡수층(130)에 조사될 수 있다.
제2레이저빔(L2)은 UV 레이저빔일 수 있으며, 베이스층(110)은 제2레이저빔(L2)이 투과될 수 있도록 투명한 석영(Quartz) 또는 사파이어로 형성될 수 있다.
제2레이저빔(L2)이 에너지 흡수층(130)에 조사되어 에너지 흡수층(130)이 에너지를 흡수하면 에너지 흡수층(130)은 증발될 수 있으며, 에너지 흡수층(130)의 증발에 따른 기체 팽창에 의해 에너지 흡수층(130)이 있던 공간은 팽창될 수 있다. 그러면 이러한 팽창공간(135)에 의해 반사방지층(120)이 밀려나게 되고, 이렇게 밀려나는 부분과 소자(10) 간의 점착면적이 감소되면서 최종적으로는 소자(10)가 낙하하여 타깃기판(30)으로 전사될 수 있다.
에너지 흡수층(130)은 제2레이저빔(L2)의 빔 중심이 에너지 흡수층(130)의 중심과 정확하게 일치하지 못하더라도, 에너지 흡수층(130) 전체에서 균일한 증발이 이루어질 수 있다.
전술한 바와 같이, 에너지 흡수층(130)은 소자(10)와 정렬된 상태이기 때문에, 에너지 흡수층(130)의 어느 일부분에 제2레이저빔(L2)이 조사되더라도 에너지 흡수층(130)이 증발하게 되면, 에너지 흡수층(130)이 마련되는 한정된 공간에 증발된 기체가 채워지게 되고, 이에 따라 팽창되는 팽창공간(135)은 소자(10)의 중심위치에서 가장 볼록하게 된다.
이에 따라, 반사방지층(120)과 소자(10) 사이의 점착력은 소자(10)의 외측에서부터 중심방향으로 감소하게 되고, 최종적으로 소자(10) 중심에서의 점착력이 제거된다. 따라서, 소자(10)는 수직 하방으로 낙하할 수 있고, 타깃기판(30)의 목표위치로 정확하게 전사될 수 있다.
더하여, 제2레이저빔(L2)의 빔 단면적(LA)은 에너지 흡수층(130)의 면적(131)보다 클 수 있다. 이를 통해, 제2레이저빔(L2)의 빔 중심이 에너지 흡수층(130)의 중심과 일치하지 못하더라도, 에너지 흡수층(130) 전체에 균일하게 에너지가 제공될 수 있으며, 팽창공간(135)은 동일한 위치에서 동일한 형태로 발생될 수 있다.
본 발명에 따르면, 소스기판(20)에서 소자(10)를 박리하고, 박리된 소자(10)를 타깃기판(30)으로 전사하는 공정이 단일의 캐리어 기판(100)에 의해 이루어질 수 있다. 따라서, LLO 공정 이후에 소자를 재배열 하기 위해 별도의 기판을 준비하는 등의 공정이 불필요하여 생산 공정이 단축될 수 있다.
도 4는 도 3의 캐리어 기판을 이용한 소자 전사방법의 공정 중 마스크를 활용하는 예를 설명하기 위한 예시도이다.
먼저, 도 4의 (a)에서 보는 바와 같이, 소자 박리단계(S240)에서, 소스기판(20)의 타면에는 제1마스크(150)가 더 배치되고, 제1레이저빔(L1)은 제1마스크(150)를 통해 소자(10a,10b) 중 특정 소자(10a)에 조사되며 해당 소자만 박리되도록 할 수 있다.
즉, 복수의 소자(10a,10b) 중에 특정 소자(10a)만 개방되도록 소스기판(20)의 타면에 제1마스크(150)를 마련하게 되면, 제1레이저빔(L1)이 제1마스크(150)에 전체적으로 조사되더라도 제1레이저빔(L1)은 제1마스크(150)에서 개방된 부분을 통해 특정 소자(10a)에만 조사될 수 있다.
이를 통해, 전사를 원치 않은 다른 소자(10b)가 박리되어 캐리어 기판(100)으로 전사되는 것을 방지할 수 있고, 전사를 원하는 소자(10a)만 박리되어 캐리어 기판(100)으로 전사되도록 할 수 있다.
또한, 도 4의 (b)에서 보는 바와 같이, 전사단계(S250)에서, 베이스층(110)의 타면에는 제2마스크(160)가 더 배치되고, 제2레이저빔(L2)은 제2마스크(160)를 통해 에너지 흡수층(130,130a) 중 특정 에너지 흡수층(130)에 조사되며 특정 에너지 흡수층(130)과 정렬되는 소자(10a)만 전사되도록 할 수 있다.
