WO2019245122A1 - System for monitoring, in real time, growth state of crop in greenhouse on basis of iot - Google Patents

System for monitoring, in real time, growth state of crop in greenhouse on basis of iot Download PDF

Info

Publication number
WO2019245122A1
WO2019245122A1 PCT/KR2018/015856 KR2018015856W WO2019245122A1 WO 2019245122 A1 WO2019245122 A1 WO 2019245122A1 KR 2018015856 W KR2018015856 W KR 2018015856W WO 2019245122 A1 WO2019245122 A1 WO 2019245122A1
Authority
WO
WIPO (PCT)
Prior art keywords
greenhouse
data
crop
real
management module
Prior art date
Application number
PCT/KR2018/015856
Other languages
French (fr)
Korean (ko)
Inventor
장영원
노혜민
유철중
Original Assignee
주식회사 에스에스엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에스에스엘 filed Critical 주식회사 에스에스엘
Publication of WO2019245122A1 publication Critical patent/WO2019245122A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof

Definitions

  • the present invention relates to a real-time monitoring system for crop growth status in an IoT-based greenhouse for observing the growth status of crops using a camera installed in a greenhouse.
  • the present invention collects the environmental data and the badge data in the greenhouse using a plurality of sensors, by combining the image and the sensed data taken by real-time photographing the crop growth state in the greenhouse through the camera module, to manage in a standardized format,
  • the purpose is to provide a real-time monitoring system for crop growth status in an IoT-based greenhouse for monitoring crop growth status in real time.
  • the IoT-based greenhouse crop growth status real-time monitoring system includes a camera module for photographing a greenhouse, real-time greenhouse atmospheric environment, and badge data from a plurality of sensors installed in the greenhouse.
  • a greenhouse data collection module for collecting greenhouse data, including greenhouse data collected from the greenhouse data collection module, and a tag including a collection date, location information, and identification information, are converted into a standardized format, and converted into a standardized format.
  • a greenhouse environment management module for combining greenhouse data with an image taken by the camera module to generate a unit stack, and combining a plurality of unit stacks in time series to provide a growth state of crops as a panoramic image
  • the greenhouse environment management module Indicate the growth state of the crop produced in Panoramic when receiving an input signal for a particular region of the image, and the greenhouse data corresponding to the unit stack shown in the particular area comprises a user terminal for displaying by overlapping the panoramic image.
  • the IoT-based greenhouse growth status real-time monitoring system for the greenhouse environment control to remotely control at least one facility installed in the greenhouse based on the greenhouse data collected from the greenhouse data collection module or the control input received from the user terminal. It further includes a module.
  • the at least one facility may include at least one of a window, a nutrient solution, a fan, an air conditioner, an LED light, and a sprinkler.
  • the greenhouse environment management module may overlap the panoramic image with a time point at which the greenhouse data of the standardized format is changed and the changed greenhouse data.
  • the user terminal may download the standard growth state of the grain from the server and display the standard growth state corresponding to the time point at which the greenhouse data is changed together with the greenhouse data.
  • the greenhouse environment management module compares the panoramic image with a pre-stored reference image and controls the greenhouse environment control module to increase the greenhouse temperature or humidity or drive the nutrient solution when the growth state of the grain is less than the standard growth state. You can.
  • the greenhouse environment management module may estimate the yield, biomass, and evapotranspiration based on the environmental data or the medium data.
  • the growth state of the crop can be monitored in real time, and the crop yield can be improved by remotely controlling the measures necessary for the growth of the crop compared to the reference image.
  • the crop growth state can be confirmed in real time using an image photographed through a camera module installed in a greenhouse, and the growth state history can be confirmed as a panoramic image.
  • FIG. 1 is a schematic configuration diagram of a real-time monitoring system of crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
  • FIG. 2 is a schematic configuration diagram of a greenhouse data collection module constituting a real-time monitoring system of crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing a schematic configuration and appearance of the greenhouse environment management module constituting the real-time monitoring system for crop growth state in the IoT-based greenhouse according to an embodiment of the present invention.
  • 4 to 15 are diagrams for explaining greenhouse data, medium data, or a growth state of crops to which a real-time monitoring system for growing crops in an IoT-based greenhouse according to an embodiment of the present invention is applied.
  • FIG. 16 is a view for explaining an implementation model of a real-time monitoring system for crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
  • first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • FIG. 1 is a schematic configuration diagram of a real-time monitoring system of crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
  • the IoT-based greenhouse growth status real-time monitoring system 1000 includes a greenhouse data collection module 100, a camera module 300, a greenhouse environment management module 500, and And a user terminal 700.
  • the IoT-based greenhouse growth status real-time monitoring system 1000 may further include a greenhouse environment control module 200 or at least one facility 300.
  • the greenhouse data collection module 100 may collect greenhouse data including a real-time greenhouse atmospheric environment and badge data from the sensors from the plurality of sensors installed in the greenhouse.
  • the plurality of sensors may be at least one of a temperature sensor, a humidity sensor, an illuminance sensor, a carbon dioxide measuring sensor, a weight sensing sensor of a medium, a pH measuring sensor, a geothermal measuring sensor, and an EC measuring sensor.
  • Different kinds of sensors may be installed in a greenhouse at regular intervals.
  • FIG. 2 is a schematic configuration diagram of a greenhouse data collection module constituting a real-time monitoring system of crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
  • the greenhouse data collection module 100 includes an environmental data measuring instrument 100, a badge data measuring instrument 130, and a measuring instrument management unit 150.
  • the environmental data measuring instrument 110 may include a temperature sensor 111, a humidity sensor 112, a carbon dioxide sensor 113, and an illuminance sensor 114 among a plurality of sensors.
  • the badge data measuring instrument 130 may include a badge weight sensor 131, a PH sensor 132, a geothermal sensor 133, and an EC sensor 134.
  • the weight of the medium may be calculated by calculating at least one of the number of nutrient solution supply, the nutrient supply amount, and the culture solution of the medium.
  • the environmental data measuring instrument 110 and the discharge data measuring instrument 130 are each inserted into and fixed to an interface port, and are electrically connected to the measuring instrument manager 150 by electrical connection of each port to transmit and receive control signals and sensing data. can do.
  • the instrument management unit 150 communicates with the environmental data measuring instrument 110 and the badge data measuring instrument 130 by RS-232 communication, respectively, and the environment sensed by the environmental data measuring instrument 110 and the badge data measuring instrument 130.
  • Data and badge data may be received and sensor control signals may be transmitted to the environmental data meter 110 and the badge data meter 130. That is, the first group of sensors installed above the set height from the ground to detect environmental data in the air is physically connected to the environmental data measuring instrument 110, and installed below the set height to detect the badge data.
  • a plurality of sensors may be easily managed by physically connecting the second group of sensors to the discharge data meter 130. Thus, if the sensor is lost or broken, a quick replacement is possible.
  • the measuring instrument manager 150 is connected to the greenhouse environment management module 500 by wired or wireless internet, and the environmental data and badge data collected from the environmental data measuring instrument 110 and the badge data measuring instrument 130 are stored in the greenhouse environmental management module 500. ) Can be sent.
  • the instrument manager 150 may receive control signals for the environmental data measuring instrument 110, the badge data measuring instrument 130, and sensors constituting each of the measuring instruments from the greenhouse environment management module 500 and transmit the control signals to the corresponding measuring instruments. have.
  • the greenhouse environment control module 200 may remotely control at least one facility 300 installed in the greenhouse based on the greenhouse data collected from the greenhouse data collection module 100.
