WO2021095656A1 - Powder composition, film, and method for producing film - Google Patents

Powder composition, film, and method for producing film Download PDF

Info

Publication number
WO2021095656A1
WO2021095656A1 PCT/JP2020/041536 JP2020041536W WO2021095656A1 WO 2021095656 A1 WO2021095656 A1 WO 2021095656A1 JP 2020041536 W JP2020041536 W JP 2020041536W WO 2021095656 A1 WO2021095656 A1 WO 2021095656A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
film
powder
inorganic filler
tetrafluoroethylene
Prior art date
Application number
PCT/JP2020/041536
Other languages
French (fr)
Japanese (ja)
Inventor
敦美 山邊
紀生 尾澤
佐藤 崇
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202080078282.0A priority Critical patent/CN114729198B/en
Priority to JP2021556069A priority patent/JPWO2021095656A1/ja
Priority to KR1020227002018A priority patent/KR20220101067A/en
Publication of WO2021095656A1 publication Critical patent/WO2021095656A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/071Preforms or parisons characterised by their configuration, e.g. geometry, dimensions or physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/08Polyethers derived from hydroxy compounds or from their metallic derivatives
    • C08L71/10Polyethers derived from hydroxy compounds or from their metallic derivatives from phenols
    • C08L71/12Polyphenylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0715Preforms or parisons characterised by their configuration the preform having one end closed

