WO2021095842A1 - バーコード化された細胞外小胞のライブラリー - Google Patents

バーコード化された細胞外小胞のライブラリー Download PDF

Info

Publication number
WO2021095842A1
WO2021095842A1 PCT/JP2020/042416 JP2020042416W WO2021095842A1 WO 2021095842 A1 WO2021095842 A1 WO 2021095842A1 JP 2020042416 W JP2020042416 W JP 2020042416W WO 2021095842 A1 WO2021095842 A1 WO 2021095842A1
Authority
WO
WIPO (PCT)
Prior art keywords
rna
protein
extracellular
active fragment
cells
Prior art date
Application number
PCT/JP2020/042416
Other languages
English (en)
French (fr)
Inventor
良輔 小嶋
厚貴 國武
晟 古月
泰照 浦野
Original Assignee
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 東京大学 filed Critical 国立大学法人 東京大学
Priority to US17/776,404 priority Critical patent/US20220411785A1/en
Priority to EP20888429.6A priority patent/EP4059948A1/en
Priority to JP2021556168A priority patent/JPWO2021095842A1/ja
Publication of WO2021095842A1 publication Critical patent/WO2021095842A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • C12N15/1044Preparation or screening of libraries displayed on scaffold proteins
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70596Molecules with a "CD"-designation not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1138Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against receptors or cell surface proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0006Modification of the membrane of cells, e.g. cell decoration
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/85Fusion polypeptide containing an RNA binding domain
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • C12N2310/323Chemical structure of the sugar modified ring structure
    • C12N2310/3231Chemical structure of the sugar modified ring structure having an additional ring, e.g. LNA, ENA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/30Production chemically synthesised
    • C12N2330/31Libraries, arrays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/73Hydrolases (EC 3.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/73Hydrolases (EC 3.)
    • C12N2501/734Proteases (EC 3.4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/16011Human Immunodeficiency Virus, HIV
    • C12N2740/16041Use of virus, viral particle or viral elements as a vector
    • C12N2740/16043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • C12N2795/10322New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/18011Details ssRNA Bacteriophages positive-sense
    • C12N2795/18111Leviviridae
    • C12N2795/18122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the present invention relates to a library of barcoded extracellular vesicles.
  • EV extracellular vesicles
  • Exosomes are also heterozygous, but most of them are rich in endosome-binding proteins such as RabGTPase, SNARE, annexin, and floritin, and tetraspanin (CD63, CD81, CD9, etc.), which is a transmembrane protein family.
  • Endosome-binding proteins such as RabGTPase, SNARE, annexin, and floritin, and tetraspanin (CD63, CD81, CD9, etc.
  • LargeEV is a microvesicles (Microvesicles; MV; also called ectome), which are considered to be the main components of the cell membrane, and small apoptosis formed by cell fragmentation during apoptosis. Including the body and the like (Non-Patent Documents 1, 2 and 3).
  • MV is a vesicle formed by being directly constricted from the cell membrane and having a size of about 200 nm to 1000 nm, and MV includes integrin, selectin, CD40 and the like.
  • Apoptotic bodies are also formed by being directly constricted from the cell membrane, but are vesicles having a size of 500 nm to 2000 nm and contain fragmented genomic DNA, histone proteins, and the like.
  • Exosomes have been reported to be involved in close-range or long-range cell-cell communication.
  • exosomes released from cells function as antigen-presenting vesicles and induce responses in anti-tumor immunity and immune tolerance that suppresses inflammation (Non-Patent Document 4).
  • pathogenic proteins such as prions and ⁇ -amyloid peptides utilize exosomes when they are transmitted to other cells.
  • Exosomes have low immunogenicity and have the property of penetrating the blood-brain barrier, and contain various nucleic acids (mRNA, miRNA, shRNA, ncRNA, etc.) in addition to proteins, and these are contained in exosome receiving cells. Nucleic acid is known to function and affect the function of exosome receiving cells. Therefore, in recent years, studies using exosomes for DDS (drug delivery system) have been actively conducted in anticipation of a therapeutic effect by modifying the function of exosome receiving cells (Non-Patent Document 5).
  • DDS drug delivery system
  • Non-Patent Documents 6 to 9, Patent Document 1 it expresses peptides and proteins recognized by exosome receiving cells on the membrane surface of exosomes to increase the efficiency of targeting to exosome receiving cells, and expresses RNA-binding proteins on the inner membrane side of exosomes to produce cytoplasmic RNA. Attempts have also been made to improve the efficiency of DDS by efficiently recruiting (Non-Patent Documents 6 to 9, Patent Document 1).
  • Non-Patent Document 10 The inventors of the present application have also developed an exosome suitable for DDS.
  • Non-Patent Documents 11 and 12 It suggests that the type of integrin present on the surface of exosomes is related to the type of organ to which cancer metastasizes.
  • Non-Patent Document 13 It has been suggested that extracellular vesicles are present not only in animals but also in plants and play an important role in biological defense against pathogens (plant immunity). Is not well understood (Non-Patent Document 13).
  • An object of the present invention is to provide a library of barcoded extracellular vesicles, a method for producing the same, and a method for using the same.
  • extracellular vesicles that is, the pharmacokinetics of extracellular vesicles, the amount of secretion of extracellular vesicles, the substances contained (proteins, nucleic acids, etc.), extracellular vesicles
  • the present invention includes the following embodiments: [1A] (Tool for creating extracellular vesicle library) A nucleic acid encoding a fusion protein containing a protein present in extracellular vesicles and an RNA-binding protein. [2A] The nucleic acid according to 1A, wherein the protein present in the extracellular vesicle is tetraspanin or an active fragment thereof. [3A] The nucleic acid according to 2A, wherein tetraspanin is selected from the group consisting of CD63, CD9 and CD81.
  • RNA-binding protein is selected from the group consisting of MS2 or an active fragment thereof, CAS or an active fragment thereof, L7Ae or an active fragment thereof, ⁇ bacteriophage antiterminator protein N or an active fragment thereof, and HuR or an active fragment thereof, 1A.
  • Extracellular vesicle-secreting cells comprising the expression vector according to 5A.
  • Nucleic acids that affect the properties of the extracellular vesicles (1) Nucleic acid that changes the amount of endogenous protein present in or on the surface of extracellular vesicles; (2) Nucleic acid that promotes or inhibits the secretion of extracellular vesicles; Selected from the group consisting of (3) nucleic acids that affect the lipid membrane that constitutes the membrane of extracellular vesicles; and (4) nucleic acids for the presence of foreign proteins in or on the surface of extracellular vesicles.
  • the extracellular vesicle-secreting cell according to 7A or 8A.
  • the RNA-binding protein is selected from the group consisting of MS2 or an active fragment thereof, CAS or an active fragment thereof, L7Ae or an active fragment thereof, ⁇ bacteriophage antiterminator protein N or an active fragment thereof, and HuR or an active fragment thereof.
  • the fusion protein according to any one of 1B-4B which is bound to a nucleic acid that affects the properties of extracellular vesicles.
  • Nucleic acids that affect the properties of the extracellular vesicles (1) Nucleic acid that changes the amount of endogenous protein present in or on the surface of extracellular vesicles; (2) Nucleic acid that promotes or inhibits the secretion of extracellular vesicles; Selected from the group consisting of (3) nucleic acids that affect the lipid membranes that make up the extracellular vesicle membrane; and (4) nucleic acids that allow the presence of foreign proteins in or on the surface of the extracellular vesicles.
  • 5B The fusion protein according to 5B.
  • the fusion protein according to 5B or 6B, wherein the nucleic acid affecting the kinetics of the extracellular vesicles comprises mRNA or ncRNA (including miRNA, siRNA, shRNA, gRNA, snRNA, snoRNA).
  • mRNA or ncRNA including miRNA, siRNA, shRNA, gRNA, snRNA, snoRNA.
  • An extracellular vesicle comprising the fusion protein according to any one of 1B to 7B.
  • the extracellular vesicle according to 8B which has an average diameter of 30 nm or more and 150 nm or less.
  • [1C] (How to make a library) A method of creating a library of extracellular vesicles containing barcode RNA.
  • [2C] The method according to 1C, wherein the protein present in the extracellular vesicle is tetraspanin or an active fragment thereof.
  • [3C] The method of 2C, wherein tetraspanin is selected from the group consisting of CD63, CD9 and CD81.
  • the RNA-binding protein is selected from the group consisting of MS2 or an active fragment thereof, dCas9 or an active fragment thereof, L7Ae or an active fragment thereof, ⁇ bacteriophage antiterminator protein N or an active fragment thereof, and HuR or an active fragment thereof.
  • the barcode RNA comprises mRNA or ncRNA (including miRNA, siRNA, shRNA, gRNA, snRNA, snoRNA).
  • the barcode RNA further comprises a recognition sequence for RNA binding protein.
  • the extracellular vesicle secretory cell is selected from the group consisting of HEK293 cells, stem cells, epithelial cells, endothelial cells, fibroblasts, cancer cells, immune cells, nerve cells and plant cells. The method described in.
  • [1D] (Library screening method (1): Identification of factors involved in changes in secretion amount) A method for screening extracellular vesicle-secreting cells for factors that promote or inhibit the secretion of extracellular vesicles, including proteins present in the extracellular vesicles. (1) To the extracellular vesicle-secreting cell expressing a fusion protein containing a protein present in the extracellular vesicle and an RNA-binding protein.
  • step (6) Multiple types of expression vectors expressing barcode RNA, or (b) Multiple types of barcode RNA Process to introduce; (2) Step of culturing extracellular vesicle-secreting cells in a culture medium; (3) A step of recovering extracellular vesicles containing barcode RNA bound to the fusion protein from the culture supernatant of extracellular vesicle-secreting cells; (4) Step of recovering barcode RNA from recovered extracellular vesicles; (5) Step of collecting barcode RNA from extracellular vesicle-secreting cells after culturing; (6) A step of determining the sequence of a plurality of types of barcode RNAs recovered in step (4) and calculating the amount ratio of each barcode RNA; and (7) a step of calculating the amount ratio of each type of barcode RNAs; A method comprising the step of determining the sequence of barcode RNA and calculating the amount ratio of each barcode RNA; Preferably, here, the quantity ratio calculated in step (6) is compared with
  • a factor that promotes or inhibits the secretion of the extracellular vesicle in which the protein present in the extracellular vesicle is present is identified.
  • [1D2] (Library screening method (2): Identification of factors that influence the secretion of EV that presents a specific protein, or factors that affect the protein selection process that presents a specific protein on the EV membrane. )
  • a method comprising the step of determining the sequence of barcode RNA and calculating the amount ratio of each barcode RNA; Preferably, here, the amount ratio calculated in step (6) is compared with the amount ratio calculated in step (7) to identify the barcode RNA having a change in the amount ratio, and the identified barcode RNA is used. From the information on the contained sequence, a factor that promotes or inhibits the secretion of extracellular vesicles in which the specific protein is present on the surface thereof, or localization of the specific protein on the membrane surface of the extracellular vesicles. Identify the factors that influence.
  • the particular protein is selected from the group consisting of tetraspanin, integrin, and IFITM3 (interferon-induced transmembrane protein).
  • IFITM3 interferon-induced transmembrane protein.
  • tetraspanin is selected from the group consisting of CD63, CD9 and CD81.
  • the RNA-binding protein is selected from the group consisting of MS2 or an active fragment thereof, CAS or an active fragment thereof, L7Ae or an active fragment thereof, and ⁇ bacteriophage antiterminator protein N or an active fragment thereof, HuR or an active fragment thereof, 1D, The method according to any one of 1D2, 1D3, 2D and 3D.
  • the barcode RNA comprises mRNA or ncRNA (including miRNA, siRNA, shRNA, gRNA, snRNA, snRNA).
  • the barcode RNA further comprises a recognition sequence for RNA binding protein.
  • Extracellular vesicle secretory cells are selected from the group consisting of HEK293 cells, stem cells, epithelial cells, endothelial cells, fibroblasts, cancer cells, immune cells, nerve cells and plant cells from 1D, 1D2, 1D3, 2D to The method according to any one of 6D.
  • [1E] (Library screening method (3-1): Identification of factors affecting the half-life or kinetics of extracellular vesicles in body fluids) A method for screening for factors that contribute to the stability of extracellular vesicles in body fluids or factors that promote or inhibit the secretion of extracellular vesicles into body fluids.
  • a target including humans, non-human animals (including mice and rats), plants, and microorganisms.
  • Target body fluids for example, in the case of humans or non-human animals, blood (including whole blood, serum, plasma), saliva, urine, sheep water, cerebrospinal fluid, pericardial pancreas, chest water, ascites, stool, sweat, etc.
  • the step of isolating (semen) and extracting RNA (where extracellular vesicles may be isolated from the isolated body fluid and RNA may be extracted from the isolated extracellular vesicles); And (4) a method including a step of detecting a barcode RNA from the extracted RNA; Preferably, the amount ratio of each barcode RNA detected in the step (4) is compared with the amount ratio of each barcode RNA in the plurality of types of extracellular vesicles prepared in the step (1). Barcode RNA with varying amount ratio is identified, and factors that promote or inhibit the secretion of extracellular vesicles are identified from the sequence information contained in the identified barcode RNA.
  • RNA-binding protein is selected from the group consisting of MS2 or an active fragment thereof, CAS or an active fragment thereof, L7Ae or an active fragment thereof, ⁇ bacteriophage antiterminator protein N or an active fragment thereof, and HuR or an active fragment thereof. The method according to any one of 3E.
  • the barcode RNA comprises mRNA or ncRNA (including miRNA, siRNA, shRNA, gRNA, snRNA, snoRNA).
  • mRNA or ncRNA including miRNA, siRNA, shRNA, gRNA, snRNA, snoRNA.
  • the barcode RNA further comprises a recognition sequence for the RNA-binding protein.
  • Barcode RNAs with varying volume ratios are identified, and from sequence information contained in the identified barcode RNAs, factors that influence the efficiency of targeting extracellular vesicles to said tissue or body fluid are identified.
  • tetraspanin is selected from the group consisting of CD63, CD9 and CD81.
  • the RNA-binding protein is selected from the group consisting of MS2 or an active fragment thereof, CAS or an active fragment thereof, L7Ae or an active fragment thereof, ⁇ bacteriophage antiterminator protein N or an active fragment thereof, and HuR or an active fragment thereof.
  • the barcode RNA comprises mRNA or ncRNA (including miRNA, siRNA, shRNA, gRNA, snRNA, snoRNA).
  • the barcode RNA further comprises a recognition sequence for the RNA-binding protein.
  • the tissue is selected from the group consisting of tumor tissue, nerve tissue and immune tissue.
  • [1G] (Library screening method (3-3): Identification of factors affecting extracellular vesicle targeting of cultured cells (including primary cultured cells)) A method of screening for factors that affect the efficiency of targeting extracellular vesicles to cells.
  • (1) A step of preparing a plurality of types of fusion proteins containing a protein present in extracellular vesicles and RNA-binding protein and extracellular vesicles containing barcode RNA bound to the fusion protein; (2) A step of administering the plurality of types of extracellular vesicles to cells; (3) Step of extracting RNA from the cells; (4) A method including a step of detecting barcode RNA from extracted RNA; Preferably, here, the amount ratio of each barcode RNA detected in step (4) and Compared with the amount ratio of each barcode RNA in the plurality of types of extracellular vesicles prepared in step (1), the barcode RNA having a change in the amount ratio was identified and contained in the identified barcode RNA.
  • Sequence information identifies factors that influence the efficiency of targeting extracellular vesicles to said cells.
  • the method according to 1G wherein the protein present in the extracellular vesicle is tetraspanin or an active fragment thereof.
  • tetraspanin is selected from the group consisting of CD63, CD9 and CD81.
  • the RNA-binding protein is selected from the group consisting of MS2 or an active fragment thereof, CAS or an active fragment thereof, L7Ae or an active fragment thereof, ⁇ bacteriophage antiterminator protein N or an active fragment thereof, and HuR or an active fragment thereof. The method according to any one of 3G.
  • the barcode RNA comprises mRNA or ncRNA (including miRNA, siRNA, shRNA, gRNA, snRNA, snoRNA).
  • the barcode RNA further comprises a recognition sequence for the RNA-binding protein.
  • the cells are selected from stem cells, epithelial cells, endothelial cells, fibroblasts, cancer cells, immune cells and nerve cells, and cell lines established from these. ..
  • PI4KA Phosphatidylinositol 4-kinase alpha
  • CYB5B Cytochrome B5 Type B
  • PIK3C3 Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3
  • PTPN23 Protein Tyrosine Phosphatase Non-Receptor Type 23
  • An extracellular vesicle secretion promoter comprising an active ingredient selected from the group consisting of an inhibitor, an inhibitor of PIK3R4 (Phosphoinositide-3-Kinase Regulatory Subunit 4), and an inhibitor of METAP1 (Methionyl Aminopeptidase 1).
  • the inhibitor of PI4KA is GSK-A1 (5- (2-amino-1- (4-morpholinophenyl) -1H-benzo [d] imidazol-6-yl) -N- (2-fluorophenyl) -2-methoxypyridine- 3-sulfonamide), the extracellular vesicle secretagogue according to 1H or 2H.
  • GSK-A1 (2-amino-1- (4-morpholinophenyl) -1H-benzo [d] imidazol-6-yl) -N- (2-fluorophenyl) -2-methoxypyridine- 3-sulfonamide
  • the extracellular vesicle secretagogue according to any one of 1H to 3H for liquid biopsy.
  • PI4KA Phosphatidylinositol 4-kinase alpha
  • CYB5B Cytochrome B5 Type B
  • PIK3C3 Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3
  • PTPN23 Protein Tyrosine Phosphatase Non-Receptor Type 23
  • Active ingredients selected from the group consisting of inhibitors, PIK3R4 (Phosphoinositide-3-Kinase Regulatory Subunit 4) inhibitors and METAP1 (Methionyl Aminopeptidase 1) inhibitors were targeted in vivo or in vitro (humans and non-human animals).
  • the inhibitor of PI4KA is GSK-A1 (5- (2-amino-1- (4-morpholinophenyl) -1H-benzo [d] imidazol-6-yl) -N- (2-fluorophenyl) -2-methoxypyridine- 3-sulfonamide), the method of promoting the secretion of extracellular vesicles according to 2H1.
  • PI4KA Phosphatidylinositol 4-kinase alpha
  • CYB5B Cytochrome B5 Type B
  • PIK3C3 Phosphatidylinositol 3-Kinase Catalytic Subunit
  • PTPN23 Protein Tyrosine Phosphatase Non-Receptor Type 23
  • PIK3R4 Phosphoinositide-3-Kinase Regulatory Subunit 4
  • METAP1 Methionyl Aminopeptidase 1 inhibitors.
  • [2H2] The active ingredient for use according to 1H2, wherein the extracellular vesicles express CD63.
  • the inhibitor of PI4KA is GSK-A1 (5- (2-amino-1- (4-morpholinophenyl) -1H-benzo [d] imidazol-6-yl) -N- (2-fluorophenyl) -2-methoxypyridine- 3-sulfonamide), the active ingredient for use according to 2H2.
  • PI4KA Phosphatidylinositol 4-kinase alpha
  • CYB5B Cytochrome B5 Type B
  • PIK3C3 Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3
  • PTPN23 Protein Tyrosine Phosphatase Non-Receptor Type 23
  • [2H3] Use in the production of a secretagogue for extracellular vesicles according to 1H3, wherein the extracellular vesicles express CD63.
  • the inhibitor of PI4KA is GSK-A1 (5- (2-amino-1- (4-morpholinophenyl) -1H-benzo [d] imidazol-6-yl) -N- (2-fluorophenyl) -2-methoxypyridine- 3-sulfonamide), used in the production of a secretagogue for extracellular vesicles according to 2H3.
  • [4H3] Use in the manufacture of a secretagogue for extracellular vesicles according to any one of 1H3 to 3H3, which is administered for liquid biopsy.
  • MMAA Metal-binding Agent
  • MMAA Metal-binding Agent
  • Method Method.
  • Inhibitor of MMAA Metal-binding Agent for use in cancer treatment.
  • the present invention can be useful for the development of an efficient drug delivery system using extracellular vesicles, the biology research of extracellular vesicles, and the drug discovery research targeting the extracellular vesicle secretion pathway.
  • One embodiment of the present invention is a nucleic acid encoding a fusion protein containing a protein present in an extracellular vesicle and an RNA-binding protein; or a fusion protein containing a protein present in an extracellular vesicle and an RNA-binding protein.
  • Extracellular (secretory) vesicles are vesicles used to release intracellular substances to the outside of the cell, and are formed by a bilayer of phospholipids.
  • the lipid composition include sphingomyelin and phosphatidylserine. Its size is 10 nm to 10 ⁇ m in diameter, 30 nm to 5000 nm, or 50 nm to 3000 nm, and the diameter is 10 nm or more, 20 nm or more, 30 nm or more, 40 nm or more or 50 nm or more, and 500 nm or less, 400 nm or less, 300 nm or 200 nm or less.
  • exosomes and microvesicles are preferred in the present invention.
  • the origin is preferably eukaryotic, but is not particularly limited. Extracellular vesicles from humans, non-human mammals (including mice and rats), higher plants and microorganisms (including enterobacteria) are preferred.
  • the protein present in the extracellular vesicle is a marker of the extracellular vesicle, that is, a protein whose detection of the protein proves the existence of the (specific) extracellular vesicle (ie, extracellular). Proteins that are abundant in vesicles or specifically present in extracellular vesicles) are preferred. Its origin is not particularly limited, but it is preferably derived from humans, non-human mammals (including mice and rats), higher plants, and microorganisms (including enterobacteria).
  • markers for mammalian extracellular vesicles are classified as follows.
  • a membrane protein or GPI anchor protein that can be used as a marker protein for extracellular vesicles,
  • Tissue-non-specific substances Tetraspanin (CD63, CD9, CD81, CD82), other multitransmembrane membrane proteins (CD47, heterotrimeric G protein (GNA: Guanine nucleotide-binding proteins, etc.), etc.
  • MHC class I HLA-A / B / C, H2-K / D / Q), Integrin (ITGA / ITGB), transferrin receptor (TFR2); LAMP1 / 2; Heparan sulfate proteoglycan (including Cindecane (SDC)); Extracellular matrix metalloproteinase inducer (EMMPRIN) (also called BSG or CD147); ADAM10; CD73 (NT5E), a GPI anchor type 5'nucleotidase, CD
  • Cytoplasmic proteins that can be used as marker proteins for extracellular vesicles are ESCRT-I / II / III (TSG101, CHMP) and accessory proteins: ALIX (PDCD6IP), VPS4A / B; ARRDC1; Flotillin-1 and 2 (FLOT1 / 2); Caveolin (CAV); EHD; RHOA; Anexin (ANXA); Heat shock proteins HSC70 (HSPA8) and HSP84 (HSP90AB1); ARF6; Syntenin (SDCBP); Microtubule-related protein tau (Tau, MAPT; neuron-specific) And so on.
  • ALIX PDCD6IP
  • VPS4A / B VPS4A / B
  • ARRDC1 Flotillin-1 and 2
  • FLOT1 / 2 Flotillin-1 and 2
  • Caveolin CAV
  • EHD EHD
  • RHOA Anexin
  • HSPA8 and HSP84 HSP84
  • ARF6 Syn
  • the protein present in the extracellular vesicle in the present invention may be a naturally occurring protein (including polymorphism, ortholog, paralog). Alternatively, it may be an artificial mutant in which some amino acids are added, substituted, or deleted, or a fragment thereof (for example, “exoTOPE”), but the artificial mutant that does not change the localization of the protein. Alternatively, a fragment is preferable.
  • RNA-binding protein refers to a protein that can bind to RNA depending on or independent of the RNA sequence.
  • the dissociation constant (Kd) with RNA is 1 ⁇ M or less, 500 nM or less, 300 nM or less, 100 nM or less, 50 nM or less, 30 nM or less, 10 nM or less, 5 nM or less, 3 nM or less, 1 nM or less, 500 pM or less, 300 pM.
  • Kd dissociation constant
  • It may be a protein present in (including polymorphism, ortholog, paralog), or an artificial variant in which some amino acids thereof are added, substituted, or deleted, or a fragment thereof. However, its RNA-binding ability was maintained (at least 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 100% or more of the binding ability of the corresponding natural protein. (Preferably) (active) artificial variant or (active) fragment is preferred.
  • the fusion protein of the protein present in the extracellular vesicle and the RNA-binding protein is further a transcription factor, a transcriptional activator (eg, VP64, p65, Rta, VPH), a transcriptional repressor (eg, KRAB) or These active fragments may be included. Further, a labeled peptide (for example, GFP, HisTag, etc.) may be fused.
  • the fusion protein of the protein present in the extracellular vesicle and the RNA-binding protein may contain post-translational modifications (eg, sugar chain modification, phosphorylation, etc.).
  • One embodiment of the present invention comprises nucleic acids that affect the properties of extracellular vesicles.
  • Nucleic acid that affects the properties of extracellular vesicles is defined by analyzing extracellular vesicles secreted by cells that secrete extracellular vesicles when they contain the nucleic acid (1) extracellular vesicles. The amount of endogenous protein present in or on the surface of the secreted extracellular vesicles is altered compared to when the cells secreting the vesicles do not contain the nucleic acid; (2) The amount of extracellular vesicles secreted changes compared to when the cells secreting extracellular vesicles do not contain the nucleic acid; (3) The lipid membrane that constitutes the extracellular vesicle membrane is affected more than when the cell that secretes the extracellular vesicle does not contain the nucleic acid; (4) The extracellular protein encoded by the nucleic acid is present in the extracellular vesicle or on the surface thereof; Nucleic acids that cause such changes can be mentioned.
  • the nucleic acid may be naturally occurring DNA, RNA, or a mixture thereof. Nucleic acids that do not exist in nature (for example, nucleic acids that are partially or wholly S-modified (phosphorothioate) instead of (P) in which nucleotides are bonded with a phosphorylation ester, peptide nucleic acids (PNA), etc.). You may.