즉, 복수의 에너지 흡수층(130,130a) 중에 특정 에너지 흡수층(130)만 개방되도록 베이스층(110)의 타면에 제2마스크(160)를 마련하게 되면, 제2레이저빔(L2)이 제2마스크(160)에 전체적으로 조사되더라도 제2레이저빔(L2)은 제2마스크(160)에서 오픈된 부분을 통해 특정 에너지 흡수층(130)에만 조사될 수 있다.
이를 통해, 전사를 원치 않은 다른 소자(10c)가 낙하되어 타깃기판(30)으로 전사되는 것을 방지할 수 있고, 전사를 원하는 소자(10a)만 낙하되어 타깃기판(30)으로 전사되도록 할 수 있다.
도 5는 본 발명의 제2실시예에 따른 캐리어 기판을 나타낸 단면예시도이고, 도 6은 도 5의 캐리어 기판을 이용한 소자 전사방법을 나타낸 흐름도이고, 도 7은 도 6의 캐리어 기판을 이용한 소자 전사방법의 공정을 나타낸 예시도이다.
본 실시예에서는 에너지 흡수층의 위치가 다르고, 이와 관련되는 공정부분에서 차이가 있을 수 있으며, 다른 구성은 전술한 제1실시예와 동일하므로, 반복되는 내용은 가급적 생략한다.
도 5 내지 도 7에서 보는 바와 같이, 본 실시예에 따른 캐리어 기판을 이용한 소자 전사방법은 준비단계(S610), 캐리어 기판 마련단계(S620), 점착단계(S630), 소자 박리단계(S640) 그리고 전사단계(S650)를 포함할 수 있다.
준비단계(S610)는 에너지를 흡수하면 증발되는 에너지 흡수층(530)이 일면에 마련된 소자(10)가 배치된 소스기판(20)을 준비하는 단계일 수 있다.
에너지 흡수층(530)은 소자(10)에 생성 후, 별도의 공정을 통해 소자(10)의 일면에 마련될 수 있다.
캐리어 기판 마련단계(S620)는 베이스층(510) 및 베이스층(510)의 일면에 마련되고 소자(10)를 투과하는 제1레이저빔(L1)에 의해 발생되는 탄성파가 소자(10) 방향으로 반사되지 않고 투과되도록 하는 반사방지층(520)을 가지는 캐리어 기판(500)을 마련하는 단계일 수 있다. 베이스층(510) 및 반사방지층(520)은 제1실시예에서 설명한 베이스층(110) 및 반사방지층(120)과 동일할 수 있다.
점착단계(S630)는 소자(10)를 반사방지층(520)에 점착시켜 에너지 흡수층(530)이 반사방지층(520) 및 소자(10)의 사이에 마련되도록 하는 단계일 수 있다.
본 실시예에서는 에너지 흡수층(530)이 소자(10)의 일면에 마련된 상태에서 반사방지층(520)에 점착됨으로써, 에너지 흡수층(530)이 반사방지층(520) 및 소자(10)의 사이에 마련될 수 있다. 따라서, 제1실시예에서 설명한 바와 같은 에너지 흡수층(530)을 소자(10)와 정렬하기 위한 공정이 생략되더라도 에너지 흡수층(530) 및 소자(10)는 정렬된 상태가 될 수 있다.
소자 박리단계(S640)는 제1레이저빔(L1)을 소자(10)에 조사하여 소스기판(20)으로부터 소자(10)를 박리시키는 단계일 수 있다.
에너지 흡수층(530)은 반사방지층(520)과 동일한 음향 임피던스 범위값을 가질 수 있으며, 이에 따라, 제1레이저빔(L1)은 에너지 흡수층(530) 및 반사방지층(520)을 투과할 수 있다.
전사단계(S650)는 타깃기판(30)의 상측에 소자(10)를 위치시키고, 제2레이저빔(L2)을 에너지 흡수층(530)에 조사하여 에너지 흡수층(530)이 증발되면서 소자(10) 및 반사방지층(520) 사이의 점착력이 제거되도록 하여 소자(10)가 타깃기판(30)에 전사되도록 하는 단계일 수 있다.