Definitions

  • the present invention relates to a predetermined powder composition, a predetermined film, and a method for producing the same.
  • JP-A-2002-265729 Japanese Unexamined Patent Publication No. 2003-171538 Japanese Unexamined Patent Publication No. 2003-200534 JP-A-2019-065061
  • Tetrafluoroethylene-based polymers have low surface tension, and their powders have extremely low affinity for aromatic polymers. Therefore, it is difficult for a molded product formed from a powder composition obtained by blending both powders to sufficiently have the physical characteristics of both polymers, not to mention the shape physical characteristics such as mechanical strength and processability due to layer separation and the like. ..
  • the present inventors have found that when the powder composition is further blended with other fillers, such a tendency tends to be remarkable, and the effect of blending the other fillers is unlikely to be exhibited.
  • An object of the present invention is suitable for forming a molded product containing a predetermined tetrafluoroethylene polymer, aromatic polymer and filler, which are not limited to shape physical characteristics such as mechanical strength, and which have a high degree of three-party physical characteristics.
  • the present invention provides a powder composition, a film having a high degree of physical characteristics of the three, and a method for producing the same.
  • the present invention has the following aspects.
  • Tetrafluoroethylene polymer powder containing a unit based on perfluoro (alkyl vinyl ether) or a unit based on hexafluoropropylene, a powder of an inorganic filler having a moth hardness of 3 to 9, and a thermoplastic aromatic material.
  • a powder composition comprising a polymer powder.
  • the tetrafluoroethylene-based polymer is a polymer having an oxygen-containing polar group, which contains a unit based on tetrafluoroethylene and a unit based on perfluoro (alkyl vinyl ether).
  • the content of the tetrafluoroethylene polymer, the content of the inorganic filler, and the content of the aromatic polymer are, in this order, 10 to 40% by mass, 5 to 40% by mass, and 20 to 85% by mass.
  • a method for producing a film wherein the powder composition according to any one of [1] to [10] is melt-extruded to obtain a film.
  • a tetrafluoroethylene-based polymer containing a unit based on perfluoro (alkyl vinyl ether) or a unit based on hexafluoropropylene, an inorganic filler having a hardness of 3 to 9 and a thermoplastic aromatic polymer.
  • the distribution amount of the tetrafluoroethylene-based polymer in the surface region in the thickness direction of the film is higher than the distribution amount of the tetrafluoroethylene-based polymer in the central region in the thickness direction of the film, [12]. the film.
  • the film of [12] or [13], wherein the distribution amount of the inorganic filler in the central region in the thickness direction of the film is higher than the distribution amount of the inorganic filler in the surface region in the thickness direction of the film.
  • each of the predetermined tetrafluoroethylene polymer powder, aromatic polymer powder and filler powder is contained, and the physical characteristics of the three parties are not limited to the shape physical properties such as mechanical strength.
  • a molded product such as a film having a high degree of the above can be obtained.
  • the "average particle size” is the volume-based cumulative 50% diameter of the object determined by the laser diffraction / scattering method.
  • the “melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak obtained by analyzing the polymer by the differential scanning calorimetry (DSC) method.
  • the "glass transition point” is a value measured by analyzing a polymer by a dynamic viscoelasticity measurement (DMA) method.
  • the “substantially spherical inorganic filler” is an inorganic particle in which the ratio of the minor axis to the major axis is 0.7 or more and the proportion of spherical particles is 95% or more when observed with a scanning electron microscope (SEM). Means a filler.
  • the powder composition of the present invention (hereinafter, also referred to as “the present composition”) is a unit based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE unit) or a unit based on hexafluoropropylene (HFP) (HFP unit).
  • thermoplastic aromatic polymer also referred to as “TAr polymer”.
  • TFE polymer electrical properties such as low dielectric adjunct
  • TA polymer processing, optical properties, etc.
  • a molded product such as a film having a good balance with linear expandability and the like can be obtained. The reason is not always clear, but it can be considered as follows.
  • the TFE-based polymer can be said to be a thermoplastic and crystalline polymer, and is excellent in physical stress resistance and heat resistance, and the powder thereof has a predetermined hardness. Therefore, it is considered that the powder of the TFE-based polymer in the softened state is densely dispersed in the melted or softened TAr polymer while being pulverized and atomized by the hard inorganic filler during melt extrusion molding. Further, since the TFE polymer itself does not deteriorate (fibrilize or the like) during this dispersion, it is considered that the affinity between any of the components is not impaired.
  • the present composition when the present composition is subjected to melt extrusion molding, a molded product densely containing a hard inorganic filler having a sea-island structure composed of a sea phase containing a Tar polymer and a fine island phase containing a TFE-based polymer. Is also considered to be easily formed. Therefore, it is considered that the molded product obtained from the present composition is a molded product having a high degree of physical characteristics of the three (TFE-based polymer, TAr polymer and hard inorganic filler).
  • a molded product (film, etc.) obtained by melt extrusion molding of this composition has physical properties such as low dielectric constant, low dielectric loss tangent property, low linear expansion coefficient, adhesiveness, and moldability. doing.
  • a molded product can be suitably used as a material or member of a printed circuit board.
  • the dielectric constant of the molded product obtained from the present composition measured at 10 GHz is preferably 2.0 to 4.0.
  • the TFE-based polymer in the present invention is a polymer containing TFE units and PAVE units or HFP units, that is, a polymer containing TFE units and PAVE units (PFA-based polymer), or a polymer containing TFE units and HFP units (a polymer containing TFE units and HFP units). It is a FEP-based polymer), and is more preferable to be a PFA-based polymer from the viewpoint of being more excellent in physical stress resistance and heat resistance and forming fine spherulites in a molded product to further enhance the adhesiveness.
  • CF 2 CFOCF 3 (PMVE)
  • CF 2 CFOCF 2 CF 3
  • the melting temperature (melting point) of the TFE polymer is preferably 260 to 320 ° C, more preferably 285 to 320 ° C.
  • the glass transition point of the TFE polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
  • the TFE-based polymer preferably further has units based on other monomers.
  • the other monomers include olefins (ethylene, propylene, etc.), chlorotrifluoroethylene, fluoroolefins (hexafluoropropylene, fluoroalkylethylene, etc.), and monomers having an oxygen-containing polar group described later.
  • the TFE-based polymer preferably has an oxygen-containing polar group.
  • the oxygen-containing polar group may be contained in the unit contained in the TFE-based polymer, or may be contained in the terminal group of the polymer main chain.
  • the latter TFE-based polymer includes a TFE-based polymer having an oxygen-containing polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like, or an oxygen-containing polymer prepared by plasma treatment, ionization line treatment, or radiation treatment. Examples thereof include TFE-based polymers having a polar group.
  • oxygen-containing polar group a hydroxyl group-containing group, a carbonyl group-containing group, and a phosphono group-containing group are preferable, a hydroxyl group-containing group and a carbonyl group-containing group are more preferable, and a carbonyl group-containing group is particularly preferable.
  • a hydroxyl group-containing group an alcoholic hydroxyl group-containing group is preferable, and -CF 2 CH 2 OH, -C (CF 3 ) 2 OH and 1,2-glycol group (-CH (OH) CH 2 OH) are more preferable.
  • Examples of the carbonyl group-containing group include a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), an acid anhydride residue (-C (O) OC (O)-), and the like.
  • a carbonate group (-OC (O) O-) are preferable, and an acid anhydride residue is more preferable.
  • the number of carbonyl group-containing groups in the TFE-based polymer is preferably 10 to 5000, more preferably 50 to 2000, per 1 ⁇ 10 6 main chain carbon atoms. ..
  • the number of carbonyl group-containing groups in the TFE-based polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • the TFE-based polymer having an oxygen-containing polar group it is particularly preferable to have a unit based on a monomer having an oxygen-containing polar group.
  • a monomer having a hydroxyl group-containing group or a carbonyl group-containing group is preferable, and a monomer having a carbonyl group-containing group is more preferable.
  • the monomer having a carbonyl group-containing group include itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter also referred to as “NAH”) and maleic anhydride.
  • TFE-based polymers include polymers containing TFE units, PAVE units and units based on monomers with oxygen-containing polar groups (1), 95.0-98.0 mol% TFE units and 2.0.
  • examples include polymers consisting of ⁇ 5.0 mol% PAVE units (2), polymers containing TFE units and PMVE units. These polymers are particularly excellent in physical stress resistance, and when the powder composition is subjected to melt extrusion molding, fine spherulites are formed and it is easy to form a molded product having better adhesiveness. ..
  • the polymer (1) a polymer containing a TFE unit and a PAVE unit and a monomer having a hydroxyl group-containing group or a carbonyl group-containing group is preferable.
  • the TFE unit is 90 to 98 mol%
  • the PAVE unit is 1.5 to 9.97 mol%
  • the unit based on the above monomer is 0.01 to 3 mol%, based on all the units.
  • Polymers containing each are preferable.
  • Specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
  • the polymer (2) a polymer consisting of only TFE units and PAVE units is preferable.
  • the content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the monomer units.
  • the polymer (2) preferably does not have an oxygen-containing polar group.
  • the polymer (2) does not have oxygen-containing polar groups when the number of oxygen-containing polar groups contained in the polymer is less than 500 per 1 ⁇ 10 6 carbon atoms constituting the polymer main chain. It means that there is.
  • the number of oxygen-containing polar groups is preferably 100 or less, more preferably less than 50.
  • the lower limit of the number of oxygen-containing polar groups is usually 0.
  • the polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate an oxygen-containing polar group as the terminal group of the polymer chain, and a TFE-based polymer having an oxygen-containing polar group is fluorinated. May be manufactured.
  • the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
  • At least a part of the fine particles constituting the powder of the TFE-based polymer may be fine particles containing components other than the TFE-based polymer, but the fine particles made of the TFE-based polymer are preferable.
  • the components other than the TFE-based polymer include thermoplastic polymers.
  • the thermoplastic polymer may be a Tar polymer.
  • the thermoplastic polymer other than the TA polymer include TFE-based polymers and polymers other than the TA polymer, which will be described later.
  • the amount of the polymer component other than the TFE-based polymer is preferably 30% by mass or less, more preferably 15% by mass or less of the total polymer component. preferable.
  • the content of the TAr polymer is preferably 20% by mass or less, more preferably 10% by mass or less of the total polymer components.
  • At least a part of the fine particles constituting the powder of the TFE-based polymer may be fine particles of the TFE-based polymer containing an inorganic filler.
  • oxides, nitrides, simple metals, alloys and carbons are preferable, and silicon oxide (silica) and metal oxides (berylium oxide, cerium oxide, alumina, soda alumina, magnesium oxide, zinc oxide and oxidation are preferable. Titanium etc.), boron nitride, and magnesium metasilicate (steatite) are more preferable, silica and boron nitride are more preferable, and silica is particularly preferable.
  • the inorganic filler may be a hard inorganic filler, but in that case, it is a part of the total amount of the hard inorganic filler contained in the powder composition of the present invention, and the other is a powder of the hard inorganic filler.
  • the fine particles containing the TFE polymer and the inorganic filler preferably have the TFE polymer as the core and the particles having the inorganic filler on the surface of the core. Such particles are obtained, for example, by coalescing (colliding, agglomerating, etc.) particles of a TFE-based polymer and particles of an inorganic filler.
  • the TFE-based polymer is a powder containing fine particles containing the TFE-based polymer and the inorganic filler
  • the TFE-based polymer is likely to be uniformly dispersed in the TA polymer during melt molding.
  • the amount of the inorganic filler in the powder is preferably 50% by mass or less with respect to the powder. , 40% by mass or less is more preferable.
  • the amount of the hard inorganic filler is preferably 40% by mass or less, more preferably 30% by mass or less with respect to the powder.
  • the fine particles constituting the powder of the TFE polymer contain additives such as an organic filler, an organic pigment, a metal soap, a surfactant, an ultraviolet absorber, a lubricant, and a silane coupling agent, which will be described later. May be good.
  • the amount of the additive in the powder is preferably 10% by mass or less, more preferably 5% by mass or less, based on the powder.
  • the average particle size of the powder of the TFE polymer (that is, the average particle size of the fine particles constituting the powder of the TFE polymer) is preferably 0.1 to 200 ⁇ m, more preferably 1 to 100 ⁇ m.
  • the pulverization of the powder of the TFE polymer by the hard inorganic filler progresses to a high degree, and it is easy to form a molded product having a more dense sea-island structure.
  • the hard inorganic filler in the present invention is an inorganic filler having a Mohs hardness of 3 to 9.
  • the Mohs hardness of the hard inorganic filler is preferably 5 or more, and more preferably 6 or more. In this case, in the melt extrusion molding, the pulverization of the powder of the TFE-based polymer by the hard inorganic filler is highly likely to proceed.
  • the hard inorganic filler may contain a component other than the inorganic component, but is preferably composed of an inorganic component. Examples of components other than the inorganic components include organic compounds such as organic substances used in surface treatment agents described later and soft inorganic compounds such as boron nitride.
  • an inorganic filler composed of aluminum nitride, beryllium oxide (berilia), silicon oxide (silica), cerium oxide, aluminum oxide (alumina), magnesium oxide (magnesia), zinc oxide or titanium oxide is preferable.
  • the hard inorganic filler may consist of two or more kinds of inorganic components.
  • the hard inorganic filler preferably contains silicon oxide.
  • the hard inorganic filler containing silicon oxide not only has a high hardness, but also tends to enhance the interaction with the TFE polymer. Therefore, it is easy to form a molded product having a more dense sea-island structure from the molded product containing such an inorganic filler in melt extrusion molding. In addition, its low line expansion is particularly likely to occur.
  • the content of silicon oxide in the hard inorganic filler is preferably 50% by mass or more, more preferably 75% by mass or more.
  • the content of silicon oxide is preferably 100% by mass or less.
  • berylia filler Mohs hardness: 9
  • magnesia filler Mohs hardness: 5.5
  • silica filler Mohs hardness: 7
  • silica filler is more preferable.
  • the silica filler is preferably a molten silica filler or an amorphous silica filler. In this case, the molded product tends to have the low thermal expansion property.
  • At least a part of the surface of the hard inorganic filler may be surface-treated.
  • the surface treatment agent used for such surface treatment include polyhydric alcohols (trimethylolethane, pentaeristol, propylene glycol, etc.), saturated fatty acids (stearic acid, lauric acid, etc.), esters thereof, alkanolamines, amines (trimethylamine, etc.). Triethylamine etc.), paraffin wax, silane coupling agent, silicone, polysiloxane, and metal oxides such as aluminum, silicon, zirconium, tin, titanium, antimony, hydroxides of those metals, hydration oxidation of those metals Examples include phosphates of those metals.
  • silane coupling agent a silane coupling agent having a functional group is preferable, and 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-Methoxyloxypropyltriethoxysilane and 3-isocyanatepropyltriethoxysilane are more preferred.
  • the average particle size of the hard inorganic filler powder (that is, the average particle size of the fine particles constituting the hard inorganic filler powder) is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more. Further, 10 ⁇ m or less is preferable, 2 ⁇ m or less is more preferable, and 1 ⁇ m or less is particularly preferable.
  • the average particle size of the hard inorganic filler is preferably equal to or less than the average particle size of the powder of the TFE polymer. If the average particle size of the hard inorganic filler powder is within such a range, the powder of the TFE polymer is highly pulverized by the melt extrusion molding, and a molded product having a finer sea-island structure is formed.
  • a combination of a hard inorganic filler powder having an average particle size of more than 0.10 ⁇ m and 1 ⁇ m or less and a TFE polymer powder having an average particle size of 1 ⁇ m or more and 3 ⁇ m or less is preferable.
  • the shape of the fine particles constituting the hard inorganic filler is preferably substantially spherical.
  • the ratio of the minor axis to the major axis is preferably 0.8 or more, more preferably 0.9 or more. The above ratio is preferably less than 1.
  • the powder of the hard inorganic filler composed of substantially spherical fine particles tends to enhance the interaction with each component in melt extrusion molding.
  • Suitable specific examples of the hard inorganic filler powder include silica fillers having an average particle size of 1 ⁇ m or less (such as the “Admafine” series manufactured by Admatex), and an average particle size of more than 0.10 ⁇ m and 0.5 ⁇ m. Examples thereof include spherical fused silica (“SFP” series manufactured by Denka Co., Ltd., etc.) described below.
  • SFP spherical fused silica
  • aromatic polyimide, aromatic polyamideimide, aromatic polyester, aromatic polyesteramide, polyphenylene ether and polyphenylene sulfide are preferable.
  • a liquid crystal polymer is preferable.
  • the liquid crystal polymer is a Tar polymer that forms an anisotropic molten phase, and is generally called a thermotropic liquid crystal polymer.
  • Specific examples of the liquid crystal polymer include thermoplastic and liquid crystalline aromatic polyester and aromatic polyester amide.
  • the former is often referred to as a thermotropic liquid crystal polyester, and the latter is often referred to as a thermotropic liquid crystal polyester amide.
  • An imide bond, a carbonate bond, a carbodiimide bond, an isocyanate bond, or the like may be further introduced into the liquid crystal polymer.
  • the TFE polymer and the hard inorganic filler are highly dispersed in the TA polymer to form a molded product. Therefore, the anisotropy of the physical properties derived from the liquid crystal polymer in the flow direction (MD direction) of the molded product, which is likely to occur when the Tar polymer is a liquid crystal polymer, is alleviated by the highly dispersed TFE polymer or hard inorganic filler. Easy to be done. In other words, a molded product (film or the like) obtained by melt extrusion molding from the present composition in which the Tar polymer is a liquid crystal polymer tends to be highly isotropic.
  • the molded product As a result, while having the physical characteristics peculiar to the liquid crystal polymer (mechanical properties such as strength, elasticity and vibration absorption, and electrical properties such as dielectric properties), the decrease in tensile strength and thermal expansion due to anisotropy is suppressed. It is easy to obtain the molded product. In particular, it is easy to obtain a molded product such as a film having excellent dimensional stability during immersion in a chemical solution or heat treatment.
  • the anisotropic molten phase of the liquid crystal polymer may be confirmed, for example, by placing the polymer sample on a hot stage, heating the polymer sample in a nitrogen gas atmosphere, and observing the transmitted light of the polymer sample.
  • the melting temperature (melting point) of the liquid crystal polymer is preferably 250 to 370 ° C, more preferably 270 to 350 ° C.
  • Specific examples of the TAr polymer, which is a liquid crystal polymer include "Laperos” manufactured by Polyplastics, "Vectra” manufactured by Celanese, "UENOLCP” manufactured by Ueno Fine Chemicals Industry, and “Sumika Super LCP” manufactured by Sumitomo Chemical Co., Ltd. Examples include “XYDAR” manufactured by SOLVAY SPECIALTY POLYMERS, "Zider” manufactured by JX Nikko Nisseki Energy Co., Ltd., and "Siberus” manufactured by Toray Industries, Inc.
  • the powder of the Tar polymer is a powder composed of fine particles containing the Tar polymer in a proportion of 50% by mass or more, and a powder composed of fine particles containing the Tar polymer in a proportion of 60 to 100% by mass is preferable.
  • the fine particles constituting the powder may be fine particles containing components other than the Tar polymer.
  • Such components include thermoplastic polymers other than TAr polymers, fibrous inorganic fillers, fibrous organic fillers, non-fibrous inorganic fillers, non-fibrous organic fillers, organic pigments, metal soaps, surfactants, and ultraviolet rays. Additives such as absorbents, lubricants and silane coupling agents can be mentioned.
  • the thermoplastic polymer other than the Tar polymer may be a TFE-based polymer
  • the non-fibrous inorganic filler may be a hard inorganic filler.
  • Ingredients other than TA polymer include glass fiber, carbon fiber (PAN-based carbon fiber, pitch-based carbon fiber), organic synthetic fiber (aromatic polyamide fiber, etc.), metal fiber (stainless fiber, aluminum fiber, etc.), inorganic fiber. Fibrous fillers such as (silicon carbide fiber, potassium titanate fiber, alumina fiber, etc.) and natural ore-based fiber (walasnite, asbestos, etc.) are preferable.
  • the content of the fibrous filler in the powder is preferably 40% by mass or less, more preferably 35% by mass or less.
  • the content of the thermoplastic polymer in the powder is preferably 40% by mass or less, more preferably 20% by mass or less of the total polymer components.
  • the thermoplastic polymer is a TFE-based polymer, it is preferably 20% by mass or less, more preferably 10% by mass or less of the total polymer components.
  • the content of such additives in the powder is preferably 30% by mass or less, more preferably 15% by mass or less.
  • the amount of the hard inorganic filler is preferably 20% by mass or less, more preferably 10% by mass or less with respect to the powder.
  • the average particle size of the tar polymer powder (that is, the average particle size of the fine particles constituting the tar polymer powder) is preferably 0.1 to 200 ⁇ m, more preferably 1 to 100 ⁇ m.
  • the TFE polymer and the hard inorganic filler are dispersed in the Tar polymer, and it is easy to form a molded product having a dense sea-island structure.
  • the present composition may further contain powders other than TFE-based polymer powders, hard inorganic filler powders, and TAr polymer powders.
  • powders other than TFE-based polymer powders include powders of thermoplastic polymers other than TFE polymers and TAr polymers, powders of polymers other than thermoplastic polymers, and powders of fillers other than hard inorganic fillers (such as the inorganic fillers and organic fillers).
  • Etc. can be mentioned.
  • the organic filler include fibrous organic fillers made of polymer fibers that do not melt in melt extrusion molding.
  • thermoplastic polymer examples include polyolefin polymers (polyethylene, polypropylene, polybutylene, acid-modified polyethylene, acid-modified polypropylene, acid-modified polybutylene, etc.) and fluoropolymers other than TFE-based polymers (polyfluorovinylidene, polytetrafluoro).
  • polystyrene-based polymers polystyrene, polyacrylonitrile styrene, polyacrylonitrile butadiene styrene, etc.
  • polycarbonate-based polymers poly (meth) acrylic-based polymers, polyvinyl chloride, polyarelliton-based polymers, polyurethane-based polymers.
  • the polymer powder other than the thermoplastic polymer include a powder made of a cured product of a thermosetting resin, a powder of non-thermomeltable polytetrafluoroethylene, and the like.
  • the powder of the organic filler examples include powders composed of aromatic polyamide fibers, polyaramid fibers, polyparaphenylene benzoxazole fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, nylon fibers, polyethylene fibers and the like.
  • the content of the other powder in the present composition is preferably 30% by mass or less, more preferably 15% by mass or less.
  • the composition is particularly preferably composed of three types of powders: a TFE-based polymer powder, a hard inorganic filler powder, and a TAr polymer powder.
  • the content ratio of the powders of these three substances in the following composition refers to the ratio in the composition composed of these three types of powders.
  • the content of the TFE polymer in the present composition is preferably 5% by mass or more, more preferably 10% by mass or more. Further, 50% by mass or less is preferable, and 40% by mass or less is more preferable.
  • the content of the Tar polymer in the present composition is preferably 10% by mass or more, more preferably 20% by mass or more. Further, 90% by mass or less is preferable, and 80% by mass or less is more preferable.
  • the content of the TAr polymer in the present composition is preferably higher than the content of the TFE-based polymer. That is, the present composition preferably contains a Tar polymer as a main polymer component. In this case, since the interaction with the TFE-based polymer is likely to be enhanced, it is easy to form a molded product having a finer sea-island structure in melt extrusion molding. In addition, its low line expansion is particularly likely to occur.
  • the content of the hard inorganic filler in the present composition is preferably 5% by mass or more, more preferably 10% by mass or more. Further, 50% by mass or less is preferable, and 40% by mass or less is more preferable.
  • the ratio of the content of the hard inorganic filler to the content of the TFE polymer in the present composition is preferably 0.2 to 1.0, more preferably 0.2 to 0.6. In this case, in melt extrusion molding, the powder of the TFE polymer is highly pulverized, and it is easy to obtain a molded product in which the hard inorganic filler is highly dispersed. In addition, it is easy for the molded product to have the physical characteristics of the three parties.
  • the contents of the TFE polymer, the Tar polymer, and the hard inorganic filler in the present composition are preferably 10 to 40% by mass, 5 to 40% by mass, and 20 to 85% by mass in this order.
  • the present composition is preferably produced by dry blending each component.
  • a mixing device such as a tumbler, a Henschel mixer, a hopper, a Banbury mixer, a roll, or a lavender can be used.
  • the present composition is preferably used for melt extrusion molding, and is preferably molded into a film by melt extrusion molding.
  • the melt extrusion molding is preferably carried out by a method using a T-die, and the composition charged from the hopper is melt-kneaded in an extruder (uniaxial screw or biaxial screw) and installed at the tip of the extruder. It is more preferable to carry out by a method of extruding from the T-die to form a film.
  • the film obtained by melt extrusion is preferably further stretched. This gives a more isotropic film.
  • the stretching treatment is a treatment in which the film is softened at a temperature equal to or lower than its melting point and stretched in one direction (1 axis: MD direction) or 2 directions (2 axes: MD direction and TD direction).
  • the stretching treatment is more preferably a biaxial stretching treatment from the viewpoint of obtaining an isotropic film.
  • Examples of the stretching method include an inflation method and a flat method. As the flat method, either simultaneous biaxial stretching or sequential biaxial stretching can be adopted.
  • the obtained film may be further subjected to a laminating treatment, a stretching treatment, a cooling treatment and a peeling treatment.
  • the laminating treatment is a treatment of laminating a release film on both sides or one side of the obtained film to form a laminated body.
  • the laminating method include a thermocompression bonding method and a surface treatment method, in which a thermocompression bonding roll, a thermal press device, and a laminator are used.
  • a thermocompression bonding roll when a thermocompression bonding roll is used, the obtained film and the release film may be laminated and passed through the thermocompression bonding roll for thermocompression bonding.
  • a hot press device is used, the film obtained on the bottom plate of the hot press device and the release film may be laminated and thermocompression bonded to cool the film.
  • the composition in a molten state extruded from the T die is supplied to the gap between the two release films, and the laminate is formed in the gap between the thermocompression bonding rolls. Good.
  • a coextrusion method using a multilayer die is used, a multilayer body in which the film formed from the present composition and the release film are each layered can be formed.
  • the material of the release film is polyethylene, polypropylene, polyether ether ketone, polyether sulfone, polyimide, polyetherimide, polyarylate, polycarbonate, polystyrene, polyvinyl chloride, polyester, polyamide, polyamideimide, thermoplastic polyimide, polyphenylene sulfide.
  • the thickness of the release film is preferably 10 to 200 ⁇ m, more preferably 20 to 100 ⁇ m.
  • the stretching treatment is a treatment for obtaining a stretched product by stretching the laminated body while softening the release film layer of the laminated body obtained by the laminating treatment. This stretching treatment may be carried out continuously.
  • the cooling treatment is a treatment for cooling the stretched product obtained by the stretching treatment. Cooling may be natural cooling, or a cooling roll or the like may be used.
  • the peeling treatment is a treatment for peeling the peeling film from the cooled stretched product. The peeling process can be performed by a 90 ° peeling method or a 180 ° peeling method. By such a series of treatments, a film having a more suppressed coefficient of thermal expansion can be obtained from the present composition.
  • Inflation molding may be used in the molding of the film.
  • inflation molding the melt-kneaded product of the present composition extruded from an annular die (round die, circular die) is stretched in two directions (MD direction and TD direction), so that the isotropic property of the film is likely to be improved. ..
  • insulation molding since the melt-kneaded product is mechanically stretched in two directions by taking up and expanding, it is easy to mold a film in which polymer molecules are oriented in two directions. Further, at this time, a film having a structure similar to that of the above-mentioned laminate may be formed by inflation molding. That is, the composition and other thermoplastic polymers are melt-extruded from a cyclic die and inflation-molded to form a laminate.
  • the laminate that can be formed at this time is a two-layer laminate (type 1) composed of a film layer formed from one of the present compositions and one release film layer, and one piece between the two release film layers.
  • a three-layer laminate in which a film layer formed from the composition is sandwiched (type 2), and a three-layer laminate in which one release film layer is sandwiched between two film layers formed from the present composition (type 2). 3) is mentioned, and a type 1 laminate or a type 3 laminate is preferable.
  • the thickness of the film layer formed from the present composition in these laminates is preferably 3 to 150 ⁇ m.
  • the thickness of the release film layer is preferably at least twice the thickness of the film layer.
  • the film of the present invention (hereinafter, also referred to as "the present film”) contains a TFE-based polymer, an inorganic filler having a moth hardness of 3 to 9, a TAr polymer, a sea phase containing a TAr polymer, and a TFE-based polymer. It has a sea-island structure composed of an island fauna including.
  • the definitions of TFE-based polymers, hard inorganic fillers, and TAr polymers in the film are similar to those in the composition, including the preferred range.
  • the TFE-based polymer, the hard inorganic filler, and the TAr polymer may be uniformly distributed or may be unevenly distributed.
  • the distribution amount of the TFE-based polymer in the surface region in the thickness direction of the film is preferably higher than the distribution amount of the TFE-based polymer in the central region in the thickness direction of the film. In this case, the physical properties (particularly, the dielectric properties such as low dielectric contact and the adhesiveness) caused by the TFE polymer in this film are likely to be remarkably exhibited.
  • the distribution amount of the hard inorganic filler in the central region in the thickness direction of the film is preferably higher than the distribution amount of the hard inorganic filler in the surface region in the thickness direction of the film. In this case, the physical characteristics (particularly, low line expansion) caused by the hard inorganic filler in this film are likely to be remarkably exhibited.
  • the thickness of this film is preferably 5 to 1000 ⁇ m, more preferably 10 to 200 ⁇ m.
  • the film is preferably produced by melt extrusion of the composition. In this case, it is easy to manufacture films of various arbitrary embodiments described above without impairing processability such as mechanical strength and bendability.
  • As a method for producing the film it is preferable to use the T die coating method. Specifically, the melt-kneaded composition is discharged from the T die in a molten state and brought into contact with a cooling roll to form a film. Is preferable. It is preferable that the melt-kneaded composition is heated and held in a non-contact heating unit before coming into contact with the cooling roll. It is preferable that the composition cooled by the cooling roll is formed into a film while being conveyed by the conveying roller, and is wound by the take-up roll to be formed into a long film.
  • the present film has a metal layer formed on its surface to form a metal-clad laminate.
  • the metal include various metals such as copper, nickel, aluminum, silver, gold and tin, and alloys thereof (stainless steel and the like).
  • Examples of such a metal-clad laminate include a single-sided metal-clad laminate having a metal layer and the present film in this order, a metal layer, and a double-sided metal-clad laminate having the present film layer and the metal layer in this order. Further, these metal-clad laminates may have further another layer (prepreg layer, glass member layer, ceramic member layer, other resin film layer).
  • a metal foil is attached to the surface of this film by a laminating method or a thermocompression bonding method, or a metal layer is formed on the surface of this film by a sputtering method or a vapor deposition method.
  • Method, method of forming a metal layer on the surface of this film by electroless plating or electrolytic plating after electroless plating, printing method using metal conductive ink (screen printing method, inkjet method, A method of forming a metal layer on the surface of the present film by the ion plating method) can be mentioned.
  • the metal foil a copper foil such as a rolled copper foil or an electrolytic copper foil is preferable.
  • the surface of the film may be surface-treated in order to further improve the adhesiveness with the metal layer.
  • Examples of the surface treatment include plasma treatment, corona treatment, flame treatment, and itro treatment.
  • Such a metal-clad laminate can be used as a material or member for a printed circuit board, a high heat dissipation substrate, an antenna substrate, or the like.
  • a printed circuit board can be obtained by etching the metal layer of the metal-clad laminate to form a pattern circuit.
  • an interlayer insulating film may be formed on the pattern circuit, and a pattern circuit may be further formed on the interlayer insulating film.
  • a solder resist may be laminated on the pattern circuit, or a coverlay film may be laminated.
  • the coverlay film is typically composed of a base film and an adhesive layer formed on the surface thereof, and the surface on the adhesive layer side is attached to the printed circuit board.
  • This film may be used as the base film of the coverlay film.
  • an interlayer insulating film (adhesive layer) using this film may be formed on the pattern circuit, and a polyimide film may be laminated as a coverlay film.
  • PFA-based powder 1 Contains 98.0 mol%, 0.1 mol%, and 1.9 mol% of TFE units, NAH units, and PPVE units in this order, and contains a carbonyl group-containing group as the main chain carbon number.
  • Powder (average particle size: 2.0 ⁇ m) composed of 1000 PFA-based polymers (melting temperature: 300 ° C.) per 1 ⁇ 10 6 pieces
  • PFA-based powder 2 A powder (average particle size) composed of a PFA-based polymer (melting temperature: 305 ° C.) having 40 carbonyl group-containing groups per 1 ⁇ 10 6 main chain carbon atoms, which is composed of TFE units and PPVE units.
  • Aromatic powder 1 Liquid crystal polymer powder that is an aromatic polymer containing 30% by mass of glass fiber (melting temperature: 320 ° C; manufactured by Ueno Fine Chemicals Industry, "UENO LCP 6030G”)
  • Inorganic filler 1 Silica filler having a Mohs hardness of 7 and a substantially spherical shape (average particle size: 0.5 ⁇ m; manufactured by Admatex, “Admafine SO-C2”)
  • Inorganic filler 2 Silica filler having a Mohs hardness of 7 and a substantially spherical shape (average particle size: 5 ⁇ m)
  • the evaluation of the dimensional stability of the film was based on JIS C 6488: 1996. From the widthwise edge of the obtained film, a 30 cm square square sample having two sides along the flow direction and two sides along the width direction was cut out. Line segments with a length of 25 cm are drawn on the diagonal lines of the surface of this sample (the 45 ° direction in which the angle formed by the flow direction is 45 ° and the 135 ° direction orthogonal to the 45 ° direction), and each line segment is drawn. Punch holes were formed around both ends of the. The sample was immersed in an aqueous iron chloride solution, the distance between the centers of the two punch holes before and after immersion was measured, and the expansion / contraction rate of the film in the oblique direction during etching was determined.
  • the sample was heat-treated at 150 ° C. for 30 minutes and then cooled to 25 ° C., and the distance between the centers of the two punch holes before and after the heat treatment was measured to determine the expansion / contraction rate of the film in the oblique direction during the heat treatment. ..
  • a powder composition 1 was prepared by dry-blending PFA-based powder 1 (20 parts by mass), aromatic powder 1 (100 parts by mass), and hard inorganic filler 1 (15 parts by mass).
  • the powder composition 1 was put into a twin-screw extruder (manufactured by Technobel Co., Ltd., "KZW15TW-45MG"), melt-kneaded (screw rotation speed: 200 rpm, set resin temperature: 370 ° C.), and a T-die installed at the tip thereof.
  • the film 1 showed high adhesiveness to the copper foil, and its dielectric constant was 2.9, which was excellent in dielectric properties. Further, the stretch ratio in the diagonal direction of the film in the etching of the film 1 and the stretch ratio (absolute value) in the diagonal direction of the film in the heat treatment are both less than 0.1%, and the film 1 has dimensional stability. It was excellent. [Examples 2 to 4] Films 2 to 4 were obtained in the same manner as in Film 1, except that the types and amounts of the respective powders and inorganic fillers were changed as shown in Table 1 below.
  • each film was measured as follows and evaluated according to the following criteria. Each film and a solid copper foil were placed facing each other and heat-pressed (temperature: 340 ° C., pressing force: 15 kN / m) to obtain a laminate having a film layer and a copper foil layer. A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from this laminated body. The copper foil layer was peeled from the film layer to a position 50 mm from one end in the length direction of the test piece.
  • the test piece When peeling, the test piece is peeled 90 degrees at a tensile speed of 50 mm / min using a tensile tester (manufactured by Orientec) with the position 50 mm from one end in the length direction as the center, and the measurement distance is 10 mm to 30 mm. The average load up to was measured and used as the peel strength (N / cm).
  • N / cm The peel strength is 10 N / cm or more.
  • the peel strength is 5 N / cm or more and less than 10 N / cm.
  • X The peel strength is less than 5 N / cm.
  • the films 1 to 4 are the sea containing the liquid crystal polymer 1. It had a sea-island structure composed of a phase and an island phase containing PFA-based polymer 1 or 2. Further, in the films 1 to 3, the distribution amount of the PFA-based polymer in the surface region in the film thickness direction was higher than the distribution amount of the PFA-based polymer in the central region in the film thickness direction.
  • the powder composition of the present invention and the film of the present invention have high frequency characteristics, particularly electronic devices (radars, network routers, backplanes, wireless infrastructures, automobile sensors, engines) that require reduction of transmission loss in the millimeter wave band. It is useful as a material or member of a printed circuit board used for (management sensor, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Provided are: a powder composition suitable for forming, by melt extrusion, films having excellent dielectric characteristics and having adhesion, processability, and low linear expansion; and a film suitable for use as a material for printed wiring boards. The powder composition comprises a powder of a tetrafluoroethylene-based polymer including a unit based on a perfluoro(alkyl vinyl ether) or a unit based on hexafluoropropylene, a powder of an inorganic filler having a Mohs hardness of 3-9, and a powder of a thermoplastic aromatic polymer. The film comprises these ingredients and at least has a sea-island structure composed of a sea phase, which includes the aromatic polymer, and an island phase, which includes the tetrafluoroethylene-based polymer.