  • (1) includes nucleic acids encoding the endogenous protein itself, nucleic acids encoding transcription factors that control transcription of the endogenous proteins, nucleic acids encoding factors involved in post-translational modification of the endogenous proteins, and endogenous proteins.
  • Nucleic acids encoding proteins such as nucleic acids encoding factors involved in chaperoning (including folding and intracellular transport); antisense RNA (siRNA), miRNA (microRNA) that positively or negatively regulate the expression of endogenous proteins ), ShRNA (small hairpin RNA) and snRNA (small nuclear RNA), or genome editing technology (for example, ZFN (Zinc-Finger Nuclease), TALEN (Transcription Activator-Like Effector Nuclease), CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)) / Cas9 (Crispr Associated protein 9) and the like) include nucleic acids for modifying genes encoding endogenous proteins (eg, gRNA used in the CRISPR / Cas9 system).
  • siRNA antisense RNA
  • miRNA miRNA
  • microRNA that positively or negatively regulate the expression of endogenous proteins
  • ShRNA small hairpin RNA
  • snRNA small nuclear RNA
  • (2) includes nucleic acids encoding factors that affect the amount of extracellular vesicles secreted, and nucleic acids encoding factors that control transcription, translation, and expression of factors that affect the amount of extracellular vesicles secreted. And; Antisense that positively or negatively controls the expression of factors that control the transcription, translation, and expression of factors that affect the amount of extracellular vesicles secreted and factors that affect the amount of extracellular vesicles secreted.
  • Nucleic acids for modifying genes encoding factors that control transcription, translation and expression of eg, gRNA used in the CRISPR / Cas9 system.
  • Examples of (4) include nucleic acids encoding foreign proteins.
  • the nucleic acid that affects the properties of extracellular vesicles may contain mRNA or ncRNA, and may further contain a recognition sequence of RNA-binding protein.
  • mRNA refers to RNA containing RNA (cRNA; coding RNA) having base sequence information and structure that can be translated into protein (or peptide), and refers to not only naturally occurring mRNA but also 5'end. Contains RNA that does not contain the m7G cap and RNA that does not contain polyadenylation (polyA) at the 3'end. It also contains premature mRNA that, if properly spliced intracellularly, gives the sequence information and structure that can be translated into proteins.
  • cRNA RNA containing RNA
  • polyA polyadenylation
  • ncRNA non-coding RNA
  • RNA functional nucleic acid
  • small nuclear RNA snRNA
  • small nuclear RNA snoRNA
  • miRNA miRNA that bind to other RNAs that form a complex with a protein in the nucleus. Includes (including pre-miRNA) and siRNA (including pre-siRNA (including, for example, shRNA (small hairpin RNA))).
  • ncRNAs may also include guide RNAs (gRNAs; including single-stranded guide RNAs) (RNAs that guide the protein complex to the target nucleic acid molecule by complementary binding).
  • CRISPR RNA In the CRISPR / Cas9 system in bacteria and paleobacteria, two types of RNA (CRISPR RNA) that recognizes a target DNA sequence of about 20 bases and tracrRNA (trans-activating crRNA) that serves as a scaffold for binding to Cas9 are combined. Although it functions as a gRNA, sgRNA (single guide RNA), which is a combination of them for the purpose of genome editing, is also included in the gRNA. When Cpf1 is used instead of Cas9, only 41 to 44 bases of crRNA (recognition region is 21 to 24 bases) functions as gRNA.
  • the recognition sequence of an RNA-binding protein is a sequence to which an RNA protein can bind to the sequence.
  • the RNA protein may be able to bind with a monomer or with a multimer. It may be able to bind in the form of a heteromultimer with other factors.
  • ACAUGAGGAUCACCCAUGU SEQ ID NO: 1
  • CAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC SEQ ID NO: 2
  • GCCCUGAAGAAGGGC SEQ ID NO: 4
  • AUUUACCCAUUUACCCAUUUACCCAUUUACCCAUUUACCCAUUUACCCAUUUACCCAUUUA SEQ ID NO: 5
  • the cell secreting extracellular vesicles according to the present invention is not particularly limited as long as its origin is derived from eukaryotes, but is preferably derived from humans, non-human mammals (including mice and rats), and higher plants.
  • stem cells artificial pluripotent stem cells (iPS cells), embryonic stem cells (ES cells), and somatic stem cells (mesenchymal stem cells, adipose stem cells, hematopoietic stem cells, nerve stem cells, vascular endothelial stem cells, liver) (Including stem cells and epithelial stem cells)), cells in which stem cells have been induced to differentiate, epithelial cells, endothelial cells, fibroblasts, cancer cells, immune cells (dendritic cells and blood cells) and nerve cells.
  • a cell in which these cells are established may be used. It may be a cultured cell (for example, HEK293T cell).
  • One embodiment of the present invention is a method for preparing a library of extracellular vesicles containing barcode RNA and a screening method using the library. Screening methods include identifying specific barcode RNAs contained in extracellular vesicles.
  • Barcode RNA is RNA containing mRNA or / and ncRNA, and by being contained in intracellular vesicles, it is possible to identify intracellular vesicles.
  • a library of extracellular vesicles containing a bar code RNA contains at least two types of extracellular vesicles, and identification of extracellular vesicles is included in the bar code RNA. It is done by determining the sequence of.
  • the library preferably contains 5000 or more, 6000 or more, 7000 or more, 8000 or more, 9000 or more, or 10000 or more extracellular vesicles.
  • the method for introducing the barcode RNA into the cell is not particularly limited, but the barcode RNA itself may be introduced into the cell (for example, a microinjection method, an electroperforation method, or a gene transfer method using a cationic liposome).
  • an expression vector DNA vector, RNA vector (including virus vector), etc.
  • a library of extracellular vesicles can be obtained by collecting extracellular vesicles secreted from cells containing barcode RNA. For example, secreted extracellular vesicles can be recovered from the cell culture supernatant. Further, when collecting extracellular vesicles, only specific types of extracellular vesicles may be collected by using a marker of a specific extracellular vesicle as an index.
  • an antibody that recognizes a membrane protein such as tetraspanin present in the membrane of extracellular vesicles can be used to recover only extracellular vesicles having the tetraspanin on the membrane surface without destroying them.
  • Barcode RNA is recovered from cells, tissues, body fluids, or extracellular vesicles and sequenced. In the case of tissues and body fluids, extracellular vesicles may be isolated once from these, and barcode RNA may be recovered from the isolated extracellular vesicles.
  • the extraction method is preferably carried out using a reagent for RNA separation such as TRIzol reagent based on phenol and guanidine isothiocyanate, or a general-purpose RNA purification kit.
  • the recovered barcode RNA is preferably sequenced after amplification. Although not particularly limited, it is preferable to perform reverse transcription and amplification using a plurality of types of primers in order to improve the amplification accuracy.
  • the library screening method is (1) Identification of factors involved in changes in extracellular vesicle secretion (including factors involved in changes in vesicle secretion containing specific proteins); (2) Identification of factors involved in the localization of specific proteins in and on the membrane of extracellular vesicles; (3) Identification of factors that affect the half-life and kinetics of extracellular vesicles in body fluids; (4) Identification of factors that influence the targeting of extracellular vesicles to each tissue or body fluid; (5) Identification of factors that influence the targeting of extracellular vesicles to specific cells (including primary cultured cells); It can be used for such purposes.
  • an expression vector or barcode RNA that expresses barcode RNA is introduced into extracellular vesicle-secreting cells, and the intracellular vesicles secreted by the extracellular vesicle-secreting cells after the introduction are introduced.
  • the target factor can be identified by comparatively analyzing the barcode RNA recovered from the cells and the barcode RNA remaining in the extracellular vesicle-secreting cells. After administering a specific drug to extracellular vesicle-secreting cells, the effect of the drug on the change in the amount of extracellular vesicle secretion may be observed by collecting the extracellular vesicles after a certain period of time.
  • the collected bar-coded library of extracellular vesicles is precipitated with an antibody (or antibody-binding beads) that recognizes a specific protein, and the specific protein is present on the surface of the cell extracellularly.
  • an antibody or antibody-binding beads
  • the specific protein is present on the surface of the cell extracellularly.
  • Factors related to post-translational modification for example, enzymes that modify sugar chains including GPI anchor connections
  • factors related to chaperoning of specific proteins including folding and intracellular transport
  • the specific protein is preferably a protein existing on or in the membrane of the extracellular vesicle, and may be the same as or different from the protein used for fusion with the RNA-binding protein. Good.
  • adhesion factors such as tetraspanins and various integrins, interferon-induced transmembrane protein (IFITM3), which is one of the factors considered to link the relationship between cell senescence and EV, and the like can be mentioned.
  • the target tissue or body fluid is isolated, and the isolated tissue or body fluid is isolated.
  • the target factor can be identified.
  • the target factor can be identified by detecting the barcode RNA from the cells after a certain period of time after administering the extracellular vesicle library prepared in the present invention to the target cells. .. Drugs by collecting extracellular vesicles after a certain period of time after administering a specific drug to the subject (cells) before, after, or at the same time as administering the library of extracellular vesicles to the subject (cells). You may see the influence of.
  • the body fluids in (3) and (4) are those in the animal's body that fill the inter-tissue, intra-body cavity, or the tube or circulatory system that extends throughout the body, saliva, sweat, semen, and urine. Including those secreted and excreted inside and outside the body.
  • blood including whole blood, serum and plasma
  • the tissue in (4) is a normal tissue of eukaryotic organisms (including humans, non-human animals and plants) (tissues forming various organs such as nervous tissue, immune tissue, muscle tissue, digestive tract, etc.), or benign or malignant. It may be an abnormal tissue such as a tumor tissue (including blood cancer) or a tissue infected with a pathogen.
  • the cell in (5) is a cell capable of receiving extracellular vesicles, such as normal cells (differentiated or undifferentiated cells (including stem cells)) of eukaryotic organisms (including humans, non-human animals and plants). ) Or abnormal cells such as cancer cells, or cell lines established from these, plant cells (including callus cells), and single cell microorganisms (including intestinal bacteria).
  • Identification of such factors is made by comparing the amount ratio of barcode RNA.
  • the amount ratio of bar code RNA recovered from may be compared.
  • One embodiment of the present invention is a secretagogue or inhibitor of extracellular vesicles in vitro or in vivo.
  • an extracellular vesicle expressing tetraspanin (CD63, CD9, CD81, CD82) on its surface is preferable.
  • an inhibitor of PI4KA Phosphatidylinositol 4-kinase alpha
  • an inhibitor of CYB5B Cytochrome B5 Type B
  • an inhibitor of PIK3C3 Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3
  • PTPN23 Examples thereof include inhibitors of Protein Tyrosine Phosphatase Non-Receptor Type 23), inhibitors of PIK3R4 (Phosphoinositide-3-Kinase Regulatory Subunit 4), and inhibitors of METAP1 (Methionyl Aminopeptidase 1).
  • inhibitors of extracellular vesicle secretion include an inhibitor of MMAA (Metabolism Of Cobalamin Associated A).
  • Inhibitors suppress the expression of these genes by miRNA (including pre-miRNA) and siRNA (pre-siRNA (eg, shRNA (small hairpin RNA)); or by binding to these gene products and suppressing their function. It may be a low molecular weight compound (molecular weight 2000 or less, preferably molecular weight 1000 or less, more preferably molecular weight 600 or less), shRNA or antibody (including a binding fragment).
  • GSK-A1 As an inhibitor of PI4KA (Phosphatidylinositol 4-kinase alpha), which is a low molecular weight compound, GSK-A1 (5- (2-amino-1- (4-morpholinophenyl) -1H-benzo [d] imidazol-6-yl) -N- (2-fluorophenyl) -2-methoxypyridine-3-sulfonamide) is preferred.
  • Liquid biopsy is primarily in the area of cancer and replaces traditional biopsy, which uses an endoscope or needle to remove tumor tissue, with blood (including whole blood, serum, and plasma).
  • blood including whole blood, serum, and plasma.
  • Saliva, urine, sheep water, cerebrospinal fluid, pericardial pancreas, pleural effusion, ascites, stool, and other body fluid samples are used for diagnosis and prediction of therapeutic effects.
  • Studies have been conducted to diagnose and predict the therapeutic effect by detecting circulating free DNA, circulating tumor DNA, circulating free RNA, extracellular vesicles, etc. existing in body fluids.
  • Extracellular vesicles according to the present invention have been studied. By promoting the secretion of extracellular vesicles secreted from cancer cells and the like, the secretory-promoting agent can improve the accuracy of diagnosis by liquid biopsy and prediction of therapeutic effect.
  • Extracellular vesicle secretion inhibitors can be applied to cancer treatment. By inhibiting the secretion of extracellular vesicles, it not only suppresses cancer metastasis, but also prevents the primary lesion from affecting itself by programming around itself by secreting smallEV. it can.
  • CD63-L7Ae The vector plasmid (pRK320) expressing the CD63-L7Ae fusion protein (SEQ ID NO: 6) is CD63-L7Ae under the EF-1 ⁇ promoter of the pSBbi-GH vector (addgene, plasmid # 60514; hygromycin resistance gene + EGFP co-expressed type). It was prepared by introducing a sequence encoding a fusion protein. 2.
  • the vector plasmid (pKK47: pSBbi-GH CD63-MS2) expressing the CD63-MS2 fusion protein (SEQ ID NO: 7) is an EF- of the pSBbi-GH vector (addgene, plasmid # 60514; hyglomycin resistance gene + EGFP co-expressed type). It was prepared by introducing a sequence encoding the CD63-MS2 fusion protein into the SfiI restriction enzyme recognition site under the 1 ⁇ promoter. 3.
  • CD63-dCas9 The vector plasmid (pKK60: pSBbi-GH CD63-dCas9) expressing the CD63-dCas9 fusion protein (SEQ ID NO: 8) is an EF- of the pSBbi-GH vector (addgene, plasmid # 60514; hyglomycin resistance gene + EGFP co-expressed type). It was prepared by introducing a sequence encoding the CD63-dCas9 fusion protein into the SfiI restriction enzyme recognition site under the 1 ⁇ promoter. 4.
  • CD9-dCas9 The vector plasmid (pKK106: pSBbi-GH CD9-dCas9) expressing the CD9-dCas9 fusion protein (SEQ ID NO: 9) is an EF- of the pSBbi-GH vector (addgene, plasmid # 60514; hyglomycin resistance gene + EGFP co-expression type). It was prepared by introducing a sequence encoding the CD9-dCas9 fusion protein into the SfiI restriction enzyme recognition site under the 1 ⁇ promoter.
  • ⁇ Vector for CRISPR> 1 Cas9 (for knockout)
  • the vector plasmid (pRK300: pSBbi-RB Cas9) that expresses SpCas9-NLS-FLAG (SEQ ID NO: 10) is an EF-1 ⁇ of the pSBbi-RB vector (addgene, plasmid # 60522; blastsaidin resistance gene + RFP co-expression type). It was prepared by introducing a sequence encoding a Cas9 fusion protein into the SfiI restriction enzyme recognition site under the promoter. 2.
  • the vector plasmid (pKK56: pSBbi-RB dCas9-VPR) expressing the dCas9-VPR fusion protein (SEQ ID NO: 11) is an EF of the pSBbi-RB vector (addgene, plasmid # 60522; blastsaidin resistance gene + RFP co-expressed type). It was prepared by introducing a sequence encoding the dCas9-VPR fusion protein under the -1 ⁇ promoter.
  • HEK293T cells are transfected with a fusion protein expression vector (pRK320: CD63-L7Ae; pKK47: CD63-MS2; or pKK60: CD63-dCas9) and, if necessary, a CRISPR vector (pRK300 or pKK56) to drug resistance.
  • a fusion protein expression vector pRK320: CD63-L7Ae; pKK47: CD63-MS2; or pKK60: CD63-dCas9
  • CRISPR vector pRK300 or pKK56
  • vectors (1 or 2 types of each gene) expressing gRNA for CD274, CD47, CD55, CD59, CD81, ICAM1, ITGAL, LRP1 and IL1B were prepared.
  • the sequences encoding gRNA contained in each vector are shown in Table 1 below.
  • a library (pSF63) for expressing the Lamp2b fusion protein (SEQ ID NO: 34) was prepared.
  • G was transfected into Lenti-X® 293T cells (Takara Bio, Japan). After culturing for 6 to 16 hours, the medium was replaced, and then the culture supernatant cultured for 48 hours was filtered to collect a solution containing lentivirus. Cell viability by infecting EV-producing cells with the recovered lentivirus and monitoring a fluorescent marker separately encoded in the library expression cassette, or by utilizing an antibiotic resistance gene separately encoded in the library expression cassette. The titer (MOI) of lentivirus was determined by performing an assay.
  • ⁇ Wrench virus infection and EV production> EV-producing cells were infected with lentivirus according to the measured titer. After infection, the cells were cultured for 4 days or more in the presence of puromycin. Then, the culture medium was replaced with OptiMEM® medium (Thermo Fisher Scientific, Japan), and after culturing for 48 hours, the culture supernatant containing extracellular vesicles was collected. Then, the supernatant was centrifuged at 300 G for 5 minutes and then at 1500 G for 10 minutes, and cells and cell debris were removed by passing through a 0.22 ⁇ m filter. Then, extracellular vesicles were purified and concentrated from the supernatant by ultracentrifugation.
  • RNA from the gRNA library for CD63-L7Ae RNA was extracted from the collected extracellular vesicles or EV-producing cells using TRIzol, and LNA (2'-4'bridged nucleic acid, AAGCAGTGGTATCAACGCAGAGTACrGrG + G) (SEQ ID NO: 13: bases with "r” are RNA bases.
  • LNA 2'-4'bridged nucleic acid, AAGCAGTGGTATCAACGCAGAGTACrGrG + G
  • bases with "r” are RNA bases.
  • "+” Is a reverse transcriptase in the presence of LNA base) using a reverse transcription primer AAAGCACCGACTCGGTGCCAC (SEQ ID NO: 14) and a reverse transcriptase having Template Switching activity.
  • This reverse transcriptase is PCR amplified using Fw and Rev primers with an adapter sequence for the next-generation sequencer and an oligo DNA with a barcode for sample multiplexing, respectively.
  • the amplified DNA is analyzed using Ion Proton or Illumina Hiseq X Ten, the sequence of each gRNA is determined, and the amount ratio thereof is calculated. 2 (1).
  • RNA from the gRNA library for CD63-MS2 RNA was extracted from the recovered extracellular vesicles or EV-producing cells using TRIzol, and in the presence of LNA (SEQ ID NO: 13), reverse transcriptase with reverse transcription primer AAAGCACCGACTCGGTGCCAC (SEQ ID NO: 14) and Template Switching activity were used. It was reverse transcribed using.
  • This reverse transcriptase was PCR amplified using Fw and Rev primers with an adapter sequence for the next-generation sequencer and an oligo DNA with a barcode for sample multiplexing, respectively.
  • the amplified DNA was analyzed using Ion Proton or Illumina Hiseq X Ten, the sequence of each gRNA was determined, and the amount ratio was calculated. 2 (2).
  • RNA from random peptide-Lamp2b library for CD63-MS2 RNA was extracted from the collected extracellular vesicles or EV-producing cells using TRIzol, reverse transcribed using the reverse transcription primer attttgcataaaggcaagtgg (SEQ ID NO: 15) and reverse transcriptase, and then applied to the Fw primer and Rev primer, respectively.
  • RNA derived from the library for CD63-dCas9 (when using addgene, Pooled Library # 83976, # 1000000048 or # 101927) RNA was extracted from the recovered extracellular vesicles using TRIzol, and in the presence of LNA (2'-4'bridged nucleic acid, AAGCAGTGGTATCAACGCAGAGTACrGrG + G) (SEQ ID NO: 13), a primer for reverse transcription TTTTTCAAGTTGATAACGGACTAGCC (SEQ ID NO: 16) And reverse transcription using a reverse transcription enzyme with Template Switching activity.
  • LNA 2'-4'bridged nucleic acid, AAGCAGTGGTATCAACGCAGAGTACrGrG + G
  • This reverse transcriptase was PCR amplified using Fw and Rev primers with an adapter sequence for the next-generation sequencer and an oligo DNA with a barcode for sample multiplexing, respectively.
  • the amplified DNA was analyzed using Ion Proton or Illumina Hiseq X Ten, the sequence of each gRNA was determined, and the amount ratio was calculated.
  • the collected culture supernatant extracellular vesicles were purified by ultracentrifugation so that a total of approximately 1x10 11 ⁇ 10 12 vesicles / mL, and suspended in PBS.
  • 100 ⁇ L of the prepared EV solution was intravenously injected into Jcl: ICR mice.
  • Two minutes after intravenous injection, after euthanasia with CO 2 whole blood was collected from mice, serum was obtained using a microtainer blood collection tube (BD), and Total Exosome Isolation Reagent (Thermo Fisher Scientific). The company, Japan) was used to isolate extracellular vesicles in serum.
  • RNA was extracted from the isolated extracellular vesicles using a TRIzol reagent, reverse transcription and amplification were performed, the sequence of each gRNA was determined, and the amount ratio was calculated (t 2min).
  • a control 0
  • the EV solution prepared before injection into mice was subjected to the same treatment except for EV isolation from serum by a total exosome isolation reagent, the sequence of each gRNA was determined, and the amount ratio thereof. was calculated. Then, the amount of each gRNA recovered from the blood when the control was set to 1 was calculated. As a result, all 17 types of gRNA used could be detected, and the amount ratio thereof could be stably detected (Fig. 1).
  • CD63-MS2 expression EV libraries and CD63-dCas9 expression EV library CD63-MS2 expression EV libraries (for gRNA), addgene # 83985, Human Subpooled CRISPRa-v2 Libraries
  • Membrane Proteins - gRNA pooled library (1.3x10 4 Using the seed), cloning was performed as described above to prepare a gRNA library containing MS2box in the backbone, and the prepared library was packaged in a lentivirus to produce EV-producing cells (HEK293T CD63-MS2, dCas9-VPR). Stable expression strain) was infected.
  • the library of addgene # 83985 was directly packaged in lentivirus and infected with EV-producing cells (HEK293T CD63-dCas9, dCas9-VPR stable expression strain).
  • the infected cells were cultured under the same conditions, and extracellular vesicles were collected from the culture supernatant.
  • RNA was extracted from the collected extracellular vesicles, reverse transcribed and amplified to determine the sequence, and the amount ratio was calculated.
  • the sequence of the original gRNA library itself was also determined, and the amount ratio was calculated.
  • RNA was extracted from the collected extracellular vesicles, reverse transcribed and amplified to determine the sequence, and the amount ratio was calculated (Fig. 2G).
  • RNA was extracted from the EV-producing cells themselves after collection of the culture supernatant, reverse transcription and amplification were performed to determine the sequence, and the amount ratio thereof was calculated (FIG. 2F).
  • HEK293T cells were transfected with only the CD63-dCas9 expression vector, selected for drug resistance, and stable expression strains were obtained.
  • Established hereinafter referred to as Cas9 (-) EV-producing cells.
  • HEK293T cells were transfected with a vector for expressing CD63-dCas9 and a pRK300 plasmid, selected for drug resistance, and a stable expression strain was established (hereinafter referred to as Cas9 (+) EV-producing cells).
  • Cas9 ( ⁇ ) EV-producing cells and Cas9 (+) EV-producing cells were infected with a wrench virus containing a DTKP library. After infection, the cells were cultured for 7 days or more in the presence of puromycin. Then, the culture medium was replaced with OptiMEM® medium (Thermo Fisher Scientific, Japan), and after culturing for 48 hours, the culture supernatant containing extracellular vesicles was collected. The cells were centrifuged at 300 xg for 5 minutes and 1500 xg for 10 minutes, and cells and cell debris were removed through a 0.22 ⁇ m filter.
  • the amount ratio of gRNA corresponding to each gene is determined for Cas9 (-) EV / Cas9 (+) EV or Cas9 (+) EV / Cas9 (+) EV-producing cells with CRISPR AnalyzeR (bioRxiv 2017, http: // crispr). -analyzer.dkfz.de /) was used to calculate (Fig. 4 and Fig. 5). As a result, by knocking out PI4KA, CYB5B, PIK3C3, PTPN23, PIK3R4, METAP1 and the like, the amount of extracellular vesicles secreted increased (FIG. 4A). This effect was independent of the number of EV-producing cells expressing each gRNA (Fig. 4B).
  • GSK-A1 which is a PI4KA inhibitor is administered to HEK293T cells expressing CD63-nanoLuc (pDB30), and the amount of extracellular vesicles secreted is cultured.
  • the nluc activity in the supernatant was measured by a nanoparticle tracking analysis (NTA) using a luminescence assay (Promega, Nanoglo luciferase assay system) or Nanosight (Malvern).
  • NTA nanoparticle tracking analysis
  • a luminescence assay Promega, Nanoglo luciferase assay system
  • Nanosight Nanosight
  • the same assay as above was performed using HEK293T cells expressing CD9-dCas9 (SEQ ID NO: 9) as EV-producing cells.
  • CD9-dCas9 SEQ ID NO: 9
  • the amount of exosomes containing gRNA that knocks out MMAA (Metabolism Of Cobalamin Associated A) as a barcode was suppressed (0.62 times as much as that in the cell).
  • MMAA Metalabolism Of Cobalamin Associated A
  • bar-coded exosomes By using the bar-coded exosomes according to the present invention, development of an efficient drug delivery system using exosomes, biology research of exosomes (for example, elucidation of EV secretion in various cells), and exosome secretion pathways are targeted. It can be useful for drug discovery research (for example, identification of factors that change the amount of EV secretion in a cell-specific manner).
  • the present invention can also be used for analysis of networks via exosomes that transcend the biological world.
  • exosomes that transcend the biological world.
  • in the digestive tract of mammals in addition to plants (food), intestinal bacteria, pathogenic microorganisms, yeast in food, etc. have established relationships that constantly interact with each other, and the exosomes produced by these heterologous communities. It can also be useful for research.
  • the extracellular vesicle secretagogue or inhibitor according to the present invention is administered to a subject to promote or inhibit the secretion of a specific extracellular vesicle subpopulation in vivo or in vitro. It can also be used to analyze the physiological role played by.

