WO2021095956A1 - System for managing livelihood uniformity of livestock by using weight measurement apparatus - Google Patents

System for managing livelihood uniformity of livestock by using weight measurement apparatus Download PDF

Info

Publication number
WO2021095956A1
WO2021095956A1 PCT/KR2019/015913 KR2019015913W WO2021095956A1 WO 2021095956 A1 WO2021095956 A1 WO 2021095956A1 KR 2019015913 W KR2019015913 W KR 2019015913W WO 2021095956 A1 WO2021095956 A1 WO 2021095956A1
Authority
WO
WIPO (PCT)
Prior art keywords
livestock
weight
management system
measuring device
uniformity
Prior art date
Application number
PCT/KR2019/015913
Other languages
French (fr)
Korean (ko)
Inventor
김호철
Original Assignee
주식회사 이모션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 이모션 filed Critical 주식회사 이모션
Publication of WO2021095956A1 publication Critical patent/WO2021095956A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • A01K29/005Monitoring or measuring activity, e.g. detecting heat or mating
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K31/00Housing birds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K31/00Housing birds
    • A01K31/002Poultry cages, e.g. transport boxes
    • A01K31/005Battery breeding cages, with or without auxiliary features, e.g. feeding, watering, demanuring, heating, ventilation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K31/00Housing birds
    • A01K31/22Poultry runs ; Poultry houses, including auxiliary features, e.g. feeding, watering, demanuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G17/00Apparatus for or methods of weighing material of special form or property
    • G01G17/08Apparatus for or methods of weighing material of special form or property for weighing livestock
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/14Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast

Definitions

  • the present invention relates to a livestock uniformity management system using a weighing device, and more particularly, by measuring the weight of livestock in real time, and estimating the standard weight based on a plurality of weight data obtained thereby to determine livestock uniformity. It relates to a livestock uniformity management system using a weighing device that can be improved and consistently managed.
  • livestock raised for human consumption such as chickens, pigs, and cows
  • livestock raised for human consumption such as chickens, pigs, and cows
  • the weight of livestock is included, and growth or disease can be predicted according to the weight of the livestock, so that the weight can be used as an index for easily discriminating the condition of the livestock.
  • chickens are shipped when the weight of the individual is in the range of about 1.35kg to 1.60kg, and at this time, chickens are about 3% per shed (about 300 per 10,000 per dong). The weight of a sample is measured and shipped only when it reaches the above weight range.
  • the change in body weight of the chickens is checked periodically to check whether they are infected with diseases, while appropriately adjusting the amount of feed and water according to the changes in the body weight of the chickens so that the chickens can grow healthy according to the standard growth curve. Should be done.
  • a scale is used so that the pan on which the object to be weighed is placed has a flat plane, so when one person holds the chicken with both hands and puts it on a flat pan, the other person reads the scale of the scale and records it.
  • the other person reads the scale of the scale and records it.
  • this method has a problem that it is difficult to measure an accurate weight value because the scale continuously fluctuates according to the movement of the chicken on the flat pan.
  • one building of a cage accommodates as few as hundreds to as many as tens of thousands of birds, and it takes too much time and effort to measure the weight of these chickens every day. Since the measurement was not made, most farmers gave up measuring the chickens every day and used a method to determine the growth status of chickens by making a preliminary guess by the masses of the eyes.Therefore, it is not possible to accurately grasp the growth status of chickens at present. There is this.
  • the present invention is proposed to solve the above problem, and measures the weight of livestock in real time, and estimates the standard weight based on a number of weight data obtained thereby to improve the livestock uniformity and manage it consistently.
  • An object of the present invention is to provide a livestock uniformity management system using a weighing device.
  • a weight measuring device installed in the livestock to measure the weight of livestock;
  • the environmental sensor unit that senses the breeding environment of livestock and the weight measuring device and the environment sensor unit, it collects the measured weight data of livestock to estimate the standard weight, and according to the standard weight and the sensed breeding environment, It may include a server that controls the breeding environment.
  • the weight measuring device includes: a seating plate for providing a space for the livestock to be seated; A load cell connected by the seating plate and the connecting portion to measure the weight of livestock seated on the seating plate; It may include a support portion for supporting the load cell and a fixing portion connected to the support portion and fixed in the barn.
  • connection part or the support part may be variable in length.
  • the environmental sensor unit may be formed to sense at least one of temperature, humidity, carbon dioxide, and ammonia.
  • the standard weight may be estimated by clustering the collected weight data.
  • the livestock livelihood uniformity management system may further include a monitoring unit that is interlocked with the server to compare whether the estimated standard weight has reached a reference value of the standard weight range and output sensing information of the environmental sensor unit. have.
  • the weight measuring device may further include a haptic motor generating vibration in the seating plate.
  • the livestock livelihood uniformity management system when a plurality of weight measuring devices are provided, the plurality of weight measuring devices are connected to each other by a vibration transmission pipe, and the haptic motor is only one or part of the plurality of weight measuring devices. It can be provided.
  • the livestock livelihood uniformity management system further includes a motion classification camera that separates the movement of livestock by photographing the weight measuring device and using a grid as a scale, and determining that the livestock has not moved according to the movement classification camera.
  • Animal weight data which are measured only when possible, can be collected as effective weight data.
  • the livestock livestock uniformity management system may further include a spectroscopic camera that captures an arbitrary livestock in the livestock house, and includes a spectroscopic sensor to extract a spectrum of the captured livestock.
  • the weight measuring device wherein the connection portion is formed to move the pendulum
  • the pendulum movement of the connection portion is formed to start when the weight sensed by the load cell exceeds a set time, and weight on the load cell after starting the pendulum movement It may be formed to end at a time exceeding a set time from the moment when is not detected.
  • the weight measuring device may be equipped with a weight forming a predetermined weight at the bottom of the mounting plate.
  • the fixing portion, the fixing plate; A'u'-shaped binding member hinged to the fixing plate and the weight measuring device are provided on a surface to be fixed, and one side is opened in the form of a round bar so that the horizontal portion of the binding member can be inserted, and is driven by a motor. It may include a fixed cover that meshes with the rotation gear and rotates the fixed shaft around the axial center.
  • the fixing unit may further include a rotation position determination sensor that determines the rotation position of the fixing cover using the number of sensed gear teeth of the rotation gear, and may determine the state of the fixing of the fixing unit.
  • FIG. 1 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention.
  • FIG. 2 is an exemplary view of a weight measuring device, which is a component of a livestock workplace uniformity management system using a weight measuring device according to an embodiment of the present invention.
  • FIG. 3(a) is an example of a fixing part, which is one configuration of the weight measuring apparatus of FIG. 2, and (b) to (d) are exemplary views of binding of the fixing part.
  • FIG. 4 is a block diagram schematically showing a configuration of an example of a server, which is a configuration of a livestock welfare uniformity management system using a weight measuring device according to an embodiment of the present invention.
  • FIG. 5 is a flow chart illustrating an example of a standard weight estimation method of livestock using a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention.
  • Figure 6 (a) is a graph showing that one weighing device collects weight data, and (b) to (d) show the flow of a clustering method using the livestock weight data of (a). It is a drawing indicated on the graph.
  • FIG. 7 is a flowchart of a process in which a clustering step is performed in the method of estimating a standard weight of FIG. 5.
  • FIG. 8 is a block diagram schematically showing a configuration of another example of a server, which is a configuration of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention.
  • FIG. 9 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a monitoring unit.
  • 10A to 10E are examples of a method of managing civility through a livestock civility management system using a weight measuring device according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a manner in which the death uniformity managed through the method of FIG. 10 is displayed on the monitoring unit of FIG. 9.
  • FIG. 12 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a motion classification camera.
  • 13A and 13B are diagrams illustrating movement of livestock using the motion classification camera of FIG. 12.
  • FIG. 14 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a spectroscopic camera.
  • a weight measuring device installed in the barn to measure the weight of livestock; In conjunction with the environmental sensor unit that senses the breeding environment of livestock and the weight measuring device and the environment sensor unit, it collects the measured weight data of livestock to estimate the standard weight, and according to the standard weight and the sensed breeding environment, It is possible to provide a livestock livestock uniformity management system using a weight measuring device including a server that controls the breeding environment.
  • one or more weight measuring devices 10 are installed for each dong of a barn provided with one or more dongs to collect a large number of livestock weight data in each dong. It is a livestock workplace uniformity management system that uses this to estimate the standard weight of livestock, and uniformly manage livestock livestock with the estimated standard weight of livestock.
  • FIG. 1 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention.
  • a livestock livestock uniformity management system using a weight measuring device is configured to include a weight measuring device 10, an environmental sensor unit 20, and a server 30. I can.
  • the weighing device 10 may be installed in the barn S provided with one or more coppers.
  • the weight measuring device 10 may be installed for each building when the barn S is provided with a plurality of buildings, and preferably, a plurality of weight measuring devices 10 may be installed for each building.
  • the environment sensor unit 20 may be formed to sense the breeding environment of livestock, and specifically, may be formed to sense at least one of temperature, humidity, carbon dioxide, and ammonia in the barn S.
  • the environmental sensor unit 20 may be installed in the weighing device 10, but is not limited and may be installed in the barn (S), and all sensors may be integrated in one location, but limited No, each sensor may be installed in a different position in the house (S).
  • the temperature sensor and the humidity sensor may be provided on the ceiling of the barn, and the carbon dioxide sensor and the ammonia sensor may have different positions, as may be installed on the side of the barn.
  • the environmental sensor unit 20 when the environmental sensor unit 20 is integrally installed in the weighing device 10, it may be installed on the mounting plate 11 or the load cell 12 of the weighing device 10 to be described later.
  • the load cell 12 and the environment sensor unit 20 When the environment sensor unit 20 is installed in the load cell 12, the load cell 12 and the environment sensor unit 20 may be formed as a module in one housing (not shown) together.
  • the environmental sensor unit 20 is a detection unit in charge of sensing and a circuit unit for transmitting the environmental value detected from the detection unit is not in the same position and is formed separately, and sealing them to improve dustproof, moistureproof, etc.
  • the wireless module for communication is formed as a multi-function channel, it is possible to prevent interference during communication.
  • the environmental sensor unit 20 may transmit environmental sensing information such as temperature, humidity, carbon dioxide, ammonia, etc. measured in connection with the server 30 to the server 30.
  • the server 30 is interlocked with the weight measuring device 10 and the environmental sensor unit 20 to receive livestock weight data measured from the weight measuring device 10, and receive environmental sensing information measured from the environmental sensor unit 20. You can receive it.
  • the server 30 may collect livestock weight data to estimate the standard weight, and control the breeding environment in the livestock house S using the estimated standard weight and the environmental sensing information.
  • the server 30 is installed in the house (S), the weight measuring device 10 and the environmental sensor through the integrated controller 40 that is connected to the weight measuring device 10 and the environmental sensor unit 20 wired or wirelessly. It may be interlocked with the unit 20, and through the integrated controller 40, animal weight data and environmental sensing information may be transmitted or a control command may be transmitted.
  • the integrated controller 40 may transmit livestock weight data and environment sensing information to the server 30 or transmit control commands received from the server 30 to the corresponding device.
  • the integrated controller 40 communicates with the weight measurement device 10, the environment sensor unit 20, and the server 30, and controls the weight measurement device 10, the environment sensor unit 20, and the like by a control module ( (Not shown), a communication module (not shown), firmware (not shown), and the like.
  • the integrated controller 40 may provide a space for mounting a storage drive such as an external hard drive or a terminal for connecting a storage drive, and interlock with the cloud server 50 to transmit data in a Socket method.
  • a storage drive such as an external hard drive or a terminal for connecting a storage drive
  • data received from the weighing device 10 and the environmental sensor unit 20 is automatically backed up to the storage drive and transmitted to the cloud server 50 to store the data, and data loss such as power failure may occur. Data can be easily preserved even in emergencies that may arise.
  • FIG. 2 is an exemplary diagram of a weight measurement device, which is a component of a livestock livelihood uniformity management system using a weight measurement device according to an embodiment of the present invention
  • FIG. 3A is It is an example of the government
  • (b) to (d) are exemplary diagrams of binding of the fixing part.
  • the weight measuring device 10 may be configured to include a seating plate 11, a load cell 12, a support part 13, and a fixing part 14.
  • the seating plate 11 is a plate that provides a space in which livestock will be seated, and may be formed to allow one or more livestock to climb. At this time, the seating plate 11 may preferably be formed so that one livestock can climb in order to accurately measure the weight of the livestock.
  • the load cell 12 is connected to the seating plate 11 by the connection part 15 to measure the weight of livestock accommodated in the seating plate 11.
  • connection part 15 includes a pipe-shaped base connection member 151, a first connection joint (not shown) for fastening the base connection member 151 and the seating plate 11, and the base connection member 151 It may be configured to include a second connection joint (not shown) for fastening the load cell 12.
  • the first connection joint and the second connection joint are provided with bolts, nuts, etc., and the base connection member 151, the first connection joint, and the second connection joint may all be formed of stainless steel (SUS)-based materials, and the surface The coating to increase resistance to corrosion may be formed.
  • SUS stainless steel
  • first connection joint and the second connection joint are not necessarily provided, and the base connection member 151 may be directly connected to the seating plate 11 and the load cell 12 by welding, etc., in this case, the first connection joint And the second connection joint may not be provided.
  • the load cell 12 connected to the seating plate 11 by this connection 15 measures the weight of the livestock when the livestock rises on the seating plate 11 by itself, and generates livestock weight data, which is linked to the display means or It can be delivered to storage means, etc.
  • the support part 13 is configured to support the load cell 12, and may be composed of a head part 131 on which the load cell 12 is mounted, and a support member 132 for supporting the head part 131. .
  • the head part 131 may include a head plate 131a, a load cell mounting bracket (not shown), a controller (not shown), a communication module 131b, and a display 131c.
  • the head plate 131a is a plate constituting the base of the head portion 131, and the shape is not limited, but may be formed in a hemispherical shape as shown in the drawing as an example.
  • the load cell mounting bracket (not shown) is a space in which the load cell 12 is mounted, and can be fastened to the head plate 131a with bolts and nuts, and the load cell 12 is formed to be mounted by a connector (not shown). There can be.
  • the load cell mounting bracket may be formed to facilitate replacement of the load cell 12 by mounting the load cell 12 and a part of the connector for mounting the load cell 12 to be exposed to the outside of the head plate 131a.
  • this is illustrative and not necessarily limited.
  • a method of sliding and inserting the load cell mounting connector to the load cell mounting bracket may be applied, but this is not limited to an example.
  • the mounting method through the sliding method as described above is applied, while the mounting is easy, it is possible to easily achieve the prevention of falling due to the weight of the load cell 12 or the like.
  • a locking means (not shown) may be provided between the load cell mounting bracket and the load cell mounting connector in order to improve the fixing force, and the load cell mounting bracket and the load cell mounting connector may also be formed of stainless steel (SUS)-based materials to prevent corrosion.
  • the outer surface may be coated to prevent corrosion.
  • the controller (not shown) is a configuration for controlling the weighing device 10, and a switch for controlling the on/off of the weighing device 10 may be provided together, and the environmental sensor unit 20 When installed in the weight measurement device 10, an adjustment means (not shown) may be provided so as to be interlocked with the environmental sensor unit 20 to check and control the state of each sensor.
  • the communication module 131b is a module including a wireless communication means such as an antenna, and may be mounted on the head unit 131, and is provided at the bottom of the head unit 131 so as not to be exposed to the outside as much as possible, or is not exposed to the outside at all. It may be mounted inside the head part 131 so that it is not. However, this is an example and the mounting position of the communication module is not limited.
  • the display 131c may be implemented as a 7-segment display for cost reduction, etc., and may be formed to visually check only the measured weight of livestock, but is not necessarily limited, and according to the function and purpose to be implemented, LCD, OLED It may be implemented with a variety of display panels, such as.
  • the display 131c may be integrated with a controller to be implemented as a touch pad type display. That is, the above-described controller may be integrated with the display 131c and controlled through the display 131c.
  • the head portion 131 including the above configurations may be supported by the support member 132.
  • the support member 132 may be provided with a stainless steel (SUS)-based pipe or the like to support the head part 131 and prevent corrosion, and may be connected to the fixing part 14.
  • SUS stainless steel
  • the fixing part 14 may be formed to be connected to the support member 132 to be fixed in the barn. At this time, the fixing part 14 may be formed to be fixed on the floor of the barn so that animals can easily rise and fall on the weighing device 10, but this is an example and the fixing position of the fixing part 14 is not limited, and the weight It suffices if the measuring device 10 is fixed in a place where livestock can easily rise and fall.
  • the fixing portion 14 may be formed to be simply fastened by bolts, nuts, etc., on the other hand, it may be formed to be welded or inserted and fixed to the floor or the like. Among them, it is preferable that the fixing part 14 is fastened or inserted and fixed to facilitate installation and disassembly or change of position.
  • the fixing part 14 includes a fixing plate 141, a binding member 142, and a fixing cover 143, as shown in FIG. 3, and further includes a rotation position determination sensor (not shown). It can also be formed of.
  • the shape of the fixing plate 141 is not limited, but the width or width of the fixing plate 141 may be formed to be wider than the height to have stability.
  • the binding member 142 may be hinged to the fixing plate 141, and preferably hinged to both lower ends of the fixing plate 141.
  • the binding member 142 may be formed in a'u' shape in which the horizontal portion 142b connects the two spaced apart vertical portions 142a.
  • the fixing cover 143 may be provided on a surface on which the weight measuring device 10 is to be fixed. That is, when the weighing device 10 is fixed to the barn floor, the fixing cover 143 is also provided on the barn floor, and when the weighing device 10 is fixed to the barn wall, the fixing cover 143 is also provided on the barn wall. It is in the form of becoming.
  • the fixing cover 143 may be formed such that one side is opened in the form of a round bar to insert the horizontal portion 142b of the binding member 142.
  • the open side of the fixing cover 143 may be a portion facing the surface into which the fixing cover 143 is inserted.
  • the fixed cover 143 is connected to the motor 144 and penetrates the center of the fixed cover 143 by driving of the motor 144 to rotate the fixed shaft 143a that fixes the fixed cover 143 around the axis.
  • the connection with the motor 144 may be made by engaging the rotation gear 145 driven by the motor 144.
  • the fixed cover 143 may be formed with a gear tooth 143b capable of engaging with the rotating gear 145 along the outer circumferential surface.
  • the fixing part 14 configured as described above is in its original position opposite to the surface on which the open side of the fixing cover 143 is inserted, and when the binding member 142 is inserted, it is reversed by the driving of the motor 144. By rotating in the direction of rotation to prevent separation after moving the binding member 142 in the rotational direction, the weight measuring device 10 may be fixed.
  • the structure of the fixing portion 14 as described above is exemplary and is not necessarily limited to the above shape, and the shape of the fixing portion 14 may be diversified.
  • the fixed cover 143, the rotating gear 145, and the motor 144 may be protected from the outside by a housing (not shown).
  • a rotation position determination sensor (not shown) may be further included.
  • the rotation position determination sensor (not shown) is formed to sense the gear teeth 143b of the rotation gear 145, so that the number of gear teeth 143b according to rotation can be measured. The rotation position can be determined.
  • the fixing cover 143 is properly rotated in the opposite direction so that the binding state of the fixing part 14, such as whether the binding member 142 is properly bonded, can be accurately determined, and the manager can recognize this.
  • the weight measuring device 10 is installed at least one per dong of the barn (S), preferably in plurality, so that the livestock can freely rise and fall, and through this, the weight of several livestock is constantly measured. It can accumulate weight data, saves labor and time for weighing livestock, and does not stress the livestock, so it may not interfere with growth.
  • connection part 15 and the support part 13 may be formed in multiple stages so that the length can be varied. Through this, it is possible to freely adjust the height of the seating plate 11 in which livestock is accommodated so that the livestock is easy to rise and fall.
  • the weight measurement device 10 may be configured to further include a haptic motor 60 for generating vibration in the seating plate 11.
  • the haptic motor 60 vibrates the seating plate 11, thereby preventing only certain livestock from remaining on the seating plate 11 continuously by vibration, and inducing a number of livestock to evenly rise to the seating plate 11 By doing so, weight data of various livestock can be collected evenly.
  • the haptic motor 60 may be mounted on the mounting plate 11 to generate vibration in the mounting plate 11, and specifically, may be mounted on the lower surface of the mounting plate 11, but is not limited thereto, preferably One haptic motor 60 may be provided for each weight measuring device 10.
  • a plurality of weighing devices 10 are connected to each other by a vibration transmission tube (not shown), and the haptic motor 60 is a plurality of weighing devices 10 ) May be provided in only one or some of them and formed to transmit vibrations.
  • the plurality of weighing devices 10 are vibrated at the same time to form a constant cycle in which livestock rises and falls. It can be done so that the weight data measurement cycle can be uniform.
  • the weight measurement device 10 may prevent only certain livestock from remaining on the seating plate 11 through a pendulum motion, and may induce them to rise evenly.
  • connection part 15 of the weighing device 10 may be formed to perform a pendulum motion by being connected to a rotation shaft (not shown) that rotates by an external force, and a motor (not shown) so that an external force is periodically generated on the rotation shaft. ), etc. can be mounted.
  • the pendulum movement of the connection unit 15 is formed to start when the weight sensed by the load cell 12 exceeds the set time, and the set time from the moment when the weight is not detected by the load cell 12 after starting the pendulum movement. It can be formed to end at the point exceeding.
  • the weight measuring device 10 may be equipped with a weight (not shown) that forms a predetermined weight at the lower end of the seating plate 11 forming a pendulum motion by the connection part 15.
  • a weight (not shown) that forms a predetermined weight at the lower end of the seating plate 11 forming a pendulum motion by the connection part 15.
  • the haptic motor 60 and the pendulum motion configuration described above may be applied to both the weight measurement device 10, or only one of the two may be applied and used.
  • FIG. 4 is a block diagram schematically showing a configuration of an example of a server, which is one configuration of a livestock welfare uniformity management system using a weight measuring device according to an embodiment of the present invention
  • FIG. 5 is a weight according to an embodiment of the present invention. It is a flow chart of an example method of estimating the standard weight of livestock using a livestock livestock uniformity management system using a measuring device.
  • FIG. 6 (a) is a graph showing that one weighing device collects weight data
  • (b) to (d) show a method of clustering using the livestock weight data of (a).
  • the flow is shown in a graph
  • FIG. 7 is a flowchart of a process in which the clustering step is performed in the standard weight estimation method of FIG. 5
  • FIG. 8 is a livestock death uniformity management system using a weight measuring device according to an embodiment of the present invention.
  • It is a block diagram schematically showing the configuration of another example of the server, which is a configuration of.
  • the server 30 may receive the measured livestock weight data from each weighing device 10 to estimate the standard weight of livestock. At this time, the server 30 may collect a large number of livestock weight data and estimate the standard weight of livestock using clustering, or model the livestock weight data through a pattern recognition algorithm and then estimate the standard weight of livestock. have.
  • the server 30 may include a data storage unit 311 and a data processing unit 312.
  • the data storage unit 311 may collect and store the measured weight of livestock, that is, livestock weight data transmitted from the weighing device 10.
  • the livestock weight data may receive a plurality of livestock weight data in real time through the weighing device 10.
  • the data processing unit 312 may cluster livestock weight data stored in the data storage unit 311 to extract an average value, and then estimate a standard weight.
  • clustering is an operation of dividing a plurality of distributed weight data into a plurality of clusters, and can facilitate standard weight estimation by grouping livestock weight data that is indiscriminately measured and stored among similar groups.
  • the livestock weight data collected in real time in the data storage unit 311 for a predetermined time is clustered by the data processing unit 312, and at this time, the standard weight is calculated from the average value of each group from the plurality of livestock weight data groups formed by clustering. It can be estimated, and it is possible to keep livestock uniformly using this standard weight.
  • the standard weight estimation method of the livestock livestock uniformity management system using a weight measuring device includes collecting a large number of livestock weight data for a predetermined time (S10), and clustering a plurality of livestock weight data. (S20) and extracting the average value for each group of the clustered weight data and estimating the standard weight (S30).
  • the present invention first uses a weight measuring device 10 as shown in FIG. 6(a) for a predetermined amount of livestock weight data (hereinafter referred to as'weight data'). ) Can be formed to collect. This is because the weighing device 10 is open so that livestock can be freely entered and taken out, and a haptic function is implemented, so that a number of livestock can be circulated to become specimens, so that a lot of data can be collected. At this time, the measurement time may not be limited and may be measured in real time.
  • the X-axis is the number of times measured by the weight measuring device 10
  • the Y-axis is the total weight sensed by the weight measuring device 10.
  • the 10300th data of the X-axis has a Y-axis value of 20kg
  • the weight value measured at the 10300th of the weighing device 10 is 20kg.
  • 20 kg is the total weight of one or more livestock accommodated in the weighing device 10.
  • the weight data measured through the above method may be indicated on a graph in a dot format so that a manager managing a livestock house can see it at a glance, as shown in FIG. 6B.
  • the graph in which a dot indicating weight data is displayed may be a graph indicating a weight value for the estimated number of livestock by dividing the Y-axis of the graph of the step S10 of collecting a plurality of livestock weight data by section. .
  • the weight measuring device 10 may first store the detected weight in the weight measuring device 10 according to the number of measurements as shown in (a) of FIG. 6. At this time, in order to perform clustering, conversion into a dot format is required.
  • the X-axis should be the number of livestock
  • the Y-axis should be the total weight value for the number of livestock.
  • the Y-axis category is the same, but the X-axis category is different, so conversion from the number of measurements to the number of livestock is required.
  • the weight value of the Y-axis at a certain point in time of the X-axis can vary greatly within the range of the upper and lower limits of the Y-axis. This is possible.
  • the 10300th data is the Y-axis value of 20kg
  • the first range 0.1kg to 8kg
  • the second range 8.1kg to 16kg
  • the third range 16.1kg to 24kg
  • the weight value of 20 kg falls within the third range, considering that the weight of the livestock is 8 kg, it can be estimated that three animals climbed on the weighing device 10 and measured the weight.
  • step S10 a number of weight data are finally converted into dots ( dot) method.
  • the clustering step (S20) is a step of dividing a plurality of distributed weight data into a plurality of clusters as shown in (c) of FIG. 6, and is a step of dividing clusters by the number of categories of the X-axis of the graph.
  • the clustering step S20 may perform non-hierarchical clustering that is easy to execute on a plurality of data, and specifically, K-means clustering.
  • K-means clustering refers to clustering objects having similar characteristics as much as a set k value
  • the k value may be set as the number of categories on the X axis. That is, if it is possible to have three broilers on the weighing device 10, the X-axis category may be set to three, and accordingly, the k value may be set to 3.
  • K-means clustering is a step of selecting the k-value of the number of clusters (S201), selecting k random points to be assumed as the cluster center in the space in which the weight data is distributed.
  • Step (S202) calculating a distance between the centers of the k randomly selected clusters and individual weight data (S203), assigning the center of the cluster to which the individual weight data is closest to the cluster to which the data belongs ( S204), and placing the average value of the weight data belonging to the cluster as the center of the new cluster (S205), and the steps S203 to S205 may be repeated until the algorithm converges (S206).
  • the distance in step S203 is the square of the Euclidean distance
  • the definition of the square of the Euclidean distance of the two data x,y having m characteristics may be defined as in [Equation 1].
  • K-Mins clustering k- means clustering
  • the livestock livelihood uniformity management system using a weight measuring device clusters a plurality of weight data by performing the K-means clustering at the time of clustering to easily indicate the center value. I can.
  • the average value for each group may be extracted using the center value of the clustered weight data to estimate the standard weight (S30).
  • the server 30 includes a data storage unit 321 and a pattern recognition unit 322 And a weight determination unit 323.
  • the data storage unit 321 is substantially the same as the data storage unit 311 in the former case for estimating the standard weight of livestock using the aforementioned clustering, and thus a detailed description thereof will be omitted.
  • the pattern recognition unit 322 may model weight data stored in the data storage unit 321 through a pattern recognition algorithm.
  • the pattern recognition algorithm is a kind of artificial intelligence (AI) technology, and may be formed to learn by patterning weight data or estimated standard weight stored in the data storage unit 321, and to make a decision based on this. .
  • AI artificial intelligence
  • the pattern recognition algorithm may use the EM algorithm, but is not limited thereto, and various pattern recognition algorithms may be used, and the pattern recognition unit 322 performing modeling may proceed after a large amount of weight data is collected.
  • modeling may be performed after weight data is collected on a daily basis, and the operation of the pattern recognition unit 322 may be repeatedly performed through a pattern generated based on the modeling.
  • the data modeled through the pattern recognition unit 322 may be created as a distribution map, and the pattern recognition unit 322 may estimate the standard weight by linearizing the generated distribution map.
  • the livestock livelihood uniformity management system using the weight measuring device is interlocked with the server 30 to compare whether the estimated standard weight has reached the standard value of the standard weight range and the environmental sensor unit 20 It may further include a monitoring unit 70 to output the sensing information.
  • FIG. 9 is a configuration diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a monitoring unit
  • Figures 10 (a) to (e) are weight measuring apparatus according to an embodiment of the present invention It is an example of a method of managing death uniformity through the livestock civility management system using
  • FIG. 11 is a diagram illustrating a method in which the death uniformity managed through the method of FIG. 10 is displayed on the monitoring unit of FIG. 9.
  • the monitoring unit 70 may output a comparison of whether the estimated standard weight has reached the reference value of the standard weight range in a mapping method.
  • the weight measuring device 10 may be mapped to be displayed as shown in FIG. 10.
  • the weight measuring device 10 is mapped in a grid form, and the mapped weight measuring device 10 may be indicated by a dot ( ⁇ ), and each weight is measured.
  • the standard weight of the device 10 and the standard weight range are compared and indicated by hatching to indicate livelihood uniformity.
  • the standard weight range is a range created based on a weight suitable for livestock.
  • each weighing device 10 may not be marked with a hatched mark, and if it does not fall within the standard weight range, it may be marked with a hatched mark so that the administrator can recognize it at a glance.
  • the first nutrient point ⁇ may be generated even between the first nutrient point ⁇ where the first intermediate value is generated.
  • one of the adjacent weight measuring devices ( ⁇ ) and the weight measuring device ( ⁇ ) and A second nutrient point ( ⁇ ) bisecting between adjacent first nutrient points ( ⁇ ) is created, and between the second nutrient points ( ⁇ ) and between the second nutrient point ( ⁇ ) and adjacent first nutrient point ( ⁇ )
  • the second intermediate value is estimated, the second intermediate value is compared with the standard weight range to determine whether the reference value has been reached, and the map may be displayed by hatching.
  • the second nutrient point ( ⁇ ) may be generated even between the second nutrient point ( ⁇ ) where the second intermediate value is generated.
  • the second intermediate value is compared with the standard weight range to determine whether or not the reference value has been reached and displayed on the map, but the estimation and display of the second intermediate value can be repeated, and the estimation of the second intermediate value and The repetition of display is the distance between adjacent first nutrient points ( ⁇ ) and between one of the weight measuring devices ( ⁇ ) and the weight measuring device ( ⁇ ) and adjacent first nutrient points ( ⁇ ).
  • the execution may be completed.
  • the above process can be repeatedly performed to derive an optimal final death uniformity in a state in which the error range is reduced as much as possible, and in this state, it can be displayed on the monitoring unit 70 as shown in FIG. 11.
  • the map is indicated by hatching to aid understanding, but it is not limited and can be expressed in color.As an example, according to the standard weight range, various colors such as red if inappropriate, green if appropriate, and blue if best, are used. The degree of fit can be expressed, and in addition, various means of expression such as pictures and texts can be applied.
  • the monitoring unit 70 may output the environment sensing information of the environment sensor unit 20, and the manager controlling the environment through the environment sensing information output through the monitoring unit 70 can control the environment in each livestock house. It can also be formed.
  • an environmental control means such as an environmental control device such as a ventilation device and a temperature control device, or a feed device such as a feeding device and a water supply device may be provided, and such an environment control device,
  • the food supply device may be formed to be controlled by a control module (not shown) of the integrated controller 40 by interlocking with the integrated controller 40.
  • a control command can be transmitted to the integrated controller 40 through the server 30, and the integrated controller 40 By controlling the environmental control means in the house, it can be managed to meet the optimum livelihood uniformity.
  • control command is manually transmitted by being sensed through the monitoring unit 70, but the server 30 automatically integrates the controller 40 when it deviates from the livestock uniformity according to the setting. It can also transmit a signal to control.
  • the livestock livelihood uniformity management system using the weight measuring device captures the weight measuring device 10 and uses the grid G as a scale to classify the movement of the livestock L.
  • a camera 80 may be further included.
  • FIGS. 13A and 13B are motion classification cameras of FIG. This is a diagram illustrating the classification of the movement of livestock.
  • the motion classification camera 80 may be adjusted in a direction to capture an image of the weight measuring device 10. At this time, it may be preferably formed to image the mounting plate 11 of the weighing device 10, and when the mounting plate 11 is imaged, the grid G may be imaged together.
  • the grid G serves as a scale, and it is possible to determine whether the livestock L has moved or has not moved based on the mesh of the grid G.
  • the folded state will be included in a certain mesh of the grid (G).
  • the winged state will exceed a certain mesh of the grid (G), it is determined to determine the movement of the livestock (L).
  • the server 30 can determine and accumulate the livestock weight data as effective weight data only when it is measured when it is determined that the livestock L has not moved by the motion classification camera 80, and through this, a more accurate standard Weight can be estimated and managed with civility.
  • the livestock livestock uniformity management system using the weight measuring device according to an embodiment of the present invention but the image of any livestock in the barn, further comprising a spectroscopic camera 90 for extracting the spectrum of the captured livestock by having a spectroscopic sensor.
  • a spectroscopic camera 90 for extracting the spectrum of the captured livestock by having a spectroscopic sensor.
  • FIG. 14 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a spectroscopic camera.
  • the spectroscopic camera 90 extracts the spectrum of livestock and transmits it to the server 30, so that it can be compared with the spectrum of the normal standard, and if it is out of the spectrum of the normal range, it is determined that there is an abnormality. You can perform environmental control or notify administrators.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Birds (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Zoology (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Biophysics (AREA)
  • Housing For Livestock And Birds (AREA)

Abstract

The present invention relates to a system for managing livelihood uniformity of livestock by using a weight measurement apparatus. The system comprises: the weight measurement apparatus installed within a barn to measure the weights of the livestock; an environment sensor unit for sensing a breeding environment of the livestock; and a server for interworking with the weight measurement apparatus and the environment sensor unit to collect data about the measured weights of the livestock to thereby estimate a standard weight and control the breeding environment within the barn according to the standard weight and the sensed breeding environment.