Description

粉体組成物、フィルム、及びフィルムの製造方法Powder composition, film, and method for producing film
 本発明は、所定の粉体組成物と、所定のフィルム及びその製造方法とに関する。 The present invention relates to a predetermined powder composition, a predetermined film, and a method for producing the same.
 近年、情報通信の分野では、信号の高周波化やダウンサイジング化の観点から、それに使用するプリント基板の高密度化が要求されている。
 プリント基板における絶縁体材料としては、ガラスクロスに熱硬化性樹脂を含浸させて成形したフィルムや、ポリイミド、液晶性の芳香族ポリマー等の芳香族ポリマーから成形されたフィルムが使用されている。
 さらに、これらの芳香族ポリマーより電気特性に優れたテトラフルオロエチレン系ポリマーが注目されており、両者の粉体をブレンドした粉体組成物、それから形成される成形物が提案されている(特許文献1~4参照)。
In recent years, in the field of information and communication, from the viewpoint of increasing the frequency and downsizing of signals, there is a demand for increasing the density of printed circuit boards used therein.
As the insulator material in the printed circuit board, a film formed by impregnating a glass cloth with a thermosetting resin and a film formed from an aromatic polymer such as polyimide or a liquid crystal aromatic polymer are used.
Further, a tetrafluoroethylene-based polymer having superior electrical properties to these aromatic polymers has attracted attention, and a powder composition obtained by blending both powders and a molded product formed from the powder composition have been proposed (Patent Documents). See 1-4).
特開2002-265729号公報JP-A-2002-265729 特開2003-171538号公報Japanese Unexamined Patent Publication No. 2003-171538 特開2003-200534号公報Japanese Unexamined Patent Publication No. 2003-200534 特開2019-065061号公報JP-A-2019-065061
 テトラフルオロエチレン系ポリマーは表面張力が低く、その粉体は芳香族ポリマーとの親和性が極めて低い。そのため、両者の粉体をブレンドした粉体組成物から形成される成形物は、層分離等により、機械的強度等の形状物性や加工性は無論、両者のポリマーの物性を充分に具備しにくい。粉体組成物に、さらに他のフィラーをブレンドする場合、かかる傾向は顕著になりやすく、他のフィラーのブレンドによる効果を発現しにくい点を、本発明者らは知見している。
 本発明の目的は、それぞれ所定の、テトラフルオロエチレン系ポリマー、芳香族ポリマー及びフィラーを含み、機械的強度等の形状物性に限らず、3者の物性を高度に具備する成形物の形成に適した粉体組成物、3者の物性を高度に具備するフィルム、及び、その製造方法の提供である。
Tetrafluoroethylene-based polymers have low surface tension, and their powders have extremely low affinity for aromatic polymers. Therefore, it is difficult for a molded product formed from a powder composition obtained by blending both powders to sufficiently have the physical characteristics of both polymers, not to mention the shape physical characteristics such as mechanical strength and processability due to layer separation and the like. .. The present inventors have found that when the powder composition is further blended with other fillers, such a tendency tends to be remarkable, and the effect of blending the other fillers is unlikely to be exhibited.
An object of the present invention is suitable for forming a molded product containing a predetermined tetrafluoroethylene polymer, aromatic polymer and filler, which are not limited to shape physical characteristics such as mechanical strength, and which have a high degree of three-party physical characteristics. The present invention provides a powder composition, a film having a high degree of physical characteristics of the three, and a method for producing the same.
 本発明は、下記の態様を有する。
 [1] ペルフルオロ(アルキルビニルエーテル)に基づく単位又はヘキサフルオロプロピレンに基づく単位を含むテトラフルオロエチレン系ポリマーの粉体と、モース硬度が3~9である無機フィラーの粉体と、熱可塑性の芳香族ポリマーの粉体とを含む、粉体組成物。
 [2] 前記前記テトラフルオロエチレン系ポリマーが、テトラフルオロエチレンに基づく単位及びペルフルオロ(アルキルビニルエーテル)に基づく単位を含む、酸素含有極性基を有するポリマーである、[1]の粉体組成物。
 [3] 前記無機フィラーが、酸化ケイ素を含むフィラーである、[1]又は[2]の粉体組成物。
 [4] 前記芳香族ポリマーが、ポリイミド、ポリアミドイミド、ポリエステル、ポリエステルアミド、ポリフェニレンエーテル又はポリフェニレンサルファイドである、[1]~[3]のいずれかの粉体組成物。
 [5] 前記芳香族ポリマーが、液晶ポリマーである、[1]~[4]のいずれかの粉体組成物。
The present invention has the following aspects.
[1] Tetrafluoroethylene polymer powder containing a unit based on perfluoro (alkyl vinyl ether) or a unit based on hexafluoropropylene, a powder of an inorganic filler having a moth hardness of 3 to 9, and a thermoplastic aromatic material. A powder composition comprising a polymer powder.
[2] The powder composition of [1], wherein the tetrafluoroethylene-based polymer is a polymer having an oxygen-containing polar group, which contains a unit based on tetrafluoroethylene and a unit based on perfluoro (alkyl vinyl ether).
[3] The powder composition of [1] or [2], wherein the inorganic filler is a filler containing silicon oxide.
[4] The powder composition according to any one of [1] to [3], wherein the aromatic polymer is polyimide, polyamideimide, polyester, polyesteramide, polyphenylene ether or polyphenylene sulfide.
[5] The powder composition according to any one of [1] to [4], wherein the aromatic polymer is a liquid crystal polymer.
 [6] 前記テトラフルオロエチレン系ポリマーの粉体の平均粒子径が、前記無機フィラーの平均粒子径より大きい、[1]~[5]のいずれかの粉体組成物。
 [7] 前記芳香族ポリマーの含有量が、前記テトラフルオロエチレン系ポリマーの含有量より多い、[1]~[6]のいずれかの粉体組成物。
 [8] 前記テトラフルオロエチレン系ポリマーの含有量に対する前記無機フィラーの含有量の比が、0.2~0.6である、[1]~[7]のいずれかの粉体組成物。
 [9] 前記テトラフルオロエチレン系ポリマーの含有量、前記無機フィラーの含有量、前記芳香族ポリマーの含有量が、この順に、10~40質量%、5~40質量%、20~85質量%である、[1]~[8]のいずれかの粉体組成物。
 [10] 溶融押出成形に用いられる、[1]~[9]のいずれかの粉体組成物。
[6] The powder composition according to any one of [1] to [5], wherein the average particle size of the powder of the tetrafluoroethylene polymer is larger than the average particle size of the inorganic filler.
[7] The powder composition according to any one of [1] to [6], wherein the content of the aromatic polymer is higher than the content of the tetrafluoroethylene-based polymer.
[8] The powder composition according to any one of [1] to [7], wherein the ratio of the content of the inorganic filler to the content of the tetrafluoroethylene polymer is 0.2 to 0.6.
[9] The content of the tetrafluoroethylene polymer, the content of the inorganic filler, and the content of the aromatic polymer are, in this order, 10 to 40% by mass, 5 to 40% by mass, and 20 to 85% by mass. A powder composition according to any one of [1] to [8].
[10] The powder composition according to any one of [1] to [9] used for melt extrusion molding.
 [11] [1]~[10]のいずれかの粉体組成物を溶融押出成形してフィルムを得る、フィルムの製造方法。
 [12] ペルフルオロ(アルキルビニルエーテル)に基づく単位又はヘキサフルオロプロピレンに基づく単位を含むテトラフルオロエチレン系ポリマーと、モースが硬度である3~9の無機フィラーと、熱可塑性の芳香族ポリマーとを含み、前記芳香族ポリマーを含む海相と前記テトラフルオロエチレン系ポリマーを含む島相とから構成された海島構造を少なくとも有する、フィルム。
 [13] 前記フィルムの厚さ方向における表面領域の前記テトラフルオロエチレン系ポリマーの分布量が、前記フィルムの厚さ方向における中心領域の前記テトラフルオロエチレン系ポリマーの分布量より高い、[12]のフィルム。
 [14] 前記フィルムの厚さ方向における中心領域の前記無機フィラーの分布量が、前記フィルムの厚さ方向における表面領域の前記無機フィラーの分布量より高い、[12]又は[13]のフィルム。
 [15] 前記フィルムの厚さが、5~1000μmである、[12]~[14]のいずれかのフィルム。
[11] A method for producing a film, wherein the powder composition according to any one of [1] to [10] is melt-extruded to obtain a film.
[12] A tetrafluoroethylene-based polymer containing a unit based on perfluoro (alkyl vinyl ether) or a unit based on hexafluoropropylene, an inorganic filler having a hardness of 3 to 9 and a thermoplastic aromatic polymer. A film having at least a sea-island structure composed of a sea phase containing the aromatic polymer and an island phase containing the tetrafluoroethylene-based polymer.
[13] The distribution amount of the tetrafluoroethylene-based polymer in the surface region in the thickness direction of the film is higher than the distribution amount of the tetrafluoroethylene-based polymer in the central region in the thickness direction of the film, [12]. the film.
[14] The film of [12] or [13], wherein the distribution amount of the inorganic filler in the central region in the thickness direction of the film is higher than the distribution amount of the inorganic filler in the surface region in the thickness direction of the film.
[15] The film according to any one of [12] to [14], wherein the film has a thickness of 5 to 1000 μm.
 本発明の粉体組成物によれば、それぞれ所定の、テトラフルオロエチレン系ポリマーの粉末、芳香族ポリマーの粉末及びフィラーの粉末を含み、機械的強度等の形状物性に限らず、3者の物性を高度に具備するフィルム等の成形物が得られる。 According to the powder composition of the present invention, each of the predetermined tetrafluoroethylene polymer powder, aromatic polymer powder and filler powder is contained, and the physical characteristics of the three parties are not limited to the shape physical properties such as mechanical strength. A molded product such as a film having a high degree of the above can be obtained.
 以下の用語は、以下の意味を有する。
 「平均粒子径」は、レーザー回折・散乱法によって求められる対象物の体積基準累積50%径である。
 「溶融温度(融点)」は、示差走査熱量測定(DSC)法でポリマーを分析して求められる、融解ピークの最大値に対応する温度である。
 「ガラス転移点」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 「略真球状の無機フィラー」とは、走査型電子顕微鏡(SEM)によって観察した際に、長径に対する短径の比が0.7以上である球形の粒子の占める割合が95%以上である無機フィラーを意味する。
The following terms have the following meanings.
The "average particle size" is the volume-based cumulative 50% diameter of the object determined by the laser diffraction / scattering method.
The "melting temperature (melting point)" is the temperature corresponding to the maximum value of the melting peak obtained by analyzing the polymer by the differential scanning calorimetry (DSC) method.
The "glass transition point" is a value measured by analyzing a polymer by a dynamic viscoelasticity measurement (DMA) method.
The "substantially spherical inorganic filler" is an inorganic particle in which the ratio of the minor axis to the major axis is 0.7 or more and the proportion of spherical particles is 95% or more when observed with a scanning electron microscope (SEM). Means a filler.
 本発明の粉体組成物(以下、「本組成物」とも記す。)は、ペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)又はヘキサフルオロプロピレン(HFP)に基づく単位(HFP単位)を含むテトラフルオロエチレン系ポリマー(以下、「TFE系ポリマー」とも記す。)の粉体と、モース硬度が3~9である無機フィラー(以下、この特定硬度を有する無機フィラーを「硬質無機フィラー」とも記す。)の粉体と、熱可塑性の芳香族ポリマー(以下、「TArポリマー」とも記す。)の粉体と、を含む。
 本組成物を溶融押出成形に供すれば、TFE系ポリマーの物性(低誘電正接等の電気物性等)と、TArポリマーの物性(加工性、光学特性等)と、硬質無機フィラーの物性(低線膨張性等)とがバランスした、フィルム等の成形物が得られる。その理由は必ずしも明確ではないが、以下の様に考えられる。
The powder composition of the present invention (hereinafter, also referred to as “the present composition”) is a unit based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE unit) or a unit based on hexafluoropropylene (HFP) (HFP unit). A powder of a tetrafluoroethylene polymer (hereinafter, also referred to as "TFE polymer") containing the above, and an inorganic filler having a moth hardness of 3 to 9 (hereinafter, an inorganic filler having this specific hardness is referred to as a "hard inorganic filler". Also referred to as) powder, and a powder of a thermoplastic aromatic polymer (hereinafter, also referred to as “TAr polymer”).
When this composition is subjected to melt extrusion molding, the physical properties of the TFE polymer (electrical properties such as low dielectric adjunct), the physical properties of the TA polymer (processability, optical properties, etc.), and the physical properties of the hard inorganic filler (low) A molded product such as a film having a good balance with linear expandability and the like can be obtained. The reason is not always clear, but it can be considered as follows.
 TFE系ポリマーは、熱可塑性かつ結晶性ポリマーとも言え、物理的な応力耐性と耐熱性とに優れており、その粉体は、所定の硬度を有する。そのため、溶融押出成形に際して、軟化状態にあるTFE系ポリマーの粉体は、硬質無機フィラーによって粉砕されて微粒化しつつ、溶融又は軟化したTArポリマー中に緻密に分散すると考えられる。また、この分散に際して、TFE系ポリマー自体は、変質(フィブリル化等)しないため、いずれの成分間の親和性も損われないと考えられる。
 これにより、本組成物を溶融押出成形に供すれば、TArポリマーを含む海相とTFE系ポリマーを含む微細な島相とから構成された海島構造を有する、硬質無機フィラーを緻密に含む成形物が形成され易くなるとも考えられる。そのため、本組成物から得られる成形物は、3者(TFE系ポリマー、TArポリマー及び硬質無機フィラー)の物性を高度に具備した成形物になると考えられる。
 具体的には、本組成物を溶融押出成形して得られる成形物(フィルム等)は、低誘電率性、低誘電正接性、低線膨張率性、接着性、成形性等の物性を具備している。かかる成形物は、プリント基板の材料又は部材として好適に使用できる。なお、本組成物から得られる成形物の10GHzで測定した誘電率は、2.0~4.0であるのが好ましい。
The TFE-based polymer can be said to be a thermoplastic and crystalline polymer, and is excellent in physical stress resistance and heat resistance, and the powder thereof has a predetermined hardness. Therefore, it is considered that the powder of the TFE-based polymer in the softened state is densely dispersed in the melted or softened TAr polymer while being pulverized and atomized by the hard inorganic filler during melt extrusion molding. Further, since the TFE polymer itself does not deteriorate (fibrilize or the like) during this dispersion, it is considered that the affinity between any of the components is not impaired.
As a result, when the present composition is subjected to melt extrusion molding, a molded product densely containing a hard inorganic filler having a sea-island structure composed of a sea phase containing a Tar polymer and a fine island phase containing a TFE-based polymer. Is also considered to be easily formed. Therefore, it is considered that the molded product obtained from the present composition is a molded product having a high degree of physical characteristics of the three (TFE-based polymer, TAr polymer and hard inorganic filler).
Specifically, a molded product (film, etc.) obtained by melt extrusion molding of this composition has physical properties such as low dielectric constant, low dielectric loss tangent property, low linear expansion coefficient, adhesiveness, and moldability. doing. Such a molded product can be suitably used as a material or member of a printed circuit board. The dielectric constant of the molded product obtained from the present composition measured at 10 GHz is preferably 2.0 to 4.0.
 本発明におけるTFE系ポリマーは、TFE単位とPAVE単位又はHFP単位とを含むポリマー、すなわち、TFE単位とPAVE単位とを含むポリマー(PFA系ポリマー)、又は、TFE単位とHFP単位とを含むポリマー(FEP系ポリマー)であり、物理的な応力耐性と耐熱性とにより優れ、成形物において微小な球晶を形成して接着性がより高まる観点から、PFA系ポリマーであるのがより好ましい。
 PAVEとしては、CF=CFOCF(PMVE)、CF=CFOCFCF及びCF=CFOCFCFCF(PPVE)が好ましい。
 TFE系ポリマーの溶融温度(融点)としては、260~320℃が好ましく、285~320℃がより好ましい。
 TFE系ポリマーのガラス転移点としては、75~125℃が好ましく、80~100℃がより好ましい。
The TFE-based polymer in the present invention is a polymer containing TFE units and PAVE units or HFP units, that is, a polymer containing TFE units and PAVE units (PFA-based polymer), or a polymer containing TFE units and HFP units (a polymer containing TFE units and HFP units). It is a FEP-based polymer), and is more preferable to be a PFA-based polymer from the viewpoint of being more excellent in physical stress resistance and heat resistance and forming fine spherulites in a molded product to further enhance the adhesiveness.
As the PAVE, CF 2 = CFOCF 3 (PMVE), CF 2 = CFOCF 2 CF 3 and CF 2 = CFOCF 2 CF 2 CF 3 (PPVE) are preferable.
The melting temperature (melting point) of the TFE polymer is preferably 260 to 320 ° C, more preferably 285 to 320 ° C.
The glass transition point of the TFE polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
 TFE系ポリマーは、さらに、他のモノマーに基づく単位を有するのが好ましい。
 上記他のモノマーとしては、オレフィン(エチレン、プロピレン等)、クロロトリフルオロエチレン、フルオロオレフィン(ヘキサフルオロプロピレン、フルオロアルキルエチレン等)、後述する酸素含有極性基を有するモノマーが挙げられる。
 フルオロアルキルエチレンの具体例としては、CH=CH(CFF、CH=CH(CFF、CH=CF(CFH、CH=CF(CFHが挙げられる。
The TFE-based polymer preferably further has units based on other monomers.
Examples of the other monomers include olefins (ethylene, propylene, etc.), chlorotrifluoroethylene, fluoroolefins (hexafluoropropylene, fluoroalkylethylene, etc.), and monomers having an oxygen-containing polar group described later.
Specific examples of fluoroalkylethylene include CH 2 = CH (CF 2 ) 2 F, CH 2 = CH (CF 2 ) 4 F, CH 2 = CF (CF 2 ) 2 H, CH 2 = CF (CF 2 ). 4 H, and the like.
 TFE系ポリマーは、酸素含有極性基を有するのが好ましい。酸素含有極性基は、TFE系ポリマーが含有する単位に含まれていてもよく、ポリマー主鎖の末端基に含まれていてもよい。後者のTFE系ポリマーとしては、重合開始剤、連鎖移動剤等に由来する末端基として酸素含有極性官能基を有するTFE系ポリマーや、プラズマ処理、電離線処理、放射線処理によって調製された、酸素含有極性基を有するTFE系ポリマーが挙げられる。
 酸素含有極性基としては、水酸基含有基、カルボニル基含有基、及びホスホノ基含有基が好ましく、水酸基含有基及びカルボニル基含有基がより好ましく、カルボニル基含有基が特に好ましい。
 水酸基含有基としては、アルコール性水酸基含有基が好ましく、-CFCHOH、-C(CFOH及び1,2-グリコール基(-CH(OH)CHOH)がより好ましい。
 カルボニル基含有基としては、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)及びカーボネート基(-OC(O)O-)が好ましく、酸無水物残基がより好ましい。
 TFE系ポリマーがカルボニル基含有基を有する場合、TFE系ポリマー中のカルボニル基含有基の数は、主鎖炭素数1×10個あたり、10~5000個が好ましく、50~2000個がより好ましい。なお、TFE系ポリマーにおけるカルボニル基含有基の数は、ポリマーの組成又は国際公開2020/145133号に記載の方法によって定量できる。
The TFE-based polymer preferably has an oxygen-containing polar group. The oxygen-containing polar group may be contained in the unit contained in the TFE-based polymer, or may be contained in the terminal group of the polymer main chain. The latter TFE-based polymer includes a TFE-based polymer having an oxygen-containing polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, or the like, or an oxygen-containing polymer prepared by plasma treatment, ionization line treatment, or radiation treatment. Examples thereof include TFE-based polymers having a polar group.
As the oxygen-containing polar group, a hydroxyl group-containing group, a carbonyl group-containing group, and a phosphono group-containing group are preferable, a hydroxyl group-containing group and a carbonyl group-containing group are more preferable, and a carbonyl group-containing group is particularly preferable.
As the hydroxyl group-containing group, an alcoholic hydroxyl group-containing group is preferable, and -CF 2 CH 2 OH, -C (CF 3 ) 2 OH and 1,2-glycol group (-CH (OH) CH 2 OH) are more preferable.
Examples of the carbonyl group-containing group include a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), an acid anhydride residue (-C (O) OC (O)-), and the like. An imide residue (-C (O) NHC (O)-etc.) And a carbonate group (-OC (O) O-) are preferable, and an acid anhydride residue is more preferable.
When the TFE-based polymer has a carbonyl group-containing group, the number of carbonyl group-containing groups in the TFE-based polymer is preferably 10 to 5000, more preferably 50 to 2000, per 1 × 10 6 main chain carbon atoms. .. The number of carbonyl group-containing groups in the TFE-based polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
 酸素含有極性基を有するTFE系ポリマーとしては、酸素含有極性基を有するモノマーに基づく単位を有するのが特に好ましい。
 上記モノマーとしては、水酸基含有基又はカルボニル基含有基を有するモノマーが好ましく、カルボニル基含有基を有するモノマーがより好ましい。
 カルボニル基含有基を有するモノマーとしては、無水イタコン酸、無水シトラコン酸、5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)及び無水マレイン酸が好ましく、NAHがより好ましい。
 TFE系ポリマーの好適な具体例としては、TFE単位、PAVE単位及び酸素含有極性基を有するモノマーに基づく単位を含むポリマー(1)、95.0~98.0モル%のTFE単位及び2.0~5.0モル%のPAVE単位からなるポリマー(2)、TFE単位及びPMVE単位を含むポリマーが挙げられる。
 これらのポリマーは、特に、物理的な応力耐性に優れており、その粉体組成物を溶融押出成形に供すれば、微小な球晶が形成されて接着性により優れた成形物を形成しやすい。
As the TFE-based polymer having an oxygen-containing polar group, it is particularly preferable to have a unit based on a monomer having an oxygen-containing polar group.