Abstract

細胞外小胞の動態に影響を与える、核酸に起因する因子をスクリーニングする。 バーコード化された細胞外小胞のライブラリーを提供する。

Description

バーコード化された細胞外小胞のライブラリー
 <Cross Reference>
 本出願は、2019年11月15日出願の日本特許出願(特願2019-207329)からの優先権を享受し、その内容全体を引用により本明細書に含める。
 本発明は、バーコード化された細胞外小胞のライブラリーに関する。
 細胞から分泌される小胞(細胞外小胞(Extracellular Vesicles;EV))については、その由来や特徴によっていくつかの種類があることが明らかになっている。そのヘテロ性から、数多くの分類法があるが、サイズの観点から、直径200nm以下のEV(smallEV)とこれより大きなlargeEVに大まかに分けることができ、前者は、直径約30~200nmの膜小胞であり、その膜が主にエンドソームに由来すると考えられているエクソソームを多く含む。エクソソームの中にもヘテロ性があるが、主に、RabGTPase、SNARE、アネキシン、フロリチンといったエンドソーム結合タンパク質や、膜貫通タンパク質ファミリーであるテトラスパニン(CD63、CD81、CD9など)を豊富に含むものが多いとされている。largeEVは、主に細胞膜の構成成分が膜の主成分であると考えられている微小小胞体(Microvesicles;MV;或いはエクトソームともいう)や、アポトーシスの際の細胞の断片化によって形成されるアポトーシス小体などを含む(非特許文献1、2、3)。
 MVは細胞膜から直接くびり取られる形で形成され、大きさが約200nm~1000nmの小胞であり、MVにはインテグリン、セレクチン、CD40等が含まれる。
 アポトーシス小体も同様に細胞膜から直接くびり取られる形で形成されるが、大きさが500nm~2000nmの小胞であり、断片化されたゲノムDNAやヒストンタンパク質等を内包している。
 エクソソームは、近接または遠距離細胞間コミュニケーションに関与することが報告されている。
 例えば免疫系においては、細胞から放出されたエクソソームが抗原提示小胞として機能し、抗腫瘍免疫における応答や、炎症を抑制する免疫寛容性などを誘導する(非特許文献4)。
 神経変性疾患においては、プリオンやβアミロイドペプチドなどの病原性タンパク質が、他の細胞への伝播するときにエクソソームを利用していることが知られている。
 エクソソームは免疫原性が低く、また血液脳関門を透過するといった特性を有し、その内部にタンパク質以外にもさまざまな核酸(mRNA、miRNA、shRNA,ncRNAなど)を含み、エクソソーム受領細胞内でこれらの核酸が機能し、エクソソーム受領細胞の機能に影響を与えることが知られている。
 それ故、エクソソーム受領細胞の機能改変による治療効果を期待して、近年エクソソームをDDS(ドラッグデリバリーシステム)に用いる研究が盛んにおこなわれている(非特許文献5)。
 たとえば、エクソソームの膜表面に、エクソソーム受容細胞によって認識されるペプチドやタンパク質を発現しエクソソーム受領細胞へのターゲティングの効率を高めることや、エクソソーム内膜側にRNA結合タンパク質を発現し、細胞質のRNAを効率的にリクルーティングすることで、DDSの効率を上げる試みも行われている(非特許文献6~9、特許文献1)。
 本願発明者らも、DDSに適したエクソソームを開発していた(非特許文献10)。
 また、がん細胞においては、がん細胞自身が分泌するエクソソームによって転移先をプログラミングし、自らが転移するのに有利な環境を構築するといったことが提唱されている。それ故、がん細胞で選択的にエクソソームの分泌を阻害することができれば、抗がん剤が開発可能と示唆する論文も存在する(非特許文献11、12)。それによると、エクソソーム表面に存在するインテグリンの種類と、がんが転移する臓器の種類が関係していることが示唆されている。
 細胞外小胞は動物特有のものだけでなく、植物にも存在し、病原体等に対する生体防御(植物免疫)に重要な役割を果たしていることが示唆されているが、細胞外小胞の機能についてはよくわかっていない(非特許文献13)。
米国2015/0093433公開公報
eLife(2018);7:e41460 Journal of Extracellular Vesicles(2015);4:26316 Journal of Extracellular Vesicles(2018);7:1535750 Immunological Reviews(2013);Vol.251:p125-142 NATURE (2017);VOL546:p498-521 Nano letters (2019);19:19-28 Journal of Extracellular Vesicles(2016);5:31027 Journal of Extracellular Vesicles(2016);5:31053 Nature Biotechnology(2011);29:341-345 NATURE COMMUNICATIONS(2018);9:1305 NATURE(2015);VOL527(7578):p329-35 Sci.Rep.(2018);8:8161 Plant Physiology (2017);Vol. 173:p728-741 NATURE COMMUNICATIONS(2017);8:15178
 本発明は、バーコード化された細胞外小胞のライブラリー、その製造方法ならびにその使用方法を提供することを目的とする。
 本願発明者らは鋭意研究の結果、細胞外小胞の性質(すなわち、細胞外小胞の体内動態、細胞外小胞の分泌量、内包される物質(タンパク質、核酸など)、細胞外小胞膜の組成(膜を構成するリン脂質、細胞外小胞膜に局在するタンパク質など)に影響を与える因子を網羅的にスクリーニングするための、核酸を内包した細胞外小胞ライブラリーを作製することに成功した。
 本発明は、以下の実施態様を含む:
[1A] (細胞外小胞ライブラリーを作るためのツール)
 細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質をコードする核酸。
[2A]
 前記細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、1Aに記載の核酸。
[3A]
 テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、2Aに記載の核酸。
[4A]
 前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N、又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、1A~3Aのいずれか一項に記載の核酸。
[5A]
 1A~4Aのいずれか一項に記載の核酸を含む、発現ベクター。
[6A]
 5Aに記載の発現ベクターを含む、細胞外小胞分泌細胞。
[7A]
 さらに、細胞外小胞の性質に影響を与える核酸を含む、6Aに記載の細胞外小胞分泌細胞。
[8A]
 さらに、細胞外小胞の性質に影響を与える核酸を発現させる発現ベクターを含む、6Aに記載の細胞外小胞分泌細胞。
[9A]
 前記細胞外小胞の性質に影響を与える核酸が、
(1)細胞外小胞内又はその表面に存在する、内在性タンパク質の量を変化させる核酸;
(2)細胞外小胞の分泌を促進又は阻害する核酸;
(3)細胞外小胞の膜を構成する脂質膜に影響を与える核酸;及び
(4)細胞外小胞内又はその表面に、外来性のタンパク質を存在させるための核酸;からなる群から選択される、7A又は8Aに記載の細胞外小胞分泌細胞。
[10A]
 前記細胞外小胞の性質に影響を与える核酸が、mRNA又はncRNA(miRNA、siRNA、shRNA、gRNA、snRNA、snoRNAを含む)を含む、7A~9Aのいずれか一項に記載の細胞外小胞分泌細胞。
[1B]
 細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質。
[2B]
 前記細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、1Bに記載の融合タンパク質。
[3B]
 テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、2Bに記載の融合タンパク質。
[4B]
 前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、1B~3Bのいずれか一項に記載の融合タンパク質。
[5B]
 細胞外小胞の性質に影響を与える核酸と結合している、1B~4Bのいずれか一項に記載の融合タンパク質。
[6B]
 前記細胞外小胞の性質に影響を与える核酸が、
(1)細胞外小胞内又はその表面に存在する、内在性タンパク質の量を変化させる核酸;
(2)細胞外小胞の分泌を促進又は阻害する核酸;
(3)細胞外小胞膜を構成する脂質膜に影響を与える核酸;及び
(4)細胞外小胞内又はその表面に、外来性のタンパク質を存在させるための核酸;からなる群から選択される、5Bに記載の融合タンパク質。
[7B]
 前記細胞外小胞の動態に影響を与える核酸が、mRNA又はncRNA(miRNA、siRNA、shRNA、gRNA、snRNA、snoRNAを含む)を含む、5B又は6Bに記載の融合タンパク質。
[8B]
 1B~7Bのいずれか一項に記載の融合タンパク質を含む、細胞外小胞。
[9B]
 平均直径が、30nm以上、150nm以下である、8Bに記載の細胞外小胞。
[1C](ライブラリーの作製方法)
 バーコードRNAを含む細胞外小胞のライブラリーを作製する方法であって、
(1)細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質を発現させた、細胞外小胞分泌細胞に、
 (a)複数種の、バーコードRNAを発現させる発現ベクター、又は
 (b)複数種のバーコードRNA   
を導入する工程;
(2)細胞外小胞分泌細胞を培養液中で培養する工程;及び
(3)細胞外小胞分泌細胞の培養上清から、前記融合タンパク質に結合したバーコードRNAを含む細胞外小胞を回収する工程を含む、
方法。
[2C]
 前記細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、1Cに記載の方法。
[3C]
 テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、2Cに記載の方法。
[4C]
 前記RNA結合タンパク質が、MS2又はその活性断片、dCas9又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、1C~3Cのいずれか一項に記載の方法。
[5C]
 バーコードRNAがmRNA又はncRNA(miRNA、siRNA、shRNA、gRNA、snRNA、snoRNAを含む)を含む、1C~4Cのいずれか一項に記載の方法。   
[6C]
 バーコードRNAがさらに、RNA結合タンパク質の認識配列を含む、5Cに記載の方法。
[7C]
 細胞外小胞分泌細胞が、HEK293細胞、幹細胞、上皮細胞、内皮細胞、線維芽細胞、癌細胞、免疫細胞、神経細胞及び植物細胞からなる群から選択される、1C~6Cのいずれか一項に記載の方法。
[1D](ライブラリーのスクリーニング方法(1):分泌量変化に関与する因子同定)
 細胞外小胞分泌細胞において、細胞外小胞に存在するタンパク質を含む細胞外小胞の分泌を促進又は阻害する因子をスクリーニングするための方法であって、
(1)前記細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質を発現させた、前記細胞外小胞分泌細胞に、
 (a)複数種の、バーコードRNAを発現させる発現ベクター、又は
 (b)複数種のバーコードRNA
を導入する工程;
(2)細胞外小胞分泌細胞を培養液中で培養する工程;
(3)細胞外小胞分泌細胞の培養上清から、前記融合タンパク質に結合したバーコードRNAを含む細胞外小胞を回収する工程;
(4)回収された細胞外小胞からバーコードRNAを回収する工程;
(5)培養後の細胞外小胞分泌細胞からバーコードRNAを回収する工程;
(6)工程(4)で回収された複数種のバーコードRNAの配列を決定し、各バーコードRNAの量比を算出する工程;そして
(7)工程(5)で回収された複数種のバーコードRNAの配列を決定し、各バーコードRNAの量比を算出する工程を含む方法;
好ましくはここで、工程(6)で算出された量比と工程(7)で算出された量比を比較し、量比の変化のあるバーコードRNAを同定し、同定されたバーコードRNAに含まれる配列の情報から、前記細胞外小胞に存在するタンパク質が存在する細胞外小胞の分泌を促進又は阻害する因子を同定する。
[1D2](ライブラリーのスクリーニング方法(2):特定のタンパク質を提示するEVの分泌に影響を与える因子、もしくは、EVの膜に特定のタンパク質を提示するタンパク質選別過程に影響を与える因子の同定) 
 細胞外小胞分泌細胞において、特定のタンパク質がその表面に局在している(localized)細胞外小胞の分泌を促進又は阻害する因子、もしくは、特定のタンパク質の細胞外小胞の膜表面への局在に影響を与える因子をスクリーニングするための方法であって、
(1)細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質を発現させた、前記細胞外小胞分泌細胞に、
 (a)複数種の、バーコードRNAを発現させる発現ベクター、又は
 (b)複数種のバーコードRNA
を導入する工程;
(2)細胞外小胞分泌細胞を培養液中で培養する工程;
(3)細胞外小胞分泌細胞の培養上清から、前記特定のタンパク質がその表面に存在している細胞外小胞を選択的に回収する工程;
(4)回収された細胞外小胞からバーコードRNAを回収する工程;
(5)培養後の細胞外小胞分泌細胞からバーコードRNAを回収する工程;
(6)工程(4)で回収された複数種のバーコードRNAの配列を決定し、各バーコードRNAの量比を算出する工程;そして
(7)工程(5)で回収された複数種のバーコードRNAの配列を決定し、各バーコードRNAの量比を算出する工程を含む方法;
好ましくはここで、工程(6)で算出された量比と工程(7)で算出された量比を比較し、量比の変化のあるバーコードRNAを同定し、同定されたバーコードRNAに含まれる配列の情報から、前記特定のタンパク質がその表面に存在している細胞外小胞の分泌を促進又は阻害する因子、もしくは、前記特定のタンパク質の細胞外小胞の膜表面への局在に影響を与える因子を同定する。
[1D3]
 前記特定のタンパク質が、テトラスパニン、インテグリン、及びIFITM3(interferon-induced transmembrane protein)からなる群から選択される1D2に記載の方法。
[2D]
 前記細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、1D、1D2、1D3のいずれか一項に記載の方法。
[3D]
 テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、2Dに記載の方法。
[4D]
 前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、及びλ bacteriophage antiterminator protein N又はその活性断片、HuRまたはその活性断片からなる群から選択される、1D、1D2、1D3、2D、3Dのいずれか一項に記載の方法。
[5D]
 バーコードRNAがmRNA又はncRNA(miRNA、siRNA、shRNA、gRNA、snRNA、snoRNAを含む)を含む、1D、1D2、1D3、2D~4Dのいずれか一項に記載の方法。
[6D]
 バーコードRNAがさらに、RNA結合タンパク質の認識配列を含む、5Dに記載の方法。
[7D]
 細胞外小胞分泌細胞が、HEK293細胞、幹細胞、上皮細胞、内皮細胞、線維芽細胞、癌細胞、免疫細胞、神経細胞及び植物細胞からなる群から選択される、1D、1D2、1D3、2D~6Dのいずれか一項に記載の方法。
[1E](ライブラリーのスクリーニング方法(3-1):体液における細胞外小胞の半減期又は動態に影響を与える因子の同定)
 細胞外小胞の体液中での安定性に寄与する因子、あるいは細胞外小胞の体液中への分泌を促進又は阻害する因子をスクリーニングする方法であって、
 (1)細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質と、前記融合タンパク質と結合したバーコードRNAを含む細胞外小胞を複数種含むライブラリーを用意する工程;
 (2)前記複数種の細胞外小胞を含むライブラリーを対象(ヒト、非ヒト動物(マウス、ラットを含む)、植物、微生物を含む)に投与する工程(好ましくは、ヒト又は非ヒト動物の場合、経口投与、静脈内投与、筋肉内投与、皮下投与、経皮投与、経鼻投与、経肺投与又は注腸投与でライブラリーを投与する工程);
 (3)対象の体液(たとえばヒト又は非ヒト動物の場合、血液(全血、血清、血漿を含む)、唾液、尿、羊水、脳脊髄液、心嚢膵、胸水、腹水、便、汗、精液)を単離し、RNAを抽出する工程(ここで、単離された体液から細胞外小胞を単離して、その単離された細胞外小胞からRNAを抽出してもよい);
そして
 (4)抽出されたRNAから、バーコードRNAを検出する工程;を含む方法;
好ましくはここで、工程(4)で検出された各バーコードRNAの量比と、工程(1)で用意した複数種の細胞外小胞中の各バーコードRNAの量比と比較して、量比の変化のあるバーコードRNAを同定し、同定されたバーコードRNAに含まれる配列の情報から、細胞外小胞の分泌を促進又は阻害する因子を同定する。
[2E]
 前記細胞外小胞に存在するタンパク質がテトラスパニン又はその活性断片である、1Eに記載の方法。
[3E]
 テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、2Eに記載の方法。
[4E]
 前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、1E~3Eのいずれか一項に記載の方法。
[5E]
 バーコードRNAがmRNA又はncRNA(miRNA、siRNA、shRNA、gRNA、snRNA、snoRNAを含む)を含む、1E~4Eのいずれか一項に記載の方法。
[6E]
 バーコードRNAがさらに、前記RNA結合タンパク質の認識配列を含む、5Eに記載の方法。
[1F](ライブラリーのスクリーニング方法(3-2):各組織又は各体液への細胞外小胞のターゲッティングに影響を与える因子の同定)
 細胞外小胞の組織へのターゲッティングの効率に影響を与える因子をスクリーニングする方法であって、
 (1)細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質と、前記融合タンパク質と結合したバーコードRNAを含む細胞外小胞を複数種含むライブラリー用意する工程;
 (2)前記複数種の細胞外小胞を含むライブラリーを対象(ヒト、非ヒト動物(マウス、ラットを含む))に投与する工程、好ましくは、経口投与、静脈内投与、筋肉内投与、皮下投与、経皮投与、経鼻投与又は経肺投与で投与する工程
 (3)対象の組織又は体液を単離し、RNAを抽出する工程;そして