Description

중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템Livestock livestock uniformity management system using weighing device
본 발명은 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템에 관한 것으로, 더욱 상세하게는 가축의 중량을 실시간으로 측정 하고, 이로 인해 얻어진 다수의 중량 데이터를 기반으로 표준 중량을 추정하여 가축의 생계 균일도를 개선하고 일정하게 관리할 수 있는 중량 측정 장치를 이용한 가축의 생계 균일도 관리 시스템에 관한 것이다.The present invention relates to a livestock uniformity management system using a weighing device, and more particularly, by measuring the weight of livestock in real time, and estimating the standard weight based on a plurality of weight data obtained thereby to determine livestock uniformity. It relates to a livestock uniformity management system using a weighing device that can be improved and consistently managed.
일반적으로 닭, 돼지, 소 등의 사람의 섭취를 위하여 길러지는 가축은 농가의 축사 내에서 일정기간 사육되어 기준 품질에 맞추어 출하하게 된다. 이때, 기준 품질을 결정하는 요인 중에는 가축의 중량이 포함되며, 가축의 중량에 따라 성장 여부, 질병 여부 등을 예측할 수 있어 중량은 가축의 상태를 용이하게 판별할 수 있는 지표로 사용될 수 있다.In general, livestock raised for human consumption, such as chickens, pigs, and cows, are reared in farmhouses for a certain period of time and shipped in accordance with standard quality. At this time, among the factors determining the standard quality, the weight of livestock is included, and growth or disease can be predicted according to the weight of the livestock, so that the weight can be used as an index for easily discriminating the condition of the livestock.
일 예로, 닭의 경우를 살펴보면 닭은 개체의 중량이 약 1.35kg 내지 1.60kg의 범위에 있을 때 출하되며, 이때 닭은 축사 1동 당 약 3%(1동의 1만수 기준으로 약 300마리)의 표본 개체 중량을 측정하여 상기 중량범위에 도달할 시에만 출하하게 된다.As an example, in the case of chickens, chickens are shipped when the weight of the individual is in the range of about 1.35kg to 1.60kg, and at this time, chickens are about 3% per shed (about 300 per 10,000 per dong). The weight of a sample is measured and shipped only when it reaches the above weight range.
따라서, 닭 사육시, 닭의 체중변화를 주기적으로 체크함으로써 질병 감염여부를 확인하는 한편, 닭이 표준성장곡선을 따라 건강하게 성장할 수 있도록 닭의 체중변화에 따라 사료량과 물의 양을 적절하게 조절해 주어야 한다.Therefore, when breeding chickens, the change in body weight of the chickens is checked periodically to check whether they are infected with diseases, while appropriately adjusting the amount of feed and water according to the changes in the body weight of the chickens so that the chickens can grow healthy according to the standard growth curve. Should be done.
즉, 닭 사육시, 주기적으로 닭의 체중을 측정하여 그 체중변화에 따라 적절한 조치를 취하는 것이 닭의 생산성 향상을 위하여 무엇보다 중요한 일이라 할 수 있다.That is, when breeding chickens, periodically measuring the weight of the chicken and taking appropriate measures according to the change in weight is the most important task for improving the productivity of the chicken.
종래에는 계량하고자 하는 물체를 올려놓는 짐판이 편평한 평면을 갖도록 구성된 저울을 사용함으로써, 닭 계량시에 한 사람이 양손으로 닭을 잡은 상태로 편평한 짐판 위에 올려 놓으면 다른 사람이 그 저울의 눈금을 읽어 기록하는 방식을 이용하였다.Conventionally, a scale is used so that the pan on which the object to be weighed is placed has a flat plane, so when one person holds the chicken with both hands and puts it on a flat pan, the other person reads the scale of the scale and records it. Was used.
그러나, 이러한 방식은 편평한 짐판 위에 올려진 닭이 발버둥치면서 움직임에 따라 눈금이 계속 변동하게 되어 정확한 무게값을 측정하기 어려운 문제점이 있었다.However, this method has a problem that it is difficult to measure an accurate weight value because the scale continuously fluctuates according to the movement of the chicken on the flat pan.
다른 방법으로는 깔때기 형상의 수용통을 구성한 저울을 사용하여 닭을 수용통에 박아 넣고 무게를 측정하는 방법이 있으나, 이는 닭의 스트레스를 증가시키는 문제점이 있었다.As another method, there is a method of inserting a chicken into a container and measuring its weight using a scale comprising a funnel-shaped container, but this has a problem of increasing the stress of the chicken.
또한, 이러한 종래 저울들을 이용하여 닭을 계량하는 경우, 살아 움직이는 닭을 저울에 올려놓는 사람과 저울 눈금을 읽어 기록하는 사람이 함께 작업 해야 함으로써, 적어도 2인 이상의 작업자가 함께 작업을 해야만 하는 불편함이 있었다.In addition, in the case of weighing chickens using these conventional scales, the person who places the live chicken on the scale and the person who reads and records the scales must work together, making it inconvenient that at least two or more workers must work together. There was this.
특히, 일반적으로 계사의 1동에는 적게는 수백에서 많게는 수만 마리가 수용되는데, 이러한 닭의 무게를 매일 측정하기에는 너무도 많은 시간과 노력이 소요되며, 측정하더라도 많은 닭들이 중복 측정될 여지가 다분하여 정확한 측정이 이루어지지 않아, 대부분의 농가에서는 닭을 매일 측정하는 것을 포기하고 눈대중에 의한 어림짐작으로 닭의 성장상태를 파악하는 방법을 사용하고 있어, 현재 닭의 성장상태에 대한 파악이 정확하게 이루어지지 못하는 문제점이 있다.In particular, in general, one building of a cage accommodates as few as hundreds to as many as tens of thousands of birds, and it takes too much time and effort to measure the weight of these chickens every day. Since the measurement was not made, most farmers gave up measuring the chickens every day and used a method to determine the growth status of chickens by making a preliminary guess by the masses of the eyes.Therefore, it is not possible to accurately grasp the growth status of chickens at present. There is this.
이에 따라, 근래에는 발전된 영상 시스템을 이용하여 영상 시스템을 계사 내에 설치하고 이를 이용하여 중량을 판별하는 영상 인식 방식이 제안되었으나, 이러한 영상 인식 방식은 닭의 움직임에 따른 정확한 측정이 어려워 무게 편차로 인한 오차율이 커지는 문제점이 있다.Accordingly, in recent years, an image recognition method has been proposed in which an image system is installed in a cage using an advanced image system and the weight is determined using it, but this image recognition method is difficult to accurately measure according to the movement of the chicken, and thus due to weight deviation. There is a problem that the error rate increases.
따라서, 닭의 무게 측정이 효율적이면서도 오차율을 줄이고, 더불어 측정된 무게에 대한 데이터를 용이하면서도 정확하게 처리하여 좋은 품질을 위한 가축의 생계가 균일하도록 하는 시스템의 개발이 요구되고 있다.Accordingly, there is a need to develop a system in which the weight of chickens is efficient and the error rate is reduced, and data on the measured weight is easily and accurately processed so that livestock livelihoods for good quality are uniform.
본 발명은 상기 문제점을 해결하기 위하여 제안된 것으로, 가축의 중량을 실시간으로 측정 하고, 이로 인해 얻어진 다수의 중량 데이터를 기반으로 표준 중량을 추정하여 가축의 생계 균일도를 개선하고 일정하게 관리할 수 있는 중량 측정 장치를 이용한 가축의 생계 균일도 관리 시스템을 제공하는 데 목적이 있다. The present invention is proposed to solve the above problem, and measures the weight of livestock in real time, and estimates the standard weight based on a number of weight data obtained thereby to improve the livestock uniformity and manage it consistently. An object of the present invention is to provide a livestock uniformity management system using a weighing device.
상기 과제를 해결하기 위한 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템은, 축사 내에 설치되어 가축의 중량을 측정하는 중량 측정 장치; 가축의 사육 환경을 센싱하는 환경센서부 및 상기 중량 측정 장치 및 환경센서부와 연동되어, 측정된 가축의 중량 데이터를 수집하여 표준 중량을 추정하며, 상기 표준 중량과 센싱된 사육 환경에 따라 축사 내의 사육 환경을 제어하는 서버를 포함할 수 있다.Livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention for solving the above problems, a weight measuring device installed in the livestock to measure the weight of livestock; In conjunction with the environmental sensor unit that senses the breeding environment of livestock and the weight measuring device and the environment sensor unit, it collects the measured weight data of livestock to estimate the standard weight, and according to the standard weight and the sensed breeding environment, It may include a server that controls the breeding environment.
여기서, 상기 중량 측정 장치는, 상기 가축이 안착할 공간을 마련하는 안착플레이트; 상기 안착플레이트와 연결부에 의해 연결되어 안착플레이트에 안착된 가축의 무게를 측정하는 로드셀; 상기 로드셀을 지지하는 지지부 및 상기 지지부와 연결되며 축사 내에 고정되는 고정부를 포함할 수 있다.Here, the weight measuring device includes: a seating plate for providing a space for the livestock to be seated; A load cell connected by the seating plate and the connecting portion to measure the weight of livestock seated on the seating plate; It may include a support portion for supporting the load cell and a fixing portion connected to the support portion and fixed in the barn.
또한, 상기 연결부 또는 지지부는, 길이 가변이 가능할 수 있다.In addition, the connection part or the support part may be variable in length.
또한, 상기 환경센서부는, 온도, 습도, 이산화탄소, 암모니아 중 하나 이상을 포함하여 센싱하도록 형성될 수 있다.In addition, the environmental sensor unit may be formed to sense at least one of temperature, humidity, carbon dioxide, and ammonia.
또한, 상기 표준 중량의 추정은, 수집된 중량 데이터를 클러스터링(Clustering)으로 추정할 수 있다.In addition, the standard weight may be estimated by clustering the collected weight data.
또한, 상기 가축 생계 균일도 관리 시스템은, 상기 서버와 연동되어, 상기 추정된 표준 중량을 표준 중량 범위의 기준치에 도달했는지에 대한 비교와 상기 환경센서부의 센싱 정보를, 출력하는 모니터링부를 더 포함할 수 있다.In addition, the livestock livelihood uniformity management system may further include a monitoring unit that is interlocked with the server to compare whether the estimated standard weight has reached a reference value of the standard weight range and output sensing information of the environmental sensor unit. have.
또한, 상기 중량 측정 장치는, 상기 안착플레이트에 진동을 발생시키는 햅틱 모터를 더 포함할 수 있다.In addition, the weight measuring device may further include a haptic motor generating vibration in the seating plate.
또한, 상기 가축 생계 균일도 관리 시스템은, 상기 중량 측정 장치가 복수개 구비 될 경우, 상기 복수의 중량 측정 장치는 진동전달관에 의해 서로 연결되고, 상기 햅틱 모터는 복수개의 중량 측정 장치 중 하나 또는 일부에만 구비될 수 있다.In addition, the livestock livelihood uniformity management system, when a plurality of weight measuring devices are provided, the plurality of weight measuring devices are connected to each other by a vibration transmission pipe, and the haptic motor is only one or part of the plurality of weight measuring devices. It can be provided.
또한, 상기 가축 생계 균일도 관리 시스템은, 상기 중량 측정 장치를 촬상하며 그리드를 가늠자로 하여, 가축의 움직임을 구분하는 움직임 구분 카메라를 더 포함하며, 상기 움직임 구분 카메라에 따른 가축이 움직이지 않은 것으로 판별될 시에만 측정되는 가축의 중량 데이터를 유효 중량 데이터로 수집할 수 있다.In addition, the livestock livelihood uniformity management system further includes a motion classification camera that separates the movement of livestock by photographing the weight measuring device and using a grid as a scale, and determining that the livestock has not moved according to the movement classification camera. Animal weight data, which are measured only when possible, can be collected as effective weight data.
또한, 상기 가축 생계 균일도 관리 시스템은, 상기 축사 내의 임의의 가축을 촬상하되, 분광 센서를 구비하여 상기 촬상되는 가축의 스펙트럼을 추출하는 분광 카메라를 더 포함할 수 있다.In addition, the livestock livestock uniformity management system may further include a spectroscopic camera that captures an arbitrary livestock in the livestock house, and includes a spectroscopic sensor to extract a spectrum of the captured livestock.
또한, 상기 중량 측정 장치는, 상기 연결부가 진자 운동 하도록 형성되되, 상기 연결부의 진자 운동은, 상기 로드셀에 감지되는 무게가 설정된 시간을 초과하는 시점에 시작되도록 형성되며, 진자 운동 시작 후 로드셀에 무게가 감지되지 않은 순간부터 설정된 시간을 초과하는 시점에 끝나도록 형성될 수 있다.In addition, the weight measuring device, wherein the connection portion is formed to move the pendulum, the pendulum movement of the connection portion is formed to start when the weight sensed by the load cell exceeds a set time, and weight on the load cell after starting the pendulum movement It may be formed to end at a time exceeding a set time from the moment when is not detected.
또한, 상기 중량 측정 장치는, 상기 안착플레이트 하단에 소정의 무게를 형성하는 무게추를 장착할 수 있다.In addition, the weight measuring device may be equipped with a weight forming a predetermined weight at the bottom of the mounting plate.
또한, 상기 고정부는, 고정플레이트; 상기 고정플레이트에 힌지 결합되는 'u' 자형의 결속부재 및 상기 중량 측정 장치가 고정될 면상에 마련되되, 환봉 형태로서 일측이 개방되어 상기 결속부재의 수평부가 삽입될 수 있고, 모터에 의해 구동되는 회전기어와 맞물려 고정축을 축심으로 회전하는 고정커버를 포함할 수 있다.In addition, the fixing portion, the fixing plate; A'u'-shaped binding member hinged to the fixing plate and the weight measuring device are provided on a surface to be fixed, and one side is opened in the form of a round bar so that the horizontal portion of the binding member can be inserted, and is driven by a motor. It may include a fixed cover that meshes with the rotation gear and rotates the fixed shaft around the axial center.
또한, 상기 고정부는, 상기 회전기어의 기어치 센싱 갯수를 이용하여 상기 고정커버의 회전위치를 판별하는 회전 위치 판별 센서를 더 포함하여, 고정부의 결속 상태를 판별할 수 있다.In addition, the fixing unit may further include a rotation position determination sensor that determines the rotation position of the fixing cover using the number of sensed gear teeth of the rotation gear, and may determine the state of the fixing of the fixing unit.
본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템은, 가축의 중량을 가축이 스스로 측정하기 때문에 인력소모가 없고, 가축 또한 스트레스가 없으며, 개체 중첩과 카메라 왜곡 같은 염려가 없어 오차율 또한 매우 낮아 종래 중량측정방식의 문제점을 모두 해결할 수 있는 장점이 있다.In the livestock livelihood uniformity management system using the weight measuring device according to an embodiment of the present invention, there is no manpower consumption because the livestock measures the weight of the livestock by itself, there is no stress on the livestock, and there is no concern such as overlapping objects and camera distortion, so the error rate In addition, it is very low and has the advantage of solving all the problems of the conventional weighing method.
또한, 모든 가축에게 적용할 수 있는 장점이 있어 사육시스템에 있어 폭 넓게 이용될 수 있는 장점이 있다.In addition, there is an advantage that can be applied to all livestock, so it can be widely used in a breeding system.
또한, 가축이 수시로 드나들어 중량을 측정하기 때문에 데이터가 많이 축적되어 오차율을 현저히 낮출 수 있는 장점이 있다.In addition, there is an advantage in that the error rate can be significantly lowered by accumulating a lot of data because livestock frequently come in and out to measure the weight.
또한, 비계층적으로 클러스터링을 하여 다수의 데이터를 용이하게 처리하고 정확한 표준 중량을 추정할 수 있는 효과가 있다.In addition, there is an effect of being able to easily process a large number of data and estimate an accurate standard weight by performing clustering in a non-hierarchical manner.
이에 따라, 가축의 사육에 있어 정확도, 생계균일도 및 품질을 개선할 수 있고, 손실 비용, 노동력 및 사료비를 절감시킬 수 있다.Accordingly, accuracy, uniformity of livelihood, and quality can be improved in breeding livestock, and loss costs, labor and feed costs can be reduced.
또한, 다수개의 동의 가축의 평균중량을 추정하여 생계균일도를 파악할 수 있고, 그에 따른 가축 관리가 용이할 수 있다.In addition, by estimating the average weight of livestock in a plurality of dongs, the evenness of livelihood can be grasped, and livestock management accordingly can be facilitated.
또한, 축사에서 도입할 수 있는 적정가격으로 보급율을 높일 수 있고, 높은 범용성을 가질 수 있다.In addition, it is possible to increase the penetration rate at an appropriate price that can be introduced in the livestock house, and have high versatility.
도 1은 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 구성도이다.1 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 일 구성인 중량 측정 장치의 예시도이다.2 is an exemplary view of a weight measuring device, which is a component of a livestock livelihood uniformity management system using a weight measuring device according to an embodiment of the present invention.
도 3의 (a)는 도 2의 중량 측정 장치의 일 구성인 고정부의 일례이며, (b) 내지 (d)는 상기 고정부의 결속 예시도이다.3(a) is an example of a fixing part, which is one configuration of the weight measuring apparatus of FIG. 2, and (b) to (d) are exemplary views of binding of the fixing part.
도 4는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 일 구성인 서버의 일례에 대한 구성을 개략적으로 도시한 블록도이다.4 is a block diagram schematically showing a configuration of an example of a server, which is a configuration of a livestock livelihood uniformity management system using a weight measuring device according to an embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템을 이용한 가축의 표준 중량 추정방법 일례에 대한 흐름도이다.5 is a flow chart illustrating an example of a standard weight estimation method of livestock using a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention.
도 6의 (a)는 1개의 중량 측정 장치가 중량데이터를 수집하는 것을 그래프로 표기한 도면이며, (b) 내지 (d)는 (a)의 가축 중량 데이터를 이용하여 클러스터링 하는 방법의 흐름을 그래프에 표기한 도면이다.Figure 6 (a) is a graph showing that one weighing device collects weight data, and (b) to (d) show the flow of a clustering method using the livestock weight data of (a). It is a drawing indicated on the graph.
도 7은 도 5의 표준중량 추정방법 중, 클러스터링 단계가 이루어지는 과정의 흐름도이다. 7 is a flowchart of a process in which a clustering step is performed in the method of estimating a standard weight of FIG. 5.
도 8은 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 일 구성인 서버의 다른예에 대한 구성을 개략적으로 도시한 블록도이다.8 is a block diagram schematically showing a configuration of another example of a server, which is a configuration of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention.
도 9는 모니터링부를 마련하는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 구성도이다.9 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a monitoring unit.
도 10의 (a) 내지 (e)는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템을 통한 생계 균일도를 관리하는 방식의 일례이다.10A to 10E are examples of a method of managing livelihood uniformity through a livestock livelihood uniformity management system using a weight measuring device according to an embodiment of the present invention.
도 11은 도 10의 방식을 통하여 관리되는 생계 균일도가 도 9의 모니터링부에 표기되는 방식을 예시화한 도면이다.FIG. 11 is a diagram illustrating a manner in which the livelihood uniformity managed through the method of FIG. 10 is displayed on the monitoring unit of FIG. 9.
도 12는 움직임 구분 카메라를 마련하는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 구성도이다.12 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a motion classification camera.
도 13의 (a) 및 (b)는 도 12의 움직임 구분 카메라를 이용하여 가축의 움직임을 구분을 예시한 도면이다.13A and 13B are diagrams illustrating movement of livestock using the motion classification camera of FIG. 12.
도 14는 분광 카메라를 마련하는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 구성도이다.14 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a spectroscopic camera.
축사 내에 설치되어 가축의 중량을 측정하는 중량 측정 장치; 가축의 사육 환경을 센싱하는 환경센서부 및 상기 중량 측정 장치 및 환경센서부와 연동되어, 측정된 가축의 중량 데이터를 수집하여 표준 중량을 추정하며, 상기 표준 중량과 센싱된 사육 환경에 따라 축사 내의 사육 환경을 제어하는 서버를 포함하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템을 제공할 수 있다.A weight measuring device installed in the barn to measure the weight of livestock; In conjunction with the environmental sensor unit that senses the breeding environment of livestock and the weight measuring device and the environment sensor unit, it collects the measured weight data of livestock to estimate the standard weight, and according to the standard weight and the sensed breeding environment, It is possible to provide a livestock livestock uniformity management system using a weight measuring device including a server that controls the breeding environment.
이하, 도면을 참조한 본 발명의 설명은 특정한 실시 형태에 대해 한정되지 않으며, 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있다. 또한, 이하에서 설명하는 내용은 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Hereinafter, the description of the present invention with reference to the drawings is not limited to a specific embodiment, and various transformations may be applied and various embodiments may be provided. In addition, the content described below should be understood to include all conversions, equivalents, and substitutes included in the spirit and scope of the present invention.
이하의 설명에서 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용되는 용어로서, 그 자체에 의미가 한정되지 아니하며, 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.In the following description, terms such as first and second are terms used to describe various elements, and their meanings are not limited, and are used only for the purpose of distinguishing one element from other elements.
본 명세서 전체에 걸쳐 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.The same reference numbers used throughout this specification denote the same elements.
본 발명에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 이하에서 기재되는 "포함하다", "구비하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것으로 해석되어야 하며, 하나 또는 그 이상의 다른 특징들이나, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The singular expression used in the present invention includes a plurality of expressions unless the context clearly indicates otherwise. In addition, terms such as "comprise", "include" or "have" described below are intended to designate the presence of features, numbers, steps, actions, components, parts, or combinations thereof described in the specification. It is to be construed and not to preclude the possibility of the presence or addition of one or more other features, numbers, steps, actions, components, parts, or combinations thereof.
