WO2021095578A1 - 樹脂接合体の製造方法および樹脂接合体の製造装置 - Google Patents

樹脂接合体の製造方法および樹脂接合体の製造装置 Download PDF

Info

Publication number
WO2021095578A1
WO2021095578A1 PCT/JP2020/040932 JP2020040932W WO2021095578A1 WO 2021095578 A1 WO2021095578 A1 WO 2021095578A1 JP 2020040932 W JP2020040932 W JP 2020040932W WO 2021095578 A1 WO2021095578 A1 WO 2021095578A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin member
resin
joint surface
thermoforming
surface treatment
Prior art date
Application number
PCT/JP2020/040932
Other languages
English (en)
French (fr)
Inventor
和弥 金杉
俊平 藤内
裕介 山下
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020568840A priority Critical patent/JPWO2021095578A1/ja
Priority to EP20888497.3A priority patent/EP4059700A4/en
Publication of WO2021095578A1 publication Critical patent/WO2021095578A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/02Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore of moulding techniques only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/08Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/10Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using hot gases (e.g. combustion gases) or flames coming in contact with at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1412Infrared [IR] radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/1403Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation characterised by the type of electromagnetic or particle radiation
    • B29C65/1425Microwave radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7888Means for handling of moving sheets or webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7858Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus characterised by the feeding movement of the parts to be joined
    • B29C65/7888Means for handling of moving sheets or webs
    • B29C65/7891Means for handling of moving sheets or webs of discontinuously moving sheets or webs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00141Protective gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/001Joining in special atmospheres
    • B29C66/0012Joining in special atmospheres characterised by the type of environment
    • B29C66/0014Gaseous environments
    • B29C66/00145Vacuum, e.g. partial vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/022Mechanical pre-treatments, e.g. reshaping
    • B29C66/0222Mechanical pre-treatments, e.g. reshaping without removal of material, e.g. cleaning by air blowing or using brushes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/026Chemical pre-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/028Non-mechanical surface pre-treatments, i.e. by flame treatment, electric discharge treatment, plasma treatment, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/03After-treatments in the joint area
    • B29C66/034Thermal after-treatments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/114Single butt joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3032Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined
    • B29C66/30321Particular design of joint configurations the joint involving an anchoring effect making use of protrusions or cavities belonging to at least one of the parts to be joined making use of protrusions belonging to at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91211Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods
    • B29C66/91216Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature with special temperature measurement means or methods enabling contactless temperature measurements, e.g. using a pyrometer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/001Bonding of two components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/023Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves
    • B29C2043/025Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having a plurality of grooves forming a microstructure, i.e. fine patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2017/00Carriers for sound or information
    • B29L2017/006Memory cards, chip cards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/756Microarticles, nanoarticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/04Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the partial melting of at least one layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • B32B37/203One or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0036Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0323Grooves
    • B81B2203/0338Channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/036Fusion bonding