  • the at least one facility 300 may be at least one of a window installed in a greenhouse, a nutrient solution, a fan, an air conditioner, an LED light, a sprinkler, and a fog generator.
  • the camera module 300 may photograph the inside of the greenhouse.
  • the camera module 300 may be installed at regular intervals in the greenhouse to capture an image of a crop corresponding to a preset area.
  • the greenhouse environment management module 500 may combine a tag including collection date, location information, and identification information with greenhouse data collected from the greenhouse data collection module 100 and convert the tag into a standardized format.
  • the greenhouse environment management module 500 may combine the greenhouse data of the standardized format with the image captured by the camera module 300 to generate and manage a unit stack.
  • the greenhouse environment management module 500 may combine a plurality of unit stacks in time series to provide a panoramic image of the growth state of crops.
  • the greenhouse environment management module 500 remotely controls the greenhouse environment control module 200 to change setting values of at least one facility when the greenhouse data, the stack image, or the panoramic image of the standardized format is out of a range of preset conditions. You can generate a signal.
  • the at least one facility 300 may control the on or off of the corresponding facility or control the operating time, operation speed, etc. according to the remote control signal of the greenhouse environment management module 500.
  • the greenhouse environment management module 500 may control the greenhouse environment in a direction capable of increasing the growth rate.
  • the greenhouse environment management module 500 controls the greenhouse environment in a direction capable of reducing the growth rate to control the crop to grow to a certain size. It can improve the marketability.
  • FIG. 3 is a diagram showing a schematic configuration and appearance of the greenhouse environment management module constituting the real-time monitoring system for crop growth state in the IoT-based greenhouse according to an embodiment of the present invention.
  • the greenhouse environment management module 500 includes a display unit 510, a database 520, and a controller 530.
  • the display unit 510 may display a control state of at least one facility 300.
  • the name and location of each facility can be represented by a specific indicator (W1, W2, ..., L1, L2, ..., C1, C2, ...), LED on / off, lighting indicated by the specific indicator
  • the brightness, lighting color, etc. can be adjusted to display the control status of each facility.
  • the greenhouse environment management module 500 may convert the past history, standard information, and comparison information of the greenhouse data into a standardized graph or table and provide the same to the user terminal 700.
  • the greenhouse environment management module 500 may manage the image photographed by the camera module 400 in conjunction with the tagged greenhouse data with reference to the tag.
  • the greenhouse environment management module 500 may automatically calculate and predict the yield, biomass, and evapotranspiration based on the medium data.
  • the user terminal 700 displays the greenhouse data of the standardized format converted by the greenhouse environment management module 500 and at least one facility 300 installed in the greenhouse on the execution screen, and the specific greenhouse data or the specific facility displayed on the execution screen.
  • the greenhouse environment management module 500 may transmit the input signal.
  • the greenhouse environment management module 500 may further transmit a remote control signal to a specific facility to remotely control the specific facility. That is, the greenhouse environment management module 500 may further perform an operation corresponding to the user input when the user input for a specific facility operation is simultaneously received while remotely controlling at least one facility automatically using the sensed data. have.
  • the greenhouse environment management module 500 automatically transmits a control signal for operating the air conditioner, and then, when receiving an input signal for turning off the air conditioner through the user terminal 700, preferentially selects a user input. Can turn off the air conditioner.
  • the user terminal 700 may display a content indicating that an input opposite to the remote control operation is received in a pop-up window to induce the user to reselect.
  • 4 to 15 are diagrams for explaining greenhouse data, medium data, or a growth state of crops to which a real-time monitoring system for growing crops in an IoT-based greenhouse according to an embodiment of the present invention is applied.
  • the medium data measurement module may automatically measure the medium weight of the cultivated crops on the module to calculate the number of nutrient solution supply, nutrient solution, supply amount, and drainage amount of the medium.
  • the greenhouse environment management module may receive temperature, humidity, wind direction, wind speed, sunrise / sunset time, and weather forecast, which are real-time weather data outside the greenhouse, for monitoring the greenhouse environment. have.
  • the greenhouse data collection module may sense temperature, humidity, illuminance, carbon dioxide, EC, PH, and geothermal data of a medium in real time, and provide the sensed data to a greenhouse environment management module or a user terminal.
  • the greenhouse environment management module may process and manage and provide each data in a standardized format.
  • the greenhouse environment management module may automatically generate basic information for temperature / humidity control based on microclimate data, and provide a current temperature / humidity state of the greenhouse and a work guide accordingly.
  • the greenhouse environment management module may provide a statistical chart of the collected data on a daily / weekly / monthly basis and display an ideal reference range together.
  • the greenhouse environment management module provides real-time data on the water content and the drainage amount at the time of monitoring, and calculates and provides the daily total number of times of feeding, the amount of feeding time and amount of each feeding, the total amount of water, and the total amount of draining.
  • the greenhouse environment management module may provide a graph so that the daily change trend of illuminance, medium weight, and drainage amount used for nutrient solution supply control can be identified at a glance.
  • the greenhouse environment management module may convert the past greenhouse environment and badge information history into a standardized format and store it in a database. Based on the data stored in the database, the greenhouse environment management module can query the greenhouse environment and the badge information from the past to the present, thereby comprehensively managing the growth of crops according to the change of the greenhouse environment.
  • the greenhouse environment management module can additionally record the cultivation status and specificities that occurred on a specific date, and can select time-based monitoring items and required work based on the recorded data.
  • the greenhouse environment management module may generate a selected monitoring item and a required task as a new tag, and additionally collect and manage new tag items when managing the greenhouse environment data and badge data from the time when a new tag is created.
  • the greenhouse environment management module may combine and store crop images in the greenhouse photographed through the camera module with tagged environmental data and badge data.
  • the greenhouse environment management module may display crop growth state stored in chronological order, or display crop images by using tagged information such as location (by greenhouse location), temperature, and humidity as a filter.
  • FIG. 16 is a view for explaining an implementation model of a real-time monitoring system for crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
  • an implementation model of a real-time monitoring system for crop growth status in an IoT-based greenhouse is an information center (or database) for storing sensing data collected from data collection modules installed in a greenhouse and a house. ) May be included.
  • an optimal database schema definition can reliably store large amounts of data and can quickly process external requests and responses.
  • the IoT-based greenhouse environment management system may monitor access permission so that only registered users can access and perform user data encryption. It functions to permanently store data periodically received from the sensor, and can process cultivation history and real-time data requests from user applications.
  • a test bed may be installed for a plurality of greenhouses, and the greenhouse environment management module may collectively manage environmental data, medium data, and crop growth status in the plurality of greenhouses.
  • the greenhouse environment management module receives a request for information on its own greenhouse from a registered user terminal, the user receives a user authentication, searches for a greenhouse matching the registered user terminal, and transmits the information of the corresponding greenhouse to the user terminal. Can be.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Primary Health Care (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Strategic Management (AREA)
  • Agronomy & Crop Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Mining & Mineral Resources (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Greenhouses (AREA)