As the above-mentioned monomer, a monomer having a hydroxyl group-containing group or a carbonyl group-containing group is preferable, and a monomer having a carbonyl group-containing group is more preferable.
Examples of the monomer having a carbonyl group-containing group include itaconic anhydride, citraconic anhydride, 5-norbornene-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter also referred to as “NAH”) and maleic anhydride. Is preferable, and NAH is more preferable.
Suitable specific examples of TFE-based polymers include polymers containing TFE units, PAVE units and units based on monomers with oxygen-containing polar groups (1), 95.0-98.0 mol% TFE units and 2.0. Examples include polymers consisting of ~ 5.0 mol% PAVE units (2), polymers containing TFE units and PMVE units.
These polymers are particularly excellent in physical stress resistance, and when the powder composition is subjected to melt extrusion molding, fine spherulites are formed and it is easy to form a molded product having better adhesiveness. ..
 ポリマー(1)としては、TFE単位と、PAVE単位及び水酸基含有基又はカルボニル基含有基を有するモノマーとを含むポリマーが好ましい。ポリマー(1)としては、全単位に対して、TFE単位を90~98モル%、PAVE単位を1.5~9.97モル%、及び上記モノマーに基づく単位を0.01から3モル%、それぞれ含むポリマーが好ましい。
 ポリマー(1)の具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
As the polymer (1), a polymer containing a TFE unit and a PAVE unit and a monomer having a hydroxyl group-containing group or a carbonyl group-containing group is preferable. As the polymer (1), the TFE unit is 90 to 98 mol%, the PAVE unit is 1.5 to 9.97 mol%, and the unit based on the above monomer is 0.01 to 3 mol%, based on all the units. Polymers containing each are preferable.
Specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
 ポリマー(2)としては、TFE単位及びPAVE単位のみからなるポリマーが好ましい。
 ポリマー(2)におけるPAVE単位の含有量は、全モノマー単位に対して、2.1モル%以上であるのが好ましく、2.2モル%以上であるのがより好ましい。
 ポリマー(2)は酸素含有極性基を有さないのが好ましい。なお、ポリマー(2)が酸素含有極性基を有さないとは、ポリマー主鎖を構成する炭素原子数の1×10個あたり、ポリマーが有する酸素含有極性基の数が、500個未満であることを意味する。酸素含有極性基の数は、100個以下が好ましく、50個未満がより好ましい。酸素含有極性基の数の下限は、通常、0個である。
As the polymer (2), a polymer consisting of only TFE units and PAVE units is preferable.
The content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the monomer units.
The polymer (2) preferably does not have an oxygen-containing polar group. The polymer (2) does not have oxygen-containing polar groups when the number of oxygen-containing polar groups contained in the polymer is less than 500 per 1 × 10 6 carbon atoms constituting the polymer main chain. It means that there is. The number of oxygen-containing polar groups is preferably 100 or less, more preferably less than 50. The lower limit of the number of oxygen-containing polar groups is usually 0.
 ポリマー(2)は、ポリマー鎖の末端基として酸素含有極性基を生じない重合開始剤や連鎖移動剤等を使用して製造されてもよく、酸素含有極性基を有するTFE系ポリマーをフッ素化処理して製造されてもよい。
 フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等を参照)が挙げられる。
The polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate an oxygen-containing polar group as the terminal group of the polymer chain, and a TFE-based polymer having an oxygen-containing polar group is fluorinated. May be manufactured.
Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
 TFE系ポリマーの粉体を構成する微粒子の少なくとも一部は、TFE系ポリマー以外の成分を含む微粒子であってもよいが、TFE系ポリマーからなる微粒子であることが好ましい。TFE系ポリマー以外の成分としては、例えば、熱可塑性のポリマーが挙げられる。熱可塑性のポリマーとしては、TArポリマーであってもよい。
 TArポリマー以外の熱可塑性のポリマーとしては、TFE系ポリマー及びTArポリマー以外の後述のポリマーが挙げられる。
 TFE系ポリマーの粉体がTFE系ポリマー以外のポリマー成分を含む粉体である場合、TFE系ポリマー以外のポリマー成分の量は、全ポリマー成分の30質量%以下が好ましく、15質量%以下がより好ましい。また、TFE系ポリマー以外のポリマー成分がTArポリマーである場合は、TArポリマーの含有量は全ポリマー成分の20質量%以下が好ましく、10質量%以下がより好ましい。
At least a part of the fine particles constituting the powder of the TFE-based polymer may be fine particles containing components other than the TFE-based polymer, but the fine particles made of the TFE-based polymer are preferable. Examples of the components other than the TFE-based polymer include thermoplastic polymers. The thermoplastic polymer may be a Tar polymer.
Examples of the thermoplastic polymer other than the TA polymer include TFE-based polymers and polymers other than the TA polymer, which will be described later.
When the powder of the TFE-based polymer is a powder containing a polymer component other than the TFE-based polymer, the amount of the polymer component other than the TFE-based polymer is preferably 30% by mass or less, more preferably 15% by mass or less of the total polymer component. preferable. When the polymer component other than the TFE polymer is a Tar polymer, the content of the TAr polymer is preferably 20% by mass or less, more preferably 10% by mass or less of the total polymer components.
 TFE系ポリマーの粉体を構成する微粒子の少なくとも一部は、無機フィラーを含むTFE系ポリマーの微粒子であってもよい。
 無機フィラーの材料としては、酸化物、窒化物、金属単体、合金及びカーボンが好ましく、酸化ケイ素(シリカ)、金属酸化物(酸化ベリリウム、酸化セリウム、アルミナ、ソーダアルミナ、酸化マグネシウム、酸化亜鉛、酸化チタン等)、窒化ホウ素、及びメタ珪酸マグネシウム(ステアタイト)がより好ましく、シリカ及び窒化ホウ素がさらに好ましく、シリカが特に好ましい。無機フィラーとしては硬質無機フィラーであってもよいが、その場合は、本発明の粉体組成物に含まれる硬質無機フィラーの全量の一部であり、他は硬質無機フィラーの粉体である。
 TFE系ポリマーと無機フィラーとを含む微粒子は、TFE系ポリマーをコアとし、このコアの表面に無機フィラーを有する粒子が好ましい。かかる粒子は、例えば、TFE系ポリマーの粒子と無機フィラーの粒子とを合着(衝突、凝集等)させて得られる。
 TFE系ポリマーの粉体が、TFE系ポリマーと無機フィラーを含む微粒子を含む粉体である場合、溶融成形の際にTArポリマー中にTFE系ポリマーが均一に分散しやすい。
 TFE系ポリマーの粉体の少なくとも一部がTFE系ポリマーと無機フィラーを含む微粒子を含む粉体である場合、かかる粉体中の無機フィラーの量は、粉体に対して50質量%以下が好ましく、40質量%以下がより好ましい。また、無機フィラーの少なくとも一部が硬質無機フィラーである場合は、その硬質無機フィラーの量は、粉体に対して40質量%以下が好ましく、30質量%以下がより好ましい。
At least a part of the fine particles constituting the powder of the TFE-based polymer may be fine particles of the TFE-based polymer containing an inorganic filler.
As the material of the inorganic filler, oxides, nitrides, simple metals, alloys and carbons are preferable, and silicon oxide (silica) and metal oxides (berylium oxide, cerium oxide, alumina, soda alumina, magnesium oxide, zinc oxide and oxidation are preferable. Titanium etc.), boron nitride, and magnesium metasilicate (steatite) are more preferable, silica and boron nitride are more preferable, and silica is particularly preferable. The inorganic filler may be a hard inorganic filler, but in that case, it is a part of the total amount of the hard inorganic filler contained in the powder composition of the present invention, and the other is a powder of the hard inorganic filler.
The fine particles containing the TFE polymer and the inorganic filler preferably have the TFE polymer as the core and the particles having the inorganic filler on the surface of the core. Such particles are obtained, for example, by coalescing (colliding, agglomerating, etc.) particles of a TFE-based polymer and particles of an inorganic filler.
When the powder of the TFE-based polymer is a powder containing fine particles containing the TFE-based polymer and the inorganic filler, the TFE-based polymer is likely to be uniformly dispersed in the TA polymer during melt molding.
When at least a part of the powder of the TFE polymer is a powder containing fine particles containing the TFE polymer and the inorganic filler, the amount of the inorganic filler in the powder is preferably 50% by mass or less with respect to the powder. , 40% by mass or less is more preferable. When at least a part of the inorganic filler is a hard inorganic filler, the amount of the hard inorganic filler is preferably 40% by mass or less, more preferably 30% by mass or less with respect to the powder.
 さらに、TFE系ポリマーの粉体を構成する微粒子は、後述の、有機フィラー、有機顔料、金属せっけん、界面活性剤、紫外線吸収剤、潤滑剤、シランカップリング剤等の添加剤を含有していてもよい。かかる添加剤を含む場合、粉体中のかかる添加剤の量は、粉体に対して10質量%以下が好ましく、5質量%以下がより好ましい。 Further, the fine particles constituting the powder of the TFE polymer contain additives such as an organic filler, an organic pigment, a metal soap, a surfactant, an ultraviolet absorber, a lubricant, and a silane coupling agent, which will be described later. May be good. When such an additive is contained, the amount of the additive in the powder is preferably 10% by mass or less, more preferably 5% by mass or less, based on the powder.
 上記TFE系ポリマーの粉体の平均粒子径(すなわち、TFE系ポリマーの粉体を構成する微粒子の平均粒子径)は、0.1~200μmが好ましく、1~100μmがより好ましい。この場合、溶融押出成形において、硬質無機フィラーによるTFE系ポリマーの粉体の粉砕が高度に進行し、より緻密な海島構造を有する成形物を形成しやすい。 The average particle size of the powder of the TFE polymer (that is, the average particle size of the fine particles constituting the powder of the TFE polymer) is preferably 0.1 to 200 μm, more preferably 1 to 100 μm. In this case, in the melt extrusion molding, the pulverization of the powder of the TFE polymer by the hard inorganic filler progresses to a high degree, and it is easy to form a molded product having a more dense sea-island structure.
 本発明における硬質無機フィラーは、モース硬度が3~9の無機フィラーである。
 硬質無機フィラーのモース硬度としては、5以上が好ましく、6以上がより好ましい。この場合、溶融押出成形において、硬質無機フィラーによる、TFE系ポリマーの粉体の粉砕が高度に進行しやすい。
 硬質無機フィラーは、無機成分以外の成分を含んでいてもよいが、無機成分からなるのが好ましい。無機成分以外の成分としては、後述する表面処理剤に用いられる有機物等の有機化合物、窒化ホウ素等の軟質の無機化合物が挙げられる。
 硬質無機フィラーとしては、窒化アルミ、酸化ベリリウム(べリリア)、酸化ケイ素(シリカ)、酸化セリウム、酸化アルミニウム(アルミナ)、酸化マグネシウム(マグネシア)、酸化亜鉛又は酸化チタンからなる無機フィラーが好ましい。
 硬質無機フィラーは、2種以上の無機成分からなっていてもよい。
The hard inorganic filler in the present invention is an inorganic filler having a Mohs hardness of 3 to 9.
The Mohs hardness of the hard inorganic filler is preferably 5 or more, and more preferably 6 or more. In this case, in the melt extrusion molding, the pulverization of the powder of the TFE-based polymer by the hard inorganic filler is highly likely to proceed.
The hard inorganic filler may contain a component other than the inorganic component, but is preferably composed of an inorganic component. Examples of components other than the inorganic components include organic compounds such as organic substances used in surface treatment agents described later and soft inorganic compounds such as boron nitride.
As the hard inorganic filler, an inorganic filler composed of aluminum nitride, beryllium oxide (berilia), silicon oxide (silica), cerium oxide, aluminum oxide (alumina), magnesium oxide (magnesia), zinc oxide or titanium oxide is preferable.
The hard inorganic filler may consist of two or more kinds of inorganic components.
 硬質無機フィラーとしては、酸化ケイ素を含むものが好ましい。酸化ケイ素を含む硬質無機フィラーは、高硬度であるだけでなく、TFE系ポリマーとの相互作用が亢進しやすい。そのため、かかる無機フィラーを含む成形物からは、溶融押出成形において、より緻密な海島構造を有する成形物を形成しやすい。また、その低線膨張性が特に発現しやすい。
 硬質無機フィラーにおける、酸化ケイ素の含有量は、50質量%以上が好ましく、75質量%以上がより好ましい。酸化ケイ素の含有量は、100質量%以下が好ましい。
 硬質無機フィラーとしては、ベリリアフィラー(モース硬度:9)、マグネシアフィラー(モース硬度:5.5)及びシリカフィラー(モース硬度:7)が好ましく、シリカフィラーがより好ましい。
 シリカフィラーは、溶融シリカフィラー又は非晶質シリカフィラーであるのが好ましい。この場合、その低熱膨張性を成形物が具備しやすい。
The hard inorganic filler preferably contains silicon oxide. The hard inorganic filler containing silicon oxide not only has a high hardness, but also tends to enhance the interaction with the TFE polymer. Therefore, it is easy to form a molded product having a more dense sea-island structure from the molded product containing such an inorganic filler in melt extrusion molding. In addition, its low line expansion is particularly likely to occur.
The content of silicon oxide in the hard inorganic filler is preferably 50% by mass or more, more preferably 75% by mass or more. The content of silicon oxide is preferably 100% by mass or less.
As the hard inorganic filler, berylia filler (Mohs hardness: 9), magnesia filler (Mohs hardness: 5.5) and silica filler (Mohs hardness: 7) are preferable, and silica filler is more preferable.
The silica filler is preferably a molten silica filler or an amorphous silica filler. In this case, the molded product tends to have the low thermal expansion property.
 硬質無機フィラーは、その表面の少なくとも一部が、表面処理されていてもよい。かかる表面処理に用いられる表面処理剤としては、多価アルコール(トリメチロールエタン、ペンタエリストール、プロピレングリコール等)、飽和脂肪酸(ステアリン酸、ラウリン酸等)、そのエステル、アルカノールアミン、アミン(トリメチルアミン、トリエチルアミン等)、パラフィンワックス、シランカップリング剤、シリコーン、ポリシロキサン、及び、アルミニウム、ケイ素、ジルコニウム、スズ、チタニウム、アンチモン等の金属の酸化物、それら金属の水酸化物、それら金属の水和酸化物、それら金属のリン酸塩が挙げられる。
 シランカップリング剤としては、官能基を有するシランカップリング剤が好ましく、3-アミノプロピルトリエトキシシラン、ビニルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン及び3-イソシアネートプロピルトリエトキシシランがより好ましい。
At least a part of the surface of the hard inorganic filler may be surface-treated. Examples of the surface treatment agent used for such surface treatment include polyhydric alcohols (trimethylolethane, pentaeristol, propylene glycol, etc.), saturated fatty acids (stearic acid, lauric acid, etc.), esters thereof, alkanolamines, amines (trimethylamine, etc.). Triethylamine etc.), paraffin wax, silane coupling agent, silicone, polysiloxane, and metal oxides such as aluminum, silicon, zirconium, tin, titanium, antimony, hydroxides of those metals, hydration oxidation of those metals Examples include phosphates of those metals.
As the silane coupling agent, a silane coupling agent having a functional group is preferable, and 3-aminopropyltriethoxysilane, vinyltrimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-Methoxyloxypropyltriethoxysilane and 3-isocyanatepropyltriethoxysilane are more preferred.
 硬質無機フィラーの粉体の平均粒子径(すなわち、硬質無機フィラーの粉体を構成する微粒子の平均粒子径)としては、0.01μm以上が好ましく、0.1μm以上がより好ましい。また、10μm以下が好ましく、2μm以下がより好ましく、1μm以下が特に好ましい。
 硬質無機フィラーの平均粒子径は、TFE系ポリマーの粉体の平均粒子径以下であるのが好ましい。
 硬質無機フィラーの粉体の平均粒子径が、かかる範囲にあれば、溶融押出成形において、それによるTFE系ポリマーの粉体の粉砕が高度に進行し、より緻密な海島構造を有する成形物を形成しやすい。
 具体的には、平均粒子径が0.10μm超かつ1μm以下である硬質無機フィラーの粉体と、平均粒子径が1μm以上かつ3μm以下であるTFE系ポリマーの粉体との組合せが好ましい。
The average particle size of the hard inorganic filler powder (that is, the average particle size of the fine particles constituting the hard inorganic filler powder) is preferably 0.01 μm or more, more preferably 0.1 μm or more. Further, 10 μm or less is preferable, 2 μm or less is more preferable, and 1 μm or less is particularly preferable.
The average particle size of the hard inorganic filler is preferably equal to or less than the average particle size of the powder of the TFE polymer.
If the average particle size of the hard inorganic filler powder is within such a range, the powder of the TFE polymer is highly pulverized by the melt extrusion molding, and a molded product having a finer sea-island structure is formed. It's easy to do.
Specifically, a combination of a hard inorganic filler powder having an average particle size of more than 0.10 μm and 1 μm or less and a TFE polymer powder having an average particle size of 1 μm or more and 3 μm or less is preferable.
 硬質無機フィラーを構成する微粒子の形状は、略真球状であるのが好ましい。略真球状である硬質無機フィラーの95%以上を占める球形の粒子において、長径に対する短径の比は、0.8以上が好ましく、0.9以上がより好ましい。上記比は、1未満が好ましい。
 略真球状の微粒子からなる硬質無機フィラーの粉体は、溶融押出成形において、各成分との相互作用が亢進しやすい。
 硬質無機フィラーの粉体の好適な具体例としては、平均粒子径が1μm以下であるシリカフィラー(アドマテックス社製の「アドマファイン」シリーズ等)、平均粒子径が0.10μm超かつ0.5μm以下である球状溶融シリカ(デンカ社製の「SFP」シリーズ等)が挙げられる。
The shape of the fine particles constituting the hard inorganic filler is preferably substantially spherical. In the spherical particles accounting for 95% or more of the substantially spherical hard inorganic filler, the ratio of the minor axis to the major axis is preferably 0.8 or more, more preferably 0.9 or more. The above ratio is preferably less than 1.
The powder of the hard inorganic filler composed of substantially spherical fine particles tends to enhance the interaction with each component in melt extrusion molding.
Suitable specific examples of the hard inorganic filler powder include silica fillers having an average particle size of 1 μm or less (such as the “Admafine” series manufactured by Admatex), and an average particle size of more than 0.10 μm and 0.5 μm. Examples thereof include spherical fused silica (“SFP” series manufactured by Denka Co., Ltd., etc.) described below.
 本発明におけるTArポリマーとしては、芳香族ポリイミド、芳香族ポリアミドイミド、芳香族ポリエステル、芳香族ポリエステルアミド、ポリフェニレンエーテル及びポリフェニレンサルファイドが好ましい。
 TArポリマーとしては、液晶ポリマーが好ましい。液晶ポリマーは、異方性溶融相を形成するTArポリマーであり、一般的にサーモトロピック液晶ポリマーと呼称される。具体的な液晶ポリマーとしては、熱可塑性かつ液晶性の、芳香族ポリエステル及び芳香族ポリエステルアミドが挙げられ、前者はサーモトロピック液晶ポリエステル、後者はサーモトロピック液晶ポリエステルアミドと呼称される場合が多い。液晶ポリマーには、更にイミド結合、カーボネート結合、カルボジイミド結合、イソシアヌレート結合等が導入されていてもよい。
As the TA polymer in the present invention, aromatic polyimide, aromatic polyamideimide, aromatic polyester, aromatic polyesteramide, polyphenylene ether and polyphenylene sulfide are preferable.
As the Tar polymer, a liquid crystal polymer is preferable. The liquid crystal polymer is a Tar polymer that forms an anisotropic molten phase, and is generally called a thermotropic liquid crystal polymer. Specific examples of the liquid crystal polymer include thermoplastic and liquid crystalline aromatic polyester and aromatic polyester amide. The former is often referred to as a thermotropic liquid crystal polyester, and the latter is often referred to as a thermotropic liquid crystal polyester amide. An imide bond, a carbonate bond, a carbodiimide bond, an isocyanate bond, or the like may be further introduced into the liquid crystal polymer.
 上述したとおり、本組成物を溶融押出成形に供すると、TFE系ポリマーと硬質無機フィラーとがTArポリマー中に高度に分散して成形物が形成される。
 このため、TArポリマーが液晶ポリマーである場合に発現しやすい、成形物の流れ方向(MD方向)における液晶ポリマー由来の物性の異方性が、高度に分散したTFE系ポリマーや硬質無機フィラーによって緩和されやすい。換言すれば、TArポリマーが液晶ポリマーである本組成物から溶融押出成形によって得られる成形物(フィルム等)は、等方性が高まりやすい。
 その結果、液晶ポリマー固有の物性(強度、弾性、振動吸収性等の機械物性や、誘電特性等の電気物性)を具備しつつ、異方性に起因する引張強度や熱膨張性の低下が抑制された成形物が得られやすい。特に、薬液浸漬時や加熱処理時に寸法安定性に優れた、フィルム等の成形物が得られやすい。
As described above, when the present composition is subjected to melt extrusion molding, the TFE polymer and the hard inorganic filler are highly dispersed in the TA polymer to form a molded product.
Therefore, the anisotropy of the physical properties derived from the liquid crystal polymer in the flow direction (MD direction) of the molded product, which is likely to occur when the Tar polymer is a liquid crystal polymer, is alleviated by the highly dispersed TFE polymer or hard inorganic filler. Easy to be done. In other words, a molded product (film or the like) obtained by melt extrusion molding from the present composition in which the Tar polymer is a liquid crystal polymer tends to be highly isotropic.