Definitions

  • the present invention relates to a method for manufacturing a resin bonded body including a thermoforming step and a device for manufacturing a resin bonded body.
  • adhesive-less bonding Technology for joining various base materials without adhesive (hereinafter referred to as adhesive-less bonding) is being studied for the purpose of further miniaturization of semiconductor devices and improvement of optical characteristics of optical devices.
  • adhesive-less bonding for resins a laminating technique is widely used in which the resin bonding surfaces are brought into contact with each other and then heated to the melting temperature of the resin to be welded.
  • this method has a problem that the crystallinity and molecular structure of the entire resin member change (thermal alteration) during heating, which adversely affects the optical characteristics and mechanical strength.
  • recesses are formed in at least one of the joint surface of the first resin member and the joint surface of the second resin member for the flow path constituent members such as a biosensor and a fuel cell, and these resins are used.
  • a method is disclosed in which a joint surface is subjected to surface treatment using an ionizing substance, an electromagnetic wave, or the like, and then a solvent is interposed between the joint surfaces of the resin member to pressurize the joint surface at a temperature of less than 50 ° C.
  • thermoforming technique of pressing a resin softened by heating into a mold to form the resin is widely used because an arbitrary shape can be easily and accurately applied by using a mold according to a purpose.
  • Non-Patent Document 1 discloses that the microstructure of the mold surface can be transferred to the resin surface by heating the surface of the resin member and then applying pressure using the thermal imprint method, which is one of the thermoforming techniques. ing.
  • Non-Patent Document 1 the resin member thermoformed by the method described in Non-Patent Document 1 has a problem that the surface of the resin member is thermally deteriorated during thermoforming, and the resin member joined by the method disclosed in Patent Document 1 is sufficient. The effect of improving the bonding strength cannot be obtained.
  • the present invention has been made in view of the above-mentioned problems, and provides a method and an apparatus for manufacturing an adhesive-less resin bonded body having a high bonding force with respect to a thermoformed resin member.
  • the present invention also provides a method and an apparatus for producing a resin bonded body having good optical characteristics when the resin to be bonded is a transparent body.
  • the method for producing a resin bonded body of the present invention that solves the above problems is a method for producing a resin bonded body in which a first resin member and a second resin member are bonded, and is the above-mentioned method for producing the resin bonded body of the first resin member.
  • the joint surface with the second resin member and / or the joint surface with the first resin member of the second resin member is covered with an inert gas or placed in a vacuum environment.
  • the thermoforming step of thermoforming the surface treatment step of activating the joint surface of the first resin member and / or the second resin member, and the thermoforming step and the surface treatment step. It has a joining step of bonding the first resin member and the second resin member at the respective joining surfaces.
  • the resin-bonded body manufacturing apparatus of the present invention that solves the above problems is used for manufacturing a resin-bonded body in which a first resin member and a second resin member are bonded to each other, and has a thermoforming mechanism, a surface treatment mechanism, and bonding.
  • a device for manufacturing a resin bonded body provided with a mechanism, wherein the thermoforming mechanism is a joint surface of the first resin member with the second resin member and / or the above-mentioned second resin member.
  • a gas supply means for supplying the inert gas toward the joint surface so as to cover the joint surface with the first resin member with the inert gas, the first resin member covered with the inert gas, and the first resin member.
  • the surface treatment mechanism is the above-mentioned first resin member and / or the above-mentioned second resin member.
  • the joining surface is activated, and the joining mechanism is for bonding the first resin member and the second resin member at the respective joining surfaces.
  • thermoforming mechanism is a bonding surface of the first resin member with the second resin member and / or the second resin member.
  • a partition wall provided so as to surround the joint surface of the resin member with the first resin member, a gas supply means for supplying an inert gas to the inside of the partition wall, or an air inside the partition wall is exhausted.
  • the surface treatment mechanism activates the joint surface of the first resin member and / or the second resin member, and the joint mechanism is the first resin member and the second resin member.
  • the resin members are bonded to each other at the above-mentioned joint surfaces.
  • a method and an apparatus for manufacturing an adhesive-less resin bonded body having a high bonding force even when the resin member is thermoformed when the resin to be bonded is a transparent material, a method and an apparatus for producing an adhesive-less resin bonded body having good optical properties are provided.
  • FIG. 1 is a schematic view showing a first embodiment of the method for producing a resin bonded body of the present invention.
  • FIG. 2 is a schematic view showing a second embodiment of the method for producing a resin bonded body of the present invention.
  • FIG. 3 is a schematic view showing a third embodiment of the method for producing a resin bonded body of the present invention.
  • FIG. 4 is a schematic view showing a fourth embodiment of the method for producing a resin bonded body of the present invention.
  • FIG. 5 is a schematic view showing a fifth embodiment of the method for producing a resin bonded body of the present invention.
  • FIG. 6 is a schematic view showing a sixth embodiment of the method for producing a resin bonded body of the present invention.
  • FIG. 1 is a schematic view showing a first embodiment of the method for producing a resin bonded body of the present invention.
  • FIG. 2 is a schematic view showing a second embodiment of the method for producing a resin bonded body of the present invention.
  • FIG. 3 is a
  • FIG. 7 is a schematic view showing a seventh embodiment of the method for producing a resin bonded body of the present invention.
  • FIG. 8 is a schematic view showing a first embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • FIG. 9 is a schematic view showing a second embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • FIG. 10 is a schematic view showing a third embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • FIG. 11 is a schematic view showing a fourth embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • FIG. 12 is a schematic view showing a fifth embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • FIG. 13 is a schematic view showing a sixth embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • FIG. 14 is a schematic view showing a seventh embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • FIG. 15 is a schematic view showing an eighth embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • FIG. 16 is a schematic view showing a shaping surface of the heat press machine used in Examples 1 to 6.
  • FIG. 1 is a schematic view showing a first embodiment of the method for producing a resin bonded body 9 of the present invention.
  • the joint surface 3 of the first resin member 1 with the second resin member 2 and / or the first resin of the second resin member 2 After the thermoforming step 5 in which the joint surface 3'with the member 1 is covered with the inert gas and thermoformed by the shaping means 21, and the thermoforming step 5, the first resin member 1 is joined.
  • the first resin member 1 and the first resin member 1 and the first It has a joining step 7 in which the resin member 2 of 2 is bonded to each other on the joining surface.
  • the types of the first resin member 1 and the second resin member 2 used in the present invention are polyethylene (PE), polypropylene (PP), polyamide (PA), polyacetal (POM), polyethylene terephthalate (PET), and polybutylene.
  • the material containing no aromatic has higher thermal motility of the molecular chain, and the molecular diffusion (entanglement of the molecular chains) at the bonding interface between the first resin member 1 and the second resin member 2 becomes larger. is there. As the molecular diffusion increases, the intermolecular force at the bonding interface increases, and the bonding force improves.
  • the types of the first resin member 1 and the second resin member 2 may be different, but when the same type of resin member 1 is joined, the joint surface 3 of the first resin member 1 and the second resin member 2 are joined. It is preferable from the viewpoint of entanglement of molecular chains at the interface with the joint surface 3'.
  • thermoforming step 5 The thermoforming step 5 will be described. "Thermoforming” in the present invention refers to shaping a resin while heating.
  • the joint surface 3 of the first resin member 1 and / or the joint surface 3'of the second resin member 2 is shaped for the purpose of imparting an arbitrary uneven shape or improving smoothness.
  • Thermoformed by means 21 Depending on the shape of the resin joint 9 to be obtained, only one of the joint surface 3 or the joint surface 3'may be thermoformed, or both the joint surface 3 and the joint surface 3'may be thermoformed. ..
  • the joint surface 3 of the first resin member 1 is thermoformed will be described unless otherwise specified.
  • the joint surface 3' is thermoformed, the first resin member 1 may be read as the second resin member 2, and the joint surface 3 may be read as the joint surface 3'.
  • the shaping means 21 in the thermoforming step 5 is not particularly limited, and examples thereof include hot press molding such as thermal imprinting and laser machining.
  • the gas supply means 18 such as a gas nozzle is used to supply the inert gas toward the joint surface 3 of the first resin member 1 to be thermoformed.
  • the joint surface 3 can be efficiently covered with the inert gas.
  • an oxidizing substance such as oxygen or carbon dioxide is suppressed, and the thermal deterioration of the joint surface 3 during thermoforming can be reduced.
  • thermal deterioration in the present invention means oxidative deterioration that causes low molecular weight (fragility) and cross-linking of the joint surface 3 in the molecular chain breakage of the resin caused by oxidation and heat. Due to this thermal deterioration, the thermal motility and mechanical durability of the molecular chains existing on the joint surface 3 of the first resin member 1 are lowered. Changes in the molecular structure of the joint surface 3 due to thermal deterioration can be confirmed by infrared absorption spectroscopy (IR) or the like.
  • IR infrared absorption spectroscopy
  • the "inert gas” in the present invention refers to a gas that does not undergo an oxidation reaction, and examples thereof include rare gases such as argon, helium, and neon, and nitrogen gas. Above all, it is preferable to use nitrogen gas from the viewpoint of cost.
  • the inert gas supplied from the gas supply means 18 may be a single gas, but a plurality of inert gas species may be mixed.
  • the environment filled with the inert gas in the present invention is a state in which the oxygen concentration in the atmosphere in contact with the joint surface 3 is less than 20%. The lower the oxygen concentration, the less the thermal deterioration and the better the bonding strength of the resin bonded body 9.
  • the oxygen concentration of the thermoformed joint surface 3 can be measured using a zirconia type oxygen concentration meter, a magnetic oxygen concentration meter, or the like.
  • the temperature, pressure, and time during thermoforming can be appropriately set, but the temperature during thermoforming is preferably set to be equal to or lower than the glass transition temperature (Tg) of the resin constituting the first resin member 1. This is because when the temperature exceeds Tg, the entire resin member may be thermally altered. Further, it is more preferable that the temperature at the time of thermoforming is equal to or lower than the deflection temperature under load that enables molding of the first resin member 1.
  • the deflection temperature under load depends on the Tg of the first resin member 1 and the pressure during thermoforming, and can be lowered as the pressure increases. Therefore, by increasing the pressure during thermoforming, the joint surface 3 of the first resin member 1 can be thermoformed at a temperature lower than Tg, and the risk of thermal alteration can be suppressed.
  • the deflection temperature under load can be calculated from the change in elastic modulus with respect to the sample temperature defined in JIS K7191 (2007 version).
  • the temperature, pressure, and time during thermoforming of the first resin member 1 and the thermoforming of the second resin member 2 are performed.
  • the temperature, pressure and time of the above may be the same or different.
  • smoothness and uneven shape can be imparted to the joint surface 3 which is the thermoforming surface of the first resin member 1.
  • a rectangular structure having a concave-convex height and width of 100 nm or more by pressing the joint surface 3 of the first resin member 1 placed on the non-formation surface 21a against the shaping surface 21b having the protrusion pattern 30. Etc. can be given.
  • a fine hollow structure 8 can be formed inside the resin bonded body 9.
  • the surface treatment step 6 will be described.
  • the joint surface 3 of the first resin member 1 and / or the joint surface 3'of the second resin member 2 is surface-treated by the surface treatment means 4, and the joint surfaces 3, 3'are formed. Activate.
  • the surface treatment may be applied to only one of the joint surface 3 or the joint surface 3', or may be applied to both the joint surface 3 and the joint surface 3'.
  • the surface treatment may be applied to the thermoformed joint surfaces 3, 3'in the thermoforming step 5, or may be applied to the non-thermoformed joint surfaces 3, 3'.
  • the surface treatment a case where the surface treatment is applied to the joint surface 3 of the first resin member 1 will be described unless otherwise specified.
  • the first resin member 1 When surface treatment is applied to the joint surface 3', the first resin member 1 may be read as the second resin member 2, and the joint surface 3 may be read as the joint surface 3'.
  • Activation in the present invention means applying energy to the bonding surface 3 of the first resin member 1 to cut the molecular chain on the surface layer of the bonding surface 3 and / or imparting a functional group. To do. By cutting the molecular chains on the surface layer of the joint surface 3, the thermal motility of the molecular chains existing on the joint surface 3 can be increased (the softening temperature can be lowered). By imparting a functional group, a polar functional group such as a hydroxyl group can be generated. The thermal motility of this molecular chain can be measured with a nanothermal microscope (nano TA) or the like. In addition, the type and amount of polar functional groups produced can be confirmed by infrared absorption spectroscopy (IR) or the like.
  • IR infrared absorption spectroscopy
  • the surface treatment means 4 in the surface treatment step 6 may be a method capable of activating the joint surface 3 of the first resin member 1 by applying energy to the joint surface 3 of the first resin member 1. Any method can be used.
  • the surface treatment may be applied to only one of the joint surface 3 and the joint surface 3', or both the joint surface 3 and the joint surface 3', but only one of them, for example, the joint surface 3 is thermoformed. In this case, it is preferable that only the joint surface 3'that has not been thermoformed is surface-treated so that the uneven shape formed during thermoforming is not thermally deformed as much as possible.
  • Examples of the surface treatment means 4 for performing the surface treatment include irradiating the joint surface 3 of the first resin member with an ionizing substance and irradiating an electromagnetic wave. Further, any one of these means may be applied, or a plurality of types may be applied. Since these surface treatment means 4 can cut molecular chains at a lower temperature than flame treatment such as itro treatment, even if the joint surface 3 is provided with an uneven shape at the time of thermoforming, the uneven shape is heated. Surface treatment can be applied without deformation. Further, by changing the strength, time, frequency and the like of the surface treatment, it is possible to easily control the amount of the molecular chain cut and the amount of the functional group imparted to the bonding surface 3 of the first resin member 1.
  • the "ionized substance” is a gas containing charged particles such as ions and electrons.
  • the method of generating the ionized substance is not particularly limited, and examples thereof include a method of applying a voltage (electric field) between the metal electrode plates facing each other with a gap.
  • the type of gas for producing an ionized substance is not particularly limited, and examples thereof include argon, helium, oxygen, water vapor, and nitrogen.