본 실시예에서는, 에너지 흡수층(530)이 증발되어 에너지 흡수층(530)이 있던 공간이 증발공간(536)이 되어 제거됨으로써 소자(10)에 제공되던 점착력도 제거되도록 하여 소자(10)가 낙하하여 타깃기판(30)으로 전사되도록 할 수 있다.
한편, 에너지 흡수층(530)으로는 소자(10)의 일면에 형성된 금속 단자가 이용될 수도 있으며, 이 경우, 소자(10)에 별도의 에너지 흡수층(530)을 생성하는 공정은 생략될 수 있다.
본 실시예에서도, 제1실시예에서 설명한 제1마스크를 이용하여 소자를 선택적으로 박리시키고, 제2마스크를 이용하여 소자를 선택적으로 타깃기판으로 전사하는 방법이 적용될 수 있음은 물론이다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 전사공정 시 소자의 파손을 방지하고, 전사 수율 및 전사 정밀도가 향상되도록 하는 소자 전사 기술 분야에 산업상 이용가능하다.
Claims (12)
- 베이스층;상기 베이스층의 일면에 마련되고, 점착되는 소자의 소스기판을 통해 입사되어 상기 소자를 투과하는 제1레이저빔에 의해 발생되는 탄성파가 상기 소자 방향으로 반사되지 않고 상기 베이스층으로 투과되도록 하는 반사방지층; 그리고상기 베이스층 및 상기 반사방지층의 사이에 마련되되, 상기 소자와 정렬되며, 에너지를 흡수하면 증발되는 에너지 흡수층을 포함하는 것을 특징으로 하는 캐리어 기판.
- 베이스층;상기 베이스층의 일면에 마련되고, 점착되는 소자의 소스기판을 통해 입사되어 상기 소자를 투과하는 제1레이저빔에 의해 발생되는 탄성파가 상기 소자 방향으로 반사되지 않고 상기 베이스층으로 투과되도록 하는 반사방지층; 그리고상기 반사방지층 및 상기 소자의 사이에 마련되고, 에너지를 흡수하면 증발되는 에너지 흡수층을 포함하는 것을 특징으로 하는 캐리어 기판.
- 제1항 또는 제2항에 있어서,상기 에너지 흡수층은 상기 베이스층을 투과하여 조사되는 제2레이저빔이 조사되면 증발되는 것을 특징으로 하는 캐리어 기판.
- 제3항에 있어서,상기 제2레이저빔이 조사되는 상기 에너지 흡수층은 상기 제2레이저빔의 빔 단면적보다 작은 면적으로 형성되는 것을 특징으로 하는 캐리어 기판.
- 제1항 또는 제2항에 있어서,상기 에너지 흡수층의 중심은 상기 소자의 중심과 일치되는 것을 특징으로 하는 캐리어 기판.
- 제1항 또는 제2항에 있어서,상기 에너지 흡수층은 상기 소자의 대향면의 형상에 대응되도록 형성되는 것을 특징으로 하는 캐리어 기판.
- 일면에 소자가 형성된 소스기판을 준비하는 준비단계;베이스층, 상기 베이스층의 일면에 마련되고 상기 소스기판을 통해 입사되어 상기 소자를 투과하는 제1레이저빔에 의해 발생되는 탄성파가 상기 소자 방향으로 반사되지 않고 상기 베이스층을 투과하도록 하는 반사방지층 및 상기 베이스층 및 상기 반사방지층의 사이에 마련되고 에너지를 흡수하면 증발되는 에너지 흡수층을 가지는 캐리어 기판을 마련하는 캐리어 기판 마련단계;상기 반사방지층이 상기 소자에 대향되도록 위치시키고, 상기 에너지 흡수층이 상기 소자와 정렬되도록 하여 상기 소자를 상기 반사방지층에 점착시키는 점착단계;상기 제1레이저빔을 상기 소자에 조사하여 상기 소스기판으로부터 상기 소자를 박리시키는 소자 박리단계; 그리고타깃기판의 상측에 상기 소자를 위치시키고, 제2레이저빔을 상기 에너지 흡수층에 조사하여 상기 에너지 흡수층이 증발되면서 상기 소자 및 상기 반사방지층 사이의 점착력이 제거되도록 하여 상기 소자가 상기 타깃기판에 전사되도록 하는 전사단계를 포함하는 것을 특징으로 하는 캐리어 기판을 이용한 소자 전사방법.