또한, 명세서에 기재된 "…부", "…기", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어나 소프트웨어 또는 하드웨어 및 소프트웨어의 결합으로 구현될 수 있다.In addition, terms such as "... unit", "... group", and "module" described in the specification mean a unit that processes at least one function or operation, which can be implemented by hardware or software or a combination of hardware and software. have.
이하, 도 1 내지 도 14를 참조하여 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템을 상세히 설명하기로 한다.Hereinafter, a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 14.
본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템은, 하나 이상의 동으로 마련되는 축사의 각 동마다 중량 측정 장치(10)가 하나 이상으로 설치되어 각 동의 가축 중량 데이터를 다수 수집하고, 이를 활용하여 가축의 표준 중량을 추정하며, 추정된 가축의 표준 중량으로 가축의 생계를 균일하게 관리할 수 있는 가축 생계 균일도 관리 시스템이다.In the livestock livelihood uniformity management system using a weight measuring device according to an embodiment of the present invention, one or more weight measuring devices 10 are installed for each dong of a barn provided with one or more dongs to collect a large number of livestock weight data in each dong. It is a livestock livelihood uniformity management system that uses this to estimate the standard weight of livestock, and uniformly manage livestock livestock with the estimated standard weight of livestock.
도 1은 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 구성도이다.1 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention.
먼저, 도 1을 참조하면, 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템은, 중량 측정 장치(10), 환경센서부(20) 및 서버(30)를 포함하여 구성될 수 있다.First, referring to FIG. 1, a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention is configured to include a weight measuring device 10, an environmental sensor unit 20, and a server 30. I can.
구체적으로, 중량 측정 장치(10)는 하나 이상의 동으로 마련되는 축사(S) 내에 설치될 수 있다. 여기서, 중량 측정 장치(10)는 축사(S)가 복수의 동으로 마련될 시에 각 동마다 설치될 수 있고, 바람직하게는 각 동마다 복수의 중량 측정 장치(10)가 설치될 수 있다.Specifically, the weighing device 10 may be installed in the barn S provided with one or more coppers. Here, the weight measuring device 10 may be installed for each building when the barn S is provided with a plurality of buildings, and preferably, a plurality of weight measuring devices 10 may be installed for each building.
이는, 축사(S) 내의 각 동마다 측정이 이루어져야 하며, 복수의 중량 측정 장치(10)를 통해 최대한 많은 가축 중량 데이터를 수집하기 위함이다.This is to collect as much livestock weight data as possible through a plurality of weighing devices 10, and the measurement must be made for each dong in the barn (S).
중량 측정 장치(10)에 대한 상세한 구조는 도 2 및 도 3을 참조하여 후술하기로 한다.A detailed structure of the weighing device 10 will be described later with reference to FIGS. 2 and 3.
환경센서부(20)는 가축의 사육 환경을 센싱하도록 형성될 수 있으며, 구체적으로는 축사(S) 내의 온도, 습도, 이산화탄소, 암모니아 중 하나 이상을 포함하여 센싱하도록 형성될 수 있다. The environment sensor unit 20 may be formed to sense the breeding environment of livestock, and specifically, may be formed to sense at least one of temperature, humidity, carbon dioxide, and ammonia in the barn S.
이때, 환경센서부(20)는 중량 측정 장치(10)에 설치될 수 있으나, 한정되는 것은 아니며 축사(S) 내에 설치될 수도 있고, 모든 센서가 통합적으로 한 위치에 설치될 수도 있으나 한정되는 것은 아니며, 각 센서가 축사(S) 내에서 각기 다른 위치에 설치될 수도 있다. At this time, the environmental sensor unit 20 may be installed in the weighing device 10, but is not limited and may be installed in the barn (S), and all sensors may be integrated in one location, but limited No, each sensor may be installed in a different position in the house (S).
예컨대, 온도센서와 습도센서는 축사의 천장부에 마련될 수 있고, 이산화탄소 센서와 암모니아 센서는 축사의 측면부에 설치될 수 있는 것처럼 각기 다른 위치를 가질 수 있다.For example, the temperature sensor and the humidity sensor may be provided on the ceiling of the barn, and the carbon dioxide sensor and the ammonia sensor may have different positions, as may be installed on the side of the barn.
또한, 환경센서부(20)가 통합적으로 중량 측정 장치(10)에 설치될 경우, 후술하는 중량 측정 장치(10)의 안착플레이트(11)나 로드셀(12)에 설치될 수 있다. 환경센서부(20)가 로드셀(12)에 설치될 경우에는 로드셀(12)과 환경센서부(20)가 함께 하나의 하우징(미도시) 안에서 일 모듈로 형성될 수도 있다.In addition, when the environmental sensor unit 20 is integrally installed in the weighing device 10, it may be installed on the mounting plate 11 or the load cell 12 of the weighing device 10 to be described later. When the environment sensor unit 20 is installed in the load cell 12, the load cell 12 and the environment sensor unit 20 may be formed as a module in one housing (not shown) together.
여기서, 환경센서부(20)는 센싱을 담당하는 검지부와, 검지부로부터 검지된 환경값을 전달하기 위한 회로부가 서로 같은 위치에 있지 아니하고 분리 형성되고, 이를 밀폐하여 방진, 방습 등을 향상시킬 수도 있으며, 통신하기 위한 무선 모듈이 다기능 채널로 형성되어 통신 시에 간섭현상을 방지할 수도 있다.Here, the environmental sensor unit 20 is a detection unit in charge of sensing and a circuit unit for transmitting the environmental value detected from the detection unit is not in the same position and is formed separately, and sealing them to improve dustproof, moistureproof, etc. In addition, since the wireless module for communication is formed as a multi-function channel, it is possible to prevent interference during communication.
이러한 환경센서부(20)는 서버(30)와 연동되어 측정되는 온도, 습도, 이산화탄소, 암모니아 등의 환경 센싱 정보를 서버(30)로 전송할 수 있다.The environmental sensor unit 20 may transmit environmental sensing information such as temperature, humidity, carbon dioxide, ammonia, etc. measured in connection with the server 30 to the server 30.
서버(30)는 중량 측정 장치(10) 및 환경센서부(20)와 연동되어 중량 측정 장치(10)로부터 측정되는 가축 중량 데이터를 전송받고, 환경센서부(20)로부터 측정되는 환경 센싱 정보를 전달받을 수 있다.The server 30 is interlocked with the weight measuring device 10 and the environmental sensor unit 20 to receive livestock weight data measured from the weight measuring device 10, and receive environmental sensing information measured from the environmental sensor unit 20. You can receive it.
또한, 서버(30)는 가축 중량 데이터를 수집하여 표준 중량을 추정할 수 있으며, 추정된 표준 중량과 상기의 환경 센싱 정보를 활용하여 축사(S) 내의 사육 환경을 제어할 수 있다.In addition, the server 30 may collect livestock weight data to estimate the standard weight, and control the breeding environment in the livestock house S using the estimated standard weight and the environmental sensing information.
이때, 서버(30)는 축사(S) 내에 설치되어 중량 측정 장치(10) 및 환경센서부(20)와 유선 또는 무선으로 연동되는 통합제어기(40)를 통해 중량 측정 장치(10) 및 환경센서부(20)와 연동될 수 있으며, 통합제어기(40)를 통하여 가축 중량 데이터와 환경 센싱 정보를 전달 받거나 제어 명령을 전달할 수 있다.At this time, the server 30 is installed in the house (S), the weight measuring device 10 and the environmental sensor through the integrated controller 40 that is connected to the weight measuring device 10 and the environmental sensor unit 20 wired or wirelessly. It may be interlocked with the unit 20, and through the integrated controller 40, animal weight data and environmental sensing information may be transmitted or a control command may be transmitted.
즉, 통합제어기(40)는 가축 중량 데이터와 환경 센싱 정보를 서버(30)로 전송하거나 서버(30)로부터 받은 제어 명령들을 해당 장치로 전송할 수 있다.That is, the integrated controller 40 may transmit livestock weight data and environment sensing information to the server 30 or transmit control commands received from the server 30 to the corresponding device.
상기의 통합제어기(40)는 중량 측정 장치(10), 환경센서부(20), 서버(30)와 통신하며 중량 측정 장치(10), 환경센서부(20) 등을 제어하기 위해 제어 모듈(미도시), 통신 모듈(미도시)과 펌웨어(미도시) 등을 포함할 수 있다.The integrated controller 40 communicates with the weight measurement device 10, the environment sensor unit 20, and the server 30, and controls the weight measurement device 10, the environment sensor unit 20, and the like by a control module ( (Not shown), a communication module (not shown), firmware (not shown), and the like.
또한, 통합제어기(40)는 외장 하드 등의 저장 드라이브를 장착할 수 있는 공간 또는 저장 드라이브를 연결할 수 있는 단자를 마련하고, 클라우드 서버(50)와 연동되어 Socket 방식으로 데이터를 전송할 수도 있다.In addition, the integrated controller 40 may provide a space for mounting a storage drive such as an external hard drive or a terminal for connecting a storage drive, and interlock with the cloud server 50 to transmit data in a Socket method.
이를 통해, 중량 측정 장치(10) 및 환경센서부(20)로부터 전달 받은 데이터는 저장 드라이브에 자동으로 백업되는 동시에 클라우드 서버(50)로 전송되어 데이터가 저장될 수 있으며, 정전 등과 같은 데이터 손실이 발생될 수 있는 비상 상황에도 데이터 보존이 용이할 수 있다.Through this, data received from the weighing device 10 and the environmental sensor unit 20 is automatically backed up to the storage drive and transmitted to the cloud server 50 to store the data, and data loss such as power failure may occur. Data can be easily preserved even in emergencies that may arise.
상기의 통합제어기(40)를 통해 서버(30)로 수집된 가축 중량 데이터와 환경 센싱 정보를 활용에 대한 상세한 설명은 도 4 내지 도 8을 참조하여 후술하기로 한다.A detailed description of utilizing livestock weight data and environment sensing information collected by the server 30 through the integrated controller 40 will be described later with reference to FIGS. 4 to 8.
도 2는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 일 구성인 중량 측정 장치의 예시도이며, 도 3의 (a)는 도 2의 중량 측정 장치의 일 구성인 고정부의 일례이며, (b) 내지 (d)는 상기 고정부의 결속 예시도이다.FIG. 2 is an exemplary diagram of a weight measurement device, which is a component of a livestock livelihood uniformity management system using a weight measurement device according to an embodiment of the present invention, and FIG. 3A is It is an example of the government, and (b) to (d) are exemplary diagrams of binding of the fixing part.
도 2 및 도 3을 참조하면, 중량 측정 장치(10)는 안착플레이트(11), 로드셀(12), 지지부(13) 및 고정부(14)를 포함하여 구성될 수 있다.Referring to FIGS. 2 and 3, the weight measuring device 10 may be configured to include a seating plate 11, a load cell 12, a support part 13, and a fixing part 14.
구체적으로, 안착플레이트(11)는 가축이 안착할 공간을 마련하는 플레이트로서, 한 마리 이상의 가축이 올라갈 수 있도록 형성될 수 있다. 이때, 안착플레이트(11)는 가축의 무게에 대한 측정이 정확히 이루어지도록 하기 위해서 바람직하게는 한 마리의 가축이 올라갈 수 있도록 형성될 수 있다.Specifically, the seating plate 11 is a plate that provides a space in which livestock will be seated, and may be formed to allow one or more livestock to climb. At this time, the seating plate 11 may preferably be formed so that one livestock can climb in order to accurately measure the weight of the livestock.
로드셀(12)은 연결부(15)에 의해 안착플레이트(11)와 연결되어 안착플레이트(11)에 수용된 가축의 무게를 측정할 수 있다. The load cell 12 is connected to the seating plate 11 by the connection part 15 to measure the weight of livestock accommodated in the seating plate 11.
여기서, 연결부(15)는 파이프 형태의 베이스 연결부재(151)와, 베이스 연결부재(151)와 안착플레이트(11)를 체결하는 제1 연결 조인트(미도시)와, 베이스 연결부재(151)와 로드셀(12)을 체결하는 제2 연결 조인트(미도시)를 포함하여 구성될 수 있다.Here, the connection part 15 includes a pipe-shaped base connection member 151, a first connection joint (not shown) for fastening the base connection member 151 and the seating plate 11, and the base connection member 151 It may be configured to include a second connection joint (not shown) for fastening the load cell 12.
제1 연결 조인트 및 제2 연결 조인트는 볼트, 너트 등으로 마련되며, 베이스 연결부재(151), 제1 연결 조인트 및 제2 연결 조인트는 모두 스테인리스(SUS) 계열의 재질로 형성될 수 있고, 표면에는 부식에 대한 저항성을 높이기 위한 코팅이 이루어질 수 있다.The first connection joint and the second connection joint are provided with bolts, nuts, etc., and the base connection member 151, the first connection joint, and the second connection joint may all be formed of stainless steel (SUS)-based materials, and the surface The coating to increase resistance to corrosion may be formed.
그러나, 제1 연결 조인트 및 제2 연결 조인트는 반드시 마련되는 것은 아니며, 베이스 연결부재(151)가 안착플레이트(11) 및 로드셀(12)과 용접 등에 의해 직접 연결될 수도 있고, 이럴 경우 제1 연결 조인트 및 제2 연결 조인트는 구비되지 않을 수도 있다.However, the first connection joint and the second connection joint are not necessarily provided, and the base connection member 151 may be directly connected to the seating plate 11 and the load cell 12 by welding, etc., in this case, the first connection joint And the second connection joint may not be provided.
또한, 제1 연결 조인트 및 제2 연결 조인트 중 하나만 마련되는 것도 가능하다. In addition, it is also possible that only one of the first connection joint and the second connection joint is provided.
이러한 연결부(15)에 의해 안착플레이트(11)와 연결된 로드셀(12)은, 안착플레이트(11)에 가축이 스스로 올라가게 되면 그 무게를 측정하여 가축 중량 데이터를 생성하고, 이를 연동된 표시 수단 또는 저장 수단 등에 전달할 수 있다. The load cell 12 connected to the seating plate 11 by this connection 15 measures the weight of the livestock when the livestock rises on the seating plate 11 by itself, and generates livestock weight data, which is linked to the display means or It can be delivered to storage means, etc.
지지부(13)는 로드셀(12)을 지지하기 위해 구성되는 것으로, 로드셀(12)이 장착되는 헤드부(131)와, 헤드부(131)를 지지하기 위한 지지부재(132)로 구성될 수 있다.The support part 13 is configured to support the load cell 12, and may be composed of a head part 131 on which the load cell 12 is mounted, and a support member 132 for supporting the head part 131. .
헤드부(131)는 헤드 플레이트(131a), 로드셀 장착브라켓(미도시), 컨트롤러(미도시), 통신 모듈(131b), 디스플레이(131c)를 포함하여 구성될 수 있다.The head part 131 may include a head plate 131a, a load cell mounting bracket (not shown), a controller (not shown), a communication module 131b, and a display 131c.
구체적으로, 헤드 플레이트(131a)는 헤드부(131)의 베이스를 구성하는 플레이트로서, 형상은 한정되지 않으나, 일 예로써 도면과 같이 반구형으로 형성될 수 있다.Specifically, the head plate 131a is a plate constituting the base of the head portion 131, and the shape is not limited, but may be formed in a hemispherical shape as shown in the drawing as an example.
로드셀 장착브라켓(미도시)은 로드셀(12)이 장착되는 공간으로, 헤드 플레이트(131a)에 볼트와 너트 등으로 체결될 수 있으며, 로드셀(12)이 커넥터(미도시)에 의해 장착되도록 형성될 수가 있다. The load cell mounting bracket (not shown) is a space in which the load cell 12 is mounted, and can be fastened to the head plate 131a with bolts and nuts, and the load cell 12 is formed to be mounted by a connector (not shown). There can be.
이때, 로드셀 장착브라켓은 로드셀(12)과 로드셀(12)을 장착시키는 커넥터의 일부가 헤드 플레이트(131a)의 바깥으로 노출되도록 장착시킴으로써 로드셀(12)의 교체가 쉽도록 형성될 수 있다. 그러나, 이는 예시적인 것으로 반드시 한정되는 것은 아니다.At this time, the load cell mounting bracket may be formed to facilitate replacement of the load cell 12 by mounting the load cell 12 and a part of the connector for mounting the load cell 12 to be exposed to the outside of the head plate 131a. However, this is illustrative and not necessarily limited.
또한, 로드셀 장착브라켓에 대한 로드셀 장착 커넥터의 장착은 측방에서 슬라이딩하여 끼워 넣는 방식이 적용될 수 있으나, 이는 예시적인 것으로 한정되는 것은 아니다. 상기와 같은 슬라이딩 방식을 통한 장착 방식이 적용될 경우, 장착이 용이하면서도 로드셀(12) 등의 자중에 의한 낙하방지를 용이하게 달성할 수가 있다.In addition, a method of sliding and inserting the load cell mounting connector to the load cell mounting bracket may be applied, but this is not limited to an example. When the mounting method through the sliding method as described above is applied, while the mounting is easy, it is possible to easily achieve the prevention of falling due to the weight of the load cell 12 or the like.
한편, 고정력을 향상시키기 위해 로드셀 장착브라켓과 로드셀 장착 커넥터 사이에는 락킹 수단(미도시)마련될 수도 있으며, 로드셀 장착브라켓과 로드셀 장착 커넥터 또한 부식 방지를 위해 스테인리스(SUS) 계열의 소재로 형성될 수 있고, 그 외표면엔 부식 방지를 위한 코팅이 이루어질 수도 있다.Meanwhile, a locking means (not shown) may be provided between the load cell mounting bracket and the load cell mounting connector in order to improve the fixing force, and the load cell mounting bracket and the load cell mounting connector may also be formed of stainless steel (SUS)-based materials to prevent corrosion. In addition, the outer surface may be coated to prevent corrosion.
컨트롤러(미도시)는 중량 측정 장치(10)를 컨트롤하기 위한 구성으로, 중량 측정 장치(10)의 on/off 등을 제어하기 위한 스위치 등이 함께 마련될 수 있으며, 환경센서부(20)가 중량 측정 장치(10)에 설치될 경우에 환경센서부(20)와 연동되어 각 센서의 상태 등을 확인하며 제어할 수 있도록 조절수단(미도시)이 마련될 수도 있다.The controller (not shown) is a configuration for controlling the weighing device 10, and a switch for controlling the on/off of the weighing device 10 may be provided together, and the environmental sensor unit 20 When installed in the weight measurement device 10, an adjustment means (not shown) may be provided so as to be interlocked with the environmental sensor unit 20 to check and control the state of each sensor.
통신 모듈(131b)은 안테나 등의 무선 통신 수단을 포함하는 모듈로서, 헤드부(131)의 장착될 수 있고, 최대한 외부로 노출되지 않도록 헤드부(131)의 하단에 마련되거나 아예 외부로 노출되지 않도록 헤드부(131) 내부에 장착될 수 있다. 그러나, 이는 예시적인 것으로 통신 모듈의 장착 위치는 한정되지는 않는다.The communication module 131b is a module including a wireless communication means such as an antenna, and may be mounted on the head unit 131, and is provided at the bottom of the head unit 131 so as not to be exposed to the outside as much as possible, or is not exposed to the outside at all. It may be mounted inside the head part 131 so that it is not. However, this is an example and the mounting position of the communication module is not limited.
디스플레이(131c)는 원가 절감 등을 위해 7-세그먼트 디스플레이 등으로 구현되어 측정되는 가축의 무게 값만 육안으로 확인하도록 형성될 수도 있으나, 반드시 한정되는 것은 아니며, 구현하고자 하는 기능과 목적에 따라 LCD, OLED 등의 다양한 디스플레이 패널 등으로 구현될 수 있다.The display 131c may be implemented as a 7-segment display for cost reduction, etc., and may be formed to visually check only the measured weight of livestock, but is not necessarily limited, and according to the function and purpose to be implemented, LCD, OLED It may be implemented with a variety of display panels, such as.
또한, 디스플레이(131c)는 컨트롤러와 통합되어 터치패드 식의 디스플레이로 구현될 수도 있다. 즉, 상술한 컨트롤러는 디스플레이(131c)와 통합되어 디스플레이(131c)를 통해 제어될 수도 있다.In addition, the display 131c may be integrated with a controller to be implemented as a touch pad type display. That is, the above-described controller may be integrated with the display 131c and controlled through the display 131c.
상기와 같은 구성들을 포함하는 헤드부(131)는 지지부재(132)에 의해 지지될 수 있다. 지지부재(132)는 헤드부(131)의 지지하고 부식 방지 등을 위해 스테인리스(SUS) 계열의 파이프 등으로 마련될 수 있으며, 고정부(14)와 연결될 수 있다. The head portion 131 including the above configurations may be supported by the support member 132. The support member 132 may be provided with a stainless steel (SUS)-based pipe or the like to support the head part 131 and prevent corrosion, and may be connected to the fixing part 14.
고정부(14)는 지지부재(132)와 연결되어 축사 내에 고정되도록 형성될 수 있다. 이때, 고정부(14)는 가축들이 중량 측정 장치(10)에 오르고 내리기 쉽도록 축사 바닥에 고정되도록 형성될 수 있으나, 이는 예시적인 것으로 고정부(14)의 고정 위치는 한정되지는 않으며, 중량 측정 장치(10)가 가축들이 오르고 내리기에 쉬운 곳에 고정되면 충분하다.The fixing part 14 may be formed to be connected to the support member 132 to be fixed in the barn. At this time, the fixing part 14 may be formed to be fixed on the floor of the barn so that animals can easily rise and fall on the weighing device 10, but this is an example and the fixing position of the fixing part 14 is not limited, and the weight It suffices if the measuring device 10 is fixed in a place where livestock can easily rise and fall.
또한, 고정부(14)는 볼트, 너트 등에 의해 단순 체결되도록 형성될 수 있으나, 한편으론 용접 설치되거나 바닥 등에 삽입 고정되도록 형성될 수 있다. 이 중 설치 및 해체 또는 위치의 변동이 쉽도록 고정부(14)는 체결 또는 삽입 고정되는 것이 바람직하다.In addition, the fixing portion 14 may be formed to be simply fastened by bolts, nuts, etc., on the other hand, it may be formed to be welded or inserted and fixed to the floor or the like. Among them, it is preferable that the fixing part 14 is fastened or inserted and fixed to facilitate installation and disassembly or change of position.
한편으론, 고정부(14)는 도 3에 도시된 바와 같이 고정플레이트(141), 결속부재(142), 고정커버(143)를 포함하며, 회전 위치 판별 센서(미도시)를 더 포함하는 형태로 형성될 수도 있다.On the one hand, the fixing part 14 includes a fixing plate 141, a binding member 142, and a fixing cover 143, as shown in FIG. 3, and further includes a rotation position determination sensor (not shown). It can also be formed of.
구체적으로, 고정플레이트(141)는 형태는 한정되지 않으나 안정성을 갖도록 폭 또는 너비가 높이 대비 더 넓게 형성될 수 있다.Specifically, the shape of the fixing plate 141 is not limited, but the width or width of the fixing plate 141 may be formed to be wider than the height to have stability.
결속부재(142)는 고정플레이트(141)에 힌지 결합될 수 있으며, 바람직하게는 고정플레이트(141)의 양측 하단부로 힌지 결합될 수 있다. 또한, 결속부재(142)는 이격된 2개의 수직부(142a) 사이를 수평부(142b)가 연결하는 형태인 'u'자형으로 형성될 수가 있다. The binding member 142 may be hinged to the fixing plate 141, and preferably hinged to both lower ends of the fixing plate 141. In addition, the binding member 142 may be formed in a'u' shape in which the horizontal portion 142b connects the two spaced apart vertical portions 142a.