  • the "electromagnetic wave” is a wave formed by a change in an electric field and a magnetic field in space.
  • the shorter the wavelength of this wave the larger the energy, and in particular, it can be effectively activated by irradiating the joint surface 3 of the first resin member 1 with an electromagnetic wave having a wavelength of 200 nm or less.
  • the amount (illuminance), wavelength, etc. of the electromagnetic wave the type and amount of the functional group generated on the joint surface 3 of the first resin member 1 can be easily controlled.
  • the joining step 7 will be described.
  • the joining step 7 after the thermoforming step 5 and the surface treatment step 6, the joining surface 3 of the first resin member 1 and the joining surface 3'of the second resin member 2 are bonded to face each other.
  • the molecular chains are entangled at the interface between the bonding surface 3 of the first resin member 1 and the bonding surface 3'of the second resin member 2 (hereinafter referred to as molecular diffusion), and between the polar functional groups. Since the condensation reaction (hereinafter referred to as covalent bond formation) proceeds in the above, the bonding force of the resin bonded body 9 is improved, and the resin bonded body 9 having a strong bonding force can be produced.
  • thermoforming step 5 After reducing the thermal deterioration of the joint surface 3 of the first resin member 1 and the joint surface 3'of the second resin member 2. It can be promoted enough to activate the joint surface 3 and / or the joint surface 3'in the treatment step 6.
  • first resin member 1 and the first resin member 1 and the first resin member 1 are used in a press machine or the like so that a gap is not formed at the joint interface due to the swell of the joint surface 3 of the first resin member 1 and the joint surface 3'of the second resin member 2. It is preferable to crimp the resin member 2 of 2. As a result, the actual contact area between the first resin member 1 and the second resin member 2 becomes large, and the bonding force of the resin bonded body 9 is improved. Further, as the temperature of the first resin member 1 and the second resin member 2 in the bonding step 7 becomes higher, the molecular diffusion and the condensation reaction at the bonding interface of the resin bonding body 9 are promoted.
  • the temperature of the entire first resin member 1 and the entire second resin member 2 in the joining step 7 is preferably Tg or less. As a result, a high-quality resin bonded body 9 can be manufactured without changing the molecular structure of the resin constituting the first resin member 1 and the second resin member 2.
  • the temperatures of the first resin member 1 and the second resin member 2 in the joining step 7 may be the same or different.
  • an infrared heater, a microwave heater, an ultrasonic heater, a heat press machine, a hot air dryer, a heating furnace and the like are used. It can be used and is not particularly limited.
  • the resin bonded body 9 may be post-heated after the resin bonded body 9 is manufactured in the bonding step 7. As a result, molecular diffusion at the bonding interface is promoted, and the bonding force of the resin bonded body 9 is further improved.
  • an infrared heater, a microwave heater, an ultrasonic heater, a heat press, a hot air dryer, a heating furnace and the like can be used, and the present invention is not particularly limited.
  • the temperature of post-heating is preferably equal to or lower than the glass transition temperature (Tg) of the first resin member 1 and the second resin member 2 from the viewpoint of preventing thermal deterioration.
  • FIG. 2 is a schematic view showing a second embodiment of the method for manufacturing the resin bonded body 9 of the present invention.
  • the difference between the manufacturing method of the first embodiment and the manufacturing method of the second embodiment described above is the thermoforming process.
  • the inert gas was supplied toward the joint surface 3 of the first resin member 1 to be thermoformed, but in the manufacturing method of the second embodiment, as shown in FIG.
  • a partition wall 20 is provided so as to surround the joint surface 3 of the first resin member 1, and an inert gas is supplied from the gas supply means 18 to the inside of the partition wall 20.
  • the inside of the partition wall 20 can be filled with the inert gas.
  • the joint surface 3 of the first resin member 1 can be covered with the inert gas, as in the manufacturing method of the first embodiment.
  • the entire first resin member 1 is surrounded by the partition wall 20, but the entire second resin member 2 may be surrounded by the partition wall 20 to perform the thermoforming step 5.
  • the entire first resin member 1 and the second resin member 2 may be surrounded by the partition wall 20 to perform the thermoforming step 5, and the joint surface 3 of the first resin member 1 or the second resin member 2 may be subjected to the thermoforming step 5.
  • the thermoforming step 5 may be performed by surrounding only the joint surface 3'with the partition wall 20.
  • FIG. 3 is a schematic view showing a third embodiment of the method for producing the resin bonded body 9 of the present invention.
  • the difference between the manufacturing method of the first embodiment and the manufacturing method of the third embodiment is the thermoforming step 5.
  • the inert gas was supplied toward the joint surface 3 of the first resin member 1 to be thermoformed, but in the manufacturing method of the third embodiment, as shown in FIG.
  • a partition wall 20 is provided so as to surround the joint surface 3 of the first resin member 1, and the air inside the partition wall 20 is exhausted by the exhaust means 19 to bring the inside of the partition wall 20 into a vacuum state.
  • the joint surface 3 of the first resin member 1 is covered with an inert gas, so that the joint surface 3 of the first resin member 1 is made of oxygen, carbon dioxide, or the like.
  • the inside of the partition wall 20 is put into a vacuum state so that the joint surface 3 of the first resin member 1 becomes oxygen or carbon dioxide. It suppresses the reaction with oxidizing substances such as.
  • the “vacuum” in the present invention refers to a gas pressure of less than 1013 hPa, which is an atmospheric pressure, and as the gas pressure decreases, the amount of oxidizing substances decreases, so that thermal deterioration can be reduced.
  • the entire first resin member 1 is surrounded by the partition wall 20, but the entire second resin member 2 may be surrounded by the partition wall 20 to perform the thermoforming step 5.
  • the entire first resin member 1 and the second resin member 2 may be surrounded by the partition wall 20 to perform the thermoforming step 5, and the joint surface 3 of the first resin member 1 or the second resin member 2 may be subjected to the thermoforming step 5. Only the joint surface 3'may be surrounded by the partition wall 20.
  • FIG. 4 is a schematic view showing a fourth embodiment of the method for producing the resin bonded body 9 of the present invention.
  • an inert gas is supplied toward the joint surface 3 of the first resin member 1, and the surface is covered with the inert gas.
  • Thermoforming is performed, and in the surface treatment step 6, the joint surface 3'of the second resin member that is not thermoformed in the thermoforming step 5 is activated, and after the thermoforming step 5 and the surface treatment step 6, the joining step 7 is performed.
  • the joint surface 3 of the first resin member 1 and the joint surface 3'of the second resin member 2 are bonded together.
  • the surface treatment step 6 is performed after the thermoforming step 5, but in the manufacturing method of the fourth embodiment, the joint surface 3 and the surface treatment step to be thermoformed in the thermoforming step 5 are performed. Since the joint surface 3'to be surface-treated in No. 6 is different, either the thermoforming step 5 or the surface treatment step 6 may be performed first or in parallel as shown in FIG. .. In FIG. 4, the joint surface 3 of the first resin member 1 is thermoformed and the joint surface 3'of the second resin member 2 is surface-treated, but the joint surface 3'of the second resin member 2 is treated. The joint surface 3 of the first resin member 1 may be surface-treated by thermoforming.
  • FIG. 5 is a schematic view showing a fifth embodiment of the method for producing the resin bonded body 9 of the present invention.
  • the manufacturing method of the fifth embodiment is the same as the manufacturing method of the fourth embodiment except that the thermoforming step 5 is different. Specifically, in the manufacturing method of the fourth embodiment, in the thermoforming step 5, the inert gas was supplied toward the joint surface 3 of the first resin member 1 to be thermoformed, but the fifth embodiment.
  • the thermoforming step 5 in the thermoforming step 5, as shown in FIG. 5, the joint surface 3 of the first resin member 1 is surrounded by the partition wall 20, and the air inside the partition wall 20 is exhausted to form the partition wall 20. The inside is in a vacuum state.
  • the same step as the thermoforming step 5 of the manufacturing method of the third embodiment is performed.
  • the joint surface 3 to be thermoformed in the thermoforming step 5 and the joint surface 3'to be surface-treated in the surface treatment step 6 are different. Either the thermoforming step 5 or the surface treatment step 6 may be performed first, or may be performed in parallel. In FIG. 5, the joint surface 3 of the first resin member 1 is thermoformed and the joint surface 3'of the second resin member 2 is surface-treated, but the joint surface 3 of the second resin member 2 is treated. 'Is thermoformed, and the joint surface 3 of the first resin member 1 may be surface-treated.
  • FIG. 6 is a schematic view showing a sixth embodiment of the method for manufacturing the resin bonded body 9 of the present invention.
  • the active liquid 12 is used for the surface treatment means 4A in the surface treatment step 6, and the active liquid 12 is sprayed or applied by the liquid contact mechanism 13.
  • the active liquid 12 can be brought into contact with the joint surface 3 of the first resin member and the joint surface 3'of the second resin member 2.
  • the production method of the sixth embodiment is a method in which the surface treatment means 4 of the surface treatment step 6 is limited to the means for contacting the active liquid in the production method of the first embodiment.
  • the surface treatment step 6 of the manufacturing method of the second to fifth embodiments can be changed to the same step as the surface treatment step 6 of the manufacturing method of the sixth embodiment.
  • the joint surface 3 of the first resin member 1 and the joint surface 3'of the second resin member 2 are surface-treated, but only one of them may be surface-treated.
  • the joint surface 3'of the second resin member 2 may be thermoformed, and the joint surface 3 and / or the joint surface 3'of the second resin member 2 may be surface-treated.
  • the "active liquid 12" is a liquid containing one or more types of active species such as atoms / molecules (radicals) having highly reactive unpaired electrons and ions and electrons (charged particles). is there.
  • the activity indicating the degree of activation of the active liquid 12 can be evaluated by, for example, measurement of luminescence intensity generated from the active species, chemical quantitative measurement for measuring the reaction amount between the active species and the test solution, electron spin resonance analysis, or the like. it can.
  • the active liquid 12 is obtained by activating the liquid.
  • liquid to be activated examples include water, methanol, ethanol, acetic acid, and ammonia, and a wide range of liquids can be selected according to cost, safety, solubility resistance of the resin members 1 and 2, and the like. Further, the liquid to be activated may be a mixed liquid or an aqueous solution in which two or more kinds of liquids are mixed.
  • the active liquid 12 can be produced by activating the liquid using the liquid activating means 10.
  • the liquid activating means 10 may be appropriately selected as long as it is a method capable of dissociating or ionizing the molecules of the liquid by giving energy to the liquid.
  • the activating means 10 it is preferable to irradiate the liquid with an ionizing substance, irradiate the liquid with electromagnetic waves, vibrate the liquid with an elastic vibration wave (sound pressure), and apply an electric field to the liquid. Any one of these means may be performed, or a plurality of types may be performed. These means have high liquid decomposition efficiency and can generate many active species in the liquid in a short time. Further, any of the activating means 10 is preferable because it has high controllability for activating the liquid.
  • the liquid When the liquid is irradiated with elastic vibration waves (sound pressure), the bubbles in the liquid expand and contract and burst (cavitation). When this cavitation occurs, the gas-liquid interface becomes locally hot, and the liquid thermally decomposes to generate active species.
  • the amount of cavitation generated can be easily controlled by the input power and frequency of the vibrator that generates the elastic vibration wave, the temperature of the liquid, and the like.
  • a method of irradiating a liquid with an ionized substance transport the generated ionized substance to the liquid by a gas flow, injecting the liquid into the ionized substance generating part, and using a metal electrode plate for generating the ionized substance in the liquid.
  • a metal electrode plate for generating the ionized substance in the liquid.
  • the liquid is decomposed and activated.
  • the type of gas for producing an ionized substance is not particularly limited, and examples thereof include argon, helium, oxygen, water vapor, and nitrogen.
  • the type and activity of the active species generated in the liquid can be easily controlled. As a result, it is possible to generate an appropriate active liquid 12 according to the types of the first resin member 1 and the second resin member 2.
  • the "electric field” refers to a state in which a voltage is applied. By applying this electric field to the liquid, the liquid is electrolyzed and activated.
  • the method of generating an electric field is not particularly limited, but for example, an electric field is generated by inserting two metal plates into a liquid and applying a potential difference to the metal plates.
  • the electric field strength can be easily changed by changing the distance between the two metal plates, the applied voltage, and the like, and the activity of the liquid can be controlled.
  • the reaction rate increases as the temperature of the liquid rises, so that the decomposition of the liquid can be promoted by raising the liquid temperature.
  • a uniform active liquid 12 can be produced by applying energy with the activating means 10 while stirring the liquid with a stirrer.
  • the liquid contact mechanism 13 is not particularly limited, but for example, after the active liquid 12 is pumped from the container 11, the active liquid 12 is sprayed from the spray nozzle, or the first resin member 1 and the first resin member 1 and the first are used by a coating machine.
  • the active liquid 12 may be applied to the joint surfaces 3 and 3'of the resin member 2 of 2.
  • FIG. 7 is a schematic view showing a seventh embodiment of the method for producing a resin bonded body of the present invention.
  • the first resin member 1 and the second resin member 2 are immersed in the active liquid 12 as the surface treatment means 4B.
  • the first resin member 1 and / or the second resin member 2 is immersed in the active liquid 12, and the joint surface 3 of the first resin member 1 and / or the joint surface 3 of the second resin member 2 is immersed. ' May be brought into contact with the active liquid 12.
  • the production method of the seventh embodiment is also a method in which the surface treatment means 4 of the surface treatment step 6 is limited to the means for contacting the active liquid in the production method of the first embodiment. Further, the surface treatment step 6 of the manufacturing method of the second to fifth embodiments can be changed to the same step as the surface treatment step 6 of the manufacturing method of the seventh embodiment. In FIG.
  • the joint surface 3 of the first resin member 1 and the joint surface 3'of the second resin member 2 are surface-treated, but only one of them may be surface-treated. Further, the joint surface 3'of the second resin member 2 may be thermoformed, and the joint surface 3 and / or the joint surface 3'of the second resin member 2 may be surface-treated.
  • FIG. 8 is a schematic view showing a first embodiment of the manufacturing apparatus for the resin bonded body 9 of the present invention.
  • the manufacturing apparatus for the resin bonded body 9 of the first embodiment includes a thermoforming mechanism 14, a surface treatment mechanism 15, and a bonding mechanism 16.
  • the thermoforming mechanism 14 includes a gas supply means 18 for supplying an inert gas to the joint surface 3 of the first resin member 1 and a shaping means 21 for molding the joint surface 3 covered with the inert gas while heating.
  • the gas supply means 18 is not particularly limited, but it is preferable to use a gas nozzle or the like so that the gas supply port 26 faces the joint surface 3. As a result, the joint surface 3 can be efficiently covered with the inert gas. Further, a plurality of gas supply means 18 may be arranged. Further, the thermoforming mechanism 14 is preferably provided with an oxygen concentration meter 24 in order to confirm whether the joint surface 3 is covered with the inert gas.