- 에너지를 흡수하면 증발되는 에너지 흡수층이 일면에 마련된 소자가 배치된 소스기판을 준비하는 준비단계;베이스층 및 상기 베이스층의 일면에 마련되고 상기 소스기판을 통해 입사되어 상기 소자를 투과하는 제1레이저빔에 의해 발생되는 탄성파가 상기 소자 방향으로 반사되지 않고 상기 베이스층을 투과하도록 하는 반사방지층을 가지는 캐리어 기판을 마련하는 캐리어 기판 마련단계;상기 소자를 상기 반사방지층에 점착시켜 상기 에너지 흡수층이 상기 반사방지층 및 상기 소자의 사이에 마련되도록 하는 점착단계;상기 제1레이저빔을 상기 소자에 조사하여 상기 소스기판으로부터 상기 소자를 박리시키는 소자 박리단계; 그리고타깃기판의 상측에 상기 소자를 위치시키고, 제2레이저빔을 상기 에너지 흡수층에 조사하여 상기 에너지 흡수층이 증발되면서 상기 소자 및 상기 반사방지층 사이의 점착력이 제거되도록 하여 상기 소자가 상기 타깃기판에 전사되도록 하는 전사단계를 포함하는 것을 특징으로 하는 캐리어 기판을 이용한 소자 전사방법.
- 제7항 또는 제8항에 있어서,상기 전사단계에서, 상기 제2레이저빔의 빔 단면적은 상기 에너지 흡수층의 면적보다 큰 것을 특징으로 하는 캐리어 기판을 이용한 소자 전사방법.
- 제7항 또는 제8항에 있어서,상기 전사단계에서, 상기 제2레이저빔은 상기 베이스층을 투과하여 상기 에너지 흡수층에 조사되는 것을 특징으로 하는 캐리어 기판을 이용한 소자 전사방법.
- 제7항 또는 제8항에 있어서,상기 소자 박리단계에서,상기 소스기판의 타면에는 제1마스크가 더 배치되고, 상기 제1레이저빔은 상기 제1마스크를 통해 상기 소자 중 특정 소자에 조사되며 해당 소자만 박리되도록 하는 것을 특징으로 하는 캐리어 기판을 이용한 소자 전사방법.
- 제7항 또는 제8항에 있어서,상기 전사단계에서,상기 베이스층의 타면에는 제2마스크가 더 배치되고, 상기 제2레이저빔은 상기 제2마스크를 통해 상기 에너지 흡수층 중 특정 에너지 흡수층에 조사되며 상기 특정 에너지 흡수층과 정렬되는 소자만 전사되도록 하는 것을 특징으로 하는 캐리어 기판을 이용한 소자 전사방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/741,530 US20220270927A1 (en) | 2019-11-15 | 2022-05-11 | Carrier substrate and element transfer method using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0146644 | 2019-11-15 | ||
KR1020190146644A KR102279643B1 (ko) | 2019-11-15 | 2019-11-15 | 캐리어 기판 및 이를 이용한 소자 전사방법 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/741,530 Continuation US20220270927A1 (en) | 2019-11-15 | 2022-05-11 | Carrier substrate and element transfer method using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021096318A1 true WO2021096318A1 (ko) | 2021-05-20 |
Family
ID=75913116
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/016058 WO2021096318A1 (ko) | 2019-11-15 | 2020-11-16 | 캐리어 기판 및 이를 이용한 소자 전사방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220270927A1 (ko) |
KR (1) | KR102279643B1 (ko) |
WO (1) | WO2021096318A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090114033A (ko) * | 2008-04-29 | 2009-11-03 | 삼성전자주식회사 | 전사 기판, 이의 제조방법 및 유기 전계 발광소자의제조방법 |
US20170215280A1 (en) * | 2016-01-21 | 2017-07-27 | Vuereal Inc. | Selective transfer of micro devices |
KR20180028068A (ko) * | 2011-04-11 | 2018-03-15 | 엔디에스유 리서치 파운데이션 | 별개의 구성요소의 선택적인 레이저 보조 전사 |
KR20180040770A (ko) * | 2016-10-12 | 2018-04-23 | 한국기계연구원 | 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법 |
KR20190114372A (ko) * | 2018-03-30 | 2019-10-10 | (주)포인트엔지니어링 | 마이크로 led 전사 시스템 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101406659B1 (ko) | 2012-11-09 | 2014-06-11 | 한국과학기술원 | 레이저를 이용한 소자 분리 방법, 플렉서블 소자 제조방법 |
EP3387882B1 (en) * | 2015-12-07 | 2021-05-12 | Glo Ab | Laser lift-off on isolated iii-nitride light islands for inter-substrate led transfer |