고정커버(143)는 중량 측정 장치(10)가 고정될 면상에 마련될 수 있다. 즉, 중량 측정 장치(10)가 축사 바닥에 고정될 경우 고정커버(143)도 축사 바닥에 마련되고, 중량 측정 장치(10)가 축사 벽면에 고정될 경우 고정커버(143)도 축사 벽면에 마련되는 형태이다.The fixing cover 143 may be provided on a surface on which the weight measuring device 10 is to be fixed. That is, when the weighing device 10 is fixed to the barn floor, the fixing cover 143 is also provided on the barn floor, and when the weighing device 10 is fixed to the barn wall, the fixing cover 143 is also provided on the barn wall. It is in the form of becoming.
또한, 고정커버(143)는 환봉의 형태에서 일측이 개방되어 결속부재(142)의 수평부(142b)가 삽입되도록 형성될 수 있다. 여기서 고정커버(143)의 개방된 일측은 고정커버(143)가 삽입된 면상과 대향하는 부분일 수 있다.In addition, the fixing cover 143 may be formed such that one side is opened in the form of a round bar to insert the horizontal portion 142b of the binding member 142. Here, the open side of the fixing cover 143 may be a portion facing the surface into which the fixing cover 143 is inserted.
또한, 고정커버(143)는 모터(144)와 연결되어 모터(144)의 구동에 의해 고정커버(143)의 중심을 관통하여 고정커버(143)를 고정시키는 고정축(143a)을 축심으로 회전할 수 있는데, 이때, 모터(144)와의 연결은 모터(144)에 의해 구동되는 회전기어(145)와 맞물려 이루어질 수 있다. 이를 위해, 고정커버(143)에는 회전기어(145)와 맞물릴 수 있는 기어치(143b)가 외주면을 따라 형성될 수도 있다.In addition, the fixed cover 143 is connected to the motor 144 and penetrates the center of the fixed cover 143 by driving of the motor 144 to rotate the fixed shaft 143a that fixes the fixed cover 143 around the axis. In this case, the connection with the motor 144 may be made by engaging the rotation gear 145 driven by the motor 144. To this end, the fixed cover 143 may be formed with a gear tooth 143b capable of engaging with the rotating gear 145 along the outer circumferential surface.
상기와 같이 구성된 고정부(14)는, 고정커버(143)의 개방된 일측이 삽입된 면상과 대향하는 본래의 위치에 있다가 결속부재(142)가 삽입되면 모터(144)의 구동에 의해 반대 방향으로의 회전하여 결속부재(142)를 회전방향으로 이동시킨 후 이탈을 방지함으로써 중량 측정 장치(10)를 고정하는 형태를 지닐 수 있다.The fixing part 14 configured as described above is in its original position opposite to the surface on which the open side of the fixing cover 143 is inserted, and when the binding member 142 is inserted, it is reversed by the driving of the motor 144. By rotating in the direction of rotation to prevent separation after moving the binding member 142 in the rotational direction, the weight measuring device 10 may be fixed.
그러나, 상기와 같은 고정부(14)의 구조는 예시적인 것으로서 상기의 형태에 반드시 한정되는 것은 아니며, 고정부(14)의 형태는 다양화 될 수 있다.However, the structure of the fixing portion 14 as described above is exemplary and is not necessarily limited to the above shape, and the shape of the fixing portion 14 may be diversified.
한편, 상기의 고정커버(143), 회전기어(145), 모터(144) 등은 하우징(미도시)에 의해 외부로부터 보호될 수 있다.Meanwhile, the fixed cover 143, the rotating gear 145, and the motor 144 may be protected from the outside by a housing (not shown).
또한, 상술하였듯이 상기의 고정플레이트(141), 결속부재(142), 고정커버(143)를 포함하는 고정부(14)의 구조에 있어서 회전 위치 판별 센서(미도시)를 더 포함할 수도 있다.In addition, as described above, in the structure of the fixing portion 14 including the fixing plate 141, the binding member 142, and the fixing cover 143, a rotation position determination sensor (not shown) may be further included.
회전 위치 판별 센서(미도시)는 회전기어(145)의 기어치(143b)를 센싱하도록 형성되어 회전에 따른 기어치(143b)의 개수를 계측할 수 있으며, 이를 이용하여 고정커버(143)의 회전위치를 판별할 수가 있다.The rotation position determination sensor (not shown) is formed to sense the gear teeth 143b of the rotation gear 145, so that the number of gear teeth 143b according to rotation can be measured. The rotation position can be determined.
이를 통하여, 고정커버(143)가 제대로 반대방향으로 회전하여 결속부재(142)가 제대로 결속되었는지 등의 고정부(14)의 결속 상태를 정확히 판별할 수 있고, 이를 관리자가 인지하도록 할 수 있다.Through this, the fixing cover 143 is properly rotated in the opposite direction so that the binding state of the fixing part 14, such as whether the binding member 142 is properly bonded, can be accurately determined, and the manager can recognize this.
상기한 중량 측정 장치(10)는 축사(S)의 한 동마다 적어도 하나씩, 바람직하게는 복수로 설치되어 가축이 자유롭게 오르락 내리락 할 수 있으며, 이를 통해 상시적으로 여러마리의 가축 중량을 다수 측정하여 중량 데이터를 축적할 수 있고, 가축의 중량 측정을 위한 노동력과 시간이 절약되며, 가축에게도 스트레스를 주지 않아 생장을 방해하지 않을 수도 있다.The weight measuring device 10 is installed at least one per dong of the barn (S), preferably in plurality, so that the livestock can freely rise and fall, and through this, the weight of several livestock is constantly measured. It can accumulate weight data, saves labor and time for weighing livestock, and does not stress the livestock, so it may not interfere with growth.
한편, 중량 측정 장치(10)의 구성 중 연결부(15)와 지지부(13)는, 다단으로 형성되어 길이 가변이 가능하도록 형성될 수 있다. 이를 통해, 가축이 수용되는 안착플레이트(11)의 높이 등을 가축이 오르락 내리락 하기 편하도록 자유롭게 조절할 수 있다.On the other hand, in the configuration of the weight measuring device 10, the connection part 15 and the support part 13 may be formed in multiple stages so that the length can be varied. Through this, it is possible to freely adjust the height of the seating plate 11 in which livestock is accommodated so that the livestock is easy to rise and fall.
또한, 중량 측정 장치(10)는, 안착플레이트(11)에 진동을 발생시키는 햅틱모터(60)를 더 포함하여 구성될 수도 있다.In addition, the weight measurement device 10 may be configured to further include a haptic motor 60 for generating vibration in the seating plate 11.
햅틱모터(60)는 안착플레이트(11)에 진동을 줌으로써, 진동에 의해 특정 가축만 지속적으로 안착플레이트(11)에 잔존하는 것을 방지하고, 다수의 가축이 안착플레이트(11)로 고루 올라오도록 유도함으로써 다양한 가축의 중량 데이터가 고루 수집되도록 할 수 있다.The haptic motor 60 vibrates the seating plate 11, thereby preventing only certain livestock from remaining on the seating plate 11 continuously by vibration, and inducing a number of livestock to evenly rise to the seating plate 11 By doing so, weight data of various livestock can be collected evenly.
여기서, 햅틱모터(60)는 안착플레이트(11)에 진동을 발생시키기 위해 안착플레이트(11)에 장착될 수 있고 구체적으로는 안착플레이트(11) 하면에 장착될 수 있으나 한정되는 것은 아니며, 바람직하게는 중량 측정 장치(10) 마다 하나의 햅틱모터(60)가 마련될 수 있다.Here, the haptic motor 60 may be mounted on the mounting plate 11 to generate vibration in the mounting plate 11, and specifically, may be mounted on the lower surface of the mounting plate 11, but is not limited thereto, preferably One haptic motor 60 may be provided for each weight measuring device 10.
그러나, 중량 측정 장치(10)가 복수개 구비될 경우에는, 복수의 중량 측정 장치(10)가 진동전달관(미도시)에 의해 서로 연결되고, 햅틱모터(60)는 복수의 중량 측정 장치(10) 중 하나 또는 일부에만 구비되어 진동을 전달하도록 형성될 수도 있다.However, when a plurality of weighing devices 10 are provided, a plurality of weighing devices 10 are connected to each other by a vibration transmission tube (not shown), and the haptic motor 60 is a plurality of weighing devices 10 ) May be provided in only one or some of them and formed to transmit vibrations.
이를 통해, 원가를 절감할 수 있으면서도 복수의 중량 측정 장치(10) 간의 진동이 고루 전달되도록 수가 있으며, 특히, 복수의 중량 측정 장치(10)를 동시에 진동시켜 가축이 오르락 내리락 하는 주기가 일정하도록 형성할 수도 있어 중량 데이터 측정 주기를 획일화 할 수도 있다.Through this, it is possible to reduce the cost while allowing the vibrations between the plurality of weighing devices 10 to be transmitted evenly. In particular, the plurality of weighing devices 10 are vibrated at the same time to form a constant cycle in which livestock rises and falls. It can be done so that the weight data measurement cycle can be uniform.
한편, 중량 측정 장치(10)는 햅틱모터(60)를 이용한 방식 외에도 진자 운동을 통해 특정 가축만 안착플레이트(11)에 잔존하는 것을 방지하고, 고루 올라오도록 유도할 수가 있다.On the other hand, in addition to the method using the haptic motor 60, the weight measurement device 10 may prevent only certain livestock from remaining on the seating plate 11 through a pendulum motion, and may induce them to rise evenly.
이를 위해, 중량 측정 장치(10)의 연결부(15)는 외력에 의해 회전하는 회전축(미도시) 등으로 연결되어 진자 운동을 하도록 형성될 수 있고, 회전축에는 외력이 주기적으로 발생되도록 모터(미도시) 등이 장착될 수 있다. To this end, the connection part 15 of the weighing device 10 may be formed to perform a pendulum motion by being connected to a rotation shaft (not shown) that rotates by an external force, and a motor (not shown) so that an external force is periodically generated on the rotation shaft. ), etc. can be mounted.
또한, 연결부(15)의 진자 운동은 로드셀(12)에 감지되는 무게가 설정된 시간을 초과하는 시점에 시작되도록 형성되며, 진자 운동 시작 후 로드셀(12)에 무게가 감지되지 않은 순간부터 설정된 시간을 초과하는 시점에 끝나도록 형성될 수 있다.In addition, the pendulum movement of the connection unit 15 is formed to start when the weight sensed by the load cell 12 exceeds the set time, and the set time from the moment when the weight is not detected by the load cell 12 after starting the pendulum movement. It can be formed to end at the point exceeding.
이는, 안착플레이트(11)에 올라온 가축이 바로 내려가는 것을 방지하면서 진자 운동이 진정이 된 후에 다시 측정이 이루어지도록 하기 위함이다.This is to prevent the livestock raised on the seating plate 11 from going down immediately, and to make the measurement again after the pendulum movement has calmed down.
또한, 중량 측정 장치(10)는 연결부(15)에 의해 진자 운동을 형성하는 안착플레이트(11) 하단에 소정의 무게를 형성하는 무게추(미도시)를 장착할 수도 있다. 이를 통해, 모터 등의 외력에 의해 발생하는 진자 운동은 안착플레이트(11) 하단에 장착된 무게추에 의해 보다 빠르게 진정될 수가 있다.In addition, the weight measuring device 10 may be equipped with a weight (not shown) that forms a predetermined weight at the lower end of the seating plate 11 forming a pendulum motion by the connection part 15. Through this, the pendulum motion generated by an external force such as a motor can be calmed down more quickly by a weight mounted at the bottom of the seating plate 11.
상기한 햅틱모터(60)와 진자 운동 구성은 중량 측정 장치(10)에 모두 적용될 수도 있고, 둘 중 하나만 적용되어 사용될 수도 있다.The haptic motor 60 and the pendulum motion configuration described above may be applied to both the weight measurement device 10, or only one of the two may be applied and used.
이하, 서버(30)에서 전송 받은 가축 중량 데이터를 이용하여 표준 중량을 추정하고, 이를 활용하여 가축의 생계 균일도를 관리하는 예시를 설명하기로 한다.Hereinafter, an example of estimating the standard weight using livestock weight data transmitted from the server 30, and managing livestock uniformity by using this will be described.
도 4는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 일 구성인 서버의 일례에 대한 구성을 개략적으로 도시한 블록도이며, 도 5는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템을 이용한 가축의 표준 중량 추정방법 일례에 대한 흐름도이다. 4 is a block diagram schematically showing a configuration of an example of a server, which is one configuration of a livestock livelihood uniformity management system using a weight measuring device according to an embodiment of the present invention, and FIG. 5 is a weight according to an embodiment of the present invention. It is a flow chart of an example method of estimating the standard weight of livestock using a livestock livestock uniformity management system using a measuring device.
또한, 도 6의 (a)는 1개의 중량 측정 장치가 중량데이터를 수집하는 것을 그래프로 표기한 도면이며, (b) 내지 (d)는 (a)의 가축 중량 데이터를 이용하여 클러스터링 하는 방법의 흐름을 그래프에 표기한 도면이고, 도 7은 도 5의 표준중량 추정방법 중, 클러스터링 단계가 이루어지는 과정의 흐름도이며, 도 8은 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 일 구성인 서버의 다른예에 대한 구성을 개략적으로 도시한 블록도이다.In addition, Figure 6 (a) is a graph showing that one weighing device collects weight data, and (b) to (d) show a method of clustering using the livestock weight data of (a). The flow is shown in a graph, and FIG. 7 is a flowchart of a process in which the clustering step is performed in the standard weight estimation method of FIG. 5, and FIG. 8 is a livestock livelihood uniformity management system using a weight measuring device according to an embodiment of the present invention. It is a block diagram schematically showing the configuration of another example of the server, which is a configuration of.
도 4 내지 도 8을 참조하면, 서버(30)는 각 중량 측정 장치(10)로부터 측정된 가축 중량 데이터를 전송 받아 가축의 표준 중량을 추정할 수 있다. 이때, 서버(30)는 가축 중량 데이터를 다수 수집하고, 클러스터링(Clustering)을 이용하여 가축의 표준 중량을 추정하거나, 패턴인식 알고리즘을 통해 가축의 중량 데이터를 모델링 후 가축의 표준 중량을 추정할 수 있다.4 to 8, the server 30 may receive the measured livestock weight data from each weighing device 10 to estimate the standard weight of livestock. At this time, the server 30 may collect a large number of livestock weight data and estimate the standard weight of livestock using clustering, or model the livestock weight data through a pattern recognition algorithm and then estimate the standard weight of livestock. have.
먼저, 클러스터링(clustering)을 이용하여 가축의 표준 중량의 추정하는 전자의 경우, 서버(30)는 데이터 저장부(311) 및 데이터 처리부(312)를 포함할 수 있다.First, in the former case of estimating the standard weight of livestock using clustering, the server 30 may include a data storage unit 311 and a data processing unit 312.
구체적으로, 데이터 저장부(311)는 중량 측정 장치(10)로부터 전송 받은 측정된 가축의 중량, 즉 가축 중량 데이터를 수집하고 저장할 수 있다. 이때, 가축 중량 데이터는 가축 중량 데이터는 중량 측정 장치(10)를 통해 실시간으로 다수의 가축 중량 데이터를 전송 받을 수 있다.Specifically, the data storage unit 311 may collect and store the measured weight of livestock, that is, livestock weight data transmitted from the weighing device 10. In this case, the livestock weight data may receive a plurality of livestock weight data in real time through the weighing device 10.
데이터 처리부(312)는 데이터 저장부(311)에 저장된 가축 중량 데이터를 클러스터링하여 평균치를 추출한 후, 표준 중량을 추정할 수 있다.The data processing unit 312 may cluster livestock weight data stored in the data storage unit 311 to extract an average value, and then estimate a standard weight.
여기서, 클러스터링은 분포된 다수의 중량데이터를 여러 개의 클러스터로 나누는 작업으로서, 무분별하게 측정되어 저장되는 가축 중량 데이터를 유사 군끼리 묶어줌으로써 표준 중량 추정이 용이하도록 할 수 있다.Here, clustering is an operation of dividing a plurality of distributed weight data into a plurality of clusters, and can facilitate standard weight estimation by grouping livestock weight data that is indiscriminately measured and stored among similar groups.
즉, 데이터 저장부(311)에서 실시간으로 일정 시간동안 다수 수집된 가축 중량 데이터는 데이터 처리부(312)에서 클러스터링되고, 이때 클러스터링되어 형성된 복수의 가축 중량 데이터군으로부터 각 군의 평균치를 통해 표준 중량을 추정할 수 있으며, 이 표준 중량을 매개로 가축을 균일하게 사육할 수 있는 것이다.That is, the livestock weight data collected in real time in the data storage unit 311 for a predetermined time is clustered by the data processing unit 312, and at this time, the standard weight is calculated from the average value of each group from the plurality of livestock weight data groups formed by clustering. It can be estimated, and it is possible to keep livestock uniformly using this standard weight.
구체적으로, 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 표준 중량 추정방법은, 일정시간 가축 중량 데이터를 다수 수집하는 단계(S10), 다수의 가축 중량 데이터를 클러스터링하는 단계(S20) 및 클러스터링된 중량데이터의 각 군마다 평균치를 추출하여 표준 중량을 추정하는 단계(S30)를 포함하여 진행될 수 있다.Specifically, the standard weight estimation method of the livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention includes collecting a large number of livestock weight data for a predetermined time (S10), and clustering a plurality of livestock weight data. (S20) and extracting the average value for each group of the clustered weight data and estimating the standard weight (S30).
도 6을 참조하면, 본 발명은 S10 단계를 수행하기 위하여 먼저 도 6의 (a)에 도시된 바와 같이 중량 측정 장치(10)를 통하여 일정시간 다수의 가축 중량 데이터(이하 '중량 데이터'라 함)를 수집하도록 형성될 수 있다. 이는, 중량 측정 장치(10)가 개방되어 가축의 출입이 자유롭고 햅틱(Haptic) 기능을 구현하고 있어, 여러 가축들이 표본 개체가 되도록 순환시킬 수 있어 많은 데이터를 수집할 수 있다. 이때, 측정시간은 제한을 두지 않을 수 있으며, 실시간으로 측정될 수 있다.Referring to FIG. 6, in order to perform step S10, the present invention first uses a weight measuring device 10 as shown in FIG. 6(a) for a predetermined amount of livestock weight data (hereinafter referred to as'weight data'). ) Can be formed to collect. This is because the weighing device 10 is open so that livestock can be freely entered and taken out, and a haptic function is implemented, so that a number of livestock can be circulated to become specimens, so that a lot of data can be collected. At this time, the measurement time may not be limited and may be measured in real time.
여기서, 도 6의 (a)에 도시된 그래프 중 X축은 중량 측정 장치(10)의 측정 횟수이며, Y축은 중량 측정 장치(10)에 감지되는 총 중량이다. 예를 들어, X축의 10300번째 데이터가 Y축 값이 20kg 이면, 그 중량 측정 장치(10)의 10300번째에 측정된 중량 값이 20kg임을 의미한다. 여기서 20kg은 중량 측정 장치(10)에 수용된 한 마리 이상의 가축 총 중량이다.Here, in the graph shown in (a) of FIG. 6, the X-axis is the number of times measured by the weight measuring device 10, and the Y-axis is the total weight sensed by the weight measuring device 10. For example, if the 10300th data of the X-axis has a Y-axis value of 20kg, it means that the weight value measured at the 10300th of the weighing device 10 is 20kg. Here, 20 kg is the total weight of one or more livestock accommodated in the weighing device 10.
상기의 방법을 통해 측정된 중량 데이터는 도 6의 (b)에 도시된 바와 같이 축사를 관리하는 관리자가 한눈에 볼 수 있도록 그래프에 도트(dot)형식으로 표기될 수 있다. 이때, 중량 데이터를 표시하는 도트(dot)가 표기되는 그래프는 상기 가축 중량 데이터를 다수 수집하는 단계(S10)의 그래프 Y축을 구간별로 나누어 추정한 가축 수에 대한 중량 값을 표기한 그래프일 수 있다.The weight data measured through the above method may be indicated on a graph in a dot format so that a manager managing a livestock house can see it at a glance, as shown in FIG. 6B. In this case, the graph in which a dot indicating weight data is displayed may be a graph indicating a weight value for the estimated number of livestock by dividing the Y-axis of the graph of the step S10 of collecting a plurality of livestock weight data by section. .
보다 구체적으로, 중량 측정 장치(10)는 데이터 수집 시에 도 6의 (a)와 같이 측정횟수에 따른 중량 측정 장치(10)에 감지된 중량을 먼저 저장할 수 있다. 이때, 클러스터링을 수행하기 위해서는 도트(dot) 형식으로 변환이 필요한데, 도트(dot) 형식의 그래프는 X축이 가축의 수가 되어야 하며, Y축은 그 가축의 수에 대한 총 중량 값이 되어야 한다.More specifically, when collecting data, the weight measuring device 10 may first store the detected weight in the weight measuring device 10 according to the number of measurements as shown in (a) of FIG. 6. At this time, in order to perform clustering, conversion into a dot format is required. In the dot format graph, the X-axis should be the number of livestock, and the Y-axis should be the total weight value for the number of livestock.
즉, S10 단계의 그래프는 데이터 수집과 클러스터링 이전에 있어서, Y축의 범주는 동일하나 X축 범주가 달라 측정횟수로부터 가축 수로의 변환작업이 필요하다.That is, in the graph of step S10, before data collection and clustering, the Y-axis category is the same, but the X-axis category is different, so conversion from the number of measurements to the number of livestock is required.
이때, S10 단계의 그래프 중 데이터 수집단계에서는 어느 X축 시점에서 Y축의 중량 값은 Y축 상한과 하한의 범위 내에서 매우 다양할 수 있는데, 이를 구간별로 나누어 줌으로써 그 시점에서의 가축 수에 대한 추정이 가능하다.At this time, in the data collection step of the graph of step S10, the weight value of the Y-axis at a certain point in time of the X-axis can vary greatly within the range of the upper and lower limits of the Y-axis. This is possible.
예를 들어, 10300번째 데이터가 Y축 값이 20kg일 때, 가축의 평균 중량을 8kg이라 가정하면, 제1 범위(0.1kg 내지 8kg), 제2 범위(8.1kg 내지 16kg), 제3 범위(16.1kg 내지 24kg) 등의 범위로 분류가 가능하다. 여기서 20kg이라는 중량 값은 제3 범위에 속하게 되므로, 가축의 중량이 8kg인 것을 고려하면 3마리가 중량 측정 장치(10)에 올라가 무게를 측정하였다는 것을 추정할 수 있다.For example, when the 10300th data is the Y-axis value of 20kg, assuming that the average weight of livestock is 8kg, the first range (0.1kg to 8kg), the second range (8.1kg to 16kg), and the third range ( 16.1kg to 24kg) can be classified in the range. Here, since the weight value of 20 kg falls within the third range, considering that the weight of the livestock is 8 kg, it can be estimated that three animals climbed on the weighing device 10 and measured the weight.
이러한 방식을 통해, 클러스터링 이전에 클러스터링이 가능한 도트(dot)형식으로의 변환이 가능하며, S10 단계에서는 도 6의 (b)에 도시된 바와 같이 최종적으로 그래프에 분포도처럼 다수의 중량 데이터가 도트(dot) 방식으로 표기될 수 있다.Through this method, it is possible to convert into a dot format capable of clustering before clustering, and in step S10, as shown in Fig. 6(b), a number of weight data are finally converted into dots ( dot) method.
이후, 그래프에 표기된 다수의 가축 중량 데이터를 클러스터링하는 단계를 수행할 수 있다. 여기서, 클러스터링 단계(S20)는 도 6의 (c)에 도시된 바와 같이 분포된 다수의 중량 데이터를 여러 개의 클러스터로 나누는 단계로써, 그래프의 X축의 범주 개수만큼 클러스터를 나누는 단계이다.Thereafter, a step of clustering a plurality of livestock weight data indicated in the graph may be performed. Here, the clustering step (S20) is a step of dividing a plurality of distributed weight data into a plurality of clusters as shown in (c) of FIG. 6, and is a step of dividing clusters by the number of categories of the X-axis of the graph.
이때, 클러스터링 단계(S20)는 다수의 데이터에서 실행이 용이한 비계층적 군집화를 수행할 수 있으며, 구체적으로는 케이민즈 클러스터링(K-means clustering)을 수행할 수 있다.In this case, the clustering step S20 may perform non-hierarchical clustering that is easy to execute on a plurality of data, and specifically, K-means clustering.