  • the shaping means 21 is not particularly limited, and examples thereof include a heat press molding machine such as a heat imprint processing machine and a laser processing machine.
  • the surface treatment mechanism 15 will be described.
  • the surface treatment means 4 of the surface treatment mechanism 15 includes a base material holding mechanism 27 and an electrode 32. It is preferable that the electrode 32 is arranged so as to face the joint surface 3 of the first resin member 1 arranged in the base material holding mechanism 27. As a result, the joint surface 3 can be uniformly surface-treated.
  • the surface treatment means 4 is an ionizing substance irradiator that irradiates the ionizing substance 22, and a gas supply means 31 for supplying the generated gas type of the ionizing substance 22 is provided between the first resin member 1 and the electrode 32. ing.
  • the surface treatment means 4 may be any method as long as it is a method of applying energy to the bonding surface 3 to cut the molecular chain and / or imparting a functional group, and can be appropriately changed.
  • an electromagnetic wave irradiator that irradiates electromagnetic waves can also be used.
  • an electromagnetic wave irradiator it is preferable to provide the gas supply means 31 as in the ionizing substance irradiator.
  • an active liquid contact unit for example, the surface treatment means 4A shown in FIG. 6 or the surface treatment means 4B shown in FIG. 7 may be used.
  • the surface treatment means 4A of FIG. 6 is one in which the liquid 12 in the container 11 is activated by the liquid activating means 10 and then the active liquid 12 is sprayed and applied by the liquid contact mechanism 13, or the surface treatment shown in FIG.
  • the means 4B is for immersing the first resin member 1 and the second resin member 2 in the active liquid 12 in the container 11.
  • the surface treatment mechanism 15 may include a plurality of types of surface treatment means. It is preferable that the surface treatment mechanism 15 is provided with the process monitoring means 28 for process monitoring. By providing these process monitoring means 28, it is possible to detect an abnormality during surface treatment at an early stage. It is preferable that the process monitoring means 28 is appropriately changed according to the object to be monitored.
  • the surface treatment means 4 is an ionized substance irradiator
  • the type and degree of ionization of the ionized substance can be grasped by providing the emission spectroscopic measuring instrument capable of measuring the light emitting state of the ionized substance.
  • the surface treatment means 4 is an electromagnetic wave irradiator
  • the amount of electromagnetic waves can be grasped by providing an illuminance meter, a luminance meter, or the like.
  • the active liquid contact unit is used, the active state of the active liquid 12 can be grasped by providing a pH meter, a dissolved oxygen meter, or the like.
  • the gas type, humidity, and temperature in the surface treatment mechanism 15 can be monitored by a mass spectrometer, a hygrometer, a thermometer, or the like.
  • the joining mechanism 16 will be described.
  • the joining mechanism 16 is a means for bonding the joining surface 3 of the first resin member 1 and the joining surface 3'of the second resin member 2, and a heat crimping means such as a heat press machine is exemplified. Moreover, you may arrange a plurality of heat crimping means side by side. Further, it is preferable to dispose a post-heating means for post-heating the resin bonded body 9 after the bonding mechanism 16. As a result, molecular diffusion and covalent bond formation at the bonding interface are promoted, and the bonding force of the resin bonded body 9 can be further improved. In FIG.
  • the joint surface 3 of the first resin member 1 is thermoformed by the thermoforming mechanism 14, and the surface is treated by the surface treatment mechanism 15, but the joint surface 3'of the second resin member 2 is thermoformed. It may be thermoformed by the mechanism 14 and surface-treated by the surface treatment mechanism 15.
  • FIG. 9 is a schematic view showing a second embodiment of the manufacturing apparatus for the resin bonded body 9 of the present invention.
  • the difference between the manufacturing apparatus of the first embodiment and the manufacturing apparatus of the second embodiment described above is the thermoforming mechanism 14A.
  • the thermoforming mechanism 14A of the manufacturing apparatus of the second embodiment includes a partition wall 20 provided so as to surround the first resin member 1, a gas supply means 18 for supplying an inert gas inside the partition wall 20, and a partition wall. 20 is provided inside, and is provided with a shaping means 21 for molding while heating the joint surface 3 of the first resin member 1.
  • the gas supply means 18 for supplying the inert gas inside the partition wall 20 the joint surface 3 can be efficiently covered with the inert gas.
  • the manufacturing method of the second embodiment described above can be realized.
  • the entire first resin member 1 is surrounded by the partition wall 20, but the entire second resin member 2 may be surrounded by the partition wall 20.
  • the entire first resin member 1 and the second resin member 2 may be surrounded by the partition wall 20, and only the joint surface 3 of the first resin member 1 or the joint surface 3'of the second resin member 2 is a partition wall. It may be enclosed in 20.
  • FIG. 10 is a schematic cross-sectional view showing a third embodiment of the resin joint manufacturing apparatus of the present invention.
  • the difference between the manufacturing apparatus of the first embodiment and the manufacturing apparatus of the third embodiment described above is the thermoforming mechanism 14B.
  • the partition wall 20 provided so as to surround the first resin member 1 and the exhaust means 19 for exhausting the air inside the partition wall 20 to create a vacuum state.
  • the shaping means 21 is provided inside the partition wall 20 and forms the joint surface 3 of the first resin member 1 while heating. By exhausting the air inside the partition wall 20 using the exhaust means 19, the joint surface 3 can be efficiently placed in a vacuum environment.
  • the manufacturing apparatus of the third embodiment it is preferable to provide a vacuum gauge 23 in order to check the gas pressure in the partition wall 20.
  • the manufacturing method of the third embodiment described above can be realized.
  • the entire first resin member 1 is surrounded by the partition wall 20, but the entire second resin member 2 may be surrounded by the partition wall 20.
  • the entire first resin member 1 and the second resin member 2 may be surrounded by the partition wall 20, and only the joint surface 3 of the first resin member 1 or the joint surface 3'of the second resin member 2 is a partition wall. It may be enclosed in 20.
  • FIG. 11 is a schematic view showing a fourth embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • the manufacturing apparatus of the fourth embodiment is a resin member for automatically transporting the first resin member 1 and the second resin member 2 in addition to the thermoforming mechanism 14, the surface treatment mechanism 15, and the joining mechanism 16.
  • the transport mechanism 17 is provided.
  • the resin member transport mechanism 17 is not particularly limited, but for example, a belt conveyor that rotates a ring-shaped belt on a carriage to carry the first resin member 1 and the second resin member 2, or a belt conveyor that runs on its own between processes. Examples thereof include a transfer robot that carries the resin member 1 of 1 and the second resin member 2.
  • FIG. 12 is a schematic view showing a fifth embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • the manufacturing apparatus of the fifth embodiment is a resin member composed of a winding roll 17a, 17a', a winding roll 17b, and a transport roll 17c, in addition to a thermoforming mechanism 14, a surface treatment mechanism 15, and a joining mechanism 16. It is equipped with a transport mechanism.
  • the unwinding roll 17a unwinds the first resin member 1, the unwinding roll 17a'unwinds the second resin member 2, and the transport roll 17c unwinds the first resin member 1, the second resin member 2, and the resin joint 9.
  • the resin joint 9 is wound up by the take-up roll 17b.
  • the second resin member 1 and the second resin member 2 are thin long base materials, the resin bonded body 9 can be continuously manufactured, and the productivity can be improved.
  • intermittent transportation may be performed according to the processing time in each step.
  • FIG. 13 is a schematic view showing a sixth embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • the difference between the manufacturing apparatus of the fifth embodiment described above and the manufacturing apparatus of the sixth embodiment is the thermoforming mechanism 14B.
  • the thermoforming mechanism 14B of the manufacturing apparatus of the sixth embodiment includes a partition wall 20 provided so as to surround the joint surface 3 of the first resin member 1 and the joint surface 3'of the second resin member 2, respectively.
  • the exhaust means 19 that exhausts the air inside the partition wall 20 to create a vacuum state, and the joint surface 3 of the first resin member 1 and the joint surface 3'of the second resin member 2 provided inside the partition wall 20 are provided. Each of them is provided with a shaping means 21 for molding while heating.
  • the load lock mechanism 29 blocks the outside air entering from the outside of the partition wall 20 in order to maintain the degree of vacuum inside the partition wall 20, and can efficiently evacuate the inside of the partition wall 20.
  • FIG. 14 is a schematic view showing a seventh embodiment of the apparatus for manufacturing a resin bonded body of the present invention.
  • the thermoforming mechanism 14 having the gas supply means 18 in the transport path of the first resin member 1 and the surface treatment mechanism 15 in the transport path of the second resin member 2 are provided.
  • a joining mechanism 16 is arranged in a transport path after the thermoforming mechanism 14 and the surface treatment mechanism 15. Thermal deterioration can be reduced by thermoforming the joint surface 3 covered with an inert gas, and by activating the other joint surface 3'that is not thermoformed by the surface treatment mechanism 15, a strong bonding force is obtained.
  • the resin bonded body 9 having the resin can be manufactured.
  • the resin joint manufacturing apparatus includes a thermoforming mechanism 14 having a gas supply means 18 in the transport path of the second resin member 2, and a surface treatment mechanism 15 in the transport path of the first resin member 1. It may be.
  • FIG. 15 is a cross-sectional view showing an eighth embodiment of the apparatus for manufacturing a resin joint of the present invention.
  • the thermoforming mechanism 14B having the partition wall 20 and the exhaust means 19 is provided in the transport path of the first resin member 1, and the surface is provided in the transport path of the second resin member 2.
  • the processing mechanism 15 is provided, and the joining mechanism 16 is arranged in the transport path after the thermoforming mechanism 14B and the surface treatment mechanism 15.
  • Thermoforming can reduce thermal deterioration by thermoforming the joint surface 3 in a vacuum, and by activating the other joint surface 3'that is not thermoformed by the surface treatment mechanism 15, a resin having a strong bonding force.
  • the joint 9 can be manufactured.
  • the resin joint manufacturing apparatus includes a thermoforming mechanism 14B having a partition wall 20 and an exhaust means 19 in the transport path of the second resin member 2, and a surface treatment mechanism 15 in the transport path of the first resin member 1. It may be provided.
  • Example 1 Using the resin-bonded body manufacturing apparatus of the first embodiment shown in FIG. 8, each step was batch-processed to manufacture the resin-bonded body 9.
  • a PMMA base material (Technoloy (registered trademark) S000, glass transition temperature 100 ° C.) having a thickness of 0.2 mm and a square size of 50 mm was used (hereinafter, the first resin member 1).
  • the resin member 1 of the above is PMMA1
  • the second resin member 2 is PMMA2).
  • Ra surface roughness of the PMMA base material with a 3D microscope (OLYMPUS OLS3100)
  • thermoforming step 5 a hot press molding machine was used as the shaping means 21, and nitrogen gas was used as the inert gas.
  • PMMA1 was placed on a 100 mm square non-formating surface 21a, and nitrogen gas was supplied at 10 L / min toward the joint surface 3 of PMMA1 by the gas supply means 18.
  • COSMOS XP-3180 oxygen concentration meter
  • the shaping surface 21b of the hot press molding machine 21 was provided with rectangular protrusion patterns 30 at intervals of 50 ⁇ m (distances b and e) on the press surface of 100 mm square.
  • the dimensions of the protrusion pattern 30 were a protrusion width a, a protrusion length b, and a protrusion height c of 50 ⁇ m. Then, thermal imprint molding was performed so that the protrusion pattern 30 of the shaping surface 21b was transferred to the joint surface 3 of PMMA1.
  • an ionized gas irradiator is used as the surface treatment mechanism 15, and the electrode 32 faces the electrode 32 at a position 2 mm away from the joint surface 3 of the PMMA1 held by the base material holding mechanism 27 (SUS304).
  • the joint surface 3 of PMMA1 was surface-treated for 10 seconds.
  • the ionized gas is prepared by supplying 40 L / min of nitrogen gas from a gas nozzle which is a gas supply means 18 between a 100 mm square base material holding mechanism 27 (SUS304) at a ground potential and an electrode 32 under atmospheric pressure. It was generated by applying a voltage (10 kV) between the base material holding mechanism 27 and the electrode 32 with a DC pulse power supply (not shown).
  • PMMA2 was also subjected to the thermoforming step 5 and the surface treatment step 6 under the same conditions as described above.
  • a hot press was used for the joining mechanism 16.
  • the temperature of the press surface of the hot press 16 was raised to adjust the substrate temperatures of PMMA1 and PMMA2 to 95 ° C., respectively.
  • the substrate temperature was confirmed with a radiation thermometer (SATOTECH DT-8855).
  • PMMA1 and PMMA2 were joined by heat-pressing at 2 MPa with a hot press 16 for 10 minutes so that the top surfaces of the protrusions of the protrusion patterns 30 of the joint surfaces 3 and 3'were in contact with each other.
  • the bonding force of the bonded sample prepared above was evaluated using a 90-degree peeling tester (Shimadzu Corporation: AGS-100A). At that time, the peeling speed was set to 5 cm / min. As a result, the bonding force of the bonded sample was 0.7 N / cm.
  • Example 2 A bonded sample of PMMA1 and PMMA2 was prepared under the same conditions as in Example 1 except that the amount of nitrogen gas supplied by the gas supply means 18 was 50 L / min. The oxygen concentration of the joint surface 3 of PMMA1 and PMMA2 was 5%. The bonding force of the bonding sample prepared above was 1.3 N / cm.
  • Example 3 The apparatus for manufacturing the resin bonded body of the second embodiment shown in FIG. 9 was used.
  • 10 L / L of nitrogen gas is supplied from the gas supply mechanism 18 toward the inside of the partition wall 20 having an inner size of 200 mm square and a side surface of 300 mm, which is provided so as to surround a 100 mm square press surface.
  • a bonded sample of PMMA1 and PMMA2 was prepared under the same conditions as in Example 1 except for the partial supply.
  • the bonding force of the bonding sample prepared above was 1.3 N / cm.
  • Example 4 The apparatus for producing the resin bonded body of the third embodiment shown in FIG. 10 was used.
  • the partition wall 20 is provided so as to surround the pressed surface of 100 mm square without supplying an inert gas to the inside of the partition wall 20 having an inner size of 200 mm square and a side surface of 300 mm.
  • the gas was evacuated by the exhaust means 19 so that the gas pressure inside the structure was 50 Pa.
  • a bonded sample of PMMA1 and PMMA2 was prepared under the same conditions as in Example 1.
  • the gas pressure was measured by a vacuum gauge (ULVAC G-TRAN) attached to the partition wall 20.
  • the bonding force of the bonding sample prepared above was 1.3 N / cm.
  • Example 5 PMMA1 is thermoformed as a shaping means 21 by a hot press machine and is not surface-treated by the surface treatment mechanism 15, and PMMA2 is not thermoformed by the shaping means 21 and is surface-treated by the surface treatment mechanism 15.
  • a bonded sample of PMMA1 and PMMA2 was prepared under the same conditions as in Example 2 except for the above. The bonding force of the bonding sample prepared above was 1.3 N / cm.
  • Example 6 PMMA1 is thermoformed as a shaping means 21 by a hot press machine and is not surface-treated by the surface treatment mechanism 15, and PMMA2 is not thermoformed by an ionization gas irradiator as a surface treatment mechanism 21 and is a surface treatment mechanism.
  • a bonded sample of PMMA1 and PMMA2 was prepared under the same conditions as in Example 4 except that the surface was treated with an ionized gas irradiator as 15. The bonding force of the bonding sample prepared above was 1.3 N / cm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Fluid Mechanics (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