 (4)抽出されたRNAから、バーコードRNAを検出する工程;を含む方法;
好ましくはここで、工程(4)で検出された各バーコードRNAの量比と、工程(1)で用意した複数種の細胞外小胞中の各バーコードRNAの量比と比較して、量比の変化のあるバーコードRNAを同定し、同定されたバーコードRNAに含まれる配列の情報から、細胞外小胞の前記組織又は体液へのターゲッティングの効率に影響を与える因子を同定する。
[2F]
 細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、1Fに記載の方法。
[3F]
 テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、2Fに記載の方法。
[4F]
 前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、1F~3Fのいずれか一項に記載の方法。
[5F]
 バーコードRNAがmRNA又はncRNA(miRNA、siRNA、shRNA、gRNA、snRNA、snoRNAを含む)を含む、1F~4Fのいずれか一項に記載の方法。
[6F]
 バーコードRNAがさらに、前記RNA結合タンパク質の認識配列を含む、5Fに記載の方法。
[7F]
 前記組織が、腫瘍組織、神経組織及び免疫組織からなる群から選択される、1F~6Fのいずれか一項に記載の方法。
[1G](ライブラリーのスクリーニング方法(3-3):培養細胞(初代培養細胞を含む)の細胞外小胞のターゲッティングに影響を与える因子の同定)
 細胞外小胞の細胞へのターゲッティングの効率に影響を与える因子をスクリーニングする方法であって、
 (1)細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質と、前記融合タンパク質と結合したバーコードRNAを含む細胞外小胞を複数種用意する工程;
 (2)前記複数種の細胞外小胞を細胞に投与する工程;
 (3)前記細胞から、RNAを抽出する工程;
 (4)抽出されたRNAから、バーコードRNAを検出する工程;を含む方法;
好ましくはここで、工程(4)で検出された各バーコードRNAの量比と、
工程(1)で用意した複数種の細胞外小胞中の各バーコードRNAの量比と比較して、量比の変化のあるバーコードRNAを同定し、同定されたバーコードRNAに含まれる配列の情報から、細胞外小胞の前記細胞へのターゲッティングの効率に影響を与える因子が同定する。
[2G]
 細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、1Gに記載の方法。
[3G]
 テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、2Gに記載の方法。
[4G]
 前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、1G~3Gのいずれか一項に記載の方法。
[5G]
 バーコードRNAがmRNA又はncRNA(miRNA、siRNA、shRNA、gRNA、snRNA、snoRNAを含む)を含む、1G~4Gのいずれか一項に記載の方法。
[6G]
 バーコードRNAがさらに、前記RNA結合タンパク質の認識配列を含む、5Gに記載の方法。
[7G]
 前記細胞が、幹細胞、上皮細胞、内皮細胞、線維芽細胞、癌細胞、免疫細胞及び神経細胞、並びにこれらから樹立された細胞株から選択される、1G~6Gのいずれか一項に記載の方法。
[1H]
 PI4KA(Phosphatidylinositol 4-kinase alpha)の阻害剤、CYB5B(Cytochrome B5 Type B)の阻害剤、PIK3C3(Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3)の阻害剤、PTPN23(Protein Tyrosine Phosphatase Non-Receptor Type 23)の阻害剤、PIK3R4(Phosphoinositide-3-Kinase Regulatory Subunit 4)の阻害剤及びMETAP1(Methionyl Aminopeptidase 1)の阻害剤からなる群から選択させる有効成分を含む、細胞外小胞の分泌促進剤。
[2H]
 細胞外小胞がCD63を発現している、1Hに記載の細胞外小胞の分泌促進剤。
[3H]
 PI4KAの阻害剤が、GSK-A1(5-(2-amino-1-(4-morpholinophenyl)-1H-benzo[d]imidazol-6-yl)-N-(2-fluorophenyl)-2-methoxypyridine-3-sulfonamide)である、1H又は2Hに記載の細胞外小胞の分泌促進剤。
[4H]
 リキッドバイオプシーのための1H~3Hのいずれか一項に記載の細胞外小胞の分泌促進剤。
[1H1]
 PI4KA(Phosphatidylinositol 4-kinase alpha)の阻害剤、CYB5B(Cytochrome B5 Type B)の阻害剤、PIK3C3(Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3)の阻害剤、PTPN23(Protein Tyrosine Phosphatase Non-Receptor Type 23)の阻害剤、PIK3R4(Phosphoinositide-3-Kinase Regulatory Subunit 4)の阻害剤及びMETAP1(Methionyl Aminopeptidase 1)の阻害剤からなる群から選択される有効成分をin vivo又はin vitroで対象(ヒト、非ヒト動物、高等植物、あるいはこれらの細胞又は組織)に投与して、細胞外小胞の分泌促進する方法。
[2H1]
 細胞外小胞がCD63を発現している、1H1に記載の細胞外小胞の分泌を促進する方法。
[3H1]
 PI4KAの阻害剤が、GSK-A1(5-(2-amino-1-(4-morpholinophenyl)-1H-benzo[d]imidazol-6-yl)-N-(2-fluorophenyl)-2-methoxypyridine-3-sulfonamide)である、2H1に記載の細胞外小胞の分泌を促進する方法。
[4H1]
 リキッドバイオプシーのために投与される、1H1~3H1のいずれか一項に記載の細胞外小胞の分泌を促進する方法。
[1H2]
 リキッドバイオプシーによるがん診断のための増感剤としての使用のための、PI4KA(Phosphatidylinositol 4-kinase alpha)の阻害剤、CYB5B(Cytochrome B5 Type B)の阻害剤、PIK3C3(Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3)の阻害剤、PTPN23(Protein Tyrosine Phosphatase Non-Receptor Type 23)の阻害剤、PIK3R4(Phosphoinositide-3-Kinase Regulatory Subunit 4)の阻害剤及びMETAP1(Methionyl Aminopeptidase 1)の阻害剤からなる群から選択される有効成分。
[2H2]
 細胞外小胞がCD63を発現している、1H2に記載の使用のための有効成分。
[3H2]
 PI4KAの阻害剤が、GSK-A1(5-(2-amino-1-(4-morpholinophenyl)-1H-benzo[d]imidazol-6-yl)-N-(2-fluorophenyl)-2-methoxypyridine-3-sulfonamide)である、2H2に記載の使用のための有効成分。
[1H3]
 PI4KA(Phosphatidylinositol 4-kinase alpha)の阻害剤、CYB5B(Cytochrome B5 Type B)の阻害剤、PIK3C3(Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3)の阻害剤、PTPN23(Protein Tyrosine Phosphatase Non-Receptor Type 23)の阻害剤、PIK3R4(Phosphoinositide-3-Kinase Regulatory Subunit 4)の阻害剤及びMETAP1(Methionyl Aminopeptidase 1)の阻害剤からなる群から選択させる有効成分の、in vivo又はin vitroにおける細胞外小胞の分泌促進剤の製造における使用。
[2H3]
 細胞外小胞がCD63を発現している、1H3に記載の細胞外小胞の分泌促進剤の製造における使用。
[3H3]
 PI4KAの阻害剤が、GSK-A1(5-(2-amino-1-(4-morpholinophenyl)-1H-benzo[d]imidazol-6-yl)-N-(2-fluorophenyl)-2-methoxypyridine-3-sulfonamide)である、2H3に記載の細胞外小胞の分泌促進剤の製造における使用。
[4H3]
 リキッドバイオプシーのために投与される、1H3~3H3のいずれか一項に記載の細胞外小胞の分泌促進剤の製造における使用。
[1I]
 MMAA(Metabolism Of Cobalamin Associated A)の阻害剤を含有する細胞外小胞の分泌阻害剤。
[1I1]
 MMAA(Metabolism Of Cobalamin Associated A)の阻害剤をin vivoまたはin vitroで対象(ヒト、非ヒト動物、高等植物、あるいはこれらの細胞又は組織)に投与して、細胞外小胞の分泌を阻害する方法。
[1I2]
 がん治療における使用のためのMMAA(Metabolism Of Cobalamin Associated A)の阻害剤。
[1I3]
 MMAA(Metabolism Of Cobalamin Associated A)の阻害剤の、細胞外小胞の分泌阻害剤の製造における使用。
 本発明により、細胞外小胞を用いた効率的なドラッグデリバリーシステムの開発や、細胞外小胞のバイオロジー研究、細胞外小胞分泌経路をターゲットとした創薬研究に役立てることができる。
バーコード化されたCD63-MS2発現EVの評価 CD63-MS2発現EVライブラリー(gRNA用とランダムペプチド-Lamp2b用)とCD63-dCas9発現EVライブラリー 血中で構成比が顕著に増加したgRNA バーコード化EVを用いたEVの分泌を促進/阻害する因子のスクリーニング(1) バーコード化EVを用いたEVの分泌を促進/阻害する因子のスクリーニング(2) PI4KA阻害剤によるCD63陽性EVの分泌量の増強
 以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
 本開示において“含む(comprising)”態様には、“必須で含む(essentially comprising)”態様、及び“からなる”(consisting of)態様を含む。
 本発明の一実施態様は、細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質をコードする核酸;又は細胞外小胞に存在するタンパク質と、RNA結合タンパク質を含む融合タンパク質である。
 細胞外(分泌)小胞(EV)とは、細胞内の物質を細胞外に放出するのに用いられる小胞であり、リン脂質の二重層によって形成されている。脂質の組成としては、スフィンゴミエリンやホスファチジルセリンなどが挙げられる。その大きさは直径10nm~10μm、30nm~5000nm、又は50nm~3000nmであり、直径10nm以上、20nm以上、30nm以上、40nm以上又は50nm以上で、500nm以下、400nm以下、300nm又は200nm以下のsmallEV(主にエクソソーム及びマイクロベシクルを含む)が本発明において好適であるがこれに限定しない。その起源は真核生物由来が好ましいが、特に限定しない。ヒト、非ヒト哺乳動物(マウス、ラットを含む)、高等植物、微生物(腸内細菌を含む)由来の細胞外小胞が好ましい。
 本発明において、細胞外小胞に存在するタンパク質は、細胞外小胞のマーカー、すなわち、そのタンパク質の検出が(特定の)細胞外小胞の存在の証明になるようなタンパク質(すなわち、細胞外小胞に豊富に存在するか、細胞外小胞に特異的に存在するタンパク質)が好ましい。その起源は特に限定しないが、ヒト、非ヒト哺乳動物(マウス、ラットを含む)、高等植物、微生物(腸内細菌を含む)由来が好ましい。
 非特許文献3によると、哺乳動物の細胞外小胞のマーカーは以下のように分類される。
 細胞外小胞のマーカータンパク質として用いることのできる膜タンパク質又はGPIアンカータンパク質としては、
1)組織非特異的なもの
 テトラスパニン(CD63,CD9,CD81,CD82),他の複数膜貫通型の膜タンパク質(CD47やヘテロ3量体Gタンパク質(GNA:Guanine nucleotide-binding proteins)など)
 MHC クラスI(HLA-A/B/C,H2-K/D/Q),
インテグリン(ITGA/ITGB)、トランスフェリン受容体(TFR2);
 LAMP1/2;
 ヘパラン硫酸プロテオグリカン(シンデカン(SDC)を含む);
 細胞外マトリックスメタロプロテアーゼ誘導物質(EMMPRIN)(BSG又はCD147ともいう);
 ADAM10;
 GPIアンカー型の5’ヌクレオチダーゼであるCD73(NT5E),
 GPIアンカー型の補体結合タンパク質であるCD55及びCD59;
 ソニックヘッジホッグタンパク質(SHH)
2)細胞/組織特異的なもの
 いくつかのテトラスパニン:TSPAN8(上皮細胞特異的)、CD37及びCD53(白血球特異的); 
 PECAM1(内皮細胞特異的);
 ERBB2(乳癌特異的); 
 EPCAM(上皮性特異的);
 CD90(THY1)(間葉系幹細胞特異的);
 CD45(PTPRC)(免疫細胞特異的)、CD41(ITGA2B)又はCD42a(GP9)(血小板特異的); 
 グリコホリンA(GYPA)(赤血球特異的);
 CD14(単球特異的),MHCクラスII(HLA-DR/DP/DQ,H2-A); 
 CD3(T細胞特異的);
 アセチルコリンエステラーゼ/AChE-S(神経細胞特異的)、AChE-E(赤血球特異的); 
 アミロイドβA4/APP(神経細胞特異的);
などが挙げられる。
 細胞外小胞のマーカータンパク質として用いることのできる細胞質タンパク質は
 ESCRT-I/II/III(TSG101,CHMP)及びアクセサリータンパク質:ALIX(PDCD6IP),VPS4A/B; 
 ARRDC1;
 フロチリン-1及び2(FLOT1/2);
 カベオリン(CAV);
 EHD; 
 RHOA; 
 アネキシン(ANXA); 
 熱ショックタンパク質であるHSC70(HSPA8)及びHSP84(HSP90AB1);
 ARF6; 
 シンテニン(SDCBP); 
 微小管関連蛋白質タウ(Tau、MAPT;神経細胞特異的) 
などが挙げられる。
 本発明において細胞外小胞に存在するタンパク質は、天然に存在するタンパク質(polymorphism、オーソログ、パラログを含む)であってもよい。あるいはその一部のアミノ酸が付加、置換、欠失した人工変異体であってもよく、或いはその断片(たとえば“exoTOPE”)であってもよいが、そのタンパク質の局在を変化させない人工変異体又は断片が好ましい。
 RNA結合タンパク質とは、RNAの配列に依存して、又は非依存で、RNAに結合できるタンパク質をさす。RNA結合能としては、RNAとの解離定数(Kd)が、1μM以下、500nM以下、300nM以下、100nM以下、50nM以下、30nM以下、10nM以下、5nM以下、3nM以下、1nM以下、500pM以下、300pM以下、100pM以下、50pM以下、30pM以下、10pM以下、5pM以下又は3pM以下のものが好ましい。バクテリオファージMS2のコートタンパク質(maturation遺伝子産物)(MS2認識配列を含むRNAとのKd=3~300nM)、CAS(CRISPR-associated 遺伝子)産物(Cas9(SpCas9、SaCas9及びエンドヌクレアーゼ活性を欠失させた変異体(dCas9)を含む;gRNAとのKd=10pM)、Cpf1(Cas12a,Cas13など)、L7Ae、λ bacteriophage antiterminator protein N、HuR(Human antigen R)などが、RNA結合タンパク質として例示される。天然に存在するタンパク質(polymorphism、オーソログ、パラログを含む)であってもよい。あるいはその一部のアミノ酸が付加、置換、欠失した人工変異体であってもよく、或いはその断片であってもよいが、そのRNA結合能を維持した(少なくとも、対応する天然のタンパク質の結合能に比べて50%以上、60%以上、70%以上、80%以上、90%以上、又は100%以上の結合能をもつことが好ましい)(活性)人工変異体又は(活性)断片が好ましい。
 本発明において、細胞外小胞に存在するタンパク質とRNA結合タンパク質との融合タンパク質は、さらに転写因子、転写活性因子(たとえば、VP64、p65、Rta、VPH)、転写抑制因子(たとえば、KRAB)又はこれらの活性断片を含んでもよい。さらに標識ペプチド(たとえばGFP、HisTagなど)が融合されていてもよい。
 細胞外小胞に存在するタンパク質とRNA結合タンパク質との融合タンパク質は翻訳後修飾(たとえば糖鎖修飾、リン酸化など)を含んでいてもよい。
 本発明の一実施態様は、細胞外小胞の性質に影響を与える核酸を含む。
 細胞外小胞の性質に影響を与える核酸とは、細胞外小胞を分泌する細胞がその核酸を含む時、その細胞から分泌される細胞外小胞を解析することにより
(1)細胞外小胞を分泌する細胞がその核酸を含まない時に比べて、分泌される細胞外小胞内又はその表面に存在する、内在性タンパク質の量が変化する;
(2)細胞外小胞を分泌する細胞がその核酸を含まない時に比べて、細胞外小胞の分泌量が変化する;
(3)細胞外小胞を分泌する細胞がその核酸を含まない時に比べて、細胞外小胞膜を構成する脂質膜に影響を与える;
(4)細胞外小胞内又はその表面に、その核酸にコードされる外来性のタンパク質が存在する;
などの変化を及ぼす核酸が挙げられる。核酸は天然に存在するDNAであってもRNAであってもよく、その混合体であってもよい。天然に存在しない核酸(たとえば、ヌクレオチド間がリン酸化エステルで結合している(P)のでなく、一部又は全部がS化(ホスホロチオエート)しているものや、ペプチド核酸(PNA)など)であってもよい。
 (1)としては、内在性タンパク質そのものをコードする核酸、内在性タンパク質の転写を制御する転写因子をコードする核酸、内在性タンパク質の翻訳後修飾に関係する因子をコードする核酸、内在性タンパク質のシャペロニング(折り畳みや細胞内輸送を含む)に関係する因子をコードする核酸などのタンパク質をコードする核酸や;内在性タンパク質の発現を正又は負に制御するアンチセンスRNA(siRNA)、miRNA(microRNA)、shRNA(small hairpin RNA)及びsnRNA(small nuclear RNA)、あるいはゲノム編集技術(たとえば、ZFN(Zinc-Finger Nuclease)、TALEN (Transcription Activator-Like Effector Nuclease)、CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9(Crispr Associated protein 9)など)で内在性タンパク質をコードする遺伝子を改変するための核酸(たとえばCRISPR/Cas9のシステムで用いるgRNA)などが挙げられる。