여기서, 케이민즈 클러스터링(K-means clustering)란 특성이 비슷한 개체들을 설정된 k 값만큼의 클러스터화 하는 것으로서, 본 발명에서는 상기 k 값이 X축의 범주 개수로 설정될 수 있다. 즉, 중량 측정 장치(10)에 육계가 3마리가 오르는 것이 가능하면, X 축의 범주는 3개로 설정이 가능하고, 이에 따라 k 값은 3으로 설정될 수 있다.Here, K-means clustering refers to clustering objects having similar characteristics as much as a set k value, and in the present invention, the k value may be set as the number of categories on the X axis. That is, if it is possible to have three broilers on the weighing device 10, the X-axis category may be set to three, and accordingly, the k value may be set to 3.
구체적으로, 도 7을 참조하면 케이민즈 클러스터링(K-means clustering)은 클러스터의 개수 k값 선택 단계(S201), 중량데이터가 분포된 공간상에 클러스터 중심으로 가정할 임의의 지점을 k개 선택하는 단계(S202), 임의의 선택된 k개의 클러스터의 중심과 개별 중량 데이터 사이의 거리를 계산하는 단계(S203), 개별 중량 데이터가 가장 가깝게 있는 클러스터의 중심을 그 데이터가 소속되는 클러스터로 할당하는 단계(S204), 클러스터에 속하게 된 중량데이터들의 평균값을 새로운 클러스터의 중심으로 두는 단계(S205)를 포함하며, 상기 S203 내지 S205 단계는 알고리즘이 수렴할 때까지 반복(S206)될 수 있다.Specifically, referring to FIG. 7, K-means clustering is a step of selecting the k-value of the number of clusters (S201), selecting k random points to be assumed as the cluster center in the space in which the weight data is distributed. Step (S202), calculating a distance between the centers of the k randomly selected clusters and individual weight data (S203), assigning the center of the cluster to which the individual weight data is closest to the cluster to which the data belongs ( S204), and placing the average value of the weight data belonging to the cluster as the center of the new cluster (S205), and the steps S203 to S205 may be repeated until the algorithm converges (S206).
여기서, S203 단계의 거리는 유클리드 거리의 제곱이며, 특성이 m개인 두 데이터 x,y의 유클리드 거리 제곱의 정의는 [수학식 1]과 같이 정의될 수 있다.Here, the distance in step S203 is the square of the Euclidean distance, and the definition of the square of the Euclidean distance of the two data x,y having m characteristics may be defined as in [Equation 1].
Figure PCTKR2019015913-appb-M000001
Figure PCTKR2019015913-appb-M000001
또한, N개의 데이터가 있고, 이를 K개의 클러스터로 분류한다면 하기 [수학식 2]와 같이 J값이 최소가 되도록 w(i, k)와 μ(k)를 결정하는 것이 케이민즈 클러스터링(k-means clustering)이다.In addition, if there are N data and classify them into K clusters, determining w(i, k) and μ(k) so that the J value is minimum as shown in [Equation 2] below is K-Mins clustering (k- means clustering).
Figure PCTKR2019015913-appb-M000002
Figure PCTKR2019015913-appb-M000002
(여기서, x(i)는 i번째 데이터, μ(k)는 k번째 클러스터의 중심이며, w(i, k)는 x(i)가 k번째 클러스터에 속하는 경우 1, 그렇지 않은 경우 0으로 정의되는 값이다)(Where x(i) is the i-th data, μ(k) is the center of the k-th cluster, and w(i, k) is defined as 1 if x(i) belongs to the k-th cluster, and 0 otherwise. Is the value)
본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템은 클러스터링시에 상기의 케이민즈 클러스터링(K-means clustering)를 수행함으로써 다수의 중량 데이터를 클러스터링하여 그 중심값을 용이하게 표기할 수 있다.The livestock livelihood uniformity management system using a weight measuring device according to an embodiment of the present invention clusters a plurality of weight data by performing the K-means clustering at the time of clustering to easily indicate the center value. I can.
상기의 클러스터링 단계(S20) 이후에는 도 6의 (d)에 도시된 바와 같이 클러스터링된 중량 데이터의 중심값을 이용하여 각 군마다 평균치를 추출하여 표준 중량을 추정(S30)할 수 있다.After the clustering step (S20), as shown in (d) of FIG. 6, the average value for each group may be extracted using the center value of the clustered weight data to estimate the standard weight (S30).
이를 통해, 상기에서 추정된 표준 중량을 이용하여 가축의 성장상태를 판별할 수 있으며, 이를 바탕으로 가축이 균일하게 사육되기 위해 급이, 급수 등을 조절하는데 이용될 수 있다.Through this, it is possible to determine the growth state of livestock using the standard weight estimated above, and based on this, it can be used to control feeding, water supply, etc. in order to keep livestock uniformly.
또한, 패턴인식 알고리즘을 통해 가축의 중량 데이터를 모델링 후 가축의 표준 중량을 추정하는 후자의 경우, 도 8에 도시된 바와 같이 서버(30)는 데이터 저장부(321), 패턴 인식부(322) 및 중량 판정부(323)를 포함하여 구성될 수 있다.In addition, in the latter case of estimating the standard weight of livestock after modeling the livestock weight data through a pattern recognition algorithm, as shown in FIG. 8, the server 30 includes a data storage unit 321 and a pattern recognition unit 322 And a weight determination unit 323.
구체적으로, 데이터 저장부(321)는 상술한 클러스터링(clustering)을 이용하여 가축의 표준 중량의 추정하는 전자의 경우의 데이터 저장부(311)와 실질적으로 동일하므로, 구체적인 설명은 생략하기로 한다.Specifically, the data storage unit 321 is substantially the same as the data storage unit 311 in the former case for estimating the standard weight of livestock using the aforementioned clustering, and thus a detailed description thereof will be omitted.
패턴 인식부(322)는 데이터 저장부(321)에 저장된 중량 데이터를 패턴인식 알고리즘을 통해 모델링할 수 있다. The pattern recognition unit 322 may model weight data stored in the data storage unit 321 through a pattern recognition algorithm.
여기서, 패턴인식 알고리즘은 인공지능(AI) 기술의 일종으로 데이터 저장부(321)에 저장되는 중량 데이터나 추정된 표준 중량 등을 패턴화하여 학습하고, 이를 기반으로 판단을 내리도록 형성될 수 있다.Here, the pattern recognition algorithm is a kind of artificial intelligence (AI) technology, and may be formed to learn by patterning weight data or estimated standard weight stored in the data storage unit 321, and to make a decision based on this. .
여기서, 패턴인식 알고리즘은 EM 알고리즘을 사용할 수 있으나, 이에 한정되지 않고 다양한 패턴인식 알고리즘을 사용할 수 있으며, 패턴 인식부(322)가 모델링을 수행하는 것은 중량 데이터가 많이 수집된 이후에 진행될 수 있다.Here, the pattern recognition algorithm may use the EM algorithm, but is not limited thereto, and various pattern recognition algorithms may be used, and the pattern recognition unit 322 performing modeling may proceed after a large amount of weight data is collected.
예를 들어, 하루를 기준으로 중량 데이터가 수집된 이후에 모델링을 진행하고, 이를 바탕으로 생성된 패턴을 통하여 패턴 인식부(322)의 동작이 반복적으로 이루어질 수 있다.For example, modeling may be performed after weight data is collected on a daily basis, and the operation of the pattern recognition unit 322 may be repeatedly performed through a pattern generated based on the modeling.
패턴 인식부(322)를 통해 모델링 된 데이터는 분포도로 만들어 질 수 있고, 패턴 인식부(322)는 생성된 분포도를 선형화하여 표준 중량을 추정할 수 있다.The data modeled through the pattern recognition unit 322 may be created as a distribution map, and the pattern recognition unit 322 may estimate the standard weight by linearizing the generated distribution map.
한편, 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템은 서버(30)와 연동되어 추정된 표준 중량을 표준 중량 범위의 기준치에 도달했는지에 대한 비교와 환경센서부(20)의 센싱 정보를 출력하는 모니터링부(70)를 더 포함할 수 있다.Meanwhile, the livestock livelihood uniformity management system using the weight measuring device according to an embodiment of the present invention is interlocked with the server 30 to compare whether the estimated standard weight has reached the standard value of the standard weight range and the environmental sensor unit 20 It may further include a monitoring unit 70 to output the sensing information.
이는 도 9 내지 도 11을 참조하여 설명하기로 한다.This will be described with reference to FIGS. 9 to 11.
도 9는 모니터링부를 마련하는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 구성도이며, 도 10의 (a) 내지 (e)는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템을 통한 생계 균일도를 관리하는 방식의 일례이고, 도 11은 도 10의 방식을 통하여 관리되는 생계 균일도가 도 9의 모니터링부에 표기되는 방식을 예시화한 도면이다.9 is a configuration diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a monitoring unit, Figures 10 (a) to (e) are weight measuring apparatus according to an embodiment of the present invention It is an example of a method of managing livelihood uniformity through the livestock livelihood uniformity management system using, and FIG. 11 is a diagram illustrating a method in which the livelihood uniformity managed through the method of FIG. 10 is displayed on the monitoring unit of FIG. 9.
도 9 내지 도 11을 참조하면, 모니터링부(70)는 추정된 표준 중량을 표준 중량 범위의 기준치에 도달했는지에 대한 비교를 맵핑 방식으로 출력할 수 있다.9 to 11, the monitoring unit 70 may output a comparison of whether the estimated standard weight has reached the reference value of the standard weight range in a mapping method.
이를 위해, 먼저 중량 측정 장치(10)가 도 10과 같이 표시되도록 맵핑할 수 있다.To this end, first, the weight measuring device 10 may be mapped to be displayed as shown in FIG. 10.
또한, 도 10의 (a)를 참조하면, 중량 측정 장치(10)를 기준으로 하여 격자형태로 맵핑되는데, 맵핑된 중량 측정 장치(10)는 점(●)으로 표시될 수 있으며, 각 중량 측정 장치(10)의 표준 중량과 표준 중량 범위를 비교 수행하여 빗금으로 표시되어 생계 균일도를 나타낼 수 있다. 여기서, 표준 중량 범위는 가축에 적합한 중량을 기반으로 생성된 범위이다.In addition, referring to (a) of FIG. 10, the weight measuring device 10 is mapped in a grid form, and the mapped weight measuring device 10 may be indicated by a dot (●), and each weight is measured. The standard weight of the device 10 and the standard weight range are compared and indicated by hatching to indicate livelihood uniformity. Here, the standard weight range is a range created based on a weight suitable for livestock.
이때, 각 중량 측정 장치(10)의 표준 중량이 표준 중량 범위 내에 속하면 빗금표시를 하지 않을 수 있으며, 표준 중량 범위 내에 속하지 않으면 빗금 표시를 하여 관리자가 한눈에 알아보도록 할 수가 있다.At this time, if the standard weight of each weighing device 10 falls within the standard weight range, it may not be marked with a hatched mark, and if it does not fall within the standard weight range, it may be marked with a hatched mark so that the administrator can recognize it at a glance.
또한, 도 10의 (b) 및 (c)를 참조하면, 도 10의 (a)에서 더 세분화된 형태로서, 표시된 다수 개의 중량 측정 장치(10) 간의 사이를 각각 양분하는 제1 양분점(△)을 생성하고, 그 제1 양분점(△)간의 사이 및 제1 양분점(△)과 인접한 중량 측정 장치(●)간의 제1 중간값을 추정하고, 상기 제1 중간값을 표준 중량 범위와 비교수행하여 기준치에 도달했는지를 판단하여 맵에 빗금 처리하여 표시할 수 있다.In addition, referring to (b) and (c) of FIG. 10, as a more subdivided form in (a) of FIG. 10, a first nutrient point (△ ), and estimates a first intermediate value between the first nutrient point (△) and between the first nutrient point (△) and the adjacent weighing device (●), and the first intermediate value with the standard weight range By performing comparison, it is determined whether the reference value has been reached, and it can be displayed by hatching on the map.
여기서, 제1 중간값이 생성되는 제1 양분점(△)간의 사이에도 제1 양분점(△)이 생성될 수 있다.Here, the first nutrient point △ may be generated even between the first nutrient point △ where the first intermediate value is generated.
또한, 도 10의 (d) 및 (e)를 참조하면, 도 10의 (c)에서 더 세부화된 형태로서, 인접하고 있는 상기 중량 측정 장치(●) 중 하나와 그 중량 측정 장치(●)와 인접한 상기 제1 양분점(△) 간의 사이를 양분하는 제2 양분점(☆)을 생성하고, 그 제2 양분점(☆)간의 사이 및 제2 양분점(☆)과 인접한 제1 양분점(△) 간의 제2 중간값을 추정하고, 상기 제2 중간값을 표준중량범위와 비교수행하여 기준치에 도달했는지를 판단하여 맵에 빗금 처리하여 표시할 수 있다.In addition, referring to (d) and (e) of FIG. 10, in a more detailed form in (c) of FIG. 10, one of the adjacent weight measuring devices (●) and the weight measuring device (●) and A second nutrient point (☆) bisecting between adjacent first nutrient points (△) is created, and between the second nutrient points (☆) and between the second nutrient point (☆) and adjacent first nutrient point ( Δ) The second intermediate value is estimated, the second intermediate value is compared with the standard weight range to determine whether the reference value has been reached, and the map may be displayed by hatching.
여기서, 제2 중간값이 생성되는 제2 양분점(☆)간의 사이에도 제2 양분점(☆)이 생성될 수 있다.Here, the second nutrient point (☆) may be generated even between the second nutrient point (☆) where the second intermediate value is generated.
또한, 제2 중간값을 표준 중량 범위와 비교수행하여 기준치에 도달했는지를 판단하여 맵에 표시하되, 상기 제2 중간값의 추정 및 표시는 반복수행될 수 있고, 상기 제2 중간값의 추정 및 표시의 반복수행은, 인접하고 있는 상기 제1 양분점(△) 간의 사이 및 상기 중량 측정 장치(●) 중 하나와 그 중량 측정 장치(●)와 인접한 상기 제1 양분점(△) 간의 사이 거리가 소정의 범위 이하에 도달할 경우 수행이 완료될 수 있다.In addition, the second intermediate value is compared with the standard weight range to determine whether or not the reference value has been reached and displayed on the map, but the estimation and display of the second intermediate value can be repeated, and the estimation of the second intermediate value and The repetition of display is the distance between adjacent first nutrient points (△) and between one of the weight measuring devices (●) and the weight measuring device (●) and adjacent first nutrient points (△). When is less than a predetermined range, the execution may be completed.
본 발명은, 상기의 과정은 반복적으로 수행하여 오차범위를 최대한 줄인 상태의 최적의 최종 생계 균일도를 도출해낼 수 있으며, 이러한 상태로 도 11과 같이 모니터링부(70)에 표기될 수 있다.In the present invention, the above process can be repeatedly performed to derive an optimal final livelihood uniformity in a state in which the error range is reduced as much as possible, and in this state, it can be displayed on the monitoring unit 70 as shown in FIG. 11.
한편, 상기에서는 이해를 돕기 위해 맵에 빗금으로 표시하였으나, 한정되지 않으며 색으로도 표현될 수 있고, 그 예로써 표준 중량 범위에 따라 부적합하면 빨강, 적합하면 초록, 최상이면 파랑과 같이 다양한 색으로 적합도를 표현할 수 있으며, 이 외에도 그림, 텍스트 등의 다양한 표현수단이 적용될 수 있다. On the other hand, in the above, the map is indicated by hatching to aid understanding, but it is not limited and can be expressed in color.As an example, according to the standard weight range, various colors such as red if inappropriate, green if appropriate, and blue if best, are used. The degree of fit can be expressed, and in addition, various means of expression such as pictures and texts can be applied.
또한, 모니터링부(70)는 환경센서부(20)의 환경 센싱 정보를 출력할 수 있으며, 이러한 모니터링부(70)를 통해 출력된 환경 센싱 정보를 통하여 관제하는 관리자가 각 축사내의 환경을 제어하도록 형성될 수도 있다. In addition, the monitoring unit 70 may output the environment sensing information of the environment sensor unit 20, and the manager controlling the environment through the environment sensing information output through the monitoring unit 70 can control the environment in each livestock house. It can also be formed.
예컨대, 축사(S) 내에는 환기장치, 온도제어장치 등의 환경 제어 장치나, 급이 장치, 급수 장치 등의 먹이 공급 장치 등으로 구성되는 환경 제어 수단이 구비될 수가 있고, 이러한 환경 제어 장치, 먹이 공급 장치 등은 통합제어기(40)와 연동되어 통합제어기(40)의 제어 모듈(미도시) 등에 의해 제어되도록 형성될 수 있다.For example, in the barn S, an environmental control means such as an environmental control device such as a ventilation device and a temperature control device, or a feed device such as a feeding device and a water supply device may be provided, and such an environment control device, The food supply device may be formed to be controlled by a control module (not shown) of the integrated controller 40 by interlocking with the integrated controller 40.
이를 통해, 모니터링부(70)로 생계 균일도를 벗어나는 축사가 감지될 시에 서버(30)를 통해 통합제어기(40)로 제어 명령을 전달할 수 있으며, 통합제어기(40)는 이 제어 명령에 따라 각 축사 내의 환경 제어 수단을 제어함으로써 최적의 생계 균일도를 맞추도록 관리될 수가 있다.Through this, when a livestock that deviates from the livelihood uniformity is detected by the monitoring unit 70, a control command can be transmitted to the integrated controller 40 through the server 30, and the integrated controller 40 By controlling the environmental control means in the house, it can be managed to meet the optimum livelihood uniformity.
한편, 이해를 돕기 위해 상기에서는 모니터링부(70)를 통해 감지 되어 제어 명령이 수동으로 전달되는 것으로 예시하였으나, 서버(30)는 설정에 따라 가축의 생계 균일도를 벗어날 경우 자동으로 통합제어기(40)가 제어하도록 신호를 전송할 수도 있다.On the other hand, in order to aid understanding, it is exemplified that the control command is manually transmitted by being sensed through the monitoring unit 70, but the server 30 automatically integrates the controller 40 when it deviates from the livestock uniformity according to the setting. It can also transmit a signal to control.
한편, 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템은, 중량 측정 장치(10)를 촬상하며 그리드(G)를 가늠자로 하여, 가축(L)의 움직임을 구분하는 움직임 구분 카메라(80)를 더 포함할 수 있다.Meanwhile, the livestock livelihood uniformity management system using the weight measuring device according to an embodiment of the present invention captures the weight measuring device 10 and uses the grid G as a scale to classify the movement of the livestock L. A camera 80 may be further included.
도 12는 움직임 구분 카메라를 마련하는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 구성도이며, 도 13의 (a) 및 (b)는 도 12의 움직임 구분 카메라를 이용하여 가축의 움직임을 구분을 예시한 도면이다.12 is a configuration diagram of a livestock livelihood uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a motion classification camera, and FIGS. 13A and 13B are motion classification cameras of FIG. This is a diagram illustrating the classification of the movement of livestock.
도 12 및 도 13을 참조하면, 움직임 구분 카메라(80)는 중량 측정 장치(10)를 촬상하도록 방향이 조절될 수 있다. 이때, 바람직하게는 중량 측정 장치(10)의 안착플레이트(11)를 촬상하도록 형성될 수 있으며, 안착플레이트(11)를 촬상시에 그리드(G)가 함께 촬상되도록 할 수 있다.Referring to FIGS. 12 and 13, the motion classification camera 80 may be adjusted in a direction to capture an image of the weight measuring device 10. At this time, it may be preferably formed to image the mounting plate 11 of the weighing device 10, and when the mounting plate 11 is imaged, the grid G may be imaged together.
여기서, 그리드(G)는 가늠자의 역할로서, 그리드(G)의 메쉬를 기준으로 가축(L)이 움직인 것인지 움직이지 않은 것인지 판별할 수 있다. Here, the grid G serves as a scale, and it is possible to determine whether the livestock L has moved or has not moved based on the mesh of the grid G.
예를 들어, 육계의 경우 날개가 있고, 날개를 핀 상태와 날개를 접은 상태가 있는데, 도 13의 (a)와 같이 날개를 접은 상태는 그리드(G)의 일정 메쉬 안에 포함될 것이고, 도 13의 (b)와 같이 날개를 핀 상태는 그리드(G)의 일정 메쉬를 초과할 것이므로, 이를 판별하여 가축(L)의 움직임을 판단하는 것이다.For example, in the case of broiler chickens, there are wings, a state with wings open and a state in which the wings are folded. As shown in Fig. 13 (a), the folded state will be included in a certain mesh of the grid (G). As shown in (b), since the winged state will exceed a certain mesh of the grid (G), it is determined to determine the movement of the livestock (L).
이때, 서버(30)는 움직임 구분 카메라(80)에서 가축(L)이 움직이지 않은 것으로 판별되면 측정될 시에만 가축의 중량 데이터를 유효 중량 데이터로 판별하여 축적할 수 있고, 이를 통해 보다 정확한 표준 중량을 추정하며 생계 균일도로 관리하도록 할 수가 있다.At this time, the server 30 can determine and accumulate the livestock weight data as effective weight data only when it is measured when it is determined that the livestock L has not moved by the motion classification camera 80, and through this, a more accurate standard Weight can be estimated and managed with livelihood uniformity.
또한, 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템은, 축사 내의 임의의 가축을 촬상하되, 분광 센서를 구비하여 촬상되는 가축의 스펙트럼을 추출하는 분광 카메라(90)를 더 포함할 수 있다.In addition, the livestock livestock uniformity management system using the weight measuring device according to an embodiment of the present invention, but the image of any livestock in the barn, further comprising a spectroscopic camera 90 for extracting the spectrum of the captured livestock by having a spectroscopic sensor. Can include.
도 14는 분광 카메라를 마련하는 본 발명의 실시 예에 따른 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템의 구성도이다.14 is a block diagram of a livestock livestock uniformity management system using a weight measuring device according to an embodiment of the present invention to provide a spectroscopic camera.
도 14를 참조하면, 분광 카메라(90)는 가축의 스펙트럼을 추출하여 서버(30)로 전송하여, 정상 기준의 스펙트럼과 비교할 수 있고, 정상 범위의 스펙트럼을 벗어날 경우 이상이 있음으로 판별하여 그에 따른 환경 제어를 수행하거나 관리자 등에게 알릴 수가 있다.Referring to FIG. 14, the spectroscopic camera 90 extracts the spectrum of livestock and transmits it to the server 30, so that it can be compared with the spectrum of the normal standard, and if it is out of the spectrum of the normal range, it is determined that there is an abnormality. You can perform environmental control or notify administrators.
이는, 가축의 상태를 면밀히 관찰하도록 하며, 가축에 질병이 발생할 경우 보다 빠른 시간 내에 발견하도록 하여 즉시 대처가 가능하고 피해를 최소화 하도록 할 수가 있다.This makes it possible to closely observe the condition of livestock, and to detect disease in livestock in a shorter time, so that immediate coping and damage can be minimized.
이상으로 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고 다른 구체적인 형태로 실시할 수 있다는 것을 이해할 수 있을 것이다. 따라서 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것이다.The embodiments of the present invention have been described above with reference to the accompanying drawings, but those of ordinary skill in the art to which the present invention pertains can be implemented in other specific forms without changing the technical spirit or essential features of the present invention. You will be able to understand. Therefore, the embodiments described above are illustrative and non-limiting in all respects.