熱成形部材に対して高い接合力を有する接着剤レス樹脂接合体を製造する方法及び装置を提供する。本発明は、第1の樹脂部材と第2の樹脂部材とが接合された樹脂接合体の製造方法であって、前記第1の樹脂部材の前記第2の樹脂部材との接合面、および/または、前記第2の樹脂部材の前記第1の樹脂部材との接合面を、不活性ガスで覆われた状態にし、または、真空環境に置いて、熱成形する熱成形工程と、前記第1の樹脂部材および/または前記第2の樹脂部材の前記接合面を、活性化させる表面処理工程と、前記熱成形工程及び前記表面処理工程の後、前記第1の樹脂部材と前記第2の樹脂部材とを、それぞれの前記接合面で貼り合わせる接合工程と、を有する樹脂接合体の製造方法である。

Description

樹脂接合体の製造方法および樹脂接合体の製造装置
 本発明は、熱成形工程を含んだ樹脂接合体の製造方法と樹脂接合体の製造装置に関する。
 半導体デバイスの更なる微細化や光学デバイスの光学特性向上等を目的に各種基材を接着剤なしで接合させる技術(以下、接着剤レス接合とする)が検討されている。その中で、樹脂同士を対象とした接着剤レス接合では、樹脂接合面を接触させた後、樹脂の溶融温度まで加熱して溶着させるラミネート技術が幅広く用いられている。しかしこの方法では、加熱時に樹脂部材全体の結晶化度や分子構造等が変化(熱変質)し、光学特性や機械強度に悪影響を与えてしまう問題がある。
 そのため、熱ダメージを与えずに強固な接合力を得るための樹脂の接合方法として、互いに接合させる2枚の樹脂部材の接合面に対して電離物質や電磁波等を用いて表面処理を施した後、それら接合面を貼り合わせて低温で加圧する方法が検討されている。この接着剤レス接合では、接合前に予め任意の凹凸形状を樹脂接合面に付与することで、凹凸形状を維持した状態で樹脂接合体内部に中空構造が形成できる。これにより、マイクロ流体デバイスや光学デバイス等への応用が可能となる。
 特許文献1には、バイオセンサーや燃料電池などの流路構成部材用に、第1の樹脂部材の接合面および第2の樹脂部材の接合面のうちの少なくとも一方に凹部を形成し、それら樹脂接合面に対して電離物質や電磁波等を用いて表面処理を施した後、その樹脂部材の接合面の間に溶剤を介在させて50℃未満で加圧する方法が開示されている。
 一方、樹脂部材の立体成形や樹脂部材表面への微細形状付与、表面平滑性向上などを目的に、熱プレス加工や切削加工などの各種成形手段が応用されている。中でも、加熱して軟化させた樹脂を金型に押し込んで成形する熱成形技術は、目的に応じた金型を用いることで任意形状を精度よく容易に付与できるため、幅広く用いられている。
 非特許文献1には、熱成形技術の1つである熱インプリント法を用いて、樹脂部材表面を加熱した後、加圧することで金型表面の微細構造が樹脂表面に転写できることが開示されている。
特開2007-245654号公報
精密加工学会誌Vol.76 No.2 P156-160 2010
 しかしながら、非特許文献1に記載の方法で熱成形した樹脂部材は、熱成形時に樹脂部材表面が熱劣化してしまう問題があり、特許文献1に開示された方法で接合した樹脂部材は、十分な接合力向上効果が得られない。
 本発明は、上述した問題点を鑑みてなされたものであり、熱成形樹脂部材に対して、高い接合力を有する接着剤レス樹脂接合体を製造する方法および装置を提供する。また、本発明は、接合する樹脂が透明体である場合、良質な光学特性を有する樹脂接合体を製造する方法および装置を提供する。
 上記課題を解決する本発明の樹脂接合体の製造方法は、第1の樹脂部材と第2の樹脂部材とが接合された樹脂接合体の製造方法であって、上記第1の樹脂部材の上記第2の樹脂部材との接合面、および/または、上記第2の樹脂部材の上記第1の樹脂部材との接合面を、不活性ガスで覆われた状態にし、または、真空環境に置いて、熱成形する熱成形工程と、上記第1の樹脂部材および/または上記第2の樹脂部材の上記接合面を、活性化させる表面処理工程と、上記熱成形工程および上記表面処理工程の後、上記第1の樹脂部材と上記第2の樹脂部材とを、それぞれの上記接合面で貼り合わせる接合工程と、を有する。
 上記課題を解決する本発明の樹脂接合体の製造装置は、第1の樹脂部材と第2の樹脂部材とが接合された樹脂接合体の製造に用いられ、熱成形機構、表面処理機構および接合機構を備えた樹脂接合体の製造装置であって、上記熱成形機構は、上記第1の樹脂部材の上記第2の樹脂部材との接合面、および/または、上記第2の樹脂部材の上記第1の樹脂部材との接合面を不活性ガスで覆うように、上記接合面に向けて不活性ガスを供給するガス供給手段と、上記不活性ガスで覆われた上記第1の樹脂部材および/または上記第2の樹脂部材の上記接合面を加熱しながら成形する賦形手段と、を有し、上記表面処理機構は、上記第1の樹脂部材および/または上記第2の樹脂部材の上記接合面を、活性化させるものであり、上記接合機構は、上記第1の樹脂部材と上記第2の樹脂部材とを、それぞれの上記接合面で貼り合わせるものである。
 また、上記課題を解決する本発明の別の樹脂接合体の製造装置は、第1の樹脂部材と第2の樹脂部材とが接合された樹脂接合体の製造に用いられ、熱成形機構、表面処理機構および接合機構を備えた樹脂接合体の製造装置であって、上記熱成形機構は、上記第1の樹脂部材の上記第2の樹脂部材との接合面、および/または、上記第2の樹脂部材の上記第1の樹脂部材との接合面を囲うように設けられた隔壁と、上記隔壁の内部に不活性ガスを供給するガス供給手段、または、上記隔壁の内部の空気を排気して真空状態にする排気手段と、上記隔壁の内部に備えられ、上記第1の樹脂部材および/または上記第2の樹脂部材の上記接合面を加熱しながら成形する賦形手段と、を有し、上記表面処理機構は、上記第1の樹脂部材および/または上記第2の樹脂部材の上記接合面を、活性化させるものであり、上記接合機構は、上記第1の樹脂部材と上記第2の樹脂部材とを、それぞれの上記接合面で貼り合わせるものである。
 本発明によれば、樹脂部材に対して熱成形を施した場合でも、高い接合力を有する接着剤レス樹脂接合体の製造方法および装置が提供される。また、本発明によれば、接合する樹脂が透明体である場合、良質な光学特性を有する接着剤レス樹脂接合体を製造する方法および装置が提供される。
図1は、本発明の樹脂接合体の製造方法の第一実施形態を示す概略図である。 図2は、本発明の樹脂接合体の製造方法の第二実施形態を示す概略図である。 図3は、本発明の樹脂接合体の製造方法の第三実施形態を示す概略図である。 図4は、本発明の樹脂接合体の製造方法の第四実施形態を示す概略図である。 図5は、本発明の樹脂接合体の製造方法の第五実施形態を示す概略図である。 図6は、本発明の樹脂接合体の製造方法の第六実施形態を示す概略図である。 図7は、本発明の樹脂接合体の製造方法の第七実施形態を示す概略図である。 図8は、本発明の樹脂接合体の製造装置の第一実施形態を示す概略図である。 図9は、本発明の樹脂接合体の製造装置の第二実施形態を示す概略図である。 図10は、本発明の樹脂接合体の製造装置の第三実施形態を示す概略図である。 図11は、本発明の樹脂接合体の製造装置の第四実施形態を示す概略図である。 図12は、本発明の樹脂接合体の製造装置の第五実施形態を示す概略図である。 図13は、本発明の樹脂接合体の製造装置の第六実施形態を示す概略図である。 図14は、本発明の樹脂接合体の製造装置の第七実施形態を示す概略図である。 図15は、本発明の樹脂接合体の製造装置の第八実施形態を示す概略図である。 図16は、実施例1~6で用いた熱プレス機の賦形面を示す概略図である。
 [樹脂接合体の製造方法の第一実施形態]
 以下、本発明の実施形態の例を、図面を参照しながら説明する。図1は、本発明の樹脂接合体9の製造方法の第一実施形態を示す概略図である。図1に示すように、第一実施形態の製造方法は、第1の樹脂部材1の第2の樹脂部材2との接合面3、および/または、第2の樹脂部材2の第1の樹脂部材1との接合面3’を、不活性ガスで覆われた状態にして賦形手段21にて熱成形する熱成形工程5と、熱成形工程5の後に、第1の樹脂部材1の接合面3、および/または、第2の樹脂部材2の接合面3’を、表面処理手段4にて活性化させる表面処理工程6と、表面処理工程6の後に、第1の樹脂部材1と第2の樹脂部材2とを、それぞれの接合面で貼り合わせる接合工程7と、を有している。
 本発明で使用する第1の樹脂部材1および第2の樹脂部材2の種類は、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアミド(PA)、ポリアセタール(POM)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリフェニレンスルフィド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリテトラフルオロエチレン(PTFE)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、アクリロニトリルブタジエンスチレン(ABS)、ポリメタクリル酸メチル(PMMA)、ポリカーボネート(PC)、ポリエーテルイミド(PEI)、ポリアミドイミド(PAI)など用途に応じて適宜選択することができるが、分子構造に芳香族を含まない材料を用いることが好ましい。これは芳香族を含まない材料の方が分子鎖の熱運動性が高く、第1の樹脂部材1および第2の樹脂部材2の接合界面における分子拡散(分子鎖の絡み合い)が大きくなるためである。この分子拡散が大きくなるほど接合界面での分子間力が大きくなり、接合力が向上する。また、第1の樹脂部材1および第2の樹脂部材2の種類は、異種でもよいが、同種の方が接合する際に第1の樹脂部材1の接合面3と第2の樹脂部材2の接合面3’との界面における分子鎖の絡み合いの観点から好ましい。
[熱成形工程]
 熱成形工程5について説明する。本発明における「熱成形」とは加熱しながら樹脂を賦形することを指す。熱成形工程5では、任意の凹凸形状の付与や平滑性の向上などを目的に、第1の樹脂部材1の接合面3、および/または第2の樹脂部材2の接合面3’を賦形手段21によって熱成形する。得ようとする樹脂接合体9の形状に応じて、接合面3または接合面3’の一方のみを熱成形してもよく、接合面3および接合面3’の両方を熱成形してもよい。以下の熱成形工程の説明では、特に言及しない限り第1の樹脂部材1の接合面3を熱成形する場合について説明する。接合面3’を熱成形する場合については、第1の樹脂部材1を第2の樹脂部材2に、接合面3を接合面3’に読み替えればよい。
 熱成形工程5における賦形手段21は特に制限されないが、熱インプリント加工などの熱プレス成形やレーザー加工などが例示できる。
 熱成形工程5では、ガスノズルなどのガス供給手段18を用いて、熱成形を施す第1の樹脂部材1の接合面3に向けて不活性ガスを供給する。これにより、効率よく接合面3を不活性ガスに覆われた状態にすることができる。接合面3を不活性ガスに覆われた状態にすることで、酸素や二酸化炭素などの酸化物質との反応が抑制され、熱成形時の接合面3の熱劣化が低減できる。なお、本発明における「熱劣化」とは、酸化と熱によって生じる樹脂の分子鎖切断において、接合面3の低分子量化(脆弱化)や架橋などを引き起こす酸化劣化を意味する。この熱劣化によって、第1の樹脂部材1の接合面3に存在する分子鎖の熱運動性や機械耐久性が低下する。熱劣化による接合面3の分子構造の変化は、赤外吸収分光分析(IR)などで確認することができる。
 また、本発明における「不活性ガス」とは、酸化反応しない気体を指し、その種類としては、アルゴン、ヘリウム、ネオンなどの希ガスや窒素ガスなどが例示される。中でも、コストの観点から窒素ガスを用いることが好ましい。また、ガス供給手段18から供給する不活性ガスは、単一でも構わないが、複数の不活性ガス種を混合しても構わない。
 また、本発明における不活性ガスで満たされた環境とは、接合面3に接する大気中の酸素濃度が20%未満の状態のことである。酸素濃度が低くなるほど熱劣化が低減され、樹脂接合体9の接合力が向上する。なお、熱成形される接合面3の酸素濃度は、ジルコニア式酸素濃度計や磁気式酸素濃度計などを用いて測定することができる。
 熱成形時の温度、圧力、時間は適宜設定できるが、熱成形時の温度は第1の樹脂部材1を構成する樹脂のガラス転移温度(Tg)以下にすることが好ましい。これはTgを超えた温度になると、樹脂部材全体が熱変質する場合があるためである。また、熱成形時の温度は第1の樹脂部材1の成形が可能となる荷重たわみ温度以下にすることがより好ましい。荷重たわみ温度は、第1の樹脂部材1のTgと熱成形時の圧力に依存し、圧力が大きくなるほど低温化できる。そのため、熱成形時の圧力を大きくすることで、Tgよりも低い温度で第1の樹脂部材1の接合面3を熱成形することができ、熱変質のリスクを抑えられる。
 なお、荷重たわみ温度は、JIS K7191(2007年版)で定義される試料温度に対する弾性率変化から算出できる。
 また、第1の樹脂部材1に加えて第2の樹脂部材2も熱成形する場合、第1の樹脂部材1の熱成形時の温度、圧力、時間と第2の樹脂部材2の熱成形時の温度、圧力、時間は、同一でも異なっていてもよい。
 熱成形工程5では、第1の樹脂部材1の熱成形面である接合面3に対して、平滑性や、凹凸形状を付与することができる。例えば、突起パターン30を有する賦形面21bに、非賦形面21aに載置された第1の樹脂部材1の接合面3を押圧することにより、凹凸高さと幅が100nm以上となる矩形構造などを付与することができる。これにより、樹脂接合体9内部に微細な中空構造8が形成できる。
 [表面処理工程]
 表面処理工程6について説明する。表面処理工程6では、第1の樹脂部材1の接合面3、および/または第2の樹脂部材2の接合面3’を表面処理手段4にて表面処理を施し、接合面3、3’を活性化させる。表面処理は、接合面3または接合面3’の一方のみに施してもよく、接合面3および接合面3’の両方に施してもよい。また、表面処理は、熱成形工程5で熱成形された接合面3、3’に施してもよく、熱成形されていない接合面3、3’に施してもよい。以下の表面処理工程の説明では、特に言及しない限り第1の樹脂部材1の接合面3に表面処理を施す場合について説明する。接合面3’に表面処理を施す場合については、第1の樹脂部材1を第2の樹脂部材2に、接合面3を接合面3’に読み替えればよい。
 本発明における「活性化」とは、第1の樹脂部材1の接合面3にエネルギーを与えて接合面3の表層の分子鎖を切断すること、および/または、官能基を付与することを意味する。接合面3の表層の分子鎖を切断することにより、接合面3に存在する分子鎖の熱運動性を高くする(軟化温度を低くする)ことができる。官能基を付与することで、水酸基などの極性官能基を生成できる。この分子鎖の熱運動性は、ナノサーマル顕微鏡(ナノTA)などで測定することが出来る。また、極性官能基の種類や生成量は、赤外吸収分光分析(IR)などにより確認することができる。
 表面処理工程6における表面処理手段4としては、前述したように、第1の樹脂部材1の接合面3にエネルギーを与えて、第1の樹脂部材1の接合面3を活性化できる方法であればよく、任意の方法を使用することができる。
 表面処理は、接合面3または接合面3’のいずれか一方のみ、又は、接合面3と接合面3’の両方に施してもよいが、いずれか一方、例えば接合面3のみを熱成形した場合には、熱成形を施していない接合面3’のみを表面処理して、熱成形時に形成した凹凸形状を出来るだけ熱変形させないことが好ましい。
 表面処理を施す表面処理手段4としては、第1の樹脂部材の接合面3に対して、電離物質を照射すること、電磁波を照射することが例示される。また、これらの手段のいずれか1つを施してもよいし、複数種類を施してもよい。これらの表面処理手段4はイトロ処理などの火炎処理に比べて低い温度で分子鎖切断できるため、熱成形時に接合面3に凹凸形状を付与していた場合であっても、その凹凸形状を熱変形させること無く、表面処理を施すことができる。また、表面処理の強度、時間、周波数などを替えることで第1の樹脂部材1の接合面3の分子鎖の切断量や官能基の付与量を容易に制御することができる。