 (2)としては、細胞外小胞の分泌量に影響を与える因子をコードする核酸、細胞外小胞の分泌量そのものに影響を与える因子の転写、翻訳及び発現を制御する因子をコードする核酸や;細胞外小胞の分泌量に影響を与える因子や細胞外小胞の分泌量そのものに影響を与える因子の転写、翻訳及び発現を制御する因子の、発現を正又は負に制御するアンチセンスRNA、miRNA、shRNA及びsnRNA、あるいはゲノム編集技術(たとえば、ZFN、TALEN、CRISPR /Cas9)において細胞外小胞の分泌量に影響を与える因子や細胞外小胞の分泌量そのものに影響を与える因子の転写、翻訳及び発現を制御する因子をコードする遺伝子を改変するための核酸(たとえばCRISPR/Cas9のシステムで用いるgRNA)が挙げられる。
 (3)としては、細胞外小胞膜を構成する脂質膜を合成するための酵素をコードする核酸、細胞外小胞膜を構成する脂質膜を合成するための酵素の転写、翻訳及び発現を制御するための因子をコードする核酸や;細胞外小胞膜を構成する脂質膜を合成するための酵素や細胞外小胞膜を構成する脂質膜を合成するための酵素の転写、翻訳及び発現を制御するための因子の、発現を負又は正に制御するアンチセンスRNA、miRNA、shRNA及びsnRNA、あるいはゲノム編集技術(たとえば、ZFN、TALEN、CRISPR /Cas9など)において細胞外小胞膜を構成する脂質膜を合成するための酵素や細胞外小胞膜を構成する脂質膜を合成するための酵素の転写、翻訳及び発現を制御するための因子をコードする遺伝子を改変するための核酸(たとえばCLISPR/Cas9のシステムで用いるgRNA)などが挙げられる。
 (4)としては、外来性のタンパク質をコードする核酸が挙げられる。
 本開示において、細胞外小胞の性質に影響を与える核酸はmRNAやncRNAを含んでもよく、さらにRNA結合タンパク質の認識配列を含んでいてもよい。
 本開示において、mRNAとは、蛋白質(又はペプチド)に翻訳され得る塩基配列情報と構造を持ったRNA(cRNA;coding RNA)を含むRNAをいい、天然に存在するmRNAだけでなく、5’末端にはm7Gキャップを含まないRNAや、3’末端にポリアデニル化(polyA)を含まないRNAを含む。また細胞内で適切なスプライシングを受ければ、蛋白質に翻訳されうる塩基配列情報と構造になる未成熟(premature)mRNAも含む。
 ncRNA(non-coding RNA)とは、蛋白質に翻訳され得る塩基配列情報と構造をもっていないが、生体内でなんらかの機能を有するRNA(機能性核酸)をいう。特に限定しないが、核内でタンパク質と複合体を形成する核内低分子RNA(snRNA(small nuclear RNA))や核小体低分子(snoRNA(small nucleolar RNA))、他のRNAと結合するmiRNA(pre-miRNAを含む)やsiRNA(pre-siRNA(たとえば、shRNA(small hairpin RNA))を含む)を含む。
 さらに、ncRNAには、ガイドRNA(gRNA;一本鎖ガイドRNAを含む)(相補的結合によってRNA:タンパク質複合体を標的核酸分子へとガイドするRNA)も含んでもよい。細菌と古細菌におけるCRISPR/Cas9システムにおいては、約20塩基の標的DNA配列を認識するcrRNA(CRISPR RNA)とCas9への結合の足場となるtracrRNA(trans-activating crRNA)の2種が複合してgRNAとして機能するが、ゲノム編集を目的として、それらを結合して1つにしたsgRNA(single guide RNA)もgRNAに含まれる。Cas9の代わりにCpf1を用いた場合には41~44塩基のcrRNAのみ(認識領域は21~24塩基)でgRNAとして機能する。
 RNA結合タンパク質の認識配列とは、RNAタンパク質がその配列に結合できる配列をいう。RNAタンパク質がモノマーで結合できても、マルチマーで結合できてもよい。他の因子と共にヘテロマルチマーの形で結合できてもよい。
 たとえば、MS2の場合は、ACAUGAGGAUCACCCAUGU(配列番号1);Cas9の場合はtracrRNAとしてCAGCAUAGCAAGUUUAAAUAAGGCUAGUCCGUUAUCAACUUGAAAAAGUGGCACCGAGUCGGUGC(配列番号2);L7Aeの場合は、GGGUACCGUGAUCCGAAAGGUGAGUACCC(配列番号3);LBAPN(λ bacteriophage antiterminator protein N)の場合はGCCCUGAAGAAGGGC(配列番号4)、HuRの場合はAUUUACCCAUUUACCCAUUUACCCAUUUACCCAUUUACCCAUUUA(配列番号5)などがRNA結合タンパク質の認識配列として例示されるが、これに限定しない。
 本発明に係る細胞外小胞を分泌する細胞は、その起源が真核生物由来であれば、特に限定しないが、ヒト、非ヒト哺乳動物(マウス、ラットを含む)、高等植物由来が好ましい。哺乳動物細胞としては、幹細胞(人工多能性幹細胞(iPS細胞)、胚性幹細胞(ES細胞)、及び体性幹細胞(間葉系幹細胞、脂肪幹細胞、造血幹細胞、神経幹細胞、血管内皮幹細胞、肝幹細胞及び上皮幹細胞を含む)を含む)、幹細胞を分化誘導させた細胞、上皮細胞、内皮細胞、線維芽細胞、癌細胞、免疫細胞(樹状細胞や血球細胞)及び神経細胞であってよく、これらの細胞を株化した細胞でもよい。培養細胞(たとえばHEK293T細胞)であってもよい。
 本発明の一実施態様は、バーコードRNAを含む細胞外小胞のライブラリーを作製する方法及び当該ライブラリーを用いたスクリーニング方法である。スクリーニング方法は細胞外小胞に含まれる特定のバーコードRNAを同定することを含む。
 バーコードRNAとは、mRNA又は/及びncRNAを含むRNAであり、細胞内小胞に含まれることにより、細胞内小胞の識別を行うことを可能にする。
 本発明の一実施態様であるバーコードRNAを含む細胞外小胞のライブラリーは、少なくとも2種類以上の細胞外小胞を含むものであり、細胞外小胞の識別は内包されるバーコードRNAの配列を決定することによりなされる。ライブラリーは5000種類以上、6000種類以上、7000種類以上、8000種類以上、9000種以上、又は10000種類以上の細胞外小胞を含むことが好ましい。
 バーコードRNAを細胞内に導入する方法は、特に限定しないが、バーコードRNAそのものを細胞内に導入してもよいし(たとえばマイクロインジェクション法、電気穿孔法、カチオン性リポソームを用いた遺伝子導入法などを用いて)、バーコードRNAを発現する発現ベクター(DNAベクター、RNAベクター(ウィルスベクターを含む)など)を細胞内に導入して、細胞内でバーコードRNAを転写させることにより、行ってもよい。バーコードRNAを含む細胞から分泌された細胞外小胞を回収することにより、細胞外小胞のライブラリーを得ることができる。たとえば、分泌された細胞外小胞は、細胞の培養上清から回収できる。
 また、細胞外小胞を回収する際に、特定の細胞外小胞のマーカーを指標に用いることにより、特定の種類の細胞外小胞だけ回収してもよい。たとえば、細胞外小胞の膜に存在するテトラスパニンなどの膜タンパク質を認識する抗体を用いて、そのテトラスパニンを膜表面に有する細胞外小胞のみを壊さずに回収することができる。
 細胞、組織、体液、又は細胞外小胞からバーコードRNAを回収し、その配列を決定する。組織、体液の場合、これらから細胞外小胞を一度単離し、単離した細胞外小胞からバーコードRNAを回収してもよい。特に限定しないが、その抽出方法は、フェノールおよびグアニジンイソチオシアネートをベースとした,TRIzol試薬などのRNA分離用試薬,もしくは、汎用RNA精製キットを用いて行うことが好ましい。
 回収されたバーコードRNAは増幅後、その配列を決定することが好ましい。特に限定しないが、その増幅精度を向上させるため、複数種のプライマーを用いて逆転写及び増幅を行うことが好ましい。
 ライブラリーのスクリーニング方法は、
(1)細胞外小胞の分泌量変化に関与する因子の同定(特定のタンパク質を含む小胞の分泌量変化に関与する因子も含む);
(2)特定のタンパク質の細胞外小胞の膜中/膜上への局在に関与する因子の同定;
(3)体液中における細胞外小胞の半減期や動態に影響を与える因子の同定;
(4)各組織又は各体液への細胞外小胞のターゲッティングに影響を与える因子の同定;
(5)特定の細胞(初代培養細胞を含む)への細胞外小胞のターゲッティングに影響を与える因子の同定;
などに用いることができる。
 (1)又は(2)においては、細胞外小胞分泌細胞にバーコードRNAを発現させる発現ベクター又はバーコードRNAを導入し、導入後の細胞外小胞分泌細胞が分泌する細胞外小胞内から回収されるバーコードRNAと細胞外小胞分泌細胞に残っているバーコードRNAを比較解析することにより、目的因子の同定をすることができる。細胞外小胞分泌細胞に特定の薬剤を投与した後、一定時間後細胞外小胞を回収することにより、薬剤の細胞外小胞の分泌量変化への影響をみてもよい。
 (2)において、回収したバーコード化した細胞外小胞のライブラリーを,特定のタンパク質を認識する抗体(又は抗体結合ビーズ)などで沈降して、特定のタンパク質がその表面に存在する細胞外小胞中のバーコードRNAを解析することで,特定のタンパク質の細胞外小胞の膜中/膜上への局在に関与する因子の同定ができる。ここで、特定のタンパク質の細胞外小胞の膜中/膜上への局在に関与する因子とは、特定のタンパク質の転写翻訳に影響を与える因子(例えば、転写因子)、特定のタンパク質の翻訳後修飾に関係する因子(たとえばGPIアンカー接続を含む糖鎖修飾を行う酵素)、特定のタンパク質のシャペロニング(折り畳みや細胞内輸送を含む)に関係する因子等が挙げられる。
 特定のタンパク質としては、細胞外小胞の膜表面上又は膜中に存在するタンパク質であることが好ましく、RNA結合タンパク質との融合に用いられるタンパク質と同じであってもよいし、異なっていてもよい。特に限定しないがテトラスパニン類、各種インテグリンなどの接着因子、細胞老化とEVの関係をつなぐと考えられている因子の一つであるinterferon-induced transmembrane protein (IFITM3)などが挙げられる。
(3)及び(4)において、本発明で調製した細胞外小胞のライブラリーを対象に投与後、一定時間ののち、対象の組織又は体液を単離して、その単離された組織又は体液中のバーコードRNAを検出することにより、目的因子の同定をすることができる。(5)において、本発明で調製した細胞外小胞のライブラリーを対象細胞に投与後、一定時間ののち、その細胞からバーコードRNAを検出することにより、目的因子の同定をすることができる。細胞外小胞のライブラリーを対象(細胞)に投与する前、後、又は同時に、その対象(細胞)に特定の薬剤を投与した後、一定時間後細胞外小胞を回収することにより、薬剤の影響をみてもよい。
 (3)及び(4)における体液とは、動物の体内にあって、組織間や体腔内、あるいは全身に広がった管や循環系の中を満たしているものや、唾液、汗、精液、尿などの体内外に分泌・排泄されるもの含む。特に限定しないが、血液(全血、血清、血漿を含む)、唾液、尿、羊水、脳脊髄液、心嚢膵、胸水、腹水、便、汗、精液などが含まれる。
 (4)における組織とは真核生物(ヒト、非ヒト動物及び植物を含む)の正常組織(神経組織、免疫組織、筋肉組織、消化管など各種臓器を形成する組織等)、又は良性又は悪性の腫瘍組織(血液がんを含む)、病原体が感染した組織などの異常な組織であってよい。
 (5)における細胞とは、細胞外小胞を受容できる細胞であり、真核生物(ヒト、非ヒト動物及び植物を含む)の正常細胞(分化した又は未分化の細胞(幹細胞を含む)等)又はがん細胞などの異常な細胞、あるいはこれらから樹立された細胞株、植物細胞(カルス細胞を含む)、単細胞微生物(腸内細菌含む)であってよい。
 かかる因子の同定は、バーコードRNAの量比を比較することによりなされる。特に限定しないが、その量比が1.5倍以上、2倍以上又は3倍以上、或いは0.3倍以下、0.5倍以下又は0.67倍以下になるものを目安として同定してよい。たとえば、細胞外小胞のライブラリーを作製する際に用いた、DNAライブラリー又はRNAライブラリー(発現ベクターなど)中におけるバーコードRNAの量比と、細胞、組織、体液、又は細胞外小胞から回収されたバーコードRNAの量比を比較してもよい。
 本発明の一実施態様は、in vitro又はin vivoにおける細胞外小胞の分泌促進剤又は分泌阻害剤である。
 細胞外小胞としてはテトラスパニン(CD63,CD9,CD81,CD82)をその表面に発現している細胞外小胞が好ましい。
 細胞外小胞の分泌促進剤として、PI4KA(Phosphatidylinositol 4-kinase alpha)の阻害剤、CYB5B(Cytochrome B5 Type B)の阻害剤、PIK3C3(Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3)の阻害剤、PTPN23(Protein Tyrosine Phosphatase Non-Receptor Type 23)の阻害剤、PIK3R4(Phosphoinositide-3-Kinase Regulatory Subunit 4)の阻害剤及びMETAP1(Methionyl Aminopeptidase 1)の阻害剤が挙げられる。
 細胞外小胞の分泌阻害剤として、MMAA(Metabolism Of Cobalamin Associated A)の阻害剤が挙げられる。
 阻害剤は、これらの遺伝子の発現を抑制するmiRNA(pre-miRNAを含む)やsiRNA(pre-siRNA(たとえば、shRNA(small hairpin RNA));或いは、これらの遺伝子産物と結合しその機能を抑制する、低分子化合物(分子量2000以下、好ましくは分子量1000以下、より好ましくは分子量600以下)、アプタマーや抗体(結合断片を含む)であってもよい。
 低分子化合物であるPI4KA(Phosphatidylinositol 4-kinase alpha)の阻害剤としては、GSK-A1(5-(2-amino-1-(4-morpholinophenyl)-1H-benzo[d]imidazol-6-yl)-N-(2-fluorophenyl)-2-methoxypyridine-3-sulfonamide)が好ましい。
 リキッドバイオプシー(liquid biopsy)は主にがんの領域で、内視鏡や針を使って腫瘍組織を採取する従来の生検(biopsy)に代えて、血液(全血、血清、血漿を含む)、唾液、尿、羊水、脳脊髄液、心嚢膵、胸水、腹水、便などの体液サンプルを使って診断や治療効果予測を行う技術である。体液中の存在する循環遊離DNA、循環腫瘍DNA、循環遊離RNA、細胞外小胞等を検出することにより、診断や治療効果予測を行う研究がなされているが、本発明に係る細胞外小胞の分泌促進剤は、がん細胞等から分泌される細胞外小胞の分泌を促進することにより、リキッドバイオプシーによる診断や治療効果予測の精度を上げることが出来る。
 細胞外小胞の分泌阻害剤は、がん治療に適用することができる。細胞外小胞の分泌を阻害することにより、がん転移を抑制するだけでなく、原発巣がsmallEVの分泌によって自身の周りをプログラミングして、原発巣自身にも影響を与えるのを防ぐこともできる。
A.材料及び方法
<融合タンパク質発現用ベクター>
1.CD63-L7Ae
 CD63-L7Ae融合タンパク質(配列番号6)を発現させるベクタープラスミド(pRK320)は、pSBbi-GHベクター(addgene、plasmid#60514;ハイグロマイシン耐性遺伝子+EGFP共発現型)のEF-1αプロモーター下にCD63-L7Ae融合タンパク質をコードする配列を導入することにより作製した。
2.CD63-MS2
 CD63-MS2融合タンパク質(配列番号7)を発現させるベクタープラスミド(pKK47:pSBbi-GH CD63-MS2)は、pSBbi-GHベクター(addgene、plasmid#60514;ハイグロマイシン耐性遺伝子+EGFP共発現型)のEF-1αプロモーター下のSfiI制限酵素認識部位にCD63-MS2融合タンパク質をコードする配列を導入することにより作製した。
3.CD63-dCas9
 CD63-dCas9融合タンパク質(配列番号8)を発現させるベクタープラスミド(pKK60:pSBbi-GH CD63-dCas9)は、pSBbi-GHベクター(addgene、plasmid#60514;ハイグロマイシン耐性遺伝子+EGFP共発現型)のEF-1αプロモーター下のSfiI制限酵素認識部位にCD63-dCas9融合タンパク質をコードする配列を導入することにより作製した。
4.CD9-dCas9
 CD9-dCas9融合タンパク質(配列番号9)を発現させるベクタープラスミド(pKK106:pSBbi-GH CD9-dCas9)は、pSBbi-GHベクター(addgene、plasmid#60514;ハイグロマイシン耐性遺伝子+EGFP共発現型)のEF-1αプロモーター下のSfiI制限酵素認識部位にCD9-dCas9融合タンパク質をコードする配列を導入することにより作製した。
<CRISPR用ベクター>
1.Cas9(ノックアウト用)
 SpCas9-NLS-FLAG(配列番号10)を発現させるベクタープラスミド(pRK300:pSBbi-RB Cas9)は、pSBbi-RBベクター(addgene、plasmid#60522;ブラストサイジン耐性遺伝子+RFP共発現型)のEF-1αプロモーター下のSfiI制限酵素認識部位にCas9融合タンパク質をコードする配列を導入することにより作製した。
2.dCas9-VPR(発現増強用)
 dCas9-VPR融合タンパク質(配列番号11)を発現させるベクタープラスミド(pKK56:pSBbi-RB dCas9-VPR)は、pSBbi-RBベクター(addgene、plasmid#60522;ブラストサイジン耐性遺伝子+RFP共発現型)のEF-1αプロモーター下にdCas9-VPR融合タンパク質をコードする配列を導入することにより作製した。
<EV産生細胞の作製>
 HEK293T細胞に、融合タンパク質発現用ベクター(pRK320:CD63-L7Ae;pKK47:CD63-MS2;又はpKK60:CD63-dCas9)及び、必要に応じてCRISPR用ベクター(pRK300又はpKK56)をトランスフェクトし、薬剤耐性でセレクションし、安定発現株を樹立した。
<各融合タンパク質用ライブラリー>
1.CD63-L7Ae用ライブラリー(CRISPRa (発現増幅)用の場合)
 L7Ae認識配列部位(C/Dbox)を含むgRNAのバックボーン配列(配列番号12)をオリゴアニーリングによって作成し、pCRISPRia-v2(addgene、plasmid#84832)のBlpI-XhoI部位にクローニングする。できたプラスミドから、L7Ae認識配列部位(C/Dbox)及びgRNAバックボーン領域を含むBlpI-NheI配列を切り出し、Human Subpooled CRISPRi-v2 Librariesシリーズのaddgene Membrane Proteins - gRNA pooled library(1.2x10種)(addgene、plasmid#83976)又はHuman Subpooled CRISPRa-v2 Librariesシリーズのaddgene Membrane Proteins - gRNA pooled library(1.2x10種)(addgene、plasmid#83985)の同制限酵素部位にクローニングすることにより、L7Aeタンパク質が認識する配列とgRNAが結合したRNAを転写するライブラリーベクターを作製する。