Abstract

The present invention relates to a system for monitoring, in real time, the growth state of a crop in a greenhouse on the basis of IoT, comprising: a camera module for photographing the inside of the greenhouse; a greenhouse data collection module for collecting greenhouse data including a real-time greenhouse atmospheric environment and culture medium data from a plurality of sensors provided inside the greenhouse; a greenhouse environment management module for converting the greenhouse data collected by the greenhouse data collection module into a standardized format by combining, with the collected greenhouse data, a tag including a collection date, position information, and identification information, generating a unit stack by combining the greenhouse data of the standardized format with an image captured by the camera module, and providing the growth state of the crop as a panoramic image by sequentially combining a plurality of unit stacks; and a user terminal for displaying the growth state of the crop, having been generated by the greenhouse environment management module, and, when receiving an input signal for a specific region in the panoramic image, overlapping, on the panoramic image, greenhouse data corresponding to a unit stack displayed in the specific region and displaying same. According to the present invention, the growth state of a crop can be monitored in real time, and can be compared with a reference image so as to remotely control measures necessary for the growth of the crop.

Description

아이오티 기반 온실 내 작물 생육상태 실시간 모니터링 시스템Real-time monitoring system of crop growth status in IoT-based greenhouse
본 발명은 온실 내 설치된 카메라를 이용하여 작물의 생육상태를 관찰하는 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템에 관한 것이다.The present invention relates to a real-time monitoring system for crop growth status in an IoT-based greenhouse for observing the growth status of crops using a camera installed in a greenhouse.
온실을 기반으로 하는 식량 및 특용 작물 재배 농업은 전 세계의 농업 생산 환경의 주 재배 시스템이 되었다. IoT(Internet of Things) 기술과의 융합을 통한 스마트 온실 또는 스마트 팜과 같은 새로운 첨단 재배 시스템으로의 도약을 위해 다방면으로 연구되고 있다.Greenhouse-based food and specialty crop cultivation has become the main cultivation system for agricultural production around the world. It is being researched in various ways to leap to new advanced cultivation system such as smart greenhouse or smart farm through convergence with IoT (Internet of Things) technology.
농가가 기존 노지에서 온실을 이용하는 시설재배 시스템으로 전향해 온 것처럼, 온실 재배에 다양한 첨단 기술을 도입하는 이유는 재배의 편의, 작물의 효율적 관리, 생산성 증대 등 다양한 이유가 있다. Just as farmers have shifted from an existing open field to a facility cultivation system using greenhouses, there are various reasons for introducing various advanced technologies to greenhouse cultivation, such as convenience of cultivation, efficient management of crops, and increased productivity.
그런데, 현재 대부분의 첨단 재배 시스템은 온실 내부의 온도, 습도, 햇빛의 차단 제어를 수행하는데 치중하고 있으며, 온실 내부를 날씨의 변화나 이상 기후가 발생하지 않는 항상 일정한 상태로 유지시키기 위한 제어를 수행하는데 치중하고 있다. By the way, most modern cultivation systems are focused on controlling the temperature, humidity and sunlight blocking inside the greenhouse, and controlling to keep the greenhouse at a constant state without changing weather or abnormal weather. I'm focused on.
온실을 이용하는 시설재배 시스템은 유지 및 관리에 재배 비용이 많이 소모되는 시스템이기 때문에 그 재배 비용 이상의 수익을 얻을 수 있는 작물을 재배해야 한다. 하지만, 온실을 이용하는 시설재배 시스템을 이용하여 작물을 재배하기 위해서 작물 재배에 적합한 온실 온도, 습도, 햇빛 등을 설정하기 위해 작물 재배자의 해당 작물의 생장 환경에 대한 연구가 필요하고 시행착오가 발생할 수 있는 문제점이 있다.Since a facility cultivation system using a greenhouse is a cultivation cost system that is expensive to maintain and manage, it is necessary to cultivate a crop that can profit more than the growth cost. However, in order to cultivate crops using a greenhouse cultivation system, it is necessary to study the growing environment of the crop grower in order to set the greenhouse temperature, humidity and sunlight suitable for crop cultivation, and trial and error may occur. There is a problem.
본 발명은 복수의 센서를 이용하여 온실 내 환경 데이터와 배지 데이터를 수집하고, 카메라 모듈을 통해 온실 내 작물 생육상태를 실시간 촬영하여 촬영된 이미지와 센싱된 데이터를 결합하여 표준화된 포맷으로 관리함으로써, 작물의 생육상태를 실시간 모니터링하는 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템을 제공하는데 그 목적이 있다.The present invention collects the environmental data and the badge data in the greenhouse using a plurality of sensors, by combining the image and the sensed data taken by real-time photographing the crop growth state in the greenhouse through the camera module, to manage in a standardized format, The purpose is to provide a real-time monitoring system for crop growth status in an IoT-based greenhouse for monitoring crop growth status in real time.
상기의 목적을 달성하기 위해 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템은 온실 내를 촬영하는 카메라 모듈, 상기 온실 내에 설치된 복수의 센서로부터 실시간 온실 대기 환경, 배지 데이터를 포함하는 온실 데이터를 수집하는 온실 데이터 수집 모듈, 상기 온실 데이터 수집 모듈로부터 수집된 온실 데이터에 수집 날짜, 위치 정보, 식별정보를 포함하는 태그를 결합하여 표준화된 포맷으로 변환하고, 상기 표준화된 포맷의 온실 데이터를 상기 카메라 모듈에서 촬영된 이미지와 결합하여 단위 스택으로 생성하고, 다수의 단위 스택을 시계열적으로 결합하여 작물의 생육상태를 파노라마 영상으로 제공하는 온실 환경 관리 모듈, 및 상기 온실 환경 관리 모듈에서 생성한 상기 작물의 생육상태를 표시하고, 상기 파노라마 영상 중 특정 영역에 대한 입력 신호를 수신하는 경우, 상기 특정 영역에 표시된 단위 스택에 대응하는 온실 데이터를 상기 파노라마 영상에 오버랩하여 표시하는 사용자 단말기를 포함한다.In order to achieve the above object, the IoT-based greenhouse crop growth status real-time monitoring system according to an embodiment of the present invention includes a camera module for photographing a greenhouse, real-time greenhouse atmospheric environment, and badge data from a plurality of sensors installed in the greenhouse. A greenhouse data collection module for collecting greenhouse data, including greenhouse data collected from the greenhouse data collection module, and a tag including a collection date, location information, and identification information, are converted into a standardized format, and converted into a standardized format. A greenhouse environment management module for combining greenhouse data with an image taken by the camera module to generate a unit stack, and combining a plurality of unit stacks in time series to provide a growth state of crops as a panoramic image, and the greenhouse environment management module Indicate the growth state of the crop produced in Panoramic when receiving an input signal for a particular region of the image, and the greenhouse data corresponding to the unit stack shown in the particular area comprises a user terminal for displaying by overlapping the panoramic image.
또한, IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템은 상기 온실 데이터 수집 모듈로부터 수집된 온실 데이터 또는 상기 사용자 단말기로부터 수신한 제어입력을 기초로 상기 온실 내에 설치된 적어도 하나의 설비를 원격 제어하는 온실 환경 제어 모듈을 더 포함한다.In addition, the IoT-based greenhouse growth status real-time monitoring system for the greenhouse environment control to remotely control at least one facility installed in the greenhouse based on the greenhouse data collected from the greenhouse data collection module or the control input received from the user terminal. It further includes a module.
여기서, 적어도 하나의 설비는, 창문, 양액기, 팬, 냉난방 장치, LED 조명, 스프링쿨러 중 적어도 하나를 포함할 수 있다.Here, the at least one facility may include at least one of a window, a nutrient solution, a fan, an air conditioner, an LED light, and a sprinkler.
온실 환경 관리 모듈은, 상기 사용자 단말기를 통해 제1 입력을 수신하는 경우, 상기 표준화된 포맷의 온실 데이터가 변화된 시점과 변화된 온실 데이터를 상기 파노라마 영상에 오버랩하여 제공할 수 있다.When receiving the first input through the user terminal, the greenhouse environment management module may overlap the panoramic image with a time point at which the greenhouse data of the standardized format is changed and the changed greenhouse data.
사용자 단말기는, 제2 입력을 수신하는 경우, 곡물의 표준 생육상태를 서버로부터 다운로드 받아, 상기 온실 데이터가 변화된 시점에 대응하는 표준 생육상태를 상기 온실 데이터와 함께 표시할 수 있다.When the user terminal receives the second input, the user terminal may download the standard growth state of the grain from the server and display the standard growth state corresponding to the time point at which the greenhouse data is changed together with the greenhouse data.
온실 환경 관리 모듈은, 상기 파노라마 영상과 미리 저장된 기준 영상을 비교하여, 곡물의 생육상태가 기준 생육상태보다 미달된 경우, 상기 온실 환경 제어 모듈을 제어하여 온실 온도 또는 습도를 높이거나, 양액기를 구동시킬 수 있다. The greenhouse environment management module compares the panoramic image with a pre-stored reference image and controls the greenhouse environment control module to increase the greenhouse temperature or humidity or drive the nutrient solution when the growth state of the grain is less than the standard growth state. You can.