 本発明において「電離物質」とは、イオンや電子などの荷電粒子を含む気体のことである。電離物質の発生方法は、特に制限されないが、隙間を開けて対向する金属電極板間に電圧(電界)を印加する方法などが挙げられる。電離物質の生成用ガス種は特に制限されないが、例えばアルゴン、ヘリウム、酸素、水蒸気、窒素などが挙げられる。ガス種や電離物質の密度などを変更することで、第1の樹脂部材1の接合面3の分子鎖の切断量や官能基の付与量を容易に制御することができる。
 本発明において「電磁波」とは、空間の電場と磁場の変化によって形成される波動のことである。この波動の波長は、短波長になるほどエネルギーが大きく、特に波長が200nm以下の電磁波を第1の樹脂部材1の接合面3に照射することで効果的に活性化できる。また、電磁波の量(照度)や波長などを変更することで、第1の樹脂部材1の接合面3に生成される官能基の種類や量を容易に制御することができる。
 [接合工程]
 接合工程7について説明する。接合工程7では、熱成形工程5および表面処理工程6の後に、第1の樹脂部材1の接合面3と第2の樹脂部材2の接合面3’とを向かい合わせて貼り合わせる。貼り合わせることで、第1の樹脂部材1の接合面3と第2の樹脂部材2の接合面3’との界面における分子鎖の絡み合い(以下、分子拡散とする)、および、極性官能基間での縮合反応(以下、共有結合形成とする)が進行するので、樹脂接合体9の接合力が向上し、強固な接合力を有する樹脂接合体9が製造できる。これら分子拡散や共有結合形成は、熱成形工程5において、第1の樹脂部材1の接合面3と第2の樹脂部材2の接合面3’の熱劣化を少なくしておいたうえで、表面処理工程6において接合面3および/または接合面3’を活性化させるほど促進させることができる。
 また、第1の樹脂部材1の接合面3、第2の樹脂部材2の接合面3’のうねり等で接合界面に空隙が出来ないように、プレス機などで第1の樹脂部材1と第2の樹脂部材2を圧着させることが好ましい。これにより、第1の樹脂部材1と第2の樹脂部材2の実接触面積が大きくなり、樹脂接合体9の接合力が向上する。
 また、接合工程7における第1の樹脂部材1と第2の樹脂部材2の温度は、高温になるほど、樹脂接合体9の接合界面における分子拡散および縮合反応が促進する。一方で、第1の樹脂部材1と第2の樹脂部材2の温度が、それぞれの樹脂部材を構成する樹脂のTgを超えた温度になると、それぞれの樹脂部材を構成する樹脂の分子構造などが変化(熱変質)するので、第1の樹脂部材1と第2の樹脂部材2の機械特性や光学特性などが悪くなることがある。そのため、接合工程7における第1の樹脂部材1全体および第2の樹脂部材2全体の温度は、Tg以下にすることが好ましい。これにより、第1の樹脂部材1、第2の樹脂部材2を構成する樹脂の分子構造などを変化させずに、良質な樹脂接合体9を製造することができる。なお、接合工程7における第1の樹脂部材1と第2の樹脂部材2の温度は、同一でも異なっていてもよい。
 接合工程7における第1の樹脂部材1、第2の樹脂部材2を加熱する手段としては、赤外線加熱機、マイクロ波加熱機、超音波加熱機、熱プレス機、熱風乾燥機、加熱炉などが利用でき、特に制限されない。
 また、接合工程7において樹脂接合体9を製造した後で、樹脂接合体9を後加熱してもよい。これにより、接合界面での分子拡散が促進され、樹脂接合体9の接合力が更に向上する。後加熱する手段としては、赤外線加熱機、マイクロ波加熱機、超音波加熱機、熱プレス機、熱風乾燥機、加熱炉などが利用でき、特に制限されない。また、後加熱の温度は、熱変質を防ぐ観点から、第1の樹脂部材1、第2の樹脂部材2のガラス転移温度(Tg)以下であることが好ましい。
 [樹脂接合体の製造方法の第二実施形態]
 図2は、本発明の樹脂接合体9の製造方法の第二実施形態を示す概略図である。上記した第一実施形態の製造方法とこの第二実施形態の製造方法との違いは熱成形工程である。第一実施形態の製造方法では、熱成形を施す第1の樹脂部材1の接合面3に向けて不活性ガスを供給していたが、第二実施形態の製造方法では、図2に示すように、第1の樹脂部材1の接合面3を囲うように隔壁20を設け、この隔壁20の内部にガス供給手段18から不活性ガスを供給する。このように、隔壁20の内部に不活性ガスを供給することで、隔壁20の内部を不活性ガスで満たすことができる。これにより、第一実施形態の製造方法と同様に、第1の樹脂部材1の接合面3を不活性ガスに覆われた状態にすることができる。
 図2では、第1の樹脂部材1全体を隔壁20で囲んでいるが、第2の樹脂部材2全体を隔壁20で囲んで熱成形工程5を行ってもよい。あるいは、第1の樹脂部材1および第2の樹脂部材2全体を隔壁20で囲んで熱成形工程5を行ってもよく、第1の樹脂部材1の接合面3又は第2の樹脂部材2の接合面3’のみを隔壁20で囲んで熱成形工程5を行ってもよい。
 [樹脂接合体の製造方法の第三実施形態]
 図3は、本発明の樹脂接合体9の製造方法の第三実施形態を示す概略図である。第一実施形態の製造方法とこの第三実施形態の製造方法との違いは熱成形工程5である。第一実施形態の製造方法では、熱成形を施す第1の樹脂部材1の接合面3に向けて不活性ガスを供給していたが、第三実施形態の製造方法では、図3に示すように、第1の樹脂部材1の接合面3を囲うように隔壁20を設け、この隔壁20の内部の空気を排気手段19で排気して、隔壁20の内部を真空状態にする。
 第一実施形態の製造方法では、第1の樹脂部材1の接合面3を不活性ガスで覆われた状態にすることで、第1の樹脂部材1の接合面3が酸素や二酸化炭素などの酸化物質と反応することを抑制していたが、この第三実施形態の製造方法では、隔壁20の内部を真空状態にすることで、第1の樹脂部材1の接合面3が酸素や二酸化炭素などの酸化物質と反応することを抑制する。本発明における「真空」とは、大気圧である1013hPa未満のガス圧力を指し、ガス圧力が下がるほど酸化物質が少なくなるため、熱劣化が低減できる。
 図3では、第1の樹脂部材1全体を隔壁20で囲んでいるが、第2の樹脂部材2全体を隔壁20で囲んで熱成形工程5を行ってもよい。あるいは、第1の樹脂部材1および第2の樹脂部材2全体を隔壁20で囲んで熱成形工程5を行ってもよく、第1の樹脂部材1の接合面3又は第2の樹脂部材2の接合面3’のみを隔壁20で囲んでもよい。
 [樹脂接合体の製造方法の第四実施形態]
 図4は、本発明の樹脂接合体9の製造方法の第四実施形態を示す概略図である。第四実施形態の製造方法では、熱成形工程5において、第1の樹脂部材1の接合面3に向けて不活性ガスを供給し、その面を不活性ガスで覆われた状態にしたうえで熱成形し、表面処理工程6において、熱成形工程5で熱成形しない第2の樹脂部材の接合面3’を活性化させ、熱成形工程5および表面処理工程6の後、接合工程7において、第1の樹脂部材1の接合面3と第2の樹脂部材2の接合面3’とを貼り合わせている。
 第一実施形態の製造方法では、熱成形工程5の後に表面処理工程6を行っていたが、第四実施形態の製造方法では、熱成形工程5で熱成形を行う接合面3と表面処理工程6で表面処理を施す接合面3’とが異なっているので、図4に示すように、熱成形工程5と表面処理工程6とはどちらを先に行ってもよく、並行に行ってもよい。
 図4では、第1の樹脂部材1の接合面3を熱成形し、第2の樹脂部材2の接合面3’を表面処理しているが、第2の樹脂部材2の接合面3’を熱成形し、第1の樹脂部材1の接合面3を表面処理してもよい。
 [樹脂接合体の製造方法の第五実施形態]
 図5は、本発明の樹脂接合体9の製造方法の第五実施形態を示す概略図である。第五実施形態の製造方法は、熱成形工程5が異なる以外は第四実施形態の製造方法と同じである。具体的には、第四実施形態の製造方法は、熱成形工程5において、熱成形を施す第1の樹脂部材1の接合面3に向けて不活性ガスを供給していたが、第五実施形態の製造方法では、熱成形工程5において、図5に示すように、第1の樹脂部材1の接合面3を隔壁20で囲い、この隔壁20の内部の空気を排気して、隔壁20の内部を真空状態にしている。つまり、第三実施形態の製造方法の熱成形工程5と同じ工程を行っている。
 この第五実施形態の製造方法でも、熱成形工程5で熱成形を行う接合面3と表面処理工程6で表面処理を施す接合面3’とが異なっているので、図5に示すように、熱成形工程5と表面処理工程6とはどちらを先に行ってもよく、並行に行ってもよい。
 なお、図5では、第1の樹脂部材1の接合面3を熱成形し、第2の樹脂部材2の接合面3’を表面処理しているが、第2の樹脂部材2の接合面3’を熱成形し、第1の樹脂部材1の接合面3を表面処理してもよい。
 [樹脂接合体の製造方法の第六実施形態]
 図6は、本発明の樹脂接合体9の製造方法の第六実施形態を示す概略図である。第六実施形態の製造方法では、表面処理工程6における表面処理手段4Aに活性液体12を用い、液体接触機構13にて活性液体12を散布または塗布している。これにより、第1の樹脂部材の接合面3、および第2の樹脂部材2の接合面3’に活性液体12を接触させことができる。この第六実施形態の製造方法は、第一実施形態の製造方法において、表面処理工程6の表面処理手段4を、活性液体を接触させる手段に限定した方法である。
 また、第二~第五実施形態の製造方法の表面処理工程6を、この第六実施形態の製造方法の表面処理工程6と同じ工程に変更することもできる。
 なお、図6では、第1の樹脂部材1の接合面3および第2の樹脂部材2の接合面3’を表面処理しているが、いずれか一方のみを表面処理してもよい。また、第2の樹脂部材2の接合面3’を熱成形し、第1の樹脂部材1の接合面3および/または第2の樹脂部材2の接合面3’を表面処理してもよい。
 本発明において「活性液体12」とは、反応性の高い不対電子を持った原子・分子(ラジカル)や、イオンや電子(荷電粒子)などの活性種を1種類以上含んだ液体のことである。活性液体12の活性化の程度を示す活性度は、例えば活性種から生じる発光強度測定や、活性種と試験液の反応量を測定する化学的定量測定、電子スピン共鳴分析などにより評価することができる。
 活性液体12は、液体を活性化することにより得られる。活性化させる液体の種類は、水、メタノール、エタノール、酢酸、アンモニアなどが例示でき、コストや安全性、樹脂部材1、2の耐溶解性などに応じて幅広く選択することができる。また、活性化させる液体は、2種類以上の液体を混ぜた混合液や水溶液などでもよい。
 活性液体12は、液体を、液体活性化手段10を用いて活性化することにより生成することができる。液体活性化手段10は、液体にエネルギーを与えて液体の分子を解離や電離できる方法であればよく、適宜選択することができる。特に活性化手段10としては、電離物質を液体に照射すること、電磁波を液体に照射すること、弾性振動波(音圧)で液体を振動させること、電界を液体に印加することが好ましい。これらの手段のいずれか1つを行ってもよく、複数種類を行ってもよい。これらの手段は、液体の分解効率が高く、短時間で多くの活性種を液体中に生成することができる。また、いずれの活性化手段10も液体を活性化するための制御性が高いため、好ましい。
 弾性振動波(音圧)を液体に照射すると、液体の中の気泡が膨張・収縮し、破裂(キャビテーション)する。このキャビテーション発生時に気液界面が局所的に高温になり、液体が熱分解することで活性種が生成される。キャビテーションの発生量を変更することにより、液体の活性化度を制御することができる。そのキャビテーション発生量は、弾性振動波を発生させる振動子の投入電力や周波数、液体の温度などによって容易に制御することができる。
 液体に対して電離物質を照射する方法としては、生成した電離物質をガス流れで液体まで輸送すること、電離物質発生部に液体を噴射すること、液体中に電離物質発生用の金属電極板とは別の金属電極板を配置し、直流電圧を印加して荷電粒子を誘引することなどが例示できる。電離物質を液体に照射することで、液体が分解し、活性化される。なお、電離物質の生成用ガス種は特に制限されないが、例えばアルゴン、ヘリウム、酸素、水蒸気、窒素などが挙げられる。ガス種や電離気体の密度などを変更することで、液体に生成される活性種の種類や活性度を容易に制御することができる。これにより、第1の樹脂部材1、第2の樹脂部材2の種類に応じた適切な活性液体12を生成することができる。
 本発明において「電界」とは、電圧が掛かっている状態を指す。この電界を液体に印加することで、液体が電気分解し、活性化される。電界の発生方法は特に制限されないが、例えば2枚の金属板を液体に挿入して、それら金属板に電位差を付与することで電界が発生する。この2枚の金属板の距離や印加する電圧などを変更することで容易に電界強度を変更でき、液体の活性度を制御することができる。
 いずれの活性化手段10においても液体の温度上昇に伴い反応速度が向上するため、液温を上げることで液体の分解を促進できる。更に、攪拌器にて液体を攪拌しながら活性化手段10にてエネルギー付与することで均一な活性液体12を生成することができる。
 液体接触機構13は、特に制限されないが、例えば容器11から活性液体12をポンプで送液した後、スプレーノズルで活性液体12を噴射することや、塗工機によって第1の樹脂部材1、第2の樹脂部材2の接合面3、3’に活性液体12を塗布することなどが挙げられる。
 [樹脂接合体の製造方法の第七実施形態]
 図7は、本発明の樹脂接合体の製造方法の第七実施形態を示す概略図である。第七実施形態の製造方法では、表面処理手段4Bとして、活性液体12中への第1の樹脂部材1および第2の樹脂部材2の浸漬を行う。活性液体12の中に、第1の樹脂部材1および/または第2の樹脂部材2を浸漬させて、第1の樹脂部材1の接合面3および/又は第2の樹脂部材2の接合面3’を活性液体12と接触させてもよい。この表面処理の方法では、液体活性化手段10からもエネルギーを得られるため、活性液体12との反応と合わせて第1の樹脂部材1の接合面3および第2の樹脂部材2の接合面3’を効率的に活性化することができる。そのため、第1の樹脂部材1の接合面3、第2の樹脂部材2の接合面3’を短時間で活性化できる。この第七実施形態の製造方法も、第一実施形態の製造方法において、表面処理工程6の表面処理手段4を、活性液体を接触させる手段に限定した方法である。
 また、第二~第五実施形態の製造方法の表面処理工程6を、この第七実施形態の製造方法の表面処理工程6と同じ工程に変更することもできる。
 なお、図7では、第1の樹脂部材1の接合面3および第2の樹脂部材2の接合面3’を表面処理しているが、いずれか一方のみを表面処理してもよい。また、第2の樹脂部材2の接合面3’を熱成形し、第1の樹脂部材1の接合面3および/または第2の樹脂部材2の接合面3’を表面処理してもよい。
 [樹脂接合体の製造装置の第一実施形態]
 次に、本発明の樹脂接合体の製造装置について説明する。図8は、本発明の樹脂接合体9の製造装置の第一実施形態を示す概略図である。図8に示すように、第一実施形態の樹脂接合体9の製造装置は、熱成形機構14、表面処理機構15、および接合機構16を備える。この第一実施形態の製造装置を用いて、上記した第一、四実施形態の製造方法が実現できる。
 [熱成形機構]
 熱成形機構14について説明する。熱成形機構14は、第1の樹脂部材1の接合面3に不活性ガスを供給するガス供給手段18と、不活性ガスで覆われた接合面3を加熱しながら成形する賦形手段21を備えている。ガス供給手段18は特に制限されないが、ガスノズルなどを用いて、そのガス供給口26が接合面3を向くように配置することが好ましい。これにより、効率的に接合面3を不活性ガスで覆うことができる。また、ガス供給手段18を複数配置してもよい。さらに、熱成形機構14には、接合面3が不活性ガスで覆われているかを確認するために、酸素濃度計24を備えることが好ましい。賦形手段21は特に制限されないが、熱インプリント加工機などの熱プレス成形機やレーザー加工機などが例示される。
 [表面処理機構]
 表面処理機構15について説明する。表面処理機構15の表面処理手段4は、基材保持機構27と電極32を備える。電極32は、基材保持機構27に配置された第1の樹脂部材1の接合面3と対向して配置することが好ましい。これにより、接合面3を均一に表面処理することができる。表面処理手段4は、電離物質22を照射する電離物質照射器であり、第1の樹脂部材1と電極32との間に、電離物質22の生成ガス種を供給するガス供給手段31が設けられている。第1の樹脂部材1の種類や電磁波の光吸収性などに応じてガス種を変更することで、分子鎖の切断量や生成する官能基種を制御できる。表面処理手段4は、接合面3にエネルギーを与えて分子鎖を切断する、および/または、官能基を付与する方法であればよく、適宜変更することができる。電離物質照射器にかえて、電磁波を照射する電磁波照射器を使用することもできる。表面処理手段4として電磁波照射器を用いる場合、電離物質照射器と同様に、ガス供給手段31を設けることが好ましい。