As a result, while having the physical characteristics peculiar to the liquid crystal polymer (mechanical properties such as strength, elasticity and vibration absorption, and electrical properties such as dielectric properties), the decrease in tensile strength and thermal expansion due to anisotropy is suppressed. It is easy to obtain the molded product. In particular, it is easy to obtain a molded product such as a film having excellent dimensional stability during immersion in a chemical solution or heat treatment.
 なお、液晶ポリマーの異方性溶融相は、例えば、ポリマー試料をホットステージに載置した後、窒素ガス雰囲気下で昇温加熱し、ポリマー試料の透過光を観察して確認すればよい。
 液晶ポリマーの溶融温度(融点)は、250~370℃が好ましく、270~350℃がより好ましい。
 液晶ポリマーであるTArポリマーの具体例としては、ポリプラスチックス社製の「ラペロス」、セラニーズ社製の「ベクトラ」、上野製薬社製の「UENOLCP」、住友化学社製の「スミカスーパーLCP」、SOLVAY SPECIALTY POLYMERS社製の「XYDAR」、JX日鉱日石エネルギー社製の「ザイダー」、東レ社製の「シベラス」が挙げられる。
The anisotropic molten phase of the liquid crystal polymer may be confirmed, for example, by placing the polymer sample on a hot stage, heating the polymer sample in a nitrogen gas atmosphere, and observing the transmitted light of the polymer sample.
The melting temperature (melting point) of the liquid crystal polymer is preferably 250 to 370 ° C, more preferably 270 to 350 ° C.
Specific examples of the TAr polymer, which is a liquid crystal polymer, include "Laperos" manufactured by Polyplastics, "Vectra" manufactured by Celanese, "UENOLCP" manufactured by Ueno Fine Chemicals Industry, and "Sumika Super LCP" manufactured by Sumitomo Chemical Co., Ltd. Examples include "XYDAR" manufactured by SOLVAY SPECIALTY POLYMERS, "Zider" manufactured by JX Nikko Nisseki Energy Co., Ltd., and "Siberus" manufactured by Toray Industries, Inc.
 TArポリマーの粉体は、TArポリマーを50質量%以上の割合で含む微粒子からなる粉体であり、TArポリマーを60~100質量%の割合で含む微粒子からなる粉体が好ましい。上記粉体を構成する微粒子は、TArポリマー以外の成分を含む微粒子であってもよい。かかる成分としては、TArポリマー以外の熱可塑性ポリマー、繊維状の無機フィラー、繊維状の有機フィラー、非繊維状の無機フィラー、非繊維状の有機フィラー、有機顔料、金属せっけん、界面活性剤、紫外線吸収剤、潤滑剤、シランカップリング剤等の添加剤が挙げられる。TArポリマー以外の熱可塑性ポリマーとしては、TFE系ポリマーであってもよく、非繊維状の無機フィラーは硬質無機フィラーであってもよい。
 TArポリマー以外の成分としては、ガラス繊維、炭素繊維(PAN系炭素繊維、ピッチ系炭素繊維)、有機合成繊維(芳香族ポリアミド繊維等)、金属繊維(ステンレス繊維、アルミニウム繊維等)、無機系繊維(炭化ケイ素繊維、チタン酸カリウム繊維、アルミナ繊維等)、天然鉱石系繊維(ウオラスナイト、アスベスト等)等の繊維状フィラーが好ましい。
The powder of the Tar polymer is a powder composed of fine particles containing the Tar polymer in a proportion of 50% by mass or more, and a powder composed of fine particles containing the Tar polymer in a proportion of 60 to 100% by mass is preferable. The fine particles constituting the powder may be fine particles containing components other than the Tar polymer. Such components include thermoplastic polymers other than TAr polymers, fibrous inorganic fillers, fibrous organic fillers, non-fibrous inorganic fillers, non-fibrous organic fillers, organic pigments, metal soaps, surfactants, and ultraviolet rays. Additives such as absorbents, lubricants and silane coupling agents can be mentioned. The thermoplastic polymer other than the Tar polymer may be a TFE-based polymer, and the non-fibrous inorganic filler may be a hard inorganic filler.
Ingredients other than TA polymer include glass fiber, carbon fiber (PAN-based carbon fiber, pitch-based carbon fiber), organic synthetic fiber (aromatic polyamide fiber, etc.), metal fiber (stainless fiber, aluminum fiber, etc.), inorganic fiber. Fibrous fillers such as (silicon carbide fiber, potassium titanate fiber, alumina fiber, etc.) and natural ore-based fiber (walasnite, asbestos, etc.) are preferable.
 TArポリマーの粉体微粒子が繊維状フィラーを含む場合、粉体中の繊維状フィラーの含有量は40質量%以下が好ましく、35質量%以下がより好ましい。
 TArポリマーの粉体微粒子がTArポリマー以外の熱可塑性ポリマーを含む場合、粉体中のかかる熱可塑性ポリマーの含有量は全ポリマー成分の40質量%以下が好ましく、20質量%以下がより好ましい。ただし、熱可塑性ポリマーがTFE系ポリマーである場合は、全ポリマー成分の20質量%以下が好ましく、10質量%以下がより好ましい。
 TArポリマーの粉体微粒子が非繊維状の無機フィラー等の上記以外の添加剤を含む場合、粉体中のかかる添加剤の含有量は30質量%以下が好ましく、15質量%以下がより好ましい。ただし、添加剤が硬質無機フィラーである場合は、その硬質無機フィラーの量は、粉体に対して20質量%以下が好ましく、10質量%以下がより好ましい。
When the powder fine particles of the TA polymer contain a fibrous filler, the content of the fibrous filler in the powder is preferably 40% by mass or less, more preferably 35% by mass or less.
When the powder fine particles of the TA polymer contain a thermoplastic polymer other than the TA polymer, the content of the thermoplastic polymer in the powder is preferably 40% by mass or less, more preferably 20% by mass or less of the total polymer components. However, when the thermoplastic polymer is a TFE-based polymer, it is preferably 20% by mass or less, more preferably 10% by mass or less of the total polymer components.
When the powder fine particles of the TAr polymer contain additives other than the above, such as a non-fibrous inorganic filler, the content of such additives in the powder is preferably 30% by mass or less, more preferably 15% by mass or less. However, when the additive is a hard inorganic filler, the amount of the hard inorganic filler is preferably 20% by mass or less, more preferably 10% by mass or less with respect to the powder.
 TArポリマーの粉体の平均粒子径(すなわち、TArポリマーの粉体を構成する微粒子の平均粒子径)は、0.1~200μmが好ましく、1~100μmがより好ましい。この場合、溶融押出成形において、TArポリマー中にTFE系ポリマー及び硬質無機フィラーが分散して、緻密な海島構造を有する成形物を形成しやすい。 The average particle size of the tar polymer powder (that is, the average particle size of the fine particles constituting the tar polymer powder) is preferably 0.1 to 200 μm, more preferably 1 to 100 μm. In this case, in melt extrusion molding, the TFE polymer and the hard inorganic filler are dispersed in the Tar polymer, and it is easy to form a molded product having a dense sea-island structure.
 本組成物は、TFE系ポリマーの粉体、硬質無機フィラーの粉体及びTArポリマーの粉体以外の粉体を、さらに含んでいてもよい。
 他の粉体としては、TFE系ポリマー及びTArポリマー以外の熱可塑性ポリマーの粉体、熱可塑性ポリマー以外のポリマーの粉体、硬質無機フィラー以外のフィラー(前記無機フィラーや有機フィラー等)の粉体、等が挙げられる。有機フィラーとしては、溶融押出成形において溶融しないポリマーの繊維からなる繊維状有機フィラーが挙げられる。
 前記熱可塑性ポリマーの具体例としては、ポリオレフィン系ポリマー(ポリエチレン、ポリプロピレン、ポリブチレン、酸変性ポリエチレン、酸変性ポリプロピレン、酸変性ポリブチレン等)、TFE系ポリマー以外のフッ素系ポリマー(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、スチレン系ポリマー(ポリスチレン、ポリアクリロニトリルスチレン、ポリアクリロニトリルブタジエンスチレン等)、ポリカーボネート系ポリマー、ポリ(メタ)アクリル系ポリマー、ポリ塩化ビニル、ポリアリレートン系ポリマー、ポリウレタン系ポリマーが挙げられる。
 熱可塑性ポリマー以外のポリマーの粉体としては、熱硬化性樹脂の硬化物からなる粉体、非熱溶融性ポリテトラフルオロエチレンの粉体等が挙げられる。
 有機フィラーの粉体としては、芳香族ポリアミド繊維、ポリアラミド繊維、ポリパラフェニレンベンズオキサゾール繊維、ポリフェニレンスルフィド繊維、ポリエステル繊維、アクリル繊維、ナイロン繊維、ポリエチレン繊維等からなる粉体が挙げられる。
 本組成物が上記他の粉体を含む場合、本組成物中の他の粉体の含有量は、30質量%以下が好ましく、15質量%以下がより好ましい。
The present composition may further contain powders other than TFE-based polymer powders, hard inorganic filler powders, and TAr polymer powders.
Examples of other powders include powders of thermoplastic polymers other than TFE polymers and TAr polymers, powders of polymers other than thermoplastic polymers, and powders of fillers other than hard inorganic fillers (such as the inorganic fillers and organic fillers). , Etc. can be mentioned. Examples of the organic filler include fibrous organic fillers made of polymer fibers that do not melt in melt extrusion molding.
Specific examples of the thermoplastic polymer include polyolefin polymers (polyethylene, polypropylene, polybutylene, acid-modified polyethylene, acid-modified polypropylene, acid-modified polybutylene, etc.) and fluoropolymers other than TFE-based polymers (polyfluorovinylidene, polytetrafluoro). (Ethethylene, etc.), styrene-based polymers (polystyrene, polyacrylonitrile styrene, polyacrylonitrile butadiene styrene, etc.), polycarbonate-based polymers, poly (meth) acrylic-based polymers, polyvinyl chloride, polyarelliton-based polymers, polyurethane-based polymers.
Examples of the polymer powder other than the thermoplastic polymer include a powder made of a cured product of a thermosetting resin, a powder of non-thermomeltable polytetrafluoroethylene, and the like.
Examples of the powder of the organic filler include powders composed of aromatic polyamide fibers, polyaramid fibers, polyparaphenylene benzoxazole fibers, polyphenylene sulfide fibers, polyester fibers, acrylic fibers, nylon fibers, polyethylene fibers and the like.
When the present composition contains the above other powder, the content of the other powder in the present composition is preferably 30% by mass or less, more preferably 15% by mass or less.
 本組成物としては、TFE系ポリマーの粉体、硬質無機フィラーの粉体及びTArポリマーの粉体の3種の粉体からなる組成物であることが、特に好ましい。以下の本組成物におけるこれら3者の粉体の含有割合は、これら3種の粉体からなる組成物における割合をいう。
 本組成物におけるTFE系ポリマーの含有量としては、5質量%以上が好ましく、10質量%以上がより好ましい。また、50質量%以下が好ましく、40質量%以下がより好ましい。
 本組成物における、TArポリマーの含有量としては、10質量%以上が好ましく、20質量%以上がより好ましい。また、90質量%以下が好ましく、80質量%以下がより好ましい。
 本組成物における、TArポリマーの含有量は、上記TFE系ポリマーの含有量より多いのが好ましい。つまり、本組成物は、TArポリマーを主たるポリマー成分として含むのが好ましい。この場合、TFE系ポリマーとの相互作用が亢進しやすいため、溶融押出成形において、より緻密な海島構造を有する成形物を形成しやすい。また、その低線膨張性が特に発現しやすい。
The composition is particularly preferably composed of three types of powders: a TFE-based polymer powder, a hard inorganic filler powder, and a TAr polymer powder. The content ratio of the powders of these three substances in the following composition refers to the ratio in the composition composed of these three types of powders.
The content of the TFE polymer in the present composition is preferably 5% by mass or more, more preferably 10% by mass or more. Further, 50% by mass or less is preferable, and 40% by mass or less is more preferable.
The content of the Tar polymer in the present composition is preferably 10% by mass or more, more preferably 20% by mass or more. Further, 90% by mass or less is preferable, and 80% by mass or less is more preferable.
The content of the TAr polymer in the present composition is preferably higher than the content of the TFE-based polymer. That is, the present composition preferably contains a Tar polymer as a main polymer component. In this case, since the interaction with the TFE-based polymer is likely to be enhanced, it is easy to form a molded product having a finer sea-island structure in melt extrusion molding. In addition, its low line expansion is particularly likely to occur.
 本組成物における、硬質無機フィラーの含有量としては、5質量%以上が好ましく、10質量%以上がより好ましい。また、50質量%以下が好ましく、40質量%以下がより好ましい。
 本組成物における、TFE系ポリマーの含有量に対する硬質無機フィラーの含有量の比としては、0.2~1.0が好ましく、0.2~0.6がより好ましい。この場合、溶融押出成形において、TFE系ポリマーの粉体が高度に粉砕され、硬質無機フィラーが高度に分散した成形物が得られやすい。また、成形物において3者の物性を高度に具備しやすい。
 本組成物における、TFE系ポリマー、TArポリマー、硬質無機フィラーのそれぞれの含有量としては、この順に、10~40質量%、5~40質量%、20~85質量%であるのが好ましい。
The content of the hard inorganic filler in the present composition is preferably 5% by mass or more, more preferably 10% by mass or more. Further, 50% by mass or less is preferable, and 40% by mass or less is more preferable.
The ratio of the content of the hard inorganic filler to the content of the TFE polymer in the present composition is preferably 0.2 to 1.0, more preferably 0.2 to 0.6. In this case, in melt extrusion molding, the powder of the TFE polymer is highly pulverized, and it is easy to obtain a molded product in which the hard inorganic filler is highly dispersed. In addition, it is easy for the molded product to have the physical characteristics of the three parties.
The contents of the TFE polymer, the Tar polymer, and the hard inorganic filler in the present composition are preferably 10 to 40% by mass, 5 to 40% by mass, and 20 to 85% by mass in this order.
 本組成物は、それぞれの成分をドライブレンドして製造するのが好ましい。ドライブレンドに際しては、タンブラー、ヘンシェルミキサー、ホッパー、バンバリーミキサー、ロール、ブラベンダー等の混合装置を使用できる。
 本組成物は、溶融押出成形に用いられるのが好ましく、溶融押出成形によってフィルムに成形されるのが好ましい。
 溶融押出成形は、Tダイを用いた方法により行うのが好ましく、ホッパーから投入される本組成物を押出機(1軸スクリュー又は2軸スクリュー)中にて溶融混練し、押出機先端部に設置されたTダイより押出してフィルムに成形する方法による行うのがより好ましい。
The present composition is preferably produced by dry blending each component. For dry blending, a mixing device such as a tumbler, a Henschel mixer, a hopper, a Banbury mixer, a roll, or a lavender can be used.
The present composition is preferably used for melt extrusion molding, and is preferably molded into a film by melt extrusion molding.
The melt extrusion molding is preferably carried out by a method using a T-die, and the composition charged from the hopper is melt-kneaded in an extruder (uniaxial screw or biaxial screw) and installed at the tip of the extruder. It is more preferable to carry out by a method of extruding from the T-die to form a film.
 溶融押出成形によって得られたフィルムは、さらに延伸処理するのが好ましい。これにより、より等方的なフィルムが得られる。延伸処理とは、フィルムを、その融点以下の温度にて軟化させ、1方向(1軸:MD方向)又は2方向(2軸:MD方向及びTD方向)に延伸する処理である。
 延伸処理は、等方的なフィルムが得られる観点から、2軸延伸処理がより好ましい。
 延伸方法としては、インフレーション方式、フラット方式が挙げられる。フラット方式としては、同時2軸延伸、逐次2軸延伸のいずれの方式も採用できる。
The film obtained by melt extrusion is preferably further stretched. This gives a more isotropic film. The stretching treatment is a treatment in which the film is softened at a temperature equal to or lower than its melting point and stretched in one direction (1 axis: MD direction) or 2 directions (2 axes: MD direction and TD direction).
The stretching treatment is more preferably a biaxial stretching treatment from the viewpoint of obtaining an isotropic film.
Examples of the stretching method include an inflation method and a flat method. As the flat method, either simultaneous biaxial stretching or sequential biaxial stretching can be adopted.
 溶融押出成形によるフィルムの製造においては、得られるフィルムに、さらに積層処理、延伸処理、冷却処理及び剥離処理を施してもよい。
 積層処理とは、得られるフィルムの両面または片面に、剥離フィルムをラミネートし、積層体を形成する処理である。
 ラミネート法としては、熱圧着法、表面処理法が挙げられ、それに際しては、熱圧着ロールや、熱プレス装置、ラミネーターが用いられる。
 例えば、熱圧着ロールを用いる場合には、得られるフィルムと剥離フィルムとを重ね、熱圧着ロールを通過させて熱圧着すればよい。
 熱プレス装置を用いる場合には、熱プレス装置の底板上に得られたフィルムと剥離フィルムとを重ねて熱圧着して冷却すればよい。
In the production of a film by melt extrusion molding, the obtained film may be further subjected to a laminating treatment, a stretching treatment, a cooling treatment and a peeling treatment.
The laminating treatment is a treatment of laminating a release film on both sides or one side of the obtained film to form a laminated body.
Examples of the laminating method include a thermocompression bonding method and a surface treatment method, in which a thermocompression bonding roll, a thermal press device, and a laminator are used.
For example, when a thermocompression bonding roll is used, the obtained film and the release film may be laminated and passed through the thermocompression bonding roll for thermocompression bonding.
When a hot press device is used, the film obtained on the bottom plate of the hot press device and the release film may be laminated and thermocompression bonded to cool the film.
 また、一対の熱圧着ロールを用い、二枚の剥離フィルムの間隙に、Tダイより押し出された溶融状態の本組成物を供給し、この熱圧着ロールの間隙部で積層体を成形してもよい。
 この積層体の形成に際しては、多層ダイを用いた共押出法を用いれば、本組成物から形成されたフィルムと剥離フィルムとをそれぞれ層とする多層体を形成できる。
 剥離フィルムの材質としては、ポリエチレン、ポリプロピレン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、ポリアリレート、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、ポリエステル、ポリアミド、ポリアミドイミド、熱可塑性ポリイミド、ポリフェニレンサルファイド、ポリテトラフルオロエチレン、テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体、ポリテトラフルオロエチレンとエチレンの共重合体、ポリフッ化ビニル、ポリフッ化ビニリデン、ポリ三フッ化塩化エチレンが挙げられる。
 剥離フィルムの厚さは、10~200μmが好ましく、20~100μmがより好ましい。
Further, using a pair of thermocompression bonding rolls, the composition in a molten state extruded from the T die is supplied to the gap between the two release films, and the laminate is formed in the gap between the thermocompression bonding rolls. Good.
When forming this laminated body, if a coextrusion method using a multilayer die is used, a multilayer body in which the film formed from the present composition and the release film are each layered can be formed.
The material of the release film is polyethylene, polypropylene, polyether ether ketone, polyether sulfone, polyimide, polyetherimide, polyarylate, polycarbonate, polystyrene, polyvinyl chloride, polyester, polyamide, polyamideimide, thermoplastic polyimide, polyphenylene sulfide. , Polytetrafluoroethylene, copolymer of tetrafluoroethylene and hexafluoropropylene, copolymer of polytetrafluoroethylene and ethylene, polyvinyl chloride, vinylidene polyfluoride, polyethylene trifluoride chloride.
The thickness of the release film is preferably 10 to 200 μm, more preferably 20 to 100 μm.
 延伸処理とは、積層処理にて得られた積層体の剥離フィルム層を軟化させつつ、上記積層体を延伸して延伸物を得る処理である。この延伸処理は、連続的に実施してもよい。
 冷却処理とは、延伸処理で得られた延伸物を冷却する処理である。冷却は、自然冷却してもよく、冷却ロール等を用いてもよい。
 剥離処理とは、冷却された延伸物から、剥離フィルムを剥離する処理である。剥離処理は、90°剥離法又は180°剥離法によって行える。
 かかる一連の処理により、本組成物から、より熱膨張係数が抑制されたフィルムが得られる。
The stretching treatment is a treatment for obtaining a stretched product by stretching the laminated body while softening the release film layer of the laminated body obtained by the laminating treatment. This stretching treatment may be carried out continuously.
The cooling treatment is a treatment for cooling the stretched product obtained by the stretching treatment. Cooling may be natural cooling, or a cooling roll or the like may be used.
The peeling treatment is a treatment for peeling the peeling film from the cooled stretched product. The peeling process can be performed by a 90 ° peeling method or a 180 ° peeling method.
By such a series of treatments, a film having a more suppressed coefficient of thermal expansion can be obtained from the present composition.
 フィルムの成形においては、インフレーション成形を用いてもよい。
 インフレーション成形においては、環状ダイ(丸ダイ、サーキュラーダイ)から押出した本組成物の溶融混練物が、2方向(MD方向及びTD方向)に延伸されるため、フィルムの等方性が向上しやすい。インレーション成形においては、溶融混練物が、引取と膨張とによって2方向に機械的に延伸されるため、ポリマーの分子が2方向に配向されたフィルムを成形しやすい。
 また、この際、インフレーション成形により、上述した積層体と類似する構成のフィルムを形成してもよい。
 すなわち、本組成物と他の熱可塑性ポリマーを環状ダイから溶融押出し、インフレーション成形によって積層体とする。
Inflation molding may be used in the molding of the film.
In inflation molding, the melt-kneaded product of the present composition extruded from an annular die (round die, circular die) is stretched in two directions (MD direction and TD direction), so that the isotropic property of the film is likely to be improved. .. In insulation molding, since the melt-kneaded product is mechanically stretched in two directions by taking up and expanding, it is easy to mold a film in which polymer molecules are oriented in two directions.
Further, at this time, a film having a structure similar to that of the above-mentioned laminate may be formed by inflation molding.
That is, the composition and other thermoplastic polymers are melt-extruded from a cyclic die and inflation-molded to form a laminate.