온실 환경 관리 모듈은, 상기 환경 데이터 또는 상기 배지 데이터를 토대로 수확량, 생체중량, 증발산량을 예측할 수 있다. The greenhouse environment management module may estimate the yield, biomass, and evapotranspiration based on the environmental data or the medium data.
본 발명에 의하면, 작물의 생육상태를 실시간 모니터링할 수 있고, 기준 이미지와 비교하여 작물의 생육에 필요한 조치를 원격제어함으로써 작물 생산량을 향상시킬 수 있다.According to the present invention, the growth state of the crop can be monitored in real time, and the crop yield can be improved by remotely controlling the measures necessary for the growth of the crop compared to the reference image.
또한, 여러 온실에서 수집한 온실 데이터를 수집 날짜, 위치 정보, 각 온실의 식별정보를 태깅하여 표준화된 포맷으로 관리함으로써 원거리의 온실 데이터를 통합 관리하고, 활용할 수 있다는 효과가 있다.In addition, by managing the greenhouse data collected from the various greenhouses in the standardized format by tagging the collection date, location information, identification information of each greenhouse, there is an effect that can be integrated and manage the remote greenhouse data of the remote.
또한, 본 발명에 의하면, 온실 내에 설치된 카메라 모듈을 통해 촬영된 이미지를 이용하여 작물 생육상태를 실시간 확인할 수 있고, 생육상태 이력을 파노라마 영상으로 확인할 수 있다. In addition, according to the present invention, the crop growth state can be confirmed in real time using an image photographed through a camera module installed in a greenhouse, and the growth state history can be confirmed as a panoramic image.
도 1은 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템의 개략적인 구성도이다.1 is a schematic configuration diagram of a real-time monitoring system of crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템을 구성하는 온실 데이터 수집 모듈의 개략적인 구성도이다.2 is a schematic configuration diagram of a greenhouse data collection module constituting a real-time monitoring system of crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템을 구성하는 온실 환경 관리 모듈의 개략적인 구성도와 외형도를 나타내는 도면이다. 3 is a diagram showing a schematic configuration and appearance of the greenhouse environment management module constituting the real-time monitoring system for crop growth state in the IoT-based greenhouse according to an embodiment of the present invention.
도 4 내지 도 15는 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템을 적용한 온실 데이터, 배지 데이터, 또는 작물의 생육상태를 설명하기 위한 도면이다. 4 to 15 are diagrams for explaining greenhouse data, medium data, or a growth state of crops to which a real-time monitoring system for growing crops in an IoT-based greenhouse according to an embodiment of the present invention is applied.
도 16은 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템의 구현 모델을 설명하기 위한 도면이다. FIG. 16 is a view for explaining an implementation model of a real-time monitoring system for crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면을 참조하여 상세하게 설명하도록 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.As the present invention allows for various changes and numerous embodiments, particular embodiments will be described in detail with reference to the accompanying drawings. However, this is not intended to limit the present invention to specific embodiments, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재 항목들의 조합 또는 복수의 관련된 기재 항목들 중의 어느 항목을 포함한다.Terms such as first, second, A, and B may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component. The term and / or includes any of a plurality of related description items or a combination of a plurality of related description items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급될 때에는 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. When a component is said to be "connected" or "connected" to another component, it may be directly connected to or connected to the other component, but it should be understood that there may be other components in between. something to do. On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
명세서 및 청구범위 전체에서, 어떤 부분이 어떤 구성 요소를 포함한다고 할때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있다는 것을 의미한다. Throughout the specification and claims, when a part includes a certain component, it means that it may further include other components, except to exclude other components unless specifically stated otherwise.
이하, 본 발명에 따른 바람직한 실시예를 첨부된 도면을 참조하여 상세하게 설명한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템의 개략적인 구성도이다.1 is a schematic configuration diagram of a real-time monitoring system of crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템(1000)은 온실 데이터 수집 모듈(100), 카메라 모듈(300), 온실 환경 관리 모듈(500) 및 사용자 단말기(700)를 포함한다. 또한, IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템(1000)은 온실 환경 제어 모듈(200), 또는 적어도 하나의 설비(300)를 더 포함할 수 있다.Referring to FIG. 1, the IoT-based greenhouse growth status real-time monitoring system 1000 according to an embodiment of the present invention includes a greenhouse data collection module 100, a camera module 300, a greenhouse environment management module 500, and And a user terminal 700. In addition, the IoT-based greenhouse growth status real-time monitoring system 1000 may further include a greenhouse environment control module 200 or at least one facility 300.
온실 데이터 수집 모듈(100)은 온실 내에 설치된 복수의 센서로부터 센서로부터 실시간 온실 대기 환경, 배지 데이터를 포함하는 온실 데이터를 수집할 수 있다. 여기서, 복수의 센서는 온도 센서, 습도 센서, 조도 센서, 이산화탄소 측정 센서, 배지의 무게 감지 센서, PH 측정 센서, 지온 측정 센서, EC 측정 센서 중 적어도 하나가 될 수 있다. 온실 내에 종류가 다른 센서들은 일정한 간격으로 복수개 설치될 수 있다. The greenhouse data collection module 100 may collect greenhouse data including a real-time greenhouse atmospheric environment and badge data from the sensors from the plurality of sensors installed in the greenhouse. Here, the plurality of sensors may be at least one of a temperature sensor, a humidity sensor, an illuminance sensor, a carbon dioxide measuring sensor, a weight sensing sensor of a medium, a pH measuring sensor, a geothermal measuring sensor, and an EC measuring sensor. Different kinds of sensors may be installed in a greenhouse at regular intervals.
도 2는 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템을 구성하는 온실 데이터 수집 모듈의 개략적인 구성도이다.2 is a schematic configuration diagram of a greenhouse data collection module constituting a real-time monitoring system of crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
도 2를 참조하면, 온실 데이터 수집 모듈(100)은 환경 데이터 계측기(100), 배지 데이터 계측기(130), 및 계측기 관리부(150)를 포함하여 구성된다. 환경 데이터 계측기(110)는 복수의 센서 중 온도 센서(111), 습도 센서(112), 이산화탄소 센서(113), 조도 센서(114)로 구성될 수 있다. 또한, 배지 데이터 계측기(130)는 배지 무게 센서(131), PH 센서(132), 지온 센서(133), EC 센서(134)를 포함하여 구성될 수 있다. 여기서, 배지의 무게는 배지의 양액 공급 횟수, 양액 공급량, 배양액 중 적어도 하나를 산출하여 계산될 수 있다.Referring to FIG. 2, the greenhouse data collection module 100 includes an environmental data measuring instrument 100, a badge data measuring instrument 130, and a measuring instrument management unit 150. The environmental data measuring instrument 110 may include a temperature sensor 111, a humidity sensor 112, a carbon dioxide sensor 113, and an illuminance sensor 114 among a plurality of sensors. In addition, the badge data measuring instrument 130 may include a badge weight sensor 131, a PH sensor 132, a geothermal sensor 133, and an EC sensor 134. Here, the weight of the medium may be calculated by calculating at least one of the number of nutrient solution supply, the nutrient supply amount, and the culture solution of the medium.
환경 데이터 계측기(110) 및 배지 데이터 계측기(130)는 각 센서가 인터페이스 포트에 각각 삽입되어 고정되고, 각 포트의 전기적 접속에 의해 계측기 관리부(150)와 전기적으로 연결되어 제어신호 및 센싱 데이터를 송수신할 수 있다. The environmental data measuring instrument 110 and the discharge data measuring instrument 130 are each inserted into and fixed to an interface port, and are electrically connected to the measuring instrument manager 150 by electrical connection of each port to transmit and receive control signals and sensing data. can do.
구체적으로, 계측기 관리부(150)는 환경 데이터 계측기(110)와 배지 데이터 계측기(130)와 각각 RS-232 통신방식으로 통신하고, 환경 데이터 계측기(110)와 배지 데이터 계측기(130)로부터 센싱된 환경 데이터와 배지 데이터를 수신하고, 환경 데이터 계측기(110)와 배지 데이터 계측기(130)로 센서 제어 신호를 전송할 수 있다. 즉, 복수의 센서 중 지면으로부터 설정된 높이 이상에 설치되어 공기 중의 환경 데이터를 감지하는 제1 그룹의 센서를 환경 데이터 계측기(110)에 물리적으로 연결시키고, 설정된 높이 미만에 설치되어 배지 데이터를 감지하는 제2 그룹의 센서를 배지 데이터 계측기(130)에 물리적으로 연결시켜, 복수의 센서를 용이하게 관리할 수 있다. 따라서, 센서가 분실되거나, 고장난 경우, 빠른 교체가 가능하다.In detail, the instrument management unit 150 communicates with the environmental data measuring instrument 110 and the badge data measuring instrument 130 by RS-232 communication, respectively, and the environment sensed by the environmental data measuring instrument 110 and the badge data measuring instrument 130. Data and badge data may be received and sensor control signals may be transmitted to the environmental data meter 110 and the badge data meter 130. That is, the first group of sensors installed above the set height from the ground to detect environmental data in the air is physically connected to the environmental data measuring instrument 110, and installed below the set height to detect the badge data. A plurality of sensors may be easily managed by physically connecting the second group of sensors to the discharge data meter 130. Thus, if the sensor is lost or broken, a quick replacement is possible.