2(1).CD63-MS2用ライブラリー (CRISPRa (発現増幅)用の場合)
 sgRNA(MS2) cloning backbone(addgene、plasmid#61424)をテンプレートとして、MS2認識配列部位(MS2box2つ)を含むgRNAのバックボーン配列を、両端にBlpI及びXhoI認識配列が含まれる形でPCRによって増幅し、これをpCRISPRia-v2(addgene、plasmid#84832)のBlpI―XhoI部位にクローニングした。できたプラスミド(pKK66)から、MS2認識配列部位(MS2box 2つ)及びgRNAバックボーン領域を含むBlpI―NheI断片を切り出し、Human Subpooled CRISPRi-v2 Librariesシリーズのaddgene Membrane Proteins - gRNA pooled library(1.3x10種)(addgene、plasmid#83976)の同制限酵素認識部位にクローニングすることにより、MS2タンパク質が認識する配列を含むgRNAを転写するベクターライブラリーを作製した。
 また別個にCD274、CD47、CD55、CD59、CD81、ICAM1、ITGAL、LRP1及びIL1B用のgRNAを発現するベクター(各遺伝子1または2種)を作製した。
 各々のベクターに含まれる、gRNAをコードする配列を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
2(2).CD63-MS2用ライブラリー (Lamp2bの細胞外領域にランダムペプチドを提示するライブラリー)
 pCRISPRia-v2(addgene plasmid#84832)をバックボーンとして、NheI/SbfIで切断した部位(cPPTとPuroRをコードする配列で挟まれた部分を切除)に両方向プロモーター(Bidirectionalプロモーター、pSBbi-RB addgene #60522より増幅)配列;MS2認識配列x3;RVGLamp2b(pcDNA GNSTM-3-RVG-10-Lamp2b-HA;addgene, plasmid#71294をもとに、望む制限酵素認識配列を含むよう配列を改変して合成したもの)をコードする配列;及びbGHpolyAをコードする配列を導入した。この際、両方向プロモーター内のRPBSAプロモーターがPuroRに対して順方向に、EF1a プロモーター、MS2認識配列x3、RVGLamp2b、bGHpolyAが逆方向になるように導入した。
 その後、RVGペプチドをコードする部分を制限酵素処理で切除し、ランダムペプチド(4mer)をコードする合成オリゴヌクレオチドライブラリー(NDTコドンセット;12x4=20736種類)を代わりに導入することにより、ランダムペプチド-Lamp2b融合タンパク質(配列番号34)を発現するためのライブラリー(pSF63)を作製した。
3.CD63-dCas9用ライブラリー 
 CD63-dCas9用ライブラリーとしては、既存のgRNAライブラリーがそのまま使用できる。
 本実施例では、上記Human Subpooled CRISPRa-v2 Librariesシリーズのaddgene Membrane Proteins - gRNA pooled library(1.3x10種)(addgene #83976, CRISPRa用)以外に、Human CRISPR Knockout Pooled Library (GeCKOv2) (addgene、Pooled Library #1000000048)及びBassik Human CRISPR Knockout library (非特許文献14), Drug Targets, Kinases, phosphatases (DTKPlibrary) (10gRNA/遺伝子,全24569gRNA種(標的遺伝子2323種)、addgene, Pooled library # 101927)(ともに、CRISPR ノックアウト用)を用いた。
 各プラスミドライブラリー又は個別遺伝子用gRNAプラスミド;並びにレンチウィルスパッケージングプラスミドpsPAX2(addgene、plasmid#122260)及  びpMD2.G(addgene、plasmid#12259)をLenti-X(登録商標)293T細胞(タカラバイオ、日本)にトランスフェクトした。6~16時間培養後、培地を交換し、この後48時間培養した培養上清をフィルターろ過し、レンチウィルスを含む溶液を回収した。回収したレンチウイルスをEV産生細胞に感染させ、ライブラリー発現カセットに別途コードされた蛍光マーカーをモニタリングすることで、もしくはライブラリー発現カセットに別途コードされた抗生物質耐性遺伝子を利用して、cell viability assayを行うことで、レンチウイルスのタイター(MOI)を決定した。
<レンチウィルスの感染及びEV産生>
 測定したタイターに従って、レンチウィルスをEV産生細胞に感染させた。感染後、ピューロマイシン存在下、4日間以上培養した。
 その後、培養培地をOptiMEM(登録商標)培地(Thermo Fisher Scientific社、日本)に交換し、48時間培養後、細胞外小胞を含む培養上清を回収した。その後、300Gで5分間、続いて1500Gで10分間遠心した上清を、0.22 μmフィルターを通すことで細胞及び細胞デブリを除いた。その後、上清から超遠心法によって細胞外小胞を精製濃縮した。
<バーコードRNAの配列解析方法>
1.CD63-L7Ae用gRNAライブラリー由来のRNA 
 回収した細胞外小胞又はEV産生細胞からRNAをTRIzolを用いて抽出し、LNA (2’-4’ bridged nucleic acid, AAGCAGTGGTATCAACGCAGAGTACrGrG+G) (配列番号13:“r”がついた塩基はRNA塩基、“+”がついた塩基は、LNA塩基)存在下で、逆転写用プライマーAAAGCACCGACTCGGTGCCAC(配列番号14) およびTemplate Switching活性を持つ逆転写酵素を用いて逆転写する。この逆転写産物を、FwプライマーとRevプライマーに、それぞれ次世代シークエンサー用のアダプター配列、およびサンプルmultiplexing用のバーコードが付加したオリゴDNAを用いて、PCR増幅する。増幅したDNAをIon Proton もしくはIllumina Hiseq X Tenを用いて解析し、各gRNAの配列を決定し、その量比を算出する。
2(1).CD63-MS2用gRNAライブラリー由来のRNA
 回収した細胞外小胞又はEV産生細胞からRNAをTRIzolを用いて抽出し、LNA(配列番号13)存在下で、逆転写用プライマーAAAGCACCGACTCGGTGCCAC(配列番号14)およびTemplate Switching活性を持つ逆転写酵素を用いて逆転写した。この逆転写産物を、FwプライマーとRevプライマー に、それぞれ次世代シークエンサー用のアダプター配列、およびサンプルmultiplexing用のバーコードが付加したオリゴDNAを用いて、PCR増幅した。
 増幅したDNAをIon Proton もしくはIllumina Hiseq X Tenを用いて解析し、各gRNAの配列を決定し、その量比を算出した。
2(2). CD63-MS2用ランダムペプチド-Lamp2bライブラリー由来のRNA
 回収した細胞外小胞又はEV産生細胞からRNAをTRIzolを用いて抽出し、逆転写用プライマーattttgcataaaggcaagtgg(配列番号15)と、逆転写酵素を使って逆転写し、FwプライマーとRevプライマーに、それぞれ次世代シークエンス用のアダプターを付けたオリゴDNAでPCR増幅し、Ion Protonで解析し、その量比を算出した。
3.CD63-dCas9用ライブラリー由来のRNA (addgene、Pooled Library #83976, #1000000048もしくは# 101927を利用したとき)
 回収した細胞外小胞からRNAをTRIzolを用いて抽出し、LNA (2’-4’ bridged nucleic acid, AAGCAGTGGTATCAACGCAGAGTACrGrG+G) (配列番号13)存在下で、逆転写用プライマーTTTTTCAAGTTGATAACGGACTAGCC(配列番号16) およびTemplate Switching活性を持つ逆転写酵素を用いて逆転写した。この逆転写産物を、FwプライマーとRevプライマーに、それぞれ次世代シークエンサー用のアダプター配列、およびサンプルmultiplexing用のバーコードが付加したオリゴDNAを用いて、PCR増幅した。増幅したDNAをIon Proton もしくはIllumina Hiseq X Tenを用いて解析し、各gRNAの配列を決定し、その量比を算出した。
B.バーコード化されたCD63-MS2発現細胞外小胞の評価
 CD63-MS2発現細胞外小胞の血中滞留性を検討するため、以下の実験を行った。
 CD63-MS2用EV産生細胞(HEK293T CD63-MS2,dCas9-VPR発現株)にCD274、CD47、CD55、CD59、CD81、ICAM1、ITGAL、LRP1及びIL1B用のgRNAを発現するベクター(各遺伝子1または2種)を各々別個にトランスフェクションし、細胞外小胞を含む培養上清を回収して混合した。
 回収した培養上清から細胞外小胞を超遠心法によって精製し、合計およそ1x1011~1012小胞/mLになるよう、PBSに懸濁した。
 調製したEV溶液100μLをJcl:ICRマウスに尾中静脈注射した。
 静脈注射後2分してから、COで安楽死させた後、マウスから全血を採取して、microtainer採血管(BD社)を用いて血清を取得し、Total Exosome Isolation Reagent (Thermo Fisher Scientific社、日本)を用いて、血清中の細胞外小胞を単離した。単離した細胞外小胞からTRIzol試薬を用いてRNAを抽出し、逆転写及び増幅を行い、各gRNAの配列を決定し、その量比を算出した(t=2min)。
 コントロール(t=0)として、マウスに注射する前の調製したEV溶液に、total exosome isolation reagentによる血清からのEV単離以外、同様の処置を行い、各gRNAの配列を決定し、その量比を算出した。そして、コントロールを1とした時の血中から回収された各gRNAの量を算出した。
 その結果、用いた17種類のgRNAをすべて検出でき、その量比も安定的に検出できた(図1)。
C.CD63-MS2発現EVライブラリーとCD63-dCas9発現EVライブラリー
 CD63-MS2発現EVライブラリー(gRNA用)については、addgene #83985, Human Subpooled CRISPRa-v2 Libraries Membrane Proteins - gRNA pooled library(1.3x10種)を用いて、上記の通りクローニングを行い、MS2boxをバックボーンに含むgRNAライブラリーを作製し、作製されたライブラリーをレンチウィルスにパッケージングし、EV産生細胞(HEK293T CD63-MS2、dCas9-VPR安定発現株)に感染させた。
 CD63-dCas9発現EVライブラリーについては、addgene #83985のライブラリーをそのまま、レンチウィルスにパッケージングし、EV産生細胞(HEK293T CD63-dCas9、dCas9-VPR安定発現株)に感染させた。
 感染後の細胞を同じ条件で培養し、培養上清より細胞外小胞を回収した。
 回収した細胞外小胞からRNAを抽出し、逆転写及び増幅をして、配列を決定し、その量比を算出した。
 コントロールとして、オリジナルのgRNAライブラリーそのものの配列も決定し、その量比を算出した。
 その結果、CD63-MS2発現EVライブラリーからは、13147種中9000種以上(検出率68.4%)のgRNAでバーコード化されたEVを検出できた。さらに、CD63-dCas9発現EVライブラリーにおいては、13147種中13120種(検出率99.8%)のgRNAでバーコード化された細胞外小胞を検出できた(図2A~C)。
 さらに、Gecko V2A (addgene #1000000048) libraryを使ったCD63-dCas9発現EVライブラリーからは、63950種中60711種(検出率94.9%)(図2D);DTKP library (addgene # 101927)を使ったCD63-dCas9発現EVライブラリーからは、24569種中24285種(検出率:98.8%)のgRNAでバーコード化された細胞外小胞を検出できた(図2E)。
 CD63-MS2発現EVライブラリー(ランダムペプチド-Lamp2b用)については、上記<各融合タンパク質用ライブラリー>2(2)で作製したプラスミドライブラリーを、レンチウィルスにパッケージングし、EV産生細胞(HEK293T CD63-MS2、dCas9-VPR安定発現株)に感染させた。感染後の細胞を同じ条件で培養し、培養上清より細胞外小胞を回収した。
 回収した細胞外小胞からRNAを抽出し、逆転写及び増幅をして、配列を決定し、その量比を算出した(図2G)。コントロールとして、培養上清回収後のEV産生細胞そのものからRNAを抽出し、逆転写及び増幅をして、配列を決定し、その量比を算出した(図2F)。
 その結果、ランダムペプチドをその表面に発現させたEVライブラリーを作製することに成功した。
D.バーコード化エクソソームを用いたエクソソームの血中半減期を延長する因子のスクリーニング
 上記Cで作製したCD63-dCas9発現EVライブラリーの3.0x1010個の小胞をマウスに尾中静脈注射した。注射30分後、マウスから血液を採取し、採取した血液から細胞外小胞を単離した。
 単離した細胞外小胞からRNAを抽出し、逆転写及び増幅をして、配列を決定した。
 コントロールとして、注射前のCD63-dCas9発現EVライブラリーから、RNAを抽出し、逆転写及び増幅をして、配列を決定し、その量比を算出した。そして、コントロールを1とした時の血中から回収された各gRNAの量を算出した。
 その結果、血中で構成比が顕著に増加したgRNAが同定できた(図3)。
 検出できたgRNAをコードする配列を表2に示す。      
Figure JPOXMLDOC01-appb-T000002
E1.バーコード化細胞外小胞を用いた細胞外小胞の分泌を促進/阻害する因子のスクリーニング
 HEK293T細胞に、CD63-dCas9発現用ベクターのみをトランスフェクトし、薬剤耐性でセレクションし、安定発現株を樹立した(以下、Cas9(-)EV産生細胞と呼ぶ)。
 HEK293T細胞に、CD63-dCas9発現用ベクター及びpRK300プラスミドをトランスフェクトし、薬剤耐性でセレクションし、安定発現株を樹立した(以下、Cas9(+)EV産生細胞と呼ぶ)。
 Cas9(-)EV産生細胞及びCas9(+)EV産生細胞に、DTKP libraryを含むレンチウィルスを感染させた。感染後、ピューロマイシン存在下、7日間以上培養した。その後、培養培地をOptiMEM(登録商標)培地(Thermo Fisher Scientific社、日本)に交換し、48時間培養後、細胞外小胞を含む培養上清を回収した。300xgで5分、1500xgで10分遠心し、0.22μmフィルターを通して、細胞及び細胞デブリを除いた。その後、細胞上清から超遠心法によって細胞外小胞(Cas9(-)EV及びCas9(+)EV)を精製濃縮した。
 回収した細胞外小胞からRNAを抽出し、逆転写及び増幅をして、次世代シークエンサーによって、配列の決定と定量を行った。
 培養後のEV産生細胞からもRNAを抽出し、逆転写及び増幅をして、次世代シークエンサーによって、配列の決定と定量を行った。
 各遺伝子に対応するgRNAの量比を、Cas9(-)EV/Cas9(+)EV、又はCas9(+)EV/Cas9(+)EV産生細胞について、CRISPR AnalyzeR (bioRxiv 2017, http://crispr-analyzer.dkfz.de/)を利用して算出した(図4及び図5)。
 その結果、PI4KA、CYB5B、PIK3C3、PTPN23,PIK3R4及びMETAP1などをノックアウトすることにより、細胞外小胞の分泌量が増加した(図4A)。この効果は各gRNAを発現するEV産生細胞の数には依存しなかった(図4B)。
E2.PI4KA阻害剤によるCD63陽性EVの分泌量の増強
 PI4KA阻害剤であるGSK-A1をCD63-nanoLuc(pDB30)を発現させたHEK293T細胞に投与して、分泌される細胞外小胞の量を、培養上清中のnluc活性を測定するルミネセンスアッセイ(Promega社、Nanoglo luciferase assay system)又はNanosight(Malvern社)を用いたナノパーティクルトラッキングアナリシス(NTA)によって測定した。コントロールとして、GSK-A1を投与しないで同様の実験を行い、コントロールのEV分泌量を1として、各GSK-A1濃度におけるEV分泌量を算出した。
 その結果、GSK-A1添加により、CD63陽性の細胞外小胞の分泌量が増加することがわかった (図6)。これは、本発明に係るスクリーニング方法により、細胞外小胞の分泌量を促進させる因子を同定できることを示している。
 また、上記と同じアッセイを、EV産生細胞としてCD9-dCas9(配列番号9)を発現するHEK293T細胞を用いて、行った。その結果、MMAA(Metabolism Of Cobalamin Associated A)をノックアウトするgRNAをバーコードとして含むエクソソームの分泌量は抑制された(細胞内と比較して0.62倍)。一方、EV産生細胞としてCD63-dCas9を発現するHEK293Tを用いた場合には、分泌量に変化がなかった(細胞内と比較して1.06倍)。これは、用いるEVマーカーを変更することで、特定のpopulationのEVの分泌機構の違いなども解明可能になることを示している。
 本発明に係るバーコード化エクソソームを用いることにより、エクソソームを用いた効率的なドラッグデリバリーシステムの開発や、エクソソームのバイオロジー研究(たとえば、様々な細胞においてEV分泌の解明)、エクソソーム分泌経路をターゲットとした創薬研究(たとえば、細胞特異的にEV分泌量を変化させる因子の同定)に役立てることができる。
 本発明は、生物の界を越えたエクソソームを介したネットワークの解析にも用いることができる。たとえば、哺乳類の消化管内では、植物(食品)のほか、腸内細菌、病原性微生物、食物中の酵母などが、常時相互に作用する関係を築き上げており、これら異種生物コミュニティが産出するエクソソームの研究にも役立つことができる。
 本発明に係る細胞外小胞の分泌促進剤又は阻害剤は、対象に投与してin vivo又はin vitroにおける特定の細胞外小胞のサブポピュレーションの分泌促進又は阻害による、その特定のポピュレーションが果たす生理的役割の解析にも使うことができる。