TWI783910B (zh) * | 2016-01-15 | 2022-11-21 | 荷蘭商庫力克及索發荷蘭公司 | 放置超小或超薄之離散組件 |
JP2019511838A (ja) * | 2016-04-04 | 2019-04-25 | グロ アーベーGlo Ab | ダイ移送用のバックプレーン通過レーザ照射 |
US11127720B2 (en) * | 2019-01-21 | 2021-09-21 | Nanosys, Inc. | Pixel repair method for a direct view display device |
-
2019
- 2019-11-15 KR KR1020190146644A patent/KR102279643B1/ko active IP Right Grant
-
2020
- 2020-11-16 WO PCT/KR2020/016058 patent/WO2021096318A1/ko active Application Filing
-
2022
- 2022-05-11 US US17/741,530 patent/US20220270927A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090114033A (ko) * | 2008-04-29 | 2009-11-03 | 삼성전자주식회사 | 전사 기판, 이의 제조방법 및 유기 전계 발광소자의제조방법 |
KR20180028068A (ko) * | 2011-04-11 | 2018-03-15 | 엔디에스유 리서치 파운데이션 | 별개의 구성요소의 선택적인 레이저 보조 전사 |
US20170215280A1 (en) * | 2016-01-21 | 2017-07-27 | Vuereal Inc. | Selective transfer of micro devices |
KR20180040770A (ko) * | 2016-10-12 | 2018-04-23 | 한국기계연구원 | 다층형 캐리어 필름 및 이를 이용한 소자 전사 방법과 이 방법을 이용하여 전자제품을 제조하는 전자제품 제조방법 |
KR20190114372A (ko) * | 2018-03-30 | 2019-10-10 | (주)포인트엔지니어링 | 마이크로 led 전사 시스템 |
Also Published As
Publication number | Publication date |
---|---|
KR102279643B1 (ko) | 2021-07-20 |
US20220270927A1 (en) | 2022-08-25 |
KR20210059333A (ko) | 2021-05-25 |
KR102279643B9 (ko) | 2022-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6214733B1 (en) | Process for lift off and handling of thin film materials | |
WO2012077884A1 (en) | Method of fabricating semiconductor device using gang bonding and semiconductor device fabricated by the same | |
KR20180080113A (ko) | 디스플레이 장치 및 디스플레이 장치 형성 방법 | |
WO2019103291A1 (ko) | 고효율 마이크로 엘이디 모듈의 제조방법 | |
CN110165024B (zh) | 微型元件转移方法 | |
JPH11307878A (ja) | 光入出力素子アレイ装置の製造法 | |
CN110546751A (zh) | 发光组件 | |
CN102341243A (zh) | 功能区域的转印方法、led阵列、led打印机头和led打印机 | |
WO2021125775A1 (ko) | 마이크로 엘이디 전사 방법 및 마이크로 엘이디 전사 장치 | |
CN111129235B (zh) | 一种微元件的批量转移方法 | |
CN108615700A (zh) | 一种薄型太阳电池刚性-柔性衬底有机键合转移工艺方法 | |
CN112968107A (zh) | 弱化结构的制作方法、微器件的转移方法 | |
WO2011076044A1 (zh) | 发光二极管模块的制造方法 | |
WO2021096318A1 (ko) | 캐리어 기판 및 이를 이용한 소자 전사방법 | |
CN112820752A (zh) | 微发光二极管阵列基板及微发光二极管的转移方法 | |
WO2004030053A1 (ja) | 薄型半導体チップの製造方法 | |
US20230197478A1 (en) | Reusable die catch materials, reusable die release materials, related die transfer systems, and methods of using the same | |
WO2019112206A1 (ko) | 엘이디 디스플레이 패널 및 그 제조방법 | |
CN115425122B (zh) | Led芯片巨量转移方法及显示面板 | |
CN114023849B (zh) | 芯片转移方法以及显示装置 | |
CN113380681B (zh) | 一种巨量转移方法 | |
CN115621377A (zh) | 微型led芯片的转移方法、显示模组和显示装置 | |
CN104347787B (zh) | 一种led发光单元的制备方法 | |
CN109585617B (zh) | 一种选择性转移半导体器件的方法和基板 | |
CN118367084B (zh) | 一种MiP芯片及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20887746 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20887746 Country of ref document: EP Kind code of ref document: A1 |