계측기 관리부(150)는 온실 환경 관리 모듈(500)과 유선 또는 무선 인터넷으로 연결되고, 환경 데이터 계측기(110)와 배지 데이터 계측기(130)로부터 수집된 환경 데이터와 배지 데이터를 온실 환경 관리 모듈(500)로 전송할 수 있다. 또한, 계측기 관리부(150)는 환경 데이터 계측기(110), 배지 데이터 계측기(130) 및 각 계측기를 구성하는 센서들에 대한 제어신호를 온실 환경 관리 모듈(500)로부터 수신하여 대응하는 계측기로 전송할 수 있다. The measuring instrument manager 150 is connected to the greenhouse environment management module 500 by wired or wireless internet, and the environmental data and badge data collected from the environmental data measuring instrument 110 and the badge data measuring instrument 130 are stored in the greenhouse environmental management module 500. ) Can be sent. In addition, the instrument manager 150 may receive control signals for the environmental data measuring instrument 110, the badge data measuring instrument 130, and sensors constituting each of the measuring instruments from the greenhouse environment management module 500 and transmit the control signals to the corresponding measuring instruments. have.
다음으로, 온실 환경 제어 모듈(200)은 온실 데이터 수집 모듈(100)로부터 수집된 온실 데이터를 기초로 온실 내에 설치된 적어도 하나의 설비(300)를 원격 제어할 수 있다. 여기서, 적어도 하나의 설비(300)는 온실에 설치된 창문, 양액기, 팬, 냉난방 장치, LED 조명, 스프링쿨러, 포그 생성기 중 적어도 하나가 될 수 있다. Next, the greenhouse environment control module 200 may remotely control at least one facility 300 installed in the greenhouse based on the greenhouse data collected from the greenhouse data collection module 100. Here, the at least one facility 300 may be at least one of a window installed in a greenhouse, a nutrient solution, a fan, an air conditioner, an LED light, a sprinkler, and a fog generator.
카메라 모듈(300)은 온실 내를 촬영할 수 있다. 카메라 모듈(300)은 온실 내에 일정한 간격으로 설치되어, 미리 설정된 영역에 대응하는 작물의 영상을 촬영할 수 있다. The camera module 300 may photograph the inside of the greenhouse. The camera module 300 may be installed at regular intervals in the greenhouse to capture an image of a crop corresponding to a preset area.
또한, 온실 환경 관리 모듈(500)은 온실 데이터 수집 모듈(100)로부터 수집된 온실 데이터에 수집 날짜, 위치 정보, 식별정보를 포함하는 태그를 결합하여 표준화된 포맷으로 변환할 수 있다. 이때, 온실 환경 관리 모듈(500)은 표준화된 포맷의 온실 데이터를 카메라 모듈(300)에서 촬영한 이미지와 결합하여 단위 스택으로 생성하여 관리할 수 있다. 온실 환경 관리 모듈(500)은 다수의 단위 스택을 시계열적으로 결합하여 작물의 생육상태를 파노라마 영상으로 제공할 수 있다. In addition, the greenhouse environment management module 500 may combine a tag including collection date, location information, and identification information with greenhouse data collected from the greenhouse data collection module 100 and convert the tag into a standardized format. In this case, the greenhouse environment management module 500 may combine the greenhouse data of the standardized format with the image captured by the camera module 300 to generate and manage a unit stack. The greenhouse environment management module 500 may combine a plurality of unit stacks in time series to provide a panoramic image of the growth state of crops.
온실 환경 관리 모듈(500)은 표준화된 포맷의 온실 데이터, 스택 이미지 또는 파노라마 영상이 미리 설정된 조건의 범위를 벗어난 경우, 적어도 하나의 설비의 설정값을 변경하도록 온실 환경 제어 모듈(200)로 원격 제어신호를 생성할 수 있다. 적어도 하나의 설비(300)는 온실 환경 관리 모듈(500)의 원격 제어신호에 따라 대응하는 설비의 온 또는 오프를 제어하거나, 가동시간, 가동속도 등을 제어할 수 있다. 예를 들어, 스택 이미지가 기준 이미지보다 생육상태가 늦은 것으로 판단된 경우, 온실 환경 관리 모듈(500)은 온실 환경을 생육속도를 증가시킬 수 있는 방향으로 제어할 수 있다. 반대로, 스택 이미지가 기준 이미지보다 생육상태가 빠른 것으로 판단된 경우, 온실 환경 관리 모듈(500)은 온실 환경을 생육속도를 감소시킬 수 있는 방향으로 제어하여 작물이 일정한 사이즈로 성장하도록 제어함으로써 작물의 상품성을 향상시킬 수 있다. The greenhouse environment management module 500 remotely controls the greenhouse environment control module 200 to change setting values of at least one facility when the greenhouse data, the stack image, or the panoramic image of the standardized format is out of a range of preset conditions. You can generate a signal. The at least one facility 300 may control the on or off of the corresponding facility or control the operating time, operation speed, etc. according to the remote control signal of the greenhouse environment management module 500. For example, when it is determined that the stack image is later than the reference image, the greenhouse environment management module 500 may control the greenhouse environment in a direction capable of increasing the growth rate. On the contrary, when the stack image is determined to be faster than the reference image, the greenhouse environment management module 500 controls the greenhouse environment in a direction capable of reducing the growth rate to control the crop to grow to a certain size. It can improve the marketability.
도 3은 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템을 구성하는 온실 환경 관리 모듈의 개략적인 구성도와 외형도를 나타내는 도면이다. 3 is a diagram showing a schematic configuration and appearance of the greenhouse environment management module constituting the real-time monitoring system for crop growth state in the IoT-based greenhouse according to an embodiment of the present invention.
도 3을 참조하면, 온실 환경 관리 모듈(500)은 디스플레이부(510), 데이터베이스(520), 및 제어부(530)를 포함하여 구성된다. Referring to FIG. 3, the greenhouse environment management module 500 includes a display unit 510, a database 520, and a controller 530.
구체적으로, 디스플레이부(510)는 적어도 하나의 설비(300)의 제어 상태를 표시할 수 있다. 이때, 각 설비의 명칭과 위치를 특정 인디케이터(W1, W2, .., L1, L2, .., C1, C2, ...)로 나타낼 수 있고, 특정 인디케이터가 가리키는 LED의 온/오프, 조명 밝기, 조명 색깔 등을 조정하여 각 설비의 제어상태를 표시할 수 있다. In detail, the display unit 510 may display a control state of at least one facility 300. At this time, the name and location of each facility can be represented by a specific indicator (W1, W2, ..., L1, L2, ..., C1, C2, ...), LED on / off, lighting indicated by the specific indicator The brightness, lighting color, etc. can be adjusted to display the control status of each facility.
온실 환경 관리 모듈(500)은 온실 데이터의 과거 이력, 표준 정보, 비교 정보를 표준화된 그래프 또는 테이블로 변환하여, 사용자 단말기(700)로 제공할 수 있다. 또한, 온실 환경 관리 모듈(500)은 태그를 참조하여 카메라 모듈(400)에서 촬영된 이미지를 태그된 온실 데이터와 연동하여 관리할 수 있다. 온실 환경 관리 모듈(500)은 배지 데이터를 토대로 수확량, 생체중량, 증발산량을 자동 계산하여 예측할 수 있다. The greenhouse environment management module 500 may convert the past history, standard information, and comparison information of the greenhouse data into a standardized graph or table and provide the same to the user terminal 700. In addition, the greenhouse environment management module 500 may manage the image photographed by the camera module 400 in conjunction with the tagged greenhouse data with reference to the tag. The greenhouse environment management module 500 may automatically calculate and predict the yield, biomass, and evapotranspiration based on the medium data.
사용자 단말기(700)는 온실 환경 관리 모듈(500)에서 변환한 표준화된 포맷의 온실 데이터와 온실 내에 설치된 적어도 하나의 설비(300)를 실행화면에 표시하고, 실행화면에 표시된 특정 온실 데이터 또는 특정 설비에 대한 입력 신호를 수신하는 경우, 온실 환경 관리 모듈(500)로 해당 입력 신호를 전송할 수 있다. 이때, 온실 환경 관리 모듈(500)은 사용자 단말기(700)로부터 입력 신호를 수신하는 경우, 특정 설비로 원격 제어신호를 추가로 더 전송하여 특정 설비를 원격 제어할 수 있다. 즉, 온실 환경 관리 모듈(500)은 센싱된 데이터를 이용하여 적어도 하나의 설비를 자동으로 원격 제어하면서 동시에 특정 설비 조작에 대한 사용자 입력을 수신하는 경우, 사용자 입력에 대응하는 조작을 더 수행할 수 있다. 이때, 자동으로 원격 제어된 조작과 사용자의 입력에 의한 조작이 상반되는 경우, 사용자의 입력을 우선적으로 실행할 수 있다. 예를 들어, 온실 환경 관리 모듈(500)은 자동으로 냉방기를 가동하는 제어신호를 전송한 후, 사용자 단말기(700)를 통해 냉방기를 끄는 입력 신호를 수신하는 경우, 사용자의 입력을 우선적으로 선택하여 냉방기를 끌수 있다. 이때, 사용자의 입력을 실행하기 전에 사용자 단말기(700)에 팝업창으로 원격 제어조작과 상반되는 입력을 수신했다는 내용을 표시하여 사용자의 재선택을 유도할 수 있다. The user terminal 700 displays the greenhouse data of the standardized format converted by the greenhouse environment management module 500 and at least one facility 300 installed in the greenhouse on the execution screen, and the specific greenhouse data or the specific facility displayed on the execution screen. When receiving the input signal for the greenhouse environment management module 500 may transmit the input signal. In this case, when the greenhouse environment management module 500 receives an input signal from the user terminal 700, the greenhouse environment management module 500 may further transmit a remote control signal to a specific facility to remotely control the specific facility. That is, the greenhouse environment management module 500 may further perform an operation corresponding to the user input when the user input for a specific facility operation is simultaneously received while remotely controlling at least one facility automatically using the sensed data. have. In this case, when the operation remotely controlled and the operation by the user's input are in conflict, the user's input may be preferentially executed. For example, the greenhouse environment management module 500 automatically transmits a control signal for operating the air conditioner, and then, when receiving an input signal for turning off the air conditioner through the user terminal 700, preferentially selects a user input. Can turn off the air conditioner. In this case, before executing the user input, the user terminal 700 may display a content indicating that an input opposite to the remote control operation is received in a pop-up window to induce the user to reselect.