 この際に形成し得る積層体としては、1つの本組成物から形成されたフィルム層と1つの剥離フィルム層からなる2層積層体(タイプ1)、2つの剥離フィルム層の間に1つの本組成物から形成されたフィルム層が挟まれた3層積層体(タイプ2)、2つの本組成物から形成されたフィルム層の間に1つの剥離フィルム層が挟まれた3層積層体(タイプ3)が挙げられ、タイプ1の積層体又はタイプ3の積層体が好ましい。 
 これらの積層体における、本組成物から形成されたフィルム層の厚さとしては、3~150μmが好ましい。また、剥離フィルム層の厚さとしては、上記フィルム層の厚さ以上、2倍以下が好ましい。
 かかる一連の処理によっても、本組成物から、より熱膨張係数が抑制されたフィルムが得られる。
The laminate that can be formed at this time is a two-layer laminate (type 1) composed of a film layer formed from one of the present compositions and one release film layer, and one piece between the two release film layers. A three-layer laminate in which a film layer formed from the composition is sandwiched (type 2), and a three-layer laminate in which one release film layer is sandwiched between two film layers formed from the present composition (type 2). 3) is mentioned, and a type 1 laminate or a type 3 laminate is preferable.
The thickness of the film layer formed from the present composition in these laminates is preferably 3 to 150 μm. The thickness of the release film layer is preferably at least twice the thickness of the film layer.
By such a series of treatments, a film having a more suppressed coefficient of thermal expansion can be obtained from the present composition.
 本発明のフィルム(以下、「本フィルム」とも記す。)は、TFE系ポリマーと、モース硬度が3~9である無機フィラーと、TArポリマーとを含み、TArポリマーを含む海相とTFE系ポリマーを含む島相とから構成された海島構造を有する。
 本フィルムにおける、TFE系ポリマー、硬質無機フィラー及びTArポリマーのそれぞれの定義は、好適な範囲も含めて、本組成物におけるそれらと同様である。
 本フィルムにおいて、TFE系ポリマー、硬質無機フィラー及びTArポリマーは、均一に分布して存在していてもよく、偏在して存在していてもよい。
The film of the present invention (hereinafter, also referred to as "the present film") contains a TFE-based polymer, an inorganic filler having a moth hardness of 3 to 9, a TAr polymer, a sea phase containing a TAr polymer, and a TFE-based polymer. It has a sea-island structure composed of an island fauna including.
The definitions of TFE-based polymers, hard inorganic fillers, and TAr polymers in the film are similar to those in the composition, including the preferred range.
In this film, the TFE-based polymer, the hard inorganic filler, and the TAr polymer may be uniformly distributed or may be unevenly distributed.
 本フィルムの厚さ方向における表面領域のTFE系ポリマーの分布量は、フィルムの厚さ方向における中心領域のTFE系ポリマーの分布量より高いのが好ましい。この場合、本フィルムにおけるTFE系ポリマーに起因する物性(特に、低誘電接性等の誘電物性及び接着性)が顕著に発現しやすい。
 本フィルムの厚さ方向における中心領域の硬質無機フィラーの分布量は、フィルムの厚さ方向における表面領域の硬質無機フィラーの分布量より高いのが好ましい。この場合、本フィルムにおける硬質無機フィラーに起因する物性(特に、低線膨張性等)が顕著に発現しやすい。
The distribution amount of the TFE-based polymer in the surface region in the thickness direction of the film is preferably higher than the distribution amount of the TFE-based polymer in the central region in the thickness direction of the film. In this case, the physical properties (particularly, the dielectric properties such as low dielectric contact and the adhesiveness) caused by the TFE polymer in this film are likely to be remarkably exhibited.
The distribution amount of the hard inorganic filler in the central region in the thickness direction of the film is preferably higher than the distribution amount of the hard inorganic filler in the surface region in the thickness direction of the film. In this case, the physical characteristics (particularly, low line expansion) caused by the hard inorganic filler in this film are likely to be remarkably exhibited.
 本フィルムの厚さとしては、5~1000μmが好ましく、10~200μmがより好ましい。
 本フィルムは、本組成物を溶融押出成形によって、製造するのが好ましい。この場合、機械的な強度や折り曲げ性等の加工性を損なうことなく、上述した種々の任意な態様のフィルムを製造しやすい。
 本フィルムの製造方法としては、Tダイコート法を使用するのが好ましく、具体的には、溶融混練された本組成物をTダイから溶融状態で吐出し、冷却ロールに接触させてフィルムに成形するのが好ましい。溶融混練された本組成物は、冷却ロールに接触する前に非接触式加熱部で加熱保持するのが好ましい。
 冷却ロールで冷却された本組成物は、搬送ローラにて搬送されつつフィルム状に成形され、巻取ロールで巻き取られて長尺フィルムに成形されるのが好ましい。
The thickness of this film is preferably 5 to 1000 μm, more preferably 10 to 200 μm.
The film is preferably produced by melt extrusion of the composition. In this case, it is easy to manufacture films of various arbitrary embodiments described above without impairing processability such as mechanical strength and bendability.
As a method for producing the film, it is preferable to use the T die coating method. Specifically, the melt-kneaded composition is discharged from the T die in a molten state and brought into contact with a cooling roll to form a film. Is preferable. It is preferable that the melt-kneaded composition is heated and held in a non-contact heating unit before coming into contact with the cooling roll.
It is preferable that the composition cooled by the cooling roll is formed into a film while being conveyed by the conveying roller, and is wound by the take-up roll to be formed into a long film.
 本フィルムは、その表面に金属層を形成して、金属張積層体とするのが好ましい。金属としては、銅、ニッケル、アルミニウム、銀、金、スズ等の各種金属、これらの合金(ステンレススチール等)が挙げられる。
 かかる金属張積層体としては、金属層及び本フィルムをこの順に有する片面金属張積層体、金属層、本フィルム層及び金属層をこの順に有する両面金属張積層体が挙げられる。また、これらの金属張積層体は、さらに別の層(プリプレグ層、ガラス部材層、セラミックス部材層、他の樹脂フィルム層)を有していてもよい。
 本フィルムの表面に金属層を形成する方法としては、ラミネート法や熱圧着法によって本フィルムの表面に金属箔を貼着する方法、スパッタリング法や蒸着法によって本フィルムの表面に金属層を形成する方法、メッキ法(無電解メッキや無電解メッキ後の電解メッキを含む。)によって本フィルムの表面に金属層を形成する方法、金属導電性インクを用いた印刷法(スクリーン印刷法、インクジェット法、イオンプレーティング法)によって本フィルムの表面に金属層を形成する方法が挙げられる。 
 なお、金属箔としては、圧延銅箔、電解銅箔等の銅箔が好ましい。
It is preferable that the present film has a metal layer formed on its surface to form a metal-clad laminate. Examples of the metal include various metals such as copper, nickel, aluminum, silver, gold and tin, and alloys thereof (stainless steel and the like).
Examples of such a metal-clad laminate include a single-sided metal-clad laminate having a metal layer and the present film in this order, a metal layer, and a double-sided metal-clad laminate having the present film layer and the metal layer in this order. Further, these metal-clad laminates may have further another layer (prepreg layer, glass member layer, ceramic member layer, other resin film layer).
As a method of forming a metal layer on the surface of this film, a metal foil is attached to the surface of this film by a laminating method or a thermocompression bonding method, or a metal layer is formed on the surface of this film by a sputtering method or a vapor deposition method. Method, method of forming a metal layer on the surface of this film by electroless plating or electrolytic plating after electroless plating, printing method using metal conductive ink (screen printing method, inkjet method, A method of forming a metal layer on the surface of the present film by the ion plating method) can be mentioned.
As the metal foil, a copper foil such as a rolled copper foil or an electrolytic copper foil is preferable.
 金属層との接着性をより向上させるため、本フィルムの表面を表面処理してもよい。表面処理としては、プラズマ処理、コロナ処理、火炎処理、イトロ処理が挙げられる。
 かかる金属張積層体は、プリント基板、高放熱基板、アンテナ基板等の材料又は部材として使用できる。
 例えば、かかる金属張積層体の金属層をエッチングしてパターン回路を形成すればプリント基板が得られる。この際、パターン回路を形成した後に、上記パターン回路上に層間絶縁膜を形成し、上記層間絶縁膜上にさらにパターン回路を形成してもよい。
 また、パターン回路上にソルダーレジストを積層してもよく、カバーレイフィルムを積層してもよい。カバーレイフィルムは、典型的には、基材フィルムと、その表面に形成された接着剤層とから構成され、接着剤層側の面がプリント基板に貼着される。カバーレイフィルムの基材フィルムとして、本フィルムを使用してもよい。また、パターン回路上に、本フィルムを用いた層間絶縁膜(接着層)を形成し、カバーレイフィルムとしてポリイミドフィルムを積層してもよい。
The surface of the film may be surface-treated in order to further improve the adhesiveness with the metal layer. Examples of the surface treatment include plasma treatment, corona treatment, flame treatment, and itro treatment.
Such a metal-clad laminate can be used as a material or member for a printed circuit board, a high heat dissipation substrate, an antenna substrate, or the like.
For example, a printed circuit board can be obtained by etching the metal layer of the metal-clad laminate to form a pattern circuit. At this time, after forming the pattern circuit, an interlayer insulating film may be formed on the pattern circuit, and a pattern circuit may be further formed on the interlayer insulating film.
Further, a solder resist may be laminated on the pattern circuit, or a coverlay film may be laminated. The coverlay film is typically composed of a base film and an adhesive layer formed on the surface thereof, and the surface on the adhesive layer side is attached to the printed circuit board. This film may be used as the base film of the coverlay film. Further, an interlayer insulating film (adhesive layer) using this film may be formed on the pattern circuit, and a polyimide film may be laminated as a coverlay film.
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 使用した原材料を、以下に示す。
1.各成分の準備
 PFA系粉体1:TFE単位、NAH単位及びPPVE単位を、この順に98.0モル%、0.1モル%、1.9モル%含む、カルボニル基含有基を主鎖炭素数1×10個あたり1000個有するPFA系ポリマー(溶融温度:300℃)からなる粉体(平均粒子径:2.0μm)
 PFA系粉体2:TFE単位及びPPVE単位からなる、カルボニル基含有基を主鎖炭素数1×10個あたり40個有するPFA系ポリマー(溶融温度:305℃)からなる粉体(平均粒子径:2.4μm)
 芳香族系粉体1:ガラス繊維を30質量%含む、芳香族ポリマーである液晶ポリマーの粉体(溶融温度:320℃;上野製薬社製、「UENO LCP 6030G」)
 無機フィラー1:モース硬度が7であり、かつ略真球状であるシリカフィラー(平均粒子径:0.5μm;アドマテックス社製、「アドマファインSO-C2」)
 無機フィラー2:モース硬度が7であり、かつ略真球状であるシリカフィラー(平均粒子径:5μm)
 無機フィラー3:モース硬度が1であり、タルクフィラー(平均粒子径:0.7μm)
Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited thereto.
The raw materials used are shown below.
1. 1. Preparation of each component PFA-based powder 1: Contains 98.0 mol%, 0.1 mol%, and 1.9 mol% of TFE units, NAH units, and PPVE units in this order, and contains a carbonyl group-containing group as the main chain carbon number. Powder (average particle size: 2.0 μm) composed of 1000 PFA-based polymers (melting temperature: 300 ° C.) per 1 × 10 6 pieces
PFA-based powder 2: A powder (average particle size) composed of a PFA-based polymer (melting temperature: 305 ° C.) having 40 carbonyl group-containing groups per 1 × 10 6 main chain carbon atoms, which is composed of TFE units and PPVE units. : 2.4 μm)
Aromatic powder 1: Liquid crystal polymer powder that is an aromatic polymer containing 30% by mass of glass fiber (melting temperature: 320 ° C; manufactured by Ueno Fine Chemicals Industry, "UENO LCP 6030G")
Inorganic filler 1: Silica filler having a Mohs hardness of 7 and a substantially spherical shape (average particle size: 0.5 μm; manufactured by Admatex, “Admafine SO-C2”)
Inorganic filler 2: Silica filler having a Mohs hardness of 7 and a substantially spherical shape (average particle size: 5 μm)
Inorganic filler 3: Mohs hardness is 1, talc filler (average particle size: 0.7 μm)
 フィルムの寸法安定性の評価は、JIS C 6481:1996に準拠した。
 得られたフィルムの幅方向の端から、流れ方向に沿った2辺及び幅方向に沿った2辺を有する30cm角の正方形状のサンプルを切り出した。
 このサンプルの表面の対角線(流れ方向とのなす角度が45°である45°方向、及びこの45°方向と直交する135°方向)上に、それぞれ長さ25cmの線分を描画し、各線分の両端部をそれぞれ中心とするパンチ孔を形成した。
 サンプルを塩化鉄水溶液に浸漬し、浸漬前後の2つのパンチ孔の中心間の距離を測定し、エッチングにおけるフィルムの斜め方向の伸縮率を求めた。
 サンプルに、150℃にて30分間加熱した後、25℃まで冷却する熱処理を施し、熱処理前後の2つのパンチ孔の中心間の距離を測定し、熱処理におけるフィルムの斜め方向の伸縮率を求めた。
The evaluation of the dimensional stability of the film was based on JIS C 6488: 1996.
From the widthwise edge of the obtained film, a 30 cm square square sample having two sides along the flow direction and two sides along the width direction was cut out.
Line segments with a length of 25 cm are drawn on the diagonal lines of the surface of this sample (the 45 ° direction in which the angle formed by the flow direction is 45 ° and the 135 ° direction orthogonal to the 45 ° direction), and each line segment is drawn. Punch holes were formed around both ends of the.
The sample was immersed in an aqueous iron chloride solution, the distance between the centers of the two punch holes before and after immersion was measured, and the expansion / contraction rate of the film in the oblique direction during etching was determined.
The sample was heat-treated at 150 ° C. for 30 minutes and then cooled to 25 ° C., and the distance between the centers of the two punch holes before and after the heat treatment was measured to determine the expansion / contraction rate of the film in the oblique direction during the heat treatment. ..
2.粉体組成物及びフィルムの製造例
 [例1]
 PFA系粉体1(20質量部)、芳香族系粉体1(100質量部)、及び硬質無機フィラー1(15質量部)をドライブレンドして粉体組成物1を調製した。粉体組成物1を2軸押出機(テクノベル社製、「KZW15TW-45MG」)に投入して溶融混練(スクリュー回転数:200rpm、設定樹脂温度:370℃)し、その先端に設置したTダイから2.0kg/hrにて吐出して、平坦状のフィルム1(厚さ:100μm)を成形した。
 フィルム1は、銅箔に対して高い接着性を示し、その誘電率は2.9であり誘電特性に優れていた。また、フィルム1のエッチングにおけるフィルムの斜め方向の伸縮率と、熱処理におけるフィルムの斜め方向の伸縮率(絶対値)とは、いずれも0.1%未満であり、フィルム1は、寸法安定性に優れていた。
 [例2~4]
 それぞれの粉体及び無機フィラーの種類と量とを下表1に示す通り変更した以外は、フィルム1と同様にして、フィルム2~4を得た。
2. Production example of powder composition and film [Example 1]
A powder composition 1 was prepared by dry-blending PFA-based powder 1 (20 parts by mass), aromatic powder 1 (100 parts by mass), and hard inorganic filler 1 (15 parts by mass). The powder composition 1 was put into a twin-screw extruder (manufactured by Technobel Co., Ltd., "KZW15TW-45MG"), melt-kneaded (screw rotation speed: 200 rpm, set resin temperature: 370 ° C.), and a T-die installed at the tip thereof. To form a flat film 1 (thickness: 100 μm) by discharging at 2.0 kg / hr.
The film 1 showed high adhesiveness to the copper foil, and its dielectric constant was 2.9, which was excellent in dielectric properties. Further, the stretch ratio in the diagonal direction of the film in the etching of the film 1 and the stretch ratio (absolute value) in the diagonal direction of the film in the heat treatment are both less than 0.1%, and the film 1 has dimensional stability. It was excellent.
[Examples 2 to 4]
Films 2 to 4 were obtained in the same manner as in Film 1, except that the types and amounts of the respective powders and inorganic fillers were changed as shown in Table 1 below.
3.評価
 3-1.寸法熱安定性の評価
 それぞれのフィルムの寸法変化率を以下の通り測定し、以下の基準に従って評価した。なお、フィルムの寸法安定性の評価は、JIS C 6481:1996に準拠した。
 それぞれのフィルムから、30cm角の正方形状のサンプルを切り出した。
 このサンプルの表面に、長さ25cmの線分を描画し、線分の両端部をそれぞれ中心とするパンチ孔を形成した。
 サンプルを、150℃にて30分間加熱した後、25℃まで冷却する熱処理を施し、熱処理前後の2つのパンチ孔の中心間の距離を測定し、熱処理におけるフィルムの伸縮率の絶対値を寸法熱変化率とした。
 [評価基準]
 〇:寸法熱変化率が1.5%未満
 △:寸法熱変化率が1.5以上2%以下
 ×:寸法熱変化率が2%超
3. 3. Evaluation 3-1. Evaluation of dimensional thermal stability The dimensional change rate of each film was measured as follows and evaluated according to the following criteria. The evaluation of the dimensional stability of the film was based on JIS C 6488: 1996.
A 30 cm square square sample was cut out from each film.
A line segment having a length of 25 cm was drawn on the surface of this sample to form punch holes centered on both ends of the line segment.
After heating the sample at 150 ° C. for 30 minutes, heat treatment is performed to cool it to 25 ° C., the distance between the centers of the two punch holes before and after the heat treatment is measured, and the absolute value of the stretch ratio of the film in the heat treatment is determined by the dimensional heat. The rate of change was used.
[Evaluation criteria]
〇: Dimensional heat change rate is less than 1.5% Δ: Dimensional heat change rate is 1.5 or more and 2% or less ×: Dimensional heat change rate is more than 2%
 3-2.接着性の評価
 それぞれのフィルムの接着性を以下の通り測定し、以下の基準に従って評価した。
 それぞれのフィルムと無垢の銅箔とを対向して配置し、熱プレス(温度:340℃、加圧力:15kN/m)して、フィルム層と銅箔層を有する積層体を得た。この積層体から、長さ100mm、幅10mmの矩形状の試験片を切り出した。試験片の長さ方向の一端から50mmの位置までフィルム層から銅箔層を剥離した。剥離に際しては、試験片の長さ方向の一端から50mmの位置を中央にして、引張り試験機(オリエンテック社製)を用いて、引張り速度50mm/分で90度剥離し、測定距離10mmから30mmまでの平均荷重を測定して、剥離強度(N/cm)とした。
 [評価基準]
  〇:剥離強度が10N/cm以上である。
  △:剥離強度が5N/cm以上10N/cm未満である。
  ×:剥離強度が5N/cm未満である。
3-2. Evaluation of Adhesiveness The adhesiveness of each film was measured as follows and evaluated according to the following criteria.
Each film and a solid copper foil were placed facing each other and heat-pressed (temperature: 340 ° C., pressing force: 15 kN / m) to obtain a laminate having a film layer and a copper foil layer. A rectangular test piece having a length of 100 mm and a width of 10 mm was cut out from this laminated body. The copper foil layer was peeled from the film layer to a position 50 mm from one end in the length direction of the test piece. When peeling, the test piece is peeled 90 degrees at a tensile speed of 50 mm / min using a tensile tester (manufactured by Orientec) with the position 50 mm from one end in the length direction as the center, and the measurement distance is 10 mm to 30 mm. The average load up to was measured and used as the peel strength (N / cm).
[Evaluation criteria]
〇: The peel strength is 10 N / cm or more.
Δ: The peel strength is 5 N / cm or more and less than 10 N / cm.
X: The peel strength is less than 5 N / cm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 それぞれのフィルムを液体窒素中で凍結した後、切断し、切断面を、走査型電子顕微鏡(日立ハイテクノロジーズ製、FE-SEM)で観察した結果、フィルム1~4は、液晶ポリマー1を含む海相と、PFA系ポリマー1又は2を含む島相とから構成された海島構造を有していた。また、フィルム1~3は、フィルムの厚さ方向における表面領域のPFA系ポリマーの分布量が、フィルムの厚さ方向における中心領域のPFA系ポリマーの分布量より高かった。 As a result of freezing each film in liquid nitrogen, cutting the film, and observing the cut surface with a scanning electron microscope (FE-SEM manufactured by Hitachi High Technologies America), the films 1 to 4 are the sea containing the liquid crystal polymer 1. It had a sea-island structure composed of a phase and an island phase containing PFA-based polymer 1 or 2. Further, in the films 1 to 3, the distribution amount of the PFA-based polymer in the surface region in the film thickness direction was higher than the distribution amount of the PFA-based polymer in the central region in the film thickness direction.
 本発明の粉体組成物及び本発明のフィルムは、高周波特性、特にミリ波帯域の伝送損失低減が必要とされる電子機器(レーダー、ネットワークのルーター、バックプレーン、無線インフラ、自動車用センサ、エンジンマネージメントセンサ等)に用いられるプリント基板の材料又は部材等として有用である。
 なお、2019年11月11日に出願された日本特許出願2019-204147号の明細書、特許請求の範囲及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The powder composition of the present invention and the film of the present invention have high frequency characteristics, particularly electronic devices (radars, network routers, backplanes, wireless infrastructures, automobile sensors, engines) that require reduction of transmission loss in the millimeter wave band. It is useful as a material or member of a printed circuit board used for (management sensor, etc.).
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2019-204147 filed on November 11, 2019 are cited here and incorporated as disclosure of the specification of the present invention. Is.

