WO2021095287A1 - 微粒子の捕集装置と画像形成装置 - Google Patents

微粒子の捕集装置と画像形成装置 Download PDF

Info

Publication number
WO2021095287A1
WO2021095287A1 PCT/JP2020/018156 JP2020018156W WO2021095287A1 WO 2021095287 A1 WO2021095287 A1 WO 2021095287A1 JP 2020018156 W JP2020018156 W JP 2020018156W WO 2021095287 A1 WO2021095287 A1 WO 2021095287A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
plate
ventilation
image forming
opening
Prior art date
Application number
PCT/JP2020/018156
Other languages
English (en)
French (fr)
Inventor
哲也 川谷
由佳 野村
中山 豊
Original Assignee
富士ゼロックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士ゼロックス株式会社 filed Critical 富士ゼロックス株式会社
Priority to CN202080069402.0A priority Critical patent/CN114467061A/zh
Priority to EP20888174.8A priority patent/EP4060421A4/en
Publication of WO2021095287A1 publication Critical patent/WO2021095287A1/ja
Priority to US17/698,058 priority patent/US20220203285A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/20Humidity or temperature control also ozone evacuation; Internal apparatus environment control
    • G03G21/206Conducting air through the machine, e.g. for cooling, filtering, removing gases like ozone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0039Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices
    • B01D46/0041Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices for feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/44Auxiliary equipment or operation thereof controlling filtration
    • B01D46/442Auxiliary equipment or operation thereof controlling filtration by measuring the concentration of particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/14Transferring a pattern to a second base
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/14Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base
    • G03G15/16Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer
    • G03G15/1605Apparatus for electrographic processes using a charge pattern for transferring a pattern to a second base of a toner pattern, e.g. a powder pattern, e.g. magnetic transfer using at least one intermediate support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/30Means for generating a circulation of a fluid in a filtration system, e.g. using a pump or a fan
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/20Shape of filtering material
    • B01D2275/202Disc-shaped filter elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/08Filter cloth, i.e. woven, knitted or interlaced material
    • B01D39/083Filter cloth, i.e. woven, knitted or interlaced material of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/10Filter screens essentially made of metal
    • B01D39/12Filter screens essentially made of metal of wire gauze; of knitted wire; of expanded metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles

Definitions

  • the present invention relates to a fine particle collecting device and an image forming device.
  • Patent Document 1 describes a duct for merging exhaust gas from a plurality of exhaust ports of an electric device and discharging it into the air from one outlet, and a filter and an electric fan built in front of the outlet of the duct.
  • the air flow sensor includes an air flow sensor that detects the presence or absence of exhaust gas from one of a plurality of exhaust ports, and a control device that controls the operation of an electric fan based on the output of the air flow sensor.
  • An optional device for electric equipment is described, which is arranged at the exhaust port having the fastest exhaust air velocity among a plurality of exhaust ports. Further, Patent Document 1 also describes an image forming apparatus including the optional apparatus.
  • Patent Document 2 describes an air filter arranged in a flow path of air sucked from a fixing device in an image forming apparatus, which is a metal-organic framework or a porous body which is a powder of a porous coordination polymer.
  • a filter comprising a support for supporting the porous body and having an average pore size of the porous body of 5 angstroms or more and less than 22 angstroms is described.
  • UFP ultrafine particles
  • the filter medium contains a liquid charged non-woven fabric layer, and the ratio S1 / S2 obtained by dividing the total filter medium area S1 of the filter medium by the opening area S2 of the filter unit is 7 or more. Moreover, a filter unit for a copier having a UFP removal efficiency of 90% or more calculated from the particle emission of the filter unit is described.
  • Patent Document 4 as an exhaust gas purification filter used for a method of collecting particulate matter in exhaust gas, a wall-through type filter is installed in the front stage along the direction in which the exhaust gas flows, and a wall surface portion in contact with the exhaust gas in the rear stage.
  • a filter on which acicular matter or fibers are formed is placed in the abill, and the acicular matter is needle-shaped cordierite crystals grown from the thin wall of the cordierite honeycomb, and the fibers are silicon carbide fibers or ceramic fiber non-woven fabric.
  • Patent Document 5 describes a duct removing device for an electrostatic precipitator in which a punching metal is attached to the wake of a dust collecting electrode.
  • Patent Document 5 also describes that the opening ratio of the punching metal is 20% to 60% and the opening diameter of the punching metal is 2 to 10 mm.
  • Patent Documents 6 and 7 describe a collecting device and an exhaust purifying device that collect fine particles contained in air or exhaust gas by an electrostatic adsorption method.
  • Japanese Patent No. 6536082 (Claims 1, 5, FIG. 6, etc