 また、表面処理手段4にかえて、活性液体接触ユニット、例えば、図6に示す表面処理手段4A、または図7に示す表面処理手段4Bを使用してもよい。図6の表面処理手段4Aは、容器11内の液体12を液体活性化手段10で活性化した後、液体接触機構13で活性液体12を散布、塗布するもの、又は、図7に示す表面処理手段4Bは、容器11内の活性液体12に第1の樹脂部材1と第2の樹脂部材2を浸漬するものである。
 電離物質照射器、電磁波照射器および活性液体接触ユニットは、低温で処理することができるため、接合面3の凹凸形状を熱変形させること無く、分子鎖の切断量や官能基の付与量を容易に制御することができる。また、表面処理機構15は、表面処理手段を複数種類備えていてもよい。
 表面処理機構15には工程監視用の工程監視手段28を設けることが好ましい。これら工程監視手段28を設けることで、表面処理時の異常を早期に発見することができる。
 工程監視手段28は、監視する対象に合わせて適宜変更することが好ましい。表面処理手段4が電離物質照射器であれば、電離物質の発光状態が計測できる発光分光計測器を備えることで、電離物質の種類や電離度が把握できる。表面処理手段4が電磁波照射器であれば、照度計や輝度計などを備えることで、電磁波の光量が把握できる。また、活性液体接触ユニットを使用する場合、PH計や溶存酸素計などを備えることで活性液体12の活性状態が把握できる。また、表面処理機構15内のガス種や湿度、温度については質量分析計や湿度計、温度計などで監視することができる。
 [接合機構]
 接合機構16について説明する。接合機構16は、第1の樹脂部材1の接合面3と第2の樹脂部材2の接合面3’を貼り合わせられる手段であり、熱プレス機などの加熱圧着手段が例示される。また、複数の加熱圧着手段を並べて配置してもよい。
 また、接合機構16の後に、樹脂接合体9を後加熱する後加熱手段を配置することが好ましい。これにより、接合界面における分子拡散や共有結合形成が促進され、樹脂接合体9の接合力が更に向上できる。
 図8では、第1の樹脂部材1の接合面3を熱成形機構14で熱成形し、表面処理機構15で表面処理しているが、第2の樹脂部材2の接合面3’を熱成形機構14で熱成形し、表面処理機構15で表面処理してもよい。
 [樹脂接合体の製造装置の第二実施形態]
 図9は、本発明の樹脂接合体9の製造装置の第二実施形態を示す概略図である。上記した第一実施形態の製造装置とこの第二実施形態の製造装置との違いは熱成形機構14Aである。第二実施形態の製造装置の熱成形機構14Aは、第1の樹脂部材1を囲うように設けられた隔壁20と、その隔壁20の内部に不活性ガスを供給するガス供給手段18と、隔壁20の内部に備えられ、第1の樹脂部材1の接合面3を加熱しながら成形する賦形手段21を備えている。
 隔壁20の内部に不活性ガスを供給するガス供給手段18を設けることで、効率的に接合面3を不活性ガスで覆うことができる。
 この第二実施形態の製造装置を用いて、上記した第二実施形態の製造方法が実現できる。図9では、第1の樹脂部材1全体を隔壁20で囲んでいるが、第2の樹脂部材2全体を隔壁20で囲むものでもよい。あるいは、第1の樹脂部材1および第2の樹脂部材2全体を隔壁20で囲むものでもよく、第1の樹脂部材1の接合面3又は第2の樹脂部材2の接合面3’のみを隔壁20で囲むものでもよい。
 [樹脂接合体の製造装置の第三実施形態]
 図10は、本発明の樹脂接合体の製造装置の第三実施形態を示す概略断面図である。上記した第一実施形態の製造装置とこの第三実施形態の製造装置との違いは熱成形機構14Bである。第三実施形態の製造装置の熱成形機構14Bでは、第1の樹脂部材1を囲うように設けられた隔壁20と、その隔壁20の内部の空気を排気して真空状態にする排気手段19と、隔壁20の内部に備えられ、第1の樹脂部材1の接合面3を加熱しながら成形する賦形手段21を備えている。
 排気手段19を用いて隔壁20の内部の空気を排気することで、接合面3を効率よく真空環境に置くことができる。また、隔壁20内のガス圧力を確認するために、真空計23を備えることが好ましい。
 この第三実施形態の製造装置を用いて、上記した第三実施形態の製造方法が実現できる。図10では、第1の樹脂部材1全体を隔壁20で囲んでいるが、第2の樹脂部材2全体を隔壁20で囲むものでもよい。あるいは、第1の樹脂部材1および第2の樹脂部材2全体を隔壁20で囲むものでもよく、第1の樹脂部材1の接合面3又は第2の樹脂部材2の接合面3’のみを隔壁20で囲むものでもよい。
 [樹脂接合体の製造装置の第四実施形態]
 図11は、本発明の樹脂接合体の製造装置の第四実施形態を示す概略図である。この第四実施形態の製造装置は、熱成形機構14、表面処理機構15、および接合機構16に加えて、第1の樹脂部材1、第2の樹脂部材2を自動で搬送するための樹脂部材搬送機構17を備えている。樹脂部材搬送機構17は特に制限されないが、例えば、輪状ベルトを台車の上で回転させて第1の樹脂部材1、第2の樹脂部材2を運ぶベルトコンベアーや、工程間を自走して第1の樹脂部材1、第2の樹脂部材2を運ぶ搬送ロボットなどが挙げられる。
 [樹脂接合体の製造装置の第五実施形態]
 図12は、本発明の樹脂接合体の製造装置の第五実施形態を示す概略図である。この第五実施形態の製造装置は、熱成形機構14、表面処理機構15、および接合機構16に加えて、巻出ロール17a、17a’、巻取ロール17b、搬送ロール17cで構成される樹脂部材搬送機構を備えている。巻出ロール17aで第1の樹脂部材1、巻出ロール17a’で第2の樹脂部材2を巻き出し、搬送ロール17cで第1の樹脂部材1、第2の樹脂部材2、樹脂接合体9を搬送し、巻取りロール17bで樹脂接合体9を巻き取る。このように、第2の樹脂部材1、第2の樹脂部材2が薄物の長尺基材であれば連続的に樹脂接合体9を製造することができ、生産性を高めることができる。また、各工程での処理時間に応じて、間欠搬送してもよい。
 [樹脂接合体の製造装置の第六実施形態]
 図13は、本発明の樹脂接合体の製造装置の第六実施形態示す概略図である。上記した第五実施形態の製造装置とこの第六実施形態の製造装置との違いは熱成形機構14Bである。この第六実施形態の製造装置の熱成形機構14Bは、第1の樹脂部材1の接合面3および第2の樹脂部材2の接合面3’をそれぞれ囲うように設けられた隔壁20と、その隔壁20の内部の空気を排気して真空状態にする排気手段19と、隔壁20の内部に備えられ、第1の樹脂部材1の接合面3および第2の樹脂部材2の接合面3’をそれぞれ加熱しながら成形する賦形手段21を備えている。薄物の長尺基材である第1の樹脂部材1、第2の樹脂部材2を搬送させる場合、熱成形機構14Bにおける隔壁20の基材搬送口にロードロック機構29を設けることが好ましい。ロードロック機構29は、隔壁20の内部の真空度を維持するために、隔壁20の外部から侵入する外気を遮断するものであり、隔壁20内部を効率良く真空にすることができる。
 [樹脂接合体の製造装置の第七実施形態]
 図14は、本発明の樹脂接合体の製造装置の第七実施形態を示す概略図である。この第七実施形態の樹脂接合体の製造装置では、第1の樹脂部材1の搬送経路にガス供給手段18を有する熱成形機構14、第2の樹脂部材2の搬送経路に表面処理機構15を備え、それら熱成形機構14と表面処理機構15の後の搬送経路に接合機構16が配置されている。
 接合面3を不活性ガスで覆った状態で熱成形することで熱劣化が低減でき、熱成形しない他方の接合面3’を表面処理機構15にて活性化することで、強固な接合力を有する樹脂接合体9が製造できる。
 なお、樹脂接合体の製造装置は、第2の樹脂部材2の搬送経路にガス供給手段18を有する熱成形機構14を備え、第1の樹脂部材1の搬送経路に表面処理機構15を備えるものでもよい。
 [樹脂接合体の製造装置の第八実施形態]
 図15は、本発明の樹脂接合体の製造装置の第八実施形態を示す断面図である。この第八実施形態の樹脂接合体の製造装置では、第1の樹脂部材1の搬送経路に隔壁20と排気手段19を有する熱成形機構14Bを備え、第2の樹脂部材2の搬送経路に表面処理機構15を備え、それら熱成形機構14Bと表面処理機構15の後の搬送経路に接合機構16が配置されている。
 接合面3を真空に置いた状態で熱成形することで熱劣化が低減でき、熱成形しない他方の接合面3’を表面処理機構15にて活性化することで、強固な接合力を有する樹脂接合体9が製造できる。
 なお、樹脂接合体の製造装置は、第2の樹脂部材2の搬送経路に隔壁20と排気手段19を有する熱成形機構14Bを備え、第1の樹脂部材1の搬送経路に表面処理機構15を備えるものでもよい。
 以下実施例で、本発明の樹脂接合体9の製造方法および装置を説明するが、本発明はこれらの実施例に限定されない。また、以下実施例及び比較例の結果を表1に示す。
 [実施例1]
 図8に示す第1実施形態の樹脂接合体の製造装置を用いて、各工程をバッチ処理して樹脂接合体9を製造した。第1の樹脂部材1と第2の樹脂部材2は、どちらも厚み0.2mmで50mm角のPMMA基材(テクノロイ(登録商標)S000、ガラス転移温度100℃)を用いた(以下、第1の樹脂部材1をPMMA1、第2の樹脂部材2をPMMA2とする)。なお、PMMA基材の表面粗さ(算術平均粗さ:Ra)を3D顕微鏡(OLYMPUS OLS3100)にて確認した結果、10nmであった。
 熱成形工程5では、賦形手段21に熱プレス成形機、不活性ガスに窒素ガスを用いた。100mm角の非賦形面21aにPMMA1を置いて、ガス供給手段18にてPMMA1の接合面3に向かって10L/分で窒素ガスを供給した。酸素濃度計(COSMOS XP-3180)にて、PMMA1の接合面3の酸素濃度を測定した結果、15%となった。
 その後、熱プレス成形機21の非賦形面21aと賦形面21bの温度を昇温して接合面3が130℃になった後、成形圧力6MPaにて2分間熱成形した。なお、熱プレス成形機21の賦形面21bは、図16に示すように100mm角のプレス面に矩形形状の突起パターン30を50μm間隔(距離b、e)で設けていた。その突起パターン30の寸法は、突起幅a、突起長b、突起高さcが50μmであった。そして、PMMA1の接合面3に、賦形面21bの突起パターン30が転写するように熱インプリント成形を行った。
 次に、表面処理工程6では、表面処理機構15として電離気体照射器を使用し、基材保持機構27(SUS304)で保持されたPMMA1の接合面3から2mm離した位置に電極32を対向するように配置し、PMMA1の接合面3を10秒間表面処理した。なお、電離気体は、大気圧下において、接地電位にある100mm角の基材保持機構27(SUS304)と電極32の間にガス供給手段18であるガスノズルから窒素ガスを40L/分供給した後、基材保持機構27と電極32の間に図示しない直流パルス電源にて電圧(10kV)を印加して生成した。
 次に、PMMA2に対しても、上記と同じ条件で熱成形工程5と表面処理工程6を施した。
 次に接合工程7では、接合機構16に熱プレス機を用いた。その熱プレス機16のプレス面温度を昇温して、PMMA1とPMMA2の基材温度をそれぞれ95℃に調整した。なお、基材温度は放射温度計(SATOTECH DT-8855)にて確認した。その後、それら接合面3、3’の突起パターン30の突起の頂上の面が互いに接触するように熱プレス機16にて10分間、2MPaで加熱圧着させることでPMMA1とPMMA2を接合した。
 上記にて作成した接合サンプルの接合力は、90度剥離試験機(株式会社島津製作所:AGS-100A)を用いて評価した。その際、剥離速度は5cm/分とした。その結果、接合サンプルの接合力は0.7N/cmであった。
 [実施例2]
 ガス供給手段18にて供給する窒素ガス量を50L/分にすること以外は、実施例1と同じ条件にて、PMMA1とPMMA2の接合サンプルを作成した。なお、PMMA1およびPMMA2の接合面3の酸素濃度は5%となった。
 上記にて作成した接合サンプルの接合力は、1.3N/cmであった。
 [実施例3]
 図9に示す第2実施形態の樹脂接合体の製造装置を用いた。熱成形工程5において100mm角のプレス面を囲むように設けられた、上面と底面が内寸200mm角で側面が高さ300mmの隔壁20の内部に向かってガス供給機構18から窒素ガスを10L/分供給すること以外は、実施例1と同じ条件にて、PMMA1とPMMA2の接合サンプルを作成した。
 上記にて作成した接合サンプルの接合力は、1.3N/cmであった。
 [実施例4]
 図10に示す第3実施形態の樹脂接合体の製造装置を用いた。熱成形工程5において、100mm角のプレス面を囲むように設けられた、上面と底面が内寸200mm角で側面が高さ300mmの隔壁20の内部に不活性ガスを供給せずに、隔壁20の内部のガス圧力が50Paになるよう排気手段19にて真空排気した。それ以外は実施例1と同じ条件にて、PMMA1とPMMA2の接合サンプルを作成した。なお、ガス圧力は隔壁20に取り付けられている真空計(ULVAC G-TRAN)にて測定した。
 上記にて作成した接合サンプルの接合力は、1.3N/cmであった。
 [実施例5]
 PMMA1は賦形手段21として熱プレス機にて熱成形し、表面処理機構15にて表面処理はせず、PMMA2は賦形手段21にて熱成形はせず、表面処理機構15にて表面処理したこと以外は実施例2と同じ条件にて、PMMA1とPMMA2の接合サンプルを作成した。
 上記にて作成した接合サンプルの接合力は、1.3N/cmであった。
 [実施例6]
 PMMA1は賦形手段21として熱プレス機にて熱成形し、表面処理機構15にて表面処理はせず、PMMA2は表面処理機構21として電離気体照射器にて熱成形はせず、表面処理機構15として電離気体照射器にて表面処理したこと以外は実施例4と同じ条件にて、PMMA1とPMMA2の接合サンプルを作成した。
 上記にて作成した接合サンプルの接合力は、1.3N/cmであった。
 [比較例1]
 熱成形工程5で不活性ガスを供給しなかったこと以外は、実施例1と同じ条件にて、PMMA1とPMMA2の接合サンプルを作成した。
 上記にて作成した接合サンプルの接合力は、0.0N/cmであった。
 [比較例2]
 熱成形工程5で不活性ガスを供給しなかったこと以外は、実施例5と同じ条件にて、PMMA1とPMMA2の接合サンプルを作成した。
 上記にて作成した接合サンプルの接合力は、0.0N/cmであった。
 [比較例3]
 熱成形工程5、表面処理工程6を施した後、その樹脂部材の接合面3,3’の間にエタノールを散布して接合工程7をしたこと以外は、比較例1と同じ条件にて、PMMA1とPMMA2の接合サンプルを作成した。
 上記にて作成した接合サンプルの接合力は、0.3N/cmであった。
 実施例1~6、比較例1~3の結果を表1にまとめた。なお、接合力の評価は、1.0N/cm以上:◎(非常に良い)、0.5N/cm以上1.0N/cm未満:○(良い)、0.1N/cm以上0.5N/cm未満:△(やや悪い)、0.1N/cm未満:×(悪い)とした。
Figure JPOXMLDOC01-appb-T000001
 本発明の樹脂接合体の製造方法を用いることで、熱成形工程を行う樹脂接合体であっても高い接合力を有する接着剤レス樹脂接合体を容易に得ることができ、例えば、包装材料や光学フィルムに応用することができるが、その応用範囲が、これらに限られるものではない。
1 第1の樹脂部材
2 第2の樹脂部材
3、3’ 接合面
4、4A、4B 表面処理手段
5 熱成形工程
6 表面処理工程
7 接合工程
8 中空構造
9 樹脂接合体
10 液体活性化手段
11 容器
12 活性液体
13 液体接触機構
14、14A、14B 熱成形機構
15 表面処理機構
16 接合機構
17 搬送機構
17a、17a’ 巻出ロール
17b 巻取ロール
17c 搬送ロール
18、31 ガス供給手段
19 排気手段
20 隔壁
21 賦形手段
21a 非賦形面
21b 賦形面
22 活性化液体
23 真空計
24 酸素濃度計
25 搬送方向
26 ガス供給口
27 基材保持機構
28 工程監視手段
29 ロードロック機構
30 突起パターン
32 電極