Claims (60)

  1.  細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質をコードする核酸。
  2.  前記細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、請求項1に記載の核酸。
  3.  テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、請求項2に記載の核酸。
  4.  前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N、又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、請求項1~3のいずれか一項に記載の核酸。
  5.  請求項1~4のいずれか一項に記載の核酸を含む、発現ベクター。
  6.  請求項5に記載の発現ベクターを含む、細胞外小胞分泌細胞。
  7.  さらに、細胞外小胞の性質に影響を与える核酸を含む、請求項6に記載の細胞外小胞分泌細胞。
  8.  さらに、細胞外小胞の性質に影響を与える核酸を発現させる発現ベクターを含む、請求項6に記載の細胞外小胞分泌細胞。
  9.  前記細胞外小胞の性質に影響を与える核酸が、
    (1)細胞外小胞内又はその表面に存在する、内在性タンパク質の量を変化させる核酸;
    (2)細胞外小胞の分泌を促進又は阻害する核酸;
    (3)細胞外小胞の膜を構成する脂質膜に影響を与える核酸;及び
    (4)細胞外小胞内又はその表面に、外来性のタンパク質を存在させるための核酸;からなる群から選択される、請求項7又は8に記載の細胞外小胞分泌細胞。
  10.  前記細胞外小胞の性質に影響を与える核酸が、mRNA又はncRNAを含む、請求項7~9のいずれか一項に記載の細胞外小胞分泌細胞。
  11.  細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質。
  12.  前記細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、請求項11に記載の融合タンパク質。
  13.  テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、請求項12に記載の融合タンパク質。
  14.  前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、請求項11~13のいずれか一項に記載の融合タンパク質。
  15.  細胞外小胞の性質に影響を与える核酸と結合している、請求項11~14のいずれか一項に記載の融合タンパク質。
  16.  前記細胞外小胞の性質に影響を与える核酸が、
    (1)細胞外小胞内又はその表面に存在する、内在性タンパク質の量を変化させる核酸;
    (2)細胞外小胞の分泌を促進又は阻害する核酸;
    (3)細胞外小胞膜を構成する脂質膜に影響を与える核酸;及び
    (4)細胞外小胞内又はその表面に、外来性のタンパク質を存在させるための核酸;からなる群から選択される、請求項15に記載の融合タンパク質。
  17.  前記細胞外小胞の動態に影響を与える核酸が、mRNA又はncRNAを含む、請求項15又は16に記載の融合タンパク質。
  18.  請求項15~17のいずれか一項に記載の融合タンパク質を含む、細胞外小胞。
  19.  平均直径が、30nm以上、150nm以下である、請求項18に記載の細胞外小胞。
  20.  バーコードRNAを含む細胞外小胞のライブラリーを作製する方法であって、
    (1)細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質を発現させた、細胞外小胞分泌細胞に、
     (a)複数種の、バーコードRNAを発現させる発現ベクター、又は
     (b)複数種のバーコードRNA   
    を導入する工程;
    (2)細胞外小胞分泌細胞を培養液中で培養する工程;及び
    (3)細胞外小胞分泌細胞の培養上清から、前記融合タンパク質に結合したバーコードRNAを含む細胞外小胞を回収する工程を含む、
    方法。
  21.  前記細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、請求項20に記載の方法。
  22.  テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、請求項21に記載の方法。
  23.  前記RNA結合タンパク質が、MS2又はその活性断片、dCas9又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、請求項20~22のいずれか一項に記載の方法。
  24.  バーコードRNAがmRNA又はncRNA(miRNA、siRNA、shRNA、gRNA、snRNA、snoRNAを含む)を含む、請求項20~23のいずれか一項に記載の方法。   
  25.  バーコードRNAがさらに、RNA結合タンパク質の認識配列を含む、請求項24に記載の方法。
  26.  細胞外小胞分泌細胞が、HEK293細胞、幹細胞、上皮細胞、内皮細胞、線維芽細胞、癌細胞、免疫細胞、神経細胞及び植物細胞からなる群から選択される、請求項20~25のいずれか一項に記載の方法。
  27.  細胞外小胞分泌細胞において、細胞外小胞に存在するタンパク質を含む細胞外小胞の分泌を促進又は阻害する因子をスクリーニングするための方法であって、
    (1)前記細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質を発現させた、前記細胞外小胞分泌細胞に、
     (a)複数種の、バーコードRNAを発現させる発現ベクター、又は
     (b)複数種のバーコードRNA
    を導入する工程;
    (2)細胞外小胞分泌細胞を培養液中で培養する工程;
    (3)細胞外小胞分泌細胞の培養上清から、前記融合タンパク質に結合したバーコードRNAを含む細胞外小胞を回収する工程;
    (4)培養後の細胞外小胞分泌細胞を回収する工程;
    (5)回収された細胞外小胞からバーコードRNAを回収する工程;
    (6)回収された培養後の細胞外小胞分泌細胞からバーコードRNAを回収する工程;
    (7)工程(5)で回収された複数種のバーコードRNAの配列を決定し、各バーコードRNAの量比を算出する工程;そして
    (8)工程(6)で回収された複数種のバーコードRNAの配列を決定し、各バーコードRNAの量比を算出する工程を含む、
    方法。
  28.  細胞外小胞分泌細胞において、特定のタンパク質がその表面に局在している(localized)細胞外小胞の分泌を促進又は阻害する因子、もしくは、特定のタンパク質の細胞外小胞の膜表面への局在に影響を与える因子をスクリーニングするための方法であって、
    (1)細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質を発現させた、前記細胞外小胞分泌細胞に、
     (a)複数種の、バーコードRNAを発現させる発現ベクター、又は
     (b)複数種のバーコードRNA
    を導入する工程;
    (2)細胞外小胞分泌細胞を培養液中で培養する工程;
    (3)細胞外小胞分泌細胞の培養上清から、前記特定のタンパク質がその表面に存在している細胞外小胞を選択的に回収してくる工程;
    (4)回収された細胞外小胞からバーコードRNAを回収する工程;
    (5)回収された培養後の細胞外小胞分泌細胞からバーコードRNAを回収する工程;
    (6)工程(4)で回収された複数種のバーコードRNAの配列を決定し、各バーコードRNAの量比を算出する工程;そして
    (7)工程(5)で回収された複数種のバーコードRNAの配列を決定し、各バーコードRNAの量比を算出する工程を含む、
    方法。
  29.  前記特定のタンパク質が、テトラスパニン、インテグリン、及びIFITM3(interferon-induced transmembrane protein)からなる群から選択される請求項28に記載の方法。
  30.  前記細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、請求項27~29のいずれか一項に記載の方法。
  31.  テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、請求項30に記載の方法。
  32.  前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、及びλ bacteriophage antiterminator protein N又はその活性断片、HuRまたはその活性断片からなる群から選択される、請求項27~31のいずれか一項に記載の方法。
  33.  バーコードRNAがmRNA又はncRNAを含む、請求項27~32のいずれか一項に記載の方法。
  34.  バーコードRNAがさらに、RNA結合タンパク質の認識配列を含む、請求項33に記載の方法。
  35.  細胞外小胞分泌細胞が、HEK293細胞、幹細胞、上皮細胞、内皮細胞、線維芽細胞、癌細胞、免疫細胞、神経細胞及び植物細胞からなる群から選択される、請求項27~34のいずれか一項に記載の方法。
  36.  細胞外小胞の体液中での安定性に寄与する因子、あるいは細胞外小胞の体液中への分泌を促進又は阻害する因子をスクリーニングする方法であって、
     (1)細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質と、前記融合タンパク質と結合したバーコードRNAを含む細胞外小胞を複数種含むライブラリーを用意する工程;
     (2)前記複数種の細胞外小胞を含むライブラリーを対象に投与する工程;
     (3)対象の体液を単離し、RNAを抽出する工程;そして
     (4)抽出されたRNAから、バーコードRNAを検出する工程;
    を含む方法。
  37.  前記細胞外小胞に存在するタンパク質がテトラスパニン又はその活性断片である、請求項36に記載の方法。
  38.  テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、請求項37に記載の方法。
  39.  前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、請求項36~38のいずれか一項に記載の方法。
  40.  バーコードRNAがmRNA又はncRNAを含む、請求項36~39のいずれか一項に記載の方法。
  41.  バーコードRNAがさらに、前記RNA結合タンパク質の認識配列を含む、請求項40に記載の方法。
  42.  細胞外小胞の組織又は体液へのターゲッティングの効率に影響を与える因子をスクリーニングする方法であって、
     (1)細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質と、前記融合タンパク質と結合したバーコードRNAを含む細胞外小胞を複数種含むライブラリーを用意する工程;
     (2)前記複数種の細胞外小胞を含むライブラリーを対象に投与する工程;
     (3)対象の組織又は体液を単離し、RNAを抽出する工程;そして
     (4)抽出されたRNAから、バーコードRNAを検出する工程;
    を含むスクリーニング方法。
  43.  細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、請求項42に記載の方法。
  44.  テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、請求項43に記載の方法。
  45.  前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、請求項42~44のいずれか一項に記載の方法。
  46.  バーコードRNAがmRNA又はncRNAを含む、請求項42~45のいずれか一項に記載の方法。
  47.  バーコードRNAがさらに、前記RNA結合タンパク質の認識配列を含む、請求項46に記載の方法。
  48.  前記組織が、腫瘍組織、神経組織及び免疫組織からなる群から選択される、請求項42~47のいずれか一項に記載の方法。
  49.  細胞外小胞の細胞へのターゲッティングの効率に影響を与える因子をスクリーニングする方法であって、
     (1)細胞外小胞に存在するタンパク質とRNA結合タンパク質を含む融合タンパク質と、前記融合タンパク質と結合したバーコードRNAを含む細胞外小胞を複数種用意する工程;
     (2)前記複数種の細胞外小胞を細胞に投与する工程;
     (3)前記細胞から、RNAを抽出する工程;
     (4)抽出されたRNAから、バーコードRNAを検出する工程;
    を含む方法。
  50.  細胞外小胞に存在するタンパク質が、テトラスパニン又はその活性断片である、請求項49に記載の方法。
  51.  テトラスパニンが、CD63、CD9及びCD81からなる群から選択される、請求項50に記載の方法。
  52.  前記RNA結合タンパク質が、MS2又はその活性断片、CAS又はその活性断片、L7Ae又はその活性断片、λ bacteriophage antiterminator protein N又はその活性断片、及びHuRまたはその活性断片からなる群から選択される、請求項49~51のいずれか一項に記載の方法。
  53.  バーコードRNAがmRNA又はncRNAを含む、請求項49~52のいずれか一項に記載の方法。
  54.  バーコードRNAがさらに、前記RNA結合タンパク質の認識配列を含む、請求項53に記載の方法。
  55.  前記細胞が、幹細胞、上皮細胞、内皮細胞、線維芽細胞、癌細胞、免疫細胞及び神経細胞、並びにこれらから樹立された細胞株から選択される、請求項49~54のいずれか一項に記載の方法。
  56.  PI4KA(Phosphatidylinositol 4-kinase alpha)の阻害剤、CYB5B(Cytochrome B5 Type B)の阻害剤、PIK3C3(Phosphatidylinositol 3-Kinase Catalytic Subunit Type 3)の阻害剤、PTPN23(Protein Tyrosine Phosphatase Non-Receptor Type 23)の阻害剤、PIK3R4(Phosphoinositide-3-Kinase Regulatory Subunit 4)の阻害剤及びMETAP1(Methionyl Aminopeptidase 1)の阻害剤からなる群から選択される有効成分を含む、細胞外小胞の分泌促進剤。
  57.  細胞外小胞がCD63を発現している、請求項56に記載の細胞外小胞の分泌促進剤。
  58.  PI4KAの阻害剤が、GSK-A1(5-(2-amino-1-(4-morpholinophenyl)-1H-benzo[d]imidazol-6-yl)-N-(2-fluorophenyl)-2-methoxypyridine-3-sulfonamide)である、請求項56又は57に記載の細胞外小胞の分泌促進剤。
  59.  リキッドバイオプシーのための請求項56~58のいずれか一項に記載の細胞外小胞の分泌促進剤。
  60.  MMAA(Metabolism Of Cobalamin Associated A)の阻害剤を含有する細胞外小胞の分泌阻害剤。
PCT/JP2020/042416 2019-11-15 2020-11-13 バーコード化された細胞外小胞のライブラリー WO2021095842A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/776,404 US20220411785A1 (en) 2019-11-15 2020-11-13 Library of barcoded extracellular vesicles
EP20888429.6A EP4059948A1 (en) 2019-11-15 2020-11-13 Library of barcoded extracellular vesicles
JP2021556168A JPWO2021095842A1 (ja) 2019-11-15 2020-11-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019207329 2019-11-15
JP2019-207329 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095842A1 true WO2021095842A1 (ja) 2021-05-20