Claims (15)

  1.  ペルフルオロ(アルキルビニルエーテル)に基づく単位又はヘキサフルオロプロピレンに基づく単位を含むテトラフルオロエチレン系ポリマーの粉体と、モース硬度が3~9である無機フィラーの粉体と、熱可塑性の芳香族ポリマーの粉体とを含む、粉体組成物。 Tetrafluoroethylene polymer powder containing a unit based on perfluoro (alkyl vinyl ether) or a unit based on hexafluoropropylene, an inorganic filler powder having a Mohs hardness of 3 to 9, and a thermoplastic aromatic polymer powder. A powder composition comprising a body.
  2.  前記テトラフルオロエチレン系ポリマーが、テトラフルオロエチレンに基づく単位及びペルフルオロ(アルキルビニルエーテル)に基づく単位を含む、酸素含有極性基を有するポリマーである、請求項1に記載の粉体組成物。 The powder composition according to claim 1, wherein the tetrafluoroethylene-based polymer is a polymer having an oxygen-containing polar group containing a unit based on tetrafluoroethylene and a unit based on perfluoro (alkyl vinyl ether).
  3.  前記無機フィラーが、酸化ケイ素を含むフィラーである、請求項1又は2に記載の粉体組成物。 The powder composition according to claim 1 or 2, wherein the inorganic filler is a filler containing silicon oxide.
  4.  前記芳香族ポリマーが、ポリイミド、ポリアミドイミド、ポリエステル、ポリエステルアミド、ポリフェニレンエーテル又はポリフェニレンサルファイドである、請求項1~3のいずれか1項に記載の粉体組成物。 The powder composition according to any one of claims 1 to 3, wherein the aromatic polymer is polyimide, polyamideimide, polyester, polyesteramide, polyphenylene ether or polyphenylene sulfide.
  5.  前記芳香族ポリマーが、液晶ポリマーである、請求項1~4のいずれか1項に記載の粉体組成物。 The powder composition according to any one of claims 1 to 4, wherein the aromatic polymer is a liquid crystal polymer.
  6.  前記テトラフルオロエチレン系ポリマーの粉体の平均粒子径が、前記無機フィラーの平均粒子径より大きい、請求項1~5のいずれか1項に記載の粉体組成物。 The powder composition according to any one of claims 1 to 5, wherein the average particle size of the powder of the tetrafluoroethylene polymer is larger than the average particle size of the inorganic filler.
  7.  前記芳香族ポリマーの含有量が、前記テトラフルオロエチレン系ポリマーの含有量より多い、請求項1~6のいずれか1項に記載の粉体組成物。 The powder composition according to any one of claims 1 to 6, wherein the content of the aromatic polymer is higher than the content of the tetrafluoroethylene-based polymer.
  8.  前記テトラフルオロエチレン系ポリマーの含有量に対する前記無機フィラーの含有量の比が、0.2~0.6である、請求項1~7のいずれか1項に記載の粉体組成物。 The powder composition according to any one of claims 1 to 7, wherein the ratio of the content of the inorganic filler to the content of the tetrafluoroethylene polymer is 0.2 to 0.6.
  9.  前記テトラフルオロエチレン系ポリマーの含有量、前記無機フィラーの含有量、前記芳香族ポリマーの含有量が、この順に、10~40質量%、5~40質量%、20~85質量%である、請求項1~8のいずれか1項に記載の粉体組成物。 Claims that the content of the tetrafluoroethylene polymer, the content of the inorganic filler, and the content of the aromatic polymer are, in this order, 10 to 40% by mass, 5 to 40% by mass, and 20 to 85% by mass. Item 2. The powder composition according to any one of Items 1 to 8.
  10.  溶融押出成形に用いられる、請求項1~9のいずれか1項に記載の粉体組成物。 The powder composition according to any one of claims 1 to 9, which is used for melt extrusion molding.
  11.  請求項1~10のいずれか1項に記載の粉体組成物を溶融押出成形してフィルムを得る、フィルムの製造方法。 A method for producing a film, wherein the powder composition according to any one of claims 1 to 10 is melt-extruded to obtain a film.
  12.  ペルフルオロ(アルキルビニルエーテル)に基づく単位又はヘキサフルオロプロピレンに基づく単位を含むテトラフルオロエチレン系ポリマーと、モース硬度が3~9である無機フィラーと、熱可塑性の芳香族ポリマーとを含み、前記芳香族ポリマーを含む海相と前記テトラフルオロエチレン系ポリマーを含む島相とから構成された海島構造を少なくとも有する、フィルム。 The aromatic polymer contains a tetrafluoroethylene polymer containing a unit based on perfluoro (alkyl vinyl ether) or a unit based on hexafluoropropylene, an inorganic filler having a Morse hardness of 3 to 9, and a thermoplastic aromatic polymer. A film having at least a sea-island structure composed of a sea phase containing the above and an island phase containing the tetrafluoroethylene-based polymer.
  13.  前記フィルムの厚さ方向における表面領域の前記テトラフルオロエチレン系ポリマーの分布量が、前記フィルムの厚さ方向における中心領域の前記テトラフルオロエチレン系ポリマーの分布量より高い、請求項12に記載のフィルム。 The film according to claim 12, wherein the distribution amount of the tetrafluoroethylene-based polymer in the surface region in the thickness direction of the film is higher than the distribution amount of the tetrafluoroethylene-based polymer in the central region in the thickness direction of the film. ..
  14.  前記フィルムの厚さ方向における中心領域の前記無機フィラーの分布量が、前記フィルムの厚さ方向における表面領域の前記無機フィラーの分布量より高い、請求項12又は13に記載のフィルム。 The film according to claim 12 or 13, wherein the distribution amount of the inorganic filler in the central region in the thickness direction of the film is higher than the distribution amount of the inorganic filler in the surface region in the thickness direction of the film.
  15.  前記フィルムの厚さが、5~1000μmである、請求項12~14のいずれか1項に記載のフィルム。 The film according to any one of claims 12 to 14, wherein the film has a thickness of 5 to 1000 μm.
PCT/JP2020/041536 2019-11-11 2020-11-06 Powder composition, film, and method for producing film WO2021095656A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080078282.0A CN114729198B (en) 2019-11-11 2020-11-06 Powder composition, film, and method for producing film
JP2021556069A JPWO2021095656A1 (en) 2019-11-11 2020-11-06
KR1020227002018A KR20220101067A (en) 2019-11-11 2020-11-06 Powder composition, film, and method for producing film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019204147 2019-11-11
JP2019-204147 2019-11-11