도 4 내지 도 15는 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템을 적용한 온실 데이터, 배지 데이터, 또는 작물의 생육상태를 설명하기 위한 도면이다. 4 to 15 are diagrams for explaining greenhouse data, medium data, or a growth state of crops to which a real-time monitoring system for growing crops in an IoT-based greenhouse according to an embodiment of the present invention is applied.
도 4를 참조하면, 배지 데이터 측정 모듈은 배지의 양액 공급 횟수, 양액, 공급량, 배액량을 산출하기 위해 모듈 상에 재배 작물의 배지 무게를 자동 측정할 수 있다. Referring to FIG. 4, the medium data measurement module may automatically measure the medium weight of the cultivated crops on the module to calculate the number of nutrient solution supply, nutrient solution, supply amount, and drainage amount of the medium.
도 5 내지 도 13을 참조하면, 온실 환경 관리 모듈은 온실 환경 모니터링을 위하여, 기상청 데이터를 토대로 온실 외부의 실시간 기상 데이터인 온도, 습도, 풍향, 풍속, 일출/일몰 시간 및 일기예보를 수신할 수 있다. 5 to 13, the greenhouse environment management module may receive temperature, humidity, wind direction, wind speed, sunrise / sunset time, and weather forecast, which are real-time weather data outside the greenhouse, for monitoring the greenhouse environment. have.
온실 데이터 수집 모듈은 실시간 온실의 온도, 습도, 조도, 이산화탄소, 배약의 EC, PH, 배지의 지온 데이터를 센싱하여, 센싱된 데이터를 온실 환경 관리 모듈 또는 사용자 단말기로 제공할 수 있다. 이때, 온실 환경 관리 모듈은 각 데이터를 표준화된 포맷으로 가공한 후 관리 및 제공할 수 있다. The greenhouse data collection module may sense temperature, humidity, illuminance, carbon dioxide, EC, PH, and geothermal data of a medium in real time, and provide the sensed data to a greenhouse environment management module or a user terminal. In this case, the greenhouse environment management module may process and manage and provide each data in a standardized format.
온실 환경 관리 모듈은 미기후 데이터를 토대로 온도/습도 제어를 위한 기초 정보를 자동 생성하고, 온실의 현재 온도/습도 상태와 그에 따른 작업 가이드를 제공할 수 있다. 또한, 온실 환경 관리 모듈은 수집한 데이터의 통계 차트를 일/주/월 단위로 제공할 수 있고, 이상적인 기준 범위를 함께 표시할 수 있다. The greenhouse environment management module may automatically generate basic information for temperature / humidity control based on microclimate data, and provide a current temperature / humidity state of the greenhouse and a work guide accordingly. In addition, the greenhouse environment management module may provide a statistical chart of the collected data on a daily / weekly / monthly basis and display an ideal reference range together.
온실 환경 관리 모듈은 모니터링 시점에서의 배지 함수량과 배액량을 실시간 데이터로 제공하고, 일간 총 급액 횟수, 급액 횟수 별 급액 시간과 급액량, 총 급액량, 총 배액량을 계산하여 제공할 수 있다. The greenhouse environment management module provides real-time data on the water content and the drainage amount at the time of monitoring, and calculates and provides the daily total number of times of feeding, the amount of feeding time and amount of each feeding, the total amount of water, and the total amount of draining.
이러한 배지 데이터에 기초하여, 온실 환경 관리 모듈은 양액 공급 제어에 활용되는 조도, 배지 무게, 배액량의 일변화 추이를 한눈에 확인 가능하도록 그래프로 제공할 수 있다. Based on the medium data, the greenhouse environment management module may provide a graph so that the daily change trend of illuminance, medium weight, and drainage amount used for nutrient solution supply control can be identified at a glance.
또한, 온실 환경 관리 모듈은 과거 온실 환경 및 배지 정보 이력을 표준화된 포맷으로 변환하여 데이터베이스에 저장할 수 있다. 데이터베이스에 저장된 데이터를 토대로, 온실 환경 관리 모듈은 과거부터 현재까지의 온실 환경 및 배지 정보를 조회할 수 있으므로, 온실 환경 변화에 따른 작물의 생육상태를 종합적으로 관리할 수 있다. 온실 환경 관리 모듈은 특정 날짜에 발생한 재배현황 및 특이사항을 추가로 기록할 수 있고, 기록된 데이터를 토대로 시기별 모니터링 항목 및 필요 작업을 선택할 수 있다. 온실 환경 관리 모듈은 선택된 모니터링 항목 및 필요 작업을 새로운 태그로 생성할 수 있고, 새로운 태그가 생성된 시점부터 온실 환경 데이터 및 배지 데이터 관리 시 새로운 태그 항목을 추가로 수집 및 관리할 수 있다. In addition, the greenhouse environment management module may convert the past greenhouse environment and badge information history into a standardized format and store it in a database. Based on the data stored in the database, the greenhouse environment management module can query the greenhouse environment and the badge information from the past to the present, thereby comprehensively managing the growth of crops according to the change of the greenhouse environment. The greenhouse environment management module can additionally record the cultivation status and specificities that occurred on a specific date, and can select time-based monitoring items and required work based on the recorded data. The greenhouse environment management module may generate a selected monitoring item and a required task as a new tag, and additionally collect and manage new tag items when managing the greenhouse environment data and badge data from the time when a new tag is created.
온실 환경 관리 모듈은 카메라 모듈을 통해 촬영된 온실 내의 작물 이미지를 태깅된 환경 데이터 및 배지 데이터와 결합하여 저장할 수 있다. 온실 환경 관리 모듈은 시간 순서로 저장된 작물 생육상태를 표시하거나, 위치별(온실 위치별), 온도, 습도 별 등 태깅된 정보를 필터로 사용하여 작물 이미지를 표시할 수 있다. The greenhouse environment management module may combine and store crop images in the greenhouse photographed through the camera module with tagged environmental data and badge data. The greenhouse environment management module may display crop growth state stored in chronological order, or display crop images by using tagged information such as location (by greenhouse location), temperature, and humidity as a filter.
도 16은 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템의 구현 모델을 설명하기 위한 도면이다. FIG. 16 is a view for explaining an implementation model of a real-time monitoring system for crop growth status in an IoT-based greenhouse according to an embodiment of the present invention.
도 16을 참조하면, 본 발명의 일 실시예에 따른 IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템의 구현 모델은 온실 및 하우스에 설치된 데이터 수집 모듈로부터 수집한 센싱 데이터를 저장하기 위한 인포메이션 센터(또는 데이터베이스)를 포함할 수 있다.Referring to FIG. 16, an implementation model of a real-time monitoring system for crop growth status in an IoT-based greenhouse according to an embodiment of the present invention is an information center (or database) for storing sensing data collected from data collection modules installed in a greenhouse and a house. ) May be included.
효율적인 데이터 관리 및 재배 정보 관리를 위해 최적의 데이터베이스 스키마 정의를 통해 대용량의 데이터를 안정적으로 저장하고, 외부의 요청 및 응답을 빠르게 처리할 수 있다. For efficient data management and cultivation information management, an optimal database schema definition can reliably store large amounts of data and can quickly process external requests and responses.
또한, IoT 기반 온실 환경 관리 시스템은 등록된 사용자만 엑세스 가능하도록 접근 허용을 감시하고, 사용자 데이터 암호화 기능을 수행할 수 있다. 센서로부터 주기적으로 수신된 데이터를 영구적으로 저장하는 기능을 수행하며, 사용자 어플리케이션으로부터 재배 이력 및 실시간 데이터 요청을 처리할 수 있다. In addition, the IoT-based greenhouse environment management system may monitor access permission so that only registered users can access and perform user data encryption. It functions to permanently store data periodically received from the sensor, and can process cultivation history and real-time data requests from user applications.
복수의 온실에 대하여 테스트베드를 설치하고, 온실 환경 관리 모듈에서 복수의 온실 내의 환경 데이터 및 배지 데이터, 작물 생육상태 등을 통합관리할 수 있다. 또한, 온실 환경 관리 모듈은 등록된 사용자 단말기로부터 자신의 온실에 대한 정보 요청을 수신한 경우, 사용자 인증을 거쳐, 등록된 사용자 단말기에 매칭되는 온실을 검색하고, 해당 온실의 정보를 사용자 단말기로 전송할 수 있다.A test bed may be installed for a plurality of greenhouses, and the greenhouse environment management module may collectively manage environmental data, medium data, and crop growth status in the plurality of greenhouses. In addition, when the greenhouse environment management module receives a request for information on its own greenhouse from a registered user terminal, the user receives a user authentication, searches for a greenhouse matching the registered user terminal, and transmits the information of the corresponding greenhouse to the user terminal. Can be.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 사람이라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.
작물의 생육상태를 실시간 모니터링할 수 있고, 기준 이미지와 비교하여 작물의 생육에 필요한 조치를 원격제어함으로써 작물 생산량을 향상시킬 수 있는 바 산업상 이용가능성이 매우 우수하다고 할 수 있다.It is possible to monitor the growth status of the crops in real time and improve the crop yield by remotely controlling the measures necessary for the growth of the crop compared to the reference image.