Family

ID=75912781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042416 WO2021095842A1 (ja) 2019-11-15 2020-11-13 バーコード化された細胞外小胞のライブラリー

Country Status (4)

Country Link
US (1) US20220411785A1 (ja)
EP (1) EP4059948A1 (ja)
JP (1) JPWO2021095842A1 (ja)
WO (1) WO2021095842A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063284A1 (ja) * 2021-10-11 2023-04-20 テオリアサイエンス株式会社 細胞外小胞の分泌を促進する細胞外小胞分泌促進剤、およびその用途
WO2023142999A1 (zh) * 2022-01-27 2023-08-03 国家纳米科学中心 细菌外膜囊泡来源的核酸纳米疫苗及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512826A (ja) * 2011-04-25 2014-05-29 バイオ−ラド ラボラトリーズ インコーポレイテッド 核酸分析のための方法および組成物
US20150093433A1 (en) 2013-09-30 2015-04-02 Northwestern University Targeted and modular exosome loading system
JP2016533164A (ja) * 2013-09-24 2016-10-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア バイオアッセイと診断のためのカプセル化センサー及びセンシングシステム、及びその作製及び使用方法
US20190085383A1 (en) * 2014-07-11 2019-03-21 President And Fellows Of Harvard College Methods for High-Throughput Labelling and Detection of Biological Features In Situ Using Microscopy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10624849B2 (en) * 2015-09-28 2020-04-21 Northwestern University Targeted extracellular vesicles comprising membrane proteins with engineered glycosylation sites
GB2568255A (en) * 2017-11-08 2019-05-15 Evox Therapeutics Ltd Exosomes comprising RNA therapeutics
US20210030850A1 (en) * 2018-04-10 2021-02-04 Northwestern University Extracellular vesicles comprising targeting affinity domain-based membrane proteins

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512826A (ja) * 2011-04-25 2014-05-29 バイオ−ラド ラボラトリーズ インコーポレイテッド 核酸分析のための方法および組成物
JP2016533164A (ja) * 2013-09-24 2016-10-27 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア バイオアッセイと診断のためのカプセル化センサー及びセンシングシステム、及びその作製及び使用方法
US20150093433A1 (en) 2013-09-30 2015-04-02 Northwestern University Targeted and modular exosome loading system
US20190085383A1 (en) * 2014-07-11 2019-03-21 President And Fellows Of Harvard College Methods for High-Throughput Labelling and Detection of Biological Features In Situ Using Microscopy

Non-Patent Citations (27)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "CRISPR Activation/Interference", AGILENT, 1 January 2018 (2018-01-01), XP055823547, Retrieved from the Internet <URL:https://www.chem-agilent.com/pdf/low_5991-9161JAJP.pdf> [retrieved on 20201224] *
BRYANT K.L. ET AL.: "A novel fluorescence-based biosynthetic trafficking method provides pharmacologic evidence that PI4-kinase IIIalpha is important for protein trafficking from the endoplasmic reticulum to the plasma membrane", BMC CELL BIOLOGY, vol. 16, no. 1, 27 February 2015 (2015-02-27), pages 5, XP021213586, DOI: 10.1186/ s12860-015-0049-5 *
CHEN R. ET AL.: "Friend or Evidence Indicates Endogenous Exosomes Can Deliver Functional gRNA and Cas9 Protein", SMALL, vol. 15, no. 38, 18 September 2019 (2019-09-18), pages 1902686, XP055823545, DOI: 10.1002/smll.201902686 *
ELIFE, vol. 7, 2018, pages e41460
ICHIOKA F. ET AL.: "HD-PTP and Alix share some membrane-traffic related proteins that interact with their Brol domains or proline-rich regions", ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, vol. 457, no. 2, 2007, pages 142 - 149, XP005762557, DOI: 10.1016/j.abb.2006.11.008 *
IMMUNOLOGICAL REVIEWS, vol. 251, 2013, pages 125 - 142
JONCKHEERE V. ET AL.: "Omics Assisted N-terminal Proteoform and Protein Expression Profiling on Methionine Aminopeptidase 1 (MetAP1) Deletion", MOLECULAR & CELLULAR PROTEOMICS, vol. 17, April 2018 (2018-04-01), pages 694 - 708, XP055823543 *
JOUNG J. ET AL.: "Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening", NATURE PROTOCOLS, vol. 12, no. 4, 2017, pages 828 - 863, XP037473979, DOI: 10.1038/nprot.2017.016 *
JOURNAL OF EXTRACELLULAR VESICLES, vol. 4, 2015, pages 26316
JOURNAL OF EXTRACELLULAR VESICLES, vol. 5, 2016, pages 31053
JOURNAL OF EXTRACELLULAR VESICLES, vol. 7, 2018, pages 1535750
KAMMULA E.C. ET AL.: "Brain Transcriptome-Wide Screen for HIV-1 Nef Protein Interaction Partners Reveals Various Membrane- Associated Proteins", PLOS ONE, vol. 7, no. 12, 17 December 2012 (2012-12-17), pages e51578, XP055823538 *
KOJIMA R. ET AL.: "Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson' s disease treatment", NATURE COMMUNICATIONS, vol. 9, no. 1, 3 April 2018 (2018-04-03), pages 1305, XP055823536, DOI: 10.1038/s41467-018-03733-8 *
KUNITAKE, KOKI : "27M-aml12S Comprehensive screen of regulator of exosome secretion using RNA barcodes", LECTURE ABSTRACTS OF THE 140TH ANNUAL MEETING OF THE PHARMACEUTICAL SOCIETY OF JAPAN; KYOTO; MARCH 25-28, 2020, vol. 140, 1 January 2020 (2020-01-01) - 28 March 2020 (2020-03-28), pages 27M - am12S, XP009537636 *
KUNITAKE, KOKI: "4P-0621 Comprehensive screen of regulator of exosome secretion using RNA barcodes", 42ND ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN; FUKUOKA; DECEMBER 3-6, 2019, vol. 42, 19 November 2019 (2019-11-19) - 6 December 2019 (2019-12-06), pages 4P - 0621, XP009537477 *
LU A. ET AL.: "Genome-wide interrogation of extracellular vesicle biology using barcoded miRNAs", ELIFE, vol. 7, 17 December 2018 (2018-12-17), pages e41460, XP055823537, DOI: doi.org/10.7554/eLife.41460.001 *
MIRANDA A.M. ET AL.: "Neuronal lysosomal dysfunction releases exosomes harboring APP C-terminal fragments and unique lipid signatures", NATURE COMMUNICATIONS, vol. 9, no. 1, 18 January 2018 (2018-01-18), pages 291, XP055823540, DOI: 10.1038/s41467-017-02533- w *
NANO LETTERS, vol. 19, 2019, pages 19 - 28
NATURE BIOTECHNOLOGY, vol. 29, 2011, pages 341 - 345
NATURE, vol. 527, no. 7578, 2015, pages 329 - 35
NATURE, vol. 546, 2017, pages 498 - 521
PLANT PHYSIOLOGY, vol. 173, 2017, pages 728 - 741
SAKAMOTO, OSAMU: "III. Organic acid and fatty acid metabolic abnormality. Methylmalonic acidemia. Adenosylcobalamin synthesis defect. 2nd ed.", pages: 356 - 359 *
SCI. REP., vol. 8, 2018, pages 8161
See also references of EP4059948A1
STEIN K. ET AL.: "Vps15p regulates the distribution of cup-shaped organelles containing the major eisosome protein Pillp to the extracellular fraction required for endocytosis of extracellular vesicles carrying metabolic enzymes", BIOLOGY OF THE CELL, vol. 109, no. 5, May 2017 (2017-05-01), pages 190 - 209, XP055823542 *
TAKAHASHI-INIGUEZ T. ET AL.: "Human MMAA induces the release of inactive cofactor and restores methylmalonyl-CoA mutase activity through their complex formation", BIOCHIMIE, vol. 142, 2017, pages 191 - 196, XP085244567, DOI: 10.1016/j.biochi.2017.09.012 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063284A1 (ja) * 2021-10-11 2023-04-20 テオリアサイエンス株式会社 細胞外小胞の分泌を促進する細胞外小胞分泌促進剤、およびその用途
WO2023142999A1 (zh) * 2022-01-27 2023-08-03 国家纳米科学中心 细菌外膜囊泡来源的核酸纳米疫苗及其应用

Also Published As

Publication number Publication date
US20220411785A1 (en) 2022-12-29
JPWO2021095842A1 (ja) 2021-05-20
EP4059948A1 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
US11166996B2 (en) Anellovirus compositions and methods of use
US20220273566A1 (en) Nanomaterials containing constrained lipids and uses thereof
US20230279423A1 (en) Compositions comprising curons and uses thereof
US9376679B2 (en) Microvesicles carrying small interfering RNAs, preparation methods and uses thereof
JP2018529340A (ja) 核酸のエキソソームパッケージング
CN109402176A (zh) 从血红细胞分离的细胞外囊泡和其用途
JP2021500864A (ja) Ttr遺伝子編集およびattrアミロイドーシスの治療用の組成物および方法
WO2021095842A1 (ja) バーコード化された細胞外小胞のライブラリー
US11814626B2 (en) Compositions and methods for loading extracellular vesicles with chemical and biological agents/molecules
EP4249501A2 (en) Methods of altering gene expression by perturbing transcription factor multimers that structure regulatory loops
US20220042042A1 (en) Anellosomes and methods of use
JP2022512395A (ja) 分泌治療モダリティを送達するためのアネロソーム
WO2021251271A1 (ja) Mhc-クラスi発現が抑制された細胞
CN112779261B (zh) 结合人b7-h4蛋白的适配体及其应用和应用其的检测方法
US20200102563A1 (en) Exosome loaded therapeutics for treating sickle cell disease
US20220040117A1 (en) Anellosomes for delivering intracellular therapeutic modalities
WO2024048528A1 (ja) 心疾患及びラミノパチーの予防及び/又は治療剤
WO2023164615A2 (en) Single-cell nanoparticle targeting-sequencing (sent-seq)
WO2012091136A1 (ja) 発現ベクター、それを用いたキャリアの製造方法およびその用途
Charla Investigating extracellular vesicle release from human coronary artery vascular smooth muscle cells in atherosclerosis
Sork Profiling and Exploiting Lipid-based Nanoparticles in Vitro and in Vivo
WO2023097268A2 (en) Extracellular vesicles comprising non-naturally occurring modular rna hairpins and uses thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556168

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020888429

Country of ref document: EP

Effective date: 20220615