Publications (1)

Publication Number Publication Date
WO2021095656A1 true WO2021095656A1 (en) 2021-05-20

Family

ID=75912922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041536 WO2021095656A1 (en) 2019-11-11 2020-11-06 Powder composition, film, and method for producing film

Country Status (5)

Country Link
JP (1) JPWO2021095656A1 (en)
KR (1) KR20220101067A (en)
CN (1) CN114729198B (en)
TW (1) TW202124564A (en)
WO (1) WO2021095656A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278966A (en) * 1996-04-10 1997-10-28 Du Pont Mitsui Fluorochem Co Ltd Composition for coating metallic substrate
WO2005083007A1 (en) * 2004-03-02 2005-09-09 Polyplastics Co., Ltd. Liquid crystalline resin composition
WO2014171029A1 (en) * 2013-04-17 2014-10-23 ダイセル・エボニック株式会社 Light-resistant resin composition, and moulded body thereof
WO2015016370A1 (en) * 2013-07-31 2015-02-05 住友化学株式会社 Liquid crystalline polyester composition
JP2018177931A (en) * 2017-04-11 2018-11-15 Agc株式会社 Resin composition and molded article

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3500747B2 (en) * 1994-12-22 2004-02-23 大日本インキ化学工業株式会社 Thermoplastic resin composition
US6153303A (en) * 1997-08-26 2000-11-28 Dupont Mitsui Fluorochemicals Tetrafluoroethylene copolymer composition for coating metal articles
JP3530829B2 (en) 2001-03-12 2004-05-24 日本ピラー工業株式会社 Fluororesin composition for electronic parts
JP4014964B2 (en) 2001-10-24 2007-11-28 三井・デュポンフロロケミカル株式会社 Fluororesin laminate and method for producing the same
JP2003171538A (en) 2001-12-07 2003-06-20 Dainippon Ink & Chem Inc Liquid crystal polyester resin composition
JP5733470B2 (en) * 2013-01-23 2015-06-10 東レ株式会社 Polyphenylene sulfide resin composition, production method thereof and molded product
JP6977716B2 (en) * 2016-04-11 2021-12-08 Agc株式会社 Laminates, printed circuit boards, and methods for manufacturing laminates
JP2019065061A (en) 2017-09-28 2019-04-25 Agc株式会社 Resin composition for printed circuit boards and production method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09278966A (en) * 1996-04-10 1997-10-28 Du Pont Mitsui Fluorochem Co Ltd Composition for coating metallic substrate
WO2005083007A1 (en) * 2004-03-02 2005-09-09 Polyplastics Co., Ltd. Liquid crystalline resin composition
WO2014171029A1 (en) * 2013-04-17 2014-10-23 ダイセル・エボニック株式会社 Light-resistant resin composition, and moulded body thereof
WO2015016370A1 (en) * 2013-07-31 2015-02-05 住友化学株式会社 Liquid crystalline polyester composition
JP2018177931A (en) * 2017-04-11 2018-11-15 Agc株式会社 Resin composition and molded article

Also Published As

Publication number Publication date
KR20220101067A (en) 2022-07-19
CN114729198B (en) 2023-07-04
JPWO2021095656A1 (en) 2021-05-20
CN114729198A (en) 2022-07-08
TW202124564A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
JP2019065061A (en) Resin composition for printed circuit boards and production method
TWI766021B (en) Fluorine resin film, laminate, and method for producing hot-pressed laminate
JP6997104B2 (en) Base material for high frequency printed wiring boards
JP7435441B2 (en) Powder dispersions, laminates, membranes and impregnated woven fabrics
US20230364887A1 (en) Polymer film, laminate, and method for manufacturing same
JP7371681B2 (en) Liquid composition, powder, and method for producing powder
JP7283208B2 (en) Powder dispersion, method for producing laminate, method for producing laminate and printed circuit board
JP7196914B2 (en) METAL FOIL WITH RESIN, METHOD FOR MANUFACTURING LAMINATED BOARD, LAMINATED BOARD AND PRINTED BOARD
TW202146580A (en) Resin film and manufacturing method thereof, resin composition, metal-clad laminate, and printed wiring board wherein the resin film includes a liquid crystal polymer filler and a base polymer material
WO2021095662A1 (en) Nonaqueous dispersions, method for producing layered product, and molded object
WO2021075504A1 (en) Non-aqueous dispersion liquid, and method for producing laminate
JP7396301B2 (en) Powder dispersion liquid, laminate manufacturing method, polymer film manufacturing method, and covering woven fabric manufacturing method
JP7484917B2 (en) Manufacturing method of laminate and laminate
JP4598408B2 (en) Adhesive sheet
WO2021095656A1 (en) Powder composition, film, and method for producing film
JP7468520B2 (en) Liquid Composition
WO2022019252A1 (en) Powder composition and composite particles
JP2006198993A (en) Laminate of thermoplastic resin
JP7511110B2 (en) Method for producing liquid composition and laminate
WO2021200627A1 (en) Fluororesin film and manufacturing method for same
TWI840480B (en) Powder dispersion, method for producing laminate, method for producing polymer film, and method for producing coated fabric
JP2021091858A (en) Liquid composition and method for producing laminate
WO2021166930A1 (en) Multilayer film and method for manufacturing same
WO2023002999A1 (en) Method for producing composite sheet, and composite sheet
WO2021200630A1 (en) Multilayer film, method for producing same, metal-clad laminate, and method for producing printed wiring board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20888585

Country of ref document: EP

Kind code of ref document: A1