Claims (7)

  1. 온실 내를 촬영하는 카메라 모듈; A camera module for photographing the greenhouse;
    상기 온실 내에 설치된 복수의 센서로부터 실시간 온실 대기 환경, 배지 데이터를 포함하는 온실 데이터를 수집하는 온실 데이터 수집 모듈;A greenhouse data collection module for collecting greenhouse data including a real-time greenhouse atmosphere environment and badge data from a plurality of sensors installed in the greenhouse;
    상기 온실 데이터 수집 모듈로부터 수집된 온실 데이터에 수집 날짜, 위치 정보, 식별정보를 포함하는 태그를 결합하여 표준화된 포맷으로 변환하고, 상기 표준화된 포맷의 온실 데이터를 상기 카메라 모듈에서 촬영된 이미지와 결합하여 단위 스택으로 생성하고, 다수의 단위 스택을 시계열적으로 결합하여 작물의 생육상태를 파노라마 영상으로 제공하는 온실 환경 관리 모듈; 및Combine the tag including the collection date, location information, and identification information to the greenhouse data collected from the greenhouse data collection module into a standardized format, and combine the greenhouse data of the standardized format with the image captured by the camera module. A greenhouse environment management module for generating a unit stack and combining a plurality of unit stacks in time series to provide a panoramic image of a growing state of a crop; And
    상기 온실 환경 관리 모듈에서 생성한 상기 작물의 생육상태를 표시하고, 상기 파노라마 영상 중 특정 영역에 대한 입력 신호를 수신하는 경우, 상기 특정 영역에 표시된 단위 스택에 대응하는 온실 데이터를 상기 파노라마 영상에 오버랩하여 표시하는 사용자 단말기;를 포함하는When the growth state of the crop generated by the greenhouse environment management module is displayed and an input signal for a specific region is received in the panoramic image, the greenhouse data corresponding to the unit stack displayed in the specific region is overlapped with the panoramic image. To include; the user terminal to display
    IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템.Real-time monitoring system of crop growth status in IoT based greenhouse.
  2. 제1항에 있어서,The method of claim 1,
    상기 온실 데이터 수집 모듈로부터 수집된 온실 데이터 또는 상기 사용자 단말기로부터 수신한 제어입력을 기초로 상기 온실 내에 설치된 적어도 하나의 설비를 원격 제어하는 온실 환경 제어 모듈;을 더 포함하는,And a greenhouse environment control module for remotely controlling at least one facility installed in the greenhouse based on greenhouse data collected from the greenhouse data collection module or a control input received from the user terminal.
    IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템.Real-time monitoring system of crop growth status in IoT based greenhouse.
  3. 제2항에 있어서,The method of claim 2,
    상기 적어도 하나의 설비는, 창문, 양액기, 팬, 냉난방 장치, LED 조명 중 적어도 하나를 포함하는,The at least one installation comprises at least one of a window, a nutrient solution, a fan, a heating and cooling device, LED lighting,
    IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템.Real-time monitoring system of crop growth status in IoT based greenhouse.
  4. 제1항에 있어서,The method of claim 1,
    상기 온실 환경 관리 모듈은, 상기 사용자 단말기를 통해 제1 입력을 수신하는 경우, 상기 표준화된 포맷의 온실 데이터가 변화된 시점과 변화된 온실 데이터를 상기 파노라마 영상에 오버랩하여 제공하는,When the greenhouse environment management module receives the first input through the user terminal, the greenhouse environment management module overlaps the panoramic image with a time point at which the greenhouse data of the standardized format is changed and the changed greenhouse data.
    IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템.Real-time monitoring system of crop growth status in IoT based greenhouse.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 사용자 단말기는, 제2 입력을 수신하는 경우, 곡물의 표준 생육상태를 서버로부터 다운로드 받아, 상기 온실 데이터가 변화된 시점에 대응하는 표준 생육상태를 상기 온실 데이터와 함께 표시하는, When the user terminal receives the second input, the user terminal downloads the standard growth state of the grain from the server, and displays the standard growth state corresponding to the time point at which the greenhouse data is changed together with the greenhouse data.
    IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템.Real-time monitoring system of crop growth status in IoT based greenhouse.
  6. 제1항에 있어서, The method of claim 1,
    상기 온실 환경 관리 모듈은, 상기 파노라마 영상과 미리 저장된 기준 영상을 비교하여, 곡물의 생육상태가 기준 생육상태보다 미달된 경우, 상기 온실 환경 제어 모듈을 제어하여 온실 온도 또는 습도를 높이거나, 양액기를 구동시키는,The greenhouse environment management module compares the panoramic image with a pre-stored reference image, and when the growth state of the grain is lower than the standard growth state, the greenhouse environment control module is controlled to increase the greenhouse temperature or humidity or the nutrient solution. Driven,
    IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템.Real-time monitoring system of crop growth status in IoT based greenhouse.
  7. 제1항에 있어서,The method of claim 1,
    상기 온실 환경 관리 모듈은, 상기 환경 데이터 또는 상기 배지 데이터를 토대로 수확량, 생체중량, 증발산량을 예측하는,The greenhouse environment management module, based on the environmental data or the medium data to predict the yield, biomass, evaporation amount,
    IoT 기반 온실 내 작물 생육상태 실시간 모니터링 시스템. Real-time monitoring system of crop growth status in IoT based greenhouse.
PCT/KR2018/015856 2018-06-21 2018-12-13 System for monitoring, in real time, growth state of crop in greenhouse on basis of iot WO2019245122A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0071486 2018-06-21
KR1020180071486A KR20190143680A (en) 2018-06-21 2018-06-21 System for real-time monitoring groth state of crop in green house based on internet of things