Claims (14)

  1. 축사 내에 설치되어 가축의 중량을 측정하는 중량 측정 장치;A weight measuring device installed in the barn to measure the weight of livestock;
    가축의 사육 환경을 센싱하는 환경센서부 및An environmental sensor unit that senses the breeding environment of livestock and
    상기 중량 측정 장치 및 환경센서부와 연동되어, 측정된 가축의 중량 데이터를 수집하여 표준 중량을 추정하며, 상기 표준 중량과 센싱된 사육 환경에 따라 축사 내의 사육 환경을 제어하는 서버를 포함하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Weight measurement including a server that interlocks with the weight measurement device and the environmental sensor unit, collects measured weight data of livestock to estimate standard weight, and controls the breeding environment in the livestock according to the standard weight and the sensed breeding environment Livestock livelihood uniformity management system using device.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 중량 측정 장치는,The weighing device,
    상기 가축이 안착할 공간을 마련하는 안착플레이트;A seating plate for providing a space for the livestock to be seated;
    상기 안착플레이트와 연결부에 의해 연결되어 안착플레이트에 안착된 가축의 무게를 측정하는 로드셀;A load cell connected by the seating plate and the connecting portion to measure the weight of livestock seated on the seating plate;
    상기 로드셀을 지지하는 지지부 및A support part supporting the load cell, and
    상기 지지부와 연결되며 축사 내에 고정되는 고정부를 포함하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Livestock livestock uniformity management system using a weight measuring device that is connected to the support and is fixed in the barn.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 연결부 또는 지지부는, The connection part or the support part,
    길이 가변이 가능한 것을 특징으로 하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Livestock livestock uniformity management system using a weight measuring device, characterized in that the length is variable.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 환경센서부는,The environmental sensor unit,
    온도, 습도, 이산화탄소, 암모니아 중 하나 이상을 포함하여 센싱하도록 형성되는 것을 특징으로 하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Livestock livestock uniformity management system using a weighing device, characterized in that formed to sense including at least one of temperature, humidity, carbon dioxide, ammonia.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 표준 중량의 추정은,Estimation of the standard weight,
    수집된 중량 데이터를 클러스터링(Clustering)으로 추정하는 것을 특징으로 하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Livestock livestock uniformity management system using a weighing device, characterized in that estimating the collected weight data by clustering.
  6. 제 1 항에 있어서,The method of claim 1,
    상기 서버와 연동되어, 상기 추정된 표준 중량을 표준 중량 범위의 기준치에 도달했는지에 대한 비교와 상기 환경센서부의 센싱 보를, 출력하는 모니터링부를 더 포함하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Livestock livestock uniformity management system using a weight measuring device further comprising a monitoring unit that interlocks with the server and outputs a comparison of whether the estimated standard weight has reached a reference value of a standard weight range and a sensing report of the environmental sensor unit.
  7. 제 2 항에 있어서,The method of claim 2,
    상기 중량 측정 장치는,The weighing device,
    상기 안착플레이트에 진동을 발생시키는 햅틱 모터를 더 포함하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Livestock livestock uniformity management system using a weight measuring device further comprising a haptic motor for generating vibration in the seating plate.
  8. 제 7 항에 있어서,The method of claim 7,
    상기 중량 측정 장치가 복수개 구비 될 경우,When a plurality of weighing devices are provided,
    상기 복수의 중량 측정 장치는 진동전달관에 의해 서로 연결되고,The plurality of weighing devices are connected to each other by a vibration transmission tube,
    상기 햅틱 모터는 복수개의 중량 측정 장치 중 하나 또는 일부에만 구비되는 것을 특징으로 하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.The haptic motor is a livestock livestock uniformity management system using a weighing device, characterized in that provided only in one or part of a plurality of weighing devices.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 중량 측정 장치를 촬상하며 그리드를 가늠자로 하여, 가축의 움직임을 구분하는 움직임 구분 카메라를 더 포함하며,Further comprising a motion classification camera that photographs the weighing device and uses a grid as a scale to distinguish the movement of livestock,
    상기 움직임 구분 카메라에 따른 가축이 움직이지 않은 것으로 판별될 시에만 측정되는 가축의 중량 데이터를 유효 중량 데이터로 수집하는 것을 특징으로 하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Livestock livestock uniformity management system using a weight measuring device, characterized in that collecting weight data of livestock measured only when it is determined that the livestock is not moving according to the motion classification camera as effective weight data.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 축사 내의 임의의 가축을 촬상하되, 분광 센서를 구비하여 상기 촬상되는 가축의 스펙트럼을 추출하는 분광 카메라를 더 포함하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Livestock livestock uniformity management system using a gravimetric apparatus further comprising a spectroscopic camera for capturing any livestock in the barn, and extracting a spectrum of the captured livestock by having a spectroscopic sensor.
  11. 제 2 항에 있어서,The method of claim 2,
    상기 중량 측정 장치는,The weighing device,
    상기 연결부가 진자 운동 하도록 형성되되,The connecting portion is formed to move the pendulum,
    상기 연결부의 진자 운동은, 상기 로드셀에 감지되는 무게가 설정된 시간을 초과하는 시점에 시작되도록 형성되며, 진자 운동 시작 후 로드셀에 무게가 감지되지 않은 순간부터 설정된 시간을 초과하는 시점에 끝나도록 형성되는 것을 특징으로 하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.The pendulum movement of the connection unit is formed to start when the weight sensed by the load cell exceeds a set time, and is formed to end at the time exceeding the set time from the moment when the weight is not detected by the load cell after starting the pendulum movement. Livestock livestock uniformity management system using a weighing device, characterized in that.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 중량 측정 장치는,The weighing device,
    상기 안착플레이트 하단에 소정의 무게를 형성하는 무게추를 장착하는 것을 특징으로 하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Livestock livestock uniformity management system using a weighing device, characterized in that mounting a weight for forming a predetermined weight at the bottom of the seating plate.
  13. 제 2 항에 있어서,The method of claim 2,
    상기 고정부는,The fixing part,
    고정플레이트;Fixed plate;
    상기 고정플레이트에 힌지 결합되는 'u' 자형의 결속부재 및A'u'-shaped binding member hinged to the fixed plate, and
    상기 중량 측정 장치가 고정될 면상에 마련되되, 환봉 형태로서 일측이 개방되어 상기 결속부재의 수평부가 삽입될 수 있고, 모터에 의해 구동되는 회전기어와 맞물려 고정축을 축심으로 회전하는 고정커버를 포함하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.The weight measuring device is provided on the surface to be fixed, one side is opened in the form of a round bar so that the horizontal portion of the binding member can be inserted, and the fixed cover is engaged with a rotation gear driven by a motor to rotate the fixed shaft around the axis. Livestock livelihood uniformity management system using a weighing device.
  14. 제 13 항에 있어서,The method of claim 13,
    상기 고정부는,The fixing part,
    상기 회전기어의 기어치 센싱 갯수를 이용하여 상기 고정커버의 회전위치를 판별하는 회전 위치 판별 센서를 더 포함하여,Further comprising a rotational position determination sensor for determining the rotational position of the fixed cover using the number of sensed gear teeth of the rotational gear,
    고정부의 결속 상태를 판별하는 중량 측정 장치를 이용한 가축 생계 균일도 관리 시스템.Livestock livestock uniformity management system using a weight measuring device to determine the bonded state of fixed parts.
PCT/KR2019/015913 2019-11-14 2019-11-20 System for managing livelihood uniformity of livestock by using weight measurement apparatus WO2021095956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190146086A KR102377460B1 (en) 2019-11-14 2019-11-14 Livestock Uniformity Management System Using Cattle Weighing Machine
KR10-2019-0146086 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021095956A1 true WO2021095956A1 (en) 2021-05-20