Claims (5)

  1.  第1の樹脂部材と第2の樹脂部材とが接合された樹脂接合体の製造方法であって、
     前記第1の樹脂部材の前記第2の樹脂部材との接合面、および/または、前記第2の樹脂部材の前記第1の樹脂部材との接合面を、不活性ガスで覆われた状態にし、または、真空環境に置いて、熱成形する熱成形工程と、 
     前記第1の樹脂部材および/または前記第2の樹脂部材の前記接合面を、活性化させる表面処理工程と、
     前記熱成形工程および前記表面処理工程の後、前記第1の樹脂部材と前記第2の樹脂部材とを、それぞれの前記接合面で貼り合わせる接合工程と、
     を有する樹脂接合体の製造方法。
  2.  前記熱成形工程は、前記第1の樹脂部材の前記第2の樹脂部材との接合面、または、前記第2の樹脂部材の前記第1の樹脂部材との接合面のいずれか一方を、熱成形し、 
     前記表面処理工程は、前記熱成形工程で熱成形しない樹脂部材の接合面を、活性化させる
     請求項1に記載の樹脂接合体の製造方法。
  3.  前記表面処理工程における前記表面処理を施す手段が、前記第1の樹脂部材および/または前記第2の樹脂部材の前記接合面に対して、電離物質を照射すること、電磁波を照射すること、および活性液体に接触させること、からなる群より選ばれた少なくともひとつである、
     請求項1または2の樹脂接合体の製造方法。
  4.  第1の樹脂部材と第2の樹脂部材とが接合された樹脂接合体の製造に用いられ、熱成形機構、表面処理機構および接合機構を備えた樹脂接合体の製造装置であって、
     前記熱成形機構は、
     前記第1の樹脂部材の前記第2の樹脂部材との接合面、および/または、前記第2の樹脂部材の前記第1の樹脂部材との接合面を不活性ガスで覆うように、前記接合する面に向けて不活性ガスを供給するガス供給手段と、
     前記不活性ガスで覆われた前記第1の樹脂部材および/または前記第2の樹脂部材の前記接合面を加熱しながら成形する賦形手段と、を有し、
     前記表面処理機構は、前記第1の樹脂部材の前記接合面、および/または前記第2の樹脂部材の前記接合面を、活性化させるものであり、
     前記接合機構は、前記第1の樹脂部材と前記第2の樹脂部材とを、それぞれの前記接合面で貼り合わせるものである、
     樹脂接合体の製造装置。
  5.  第1の樹脂部材と第2の樹脂部材とが接合された樹脂接合体の製造に用いられ、熱成形機構、表面処理機構および接合機構を備えた樹脂接合体の製造装置であって、
     前記熱成形機構は、
     前記第1の樹脂部材の前記第2の樹脂部材との接合面、および/または、前記第2の樹脂部材の前記第1の樹脂部材との接合面を囲うように設けられた隔壁と、
     前記隔壁の内部に不活性ガスを供給するガス供給手段、または、前記隔壁の内部の空気を排気して真空状態にする排気手段と、
     前記隔壁の内部に備えられ、前記第1の樹脂部材および/または前記第2の樹脂部材の前記接合面を加熱しながら成形する賦形手段と、を有し、
     前記表面処理機構は、前記第1の樹脂部材および/または前記第2の樹脂部材の前記接合面を、活性化させるものであり、
     前記接合機構は、前記第1の樹脂部材と前記第2の樹脂部材とを、それぞれの前記接合面で貼り合わせるものである、
     樹脂接合体の製造装置。
PCT/JP2020/040932 2019-11-15 2020-10-30 樹脂接合体の製造方法および樹脂接合体の製造装置 WO2021095578A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020568840A JPWO2021095578A1 (ja) 2019-11-15 2020-10-30
EP20888497.3A EP4059700A4 (en) 2019-11-15 2020-10-30 METHOD FOR PRODUCING A RESIN BONDED BODY AND APPARATUS FOR PRODUCING A RESIN BONDED BODY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019206894 2019-11-15
JP2019-206894 2019-11-15

Publications (1)

Publication Number Publication Date
WO2021095578A1 true WO2021095578A1 (ja) 2021-05-20

Family

ID=75912509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040932 WO2021095578A1 (ja) 2019-11-15 2020-10-30 樹脂接合体の製造方法および樹脂接合体の製造装置

Country Status (4)

Country Link
EP (1) EP4059700A4 (ja)
JP (1) JPWO2021095578A1 (ja)
TW (1) TW202128853A (ja)
WO (1) WO2021095578A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292755A (ja) * 2001-03-30 2002-10-09 Kawasaki Heavy Ind Ltd 熱防護材の製造方法
JP2004268383A (ja) * 2003-03-07 2004-09-30 Kuraray Co Ltd プラスチックの接着方法
JP2007245654A (ja) 2006-03-17 2007-09-27 Nidec Sankyo Corp 樹脂成形品の製造方法、および樹脂成形品
JP2015164833A (ja) * 2014-02-05 2015-09-17 株式会社マルイ 自転車用サドルとその製造方法
JP2017126416A (ja) * 2016-01-12 2017-07-20 ウシオ電機株式会社 導光装置の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214414A (ja) * 2001-01-22 2002-07-31 Omron Corp マイクロ凹凸パターンを有する樹脂薄膜を備えた光学素子、該光学素子の製造方法及び装置
TWI361814B (en) * 2003-03-07 2012-04-11 Kuraray Co Plastic bonding method
DE102013101752A1 (de) * 2013-02-22 2014-09-11 Karlsruher Institut für Technologie Nicht-planarer Formkörper, Verfahren zu seiner Herstellung, seine Verwendung, Verfahren zur Herstellung eines Mikrogerüsts und dessen Verwendung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002292755A (ja) * 2001-03-30 2002-10-09 Kawasaki Heavy Ind Ltd 熱防護材の製造方法
JP2004268383A (ja) * 2003-03-07 2004-09-30 Kuraray Co Ltd プラスチックの接着方法
JP2007245654A (ja) 2006-03-17 2007-09-27 Nidec Sankyo Corp 樹脂成形品の製造方法、および樹脂成形品
JP2015164833A (ja) * 2014-02-05 2015-09-17 株式会社マルイ 自転車用サドルとその製造方法
JP2017126416A (ja) * 2016-01-12 2017-07-20 ウシオ電機株式会社 導光装置の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF THE JAPAN SOCIETY FOR PRECISION ENGINEERING, vol. 76, no. 2, 2010, pages 156 - 160
KOBAYASHI, YASUYUKI ET AL.: "Surface Modification of Polyethylene Naphthalate Film Using Ozone Water and Analysis of Functional Groups by Derivatization Techniques", JOURNAL OF THE SURFACE FINISHING SOCIETY OF JAPAN, vol. 63, no. 12, 2012, pages 71 - 72, XP055734592 *

Also Published As

Publication number Publication date
TW202128853A (zh) 2021-08-01
EP4059700A4 (en) 2023-11-15
EP4059700A1 (en) 2022-09-21
JPWO2021095578A1 (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
Förch et al. Soft plasma treated surfaces: tailoring of structure and properties for biomaterial applications
CN106687510B (zh) 表面改性成形体的制造方法、以及使用了该表面改性成形体的复合体的制造方法
JP5849308B2 (ja) 表面改質フッ素樹脂フィルムの製造方法及び表面改質フッ素樹脂フィルム
US20050045103A1 (en) Method and apparatus for applying material to glass
US9132609B2 (en) Method for fixation onto layer comprising amorphous carbon film, and laminate
US11384420B2 (en) Method and device for promoting adhesion of metallic surfaces
KR20050103201A (ko) 플라즈마 발생 전극 조립체
US20150351251A1 (en) Desmearing method and desmearing device
TW200633589A (en) Coating apparatus, organic material thin film forming method and organic EL panel manufacturing apparatus
Motrescu et al. Micro-patterning of functional groups onto polymer surface using capillary atmospheric pressure plasma jet
WO2021095578A1 (ja) 樹脂接合体の製造方法および樹脂接合体の製造装置
Klages et al. Surface technology with cold microplasmas
Oldham et al. Highly uniform activation of carbon fiber reinforced thermoplastics by low-temperature plasma
Penache et al. Plasma printing: patterned surface functionalisation and coating at atmospheric pressure
WO2012133154A1 (ja) フィルム表面処理方法及び装置
JP2006100804A5 (ja)
JP7439515B2 (ja) 樹脂接合体の製造方法
JP2023013974A (ja) 樹脂接合体の製造方法および樹脂接合体の製造装置
US8778080B2 (en) Apparatus for double-plasma graft polymerization at atmospheric pressure
WO2021176911A1 (ja) 樹脂接合体の製造装置および樹脂接合体の製造方法
JP2014114493A (ja) 蒸着用プラスチック成形体、ガスバリア性プラスチック成形体及びそれらの製造方法
JP2007284649A (ja) 大気圧プラズマ処理装置及び大気圧プラズマ処理方法
RU2371258C1 (ru) Способ модификации поверхностных свойств материалов и установка
JP2023133159A (ja) 二軸配向熱可塑性樹脂フィルムの製造方法および製造装置
TW202323411A (zh) 表面改質方法、樹脂電鍍材的製造方法、及無電解電鍍裝置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020568840

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020888497

Country of ref document: EP

Effective date: 20220615