Publications (1)

Publication Number Publication Date
WO2019245122A1 true WO2019245122A1 (en) 2019-12-26

Family

ID=68982974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/015856 WO2019245122A1 (en) 2018-06-21 2018-12-13 System for monitoring, in real time, growth state of crop in greenhouse on basis of iot

Country Status (2)

Country Link
KR (1) KR20190143680A (en)
WO (1) WO2019245122A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111741084A (en) * 2020-06-08 2020-10-02 黑龙江省网络空间研究中心 Crop growth monitoring and diagnosing system based on wireless sensor network
CN113190059A (en) * 2021-05-20 2021-07-30 成都长弓乐水农业科技有限责任公司 Greenhouse automatic control system and method based on crop feedback
CN114200978A (en) * 2021-08-04 2022-03-18 南开大学 Greenhouse monitoring system
CN114488921A (en) * 2022-04-14 2022-05-13 山东省农业机械科学研究院 Internet of things management and control system for intelligent orchard
CN116258238A (en) * 2022-12-07 2023-06-13 嘉应学院 Crop management system based on Internet of things
CN117470306A (en) * 2023-10-31 2024-01-30 上海永大菌业有限公司 Mushroom shed growth environment monitoring and analyzing method and system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102504381B1 (en) * 2020-05-29 2023-03-03 대한민국 Smart farm data processing system and smart farm data processing method
KR102479880B1 (en) * 2021-12-08 2022-12-23 대한민국 Artificial intelligence-based nutrient solution supply control device, nutrient solution supply control system including the same and nutrient solution supply control method therefor
CN116225114B (en) * 2023-02-28 2023-10-03 上海华维可控农业科技集团股份有限公司 Intelligent environmental control system and method for crop growth controllable agricultural greenhouse based on big data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828103B1 (en) * 2007-03-12 2008-06-10 순천대학교 산학협력단 System for automatic control of a greenhouse and method for management of a greenhouse by using the sensor of soil and atmospheric phenomena
KR20120140451A (en) * 2011-06-21 2012-12-31 원광대학교산학협력단 Photographing apparatus and method for adding location information and environment information to photographed image
KR20140077513A (en) * 2012-12-14 2014-06-24 한국전자통신연구원 System and method for crops information management of greenhouse using image
KR20170125458A (en) * 2016-05-04 2017-11-15 한국과학기술연구원 Production prediction apparatus and method of the crop
KR101810901B1 (en) * 2016-06-16 2018-01-25 김찬우 Apparatus for simulation for growth state crop organ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100828103B1 (en) * 2007-03-12 2008-06-10 순천대학교 산학협력단 System for automatic control of a greenhouse and method for management of a greenhouse by using the sensor of soil and atmospheric phenomena
KR20120140451A (en) * 2011-06-21 2012-12-31 원광대학교산학협력단 Photographing apparatus and method for adding location information and environment information to photographed image
KR20140077513A (en) * 2012-12-14 2014-06-24 한국전자통신연구원 System and method for crops information management of greenhouse using image
KR20170125458A (en) * 2016-05-04 2017-11-15 한국과학기술연구원 Production prediction apparatus and method of the crop
KR101810901B1 (en) * 2016-06-16 2018-01-25 김찬우 Apparatus for simulation for growth state crop organ

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111741084A (en) * 2020-06-08 2020-10-02 黑龙江省网络空间研究中心 Crop growth monitoring and diagnosing system based on wireless sensor network
CN113190059A (en) * 2021-05-20 2021-07-30 成都长弓乐水农业科技有限责任公司 Greenhouse automatic control system and method based on crop feedback
CN114200978A (en) * 2021-08-04 2022-03-18 南开大学 Greenhouse monitoring system
CN114200978B (en) * 2021-08-04 2023-08-18 南开大学 Greenhouse monitoring system
CN114488921A (en) * 2022-04-14 2022-05-13 山东省农业机械科学研究院 Internet of things management and control system for intelligent orchard
CN114488921B (en) * 2022-04-14 2022-08-16 山东省农业机械科学研究院 Internet of things management and control system for intelligent orchard
US11889793B2 (en) 2022-04-14 2024-02-06 Shandong Academy Of Agricultural Machinery Sciences Internet-of-things management and control system for intelligent orchard
CN116258238A (en) * 2022-12-07 2023-06-13 嘉应学院 Crop management system based on Internet of things
CN117470306A (en) * 2023-10-31 2024-01-30 上海永大菌业有限公司 Mushroom shed growth environment monitoring and analyzing method and system
CN117470306B (en) * 2023-10-31 2024-04-02 上海永大菌业有限公司 Mushroom shed growth environment monitoring and analyzing method and system

Also Published As

Publication number Publication date
KR20190143680A (en) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2019245122A1 (en) System for monitoring, in real time, growth state of crop in greenhouse on basis of iot
WO2019245121A1 (en) System for iot-based greenhouse environment management
US8947525B2 (en) Plant observation device and method
KR101856845B1 (en) Insect breeding equipment and breeding management system, management methods of rearing management system
WO2014073783A1 (en) System for monitoring plant growth
CN106406403A (en) Agriculture management and control system based on augmented reality
KR102161572B1 (en) Automatic system and method of collecting/analyzing and monitoring/controlling/predicting smart farm data
KR20120075558A (en) Method of controlling greenhouse and apparatus for the smae
KR20120075559A (en) Method of observating crops growth and apparatus for the same
CN205318221U (en) Intelligent greenhouse monitored control system based on internet of things
CN103728938A (en) Intelligent agricultural greenhouse application system based on technology of internet of things
KR20090002711A (en) System for predicting and managing pest using wireless sensor network
WO2020184241A1 (en) Crop yield amount prediction program and cultivation environment assessment program
KR102331141B1 (en) the improved smart farm management system
KR102537688B1 (en) Smart farm environment control system
KR20140018464A (en) Apparatus and method for information gathering of greenhouse
CN106841568A (en) Good farmland soil detection system and its implementation based on technology of Internet of things
CN105159366A (en) Greenhouse environment monitoring system and user behavior acquisition method
CN208386940U (en) A kind of greenhouse corps planting information monitoring system
WO2022114344A1 (en) System for providing adaptive cultivation information through crop cultivation application
WO2018032285A1 (en) Flower planting photographing monitoring system
WO2019212169A1 (en) Plant growth management system and plant growth management method using same
KR20220005120A (en) System for managing environment of green house based on internet of things
WO2021201339A1 (en) Smart agricultural site management system and method
CN103605391A (en) An intelligent monitoring device for agricultural greenhouses and a realization method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923102

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18923102

Country of ref document: EP

Kind code of ref document: A1