Family

ID=75913012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015913 WO2021095956A1 (en) 2019-11-14 2019-11-20 System for managing livelihood uniformity of livestock by using weight measurement apparatus

Country Status (2)

Country Link
KR (1) KR102377460B1 (en)
WO (1) WO2021095956A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230071489A (en) * 2021-11-16 2023-05-23 한국축산데이터 주식회사 농업회사법인 Apparatus and method for measuring body weight uniformity in livestock groups
KR102643253B1 (en) 2023-07-10 2024-03-05 파이프트리스마트팜 주식회사 System and method for calculating biometric information of livestock individual with highly reliability
KR102643250B1 (en) 2023-07-10 2024-03-05 파이프트리스마트팜 주식회사 System and method for calculating biometric information of livestock individual

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889125A (en) * 1994-09-27 1996-04-09 Morinaga Milk Ind Co Ltd Weight-grading device for domestic fowl
KR20020063453A (en) * 2001-01-29 2002-08-03 주식회사 피앤엠 Electrical scale having function of compensating measurement error caused by slant
KR101823082B1 (en) * 2016-08-29 2018-03-08 (주)제이케이데이터시스템즈 Poultry measurement system
KR101877271B1 (en) * 2017-10-26 2018-07-11 주식회사 이모션 Load cell-based livestock weighing system and standard weight estimation method of livestock using it
US20180235186A1 (en) * 2017-02-22 2018-08-23 Jeffrey N. Masters Apparatus and method for the monitoring of caged birds

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102203900B1 (en) * 2018-11-14 2021-01-15 주식회사 이모션 Average weight calculation and shipment management system of edible poultry and method of shipment management using same
KR102203899B1 (en) * 2018-11-14 2021-01-15 주식회사 이모션 Average weight calculation and management system for Spawning poultry, and average weight calculation and management method using it

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889125A (en) * 1994-09-27 1996-04-09 Morinaga Milk Ind Co Ltd Weight-grading device for domestic fowl
KR20020063453A (en) * 2001-01-29 2002-08-03 주식회사 피앤엠 Electrical scale having function of compensating measurement error caused by slant
KR101823082B1 (en) * 2016-08-29 2018-03-08 (주)제이케이데이터시스템즈 Poultry measurement system
US20180235186A1 (en) * 2017-02-22 2018-08-23 Jeffrey N. Masters Apparatus and method for the monitoring of caged birds
KR101877271B1 (en) * 2017-10-26 2018-07-11 주식회사 이모션 Load cell-based livestock weighing system and standard weight estimation method of livestock using it

Also Published As

Publication number Publication date
KR20210058526A (en) 2021-05-24
KR102377460B1 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2021095956A1 (en) System for managing livelihood uniformity of livestock by using weight measurement apparatus
WO2020101076A1 (en) Edible poultry mean weight calculation and shipment management system, and shipment management method using same
WO2017164544A1 (en) Drone for artificial pollination and artificial pollination system using same
WO2020111804A1 (en) Livestock raising device
KR101877271B1 (en) Load cell-based livestock weighing system and standard weight estimation method of livestock using it
WO2015137622A1 (en) Automated plant state analyzing apparatus and plant analyzing method using same
WO2018034387A1 (en) Fish farm feeding system using three-dimensional analysis, and method therefor
WO2019245122A1 (en) System for monitoring, in real time, growth state of crop in greenhouse on basis of iot
CN109625460A (en) A kind of raw tobacco material quality in-service monitoring device and its monitoring method
WO2020158307A1 (en) Livestock house monitoring method and livestock house monitoring system
WO2019235776A1 (en) Device and method for determining abnormal object
WO2018199630A1 (en) Integrated monitoring system and method using image capturing
CN210081754U (en) Inspection robot
CN116019023A (en) Electronic information management system and management method
JP2017026755A (en) Appliance for development for internet of article and for education
CN213209935U (en) LED display screen detection device
WO2022025354A1 (en) Poultry weight measurement and weight estimation system
WO2020101195A2 (en) System for calculating and managing average weight of egg laying poultry, and method for calculating and managing average weight by using same
WO2015178556A1 (en) System for detecting head of animal using depth information and detection method therefor
CN207780572U (en) A kind of cable duct Segmented safety TT&C system
WO2020005038A1 (en) System and terminal for managing environment of breeding place and method thereof
KR100821969B1 (en) Development of Monitering System for Layers Rearing in Multi-Tier Vertical Cages
WO2022045382A1 (en) System for improving poultry productivity through artificial intelligence optimal environment control
CN115683355A (en) Pig farm body temperature monitoring system based on Internet of things
CN113875629A (en) Live pig body temperature detection device based on thermal imaging

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952511

Country of ref document: EP

Kind code of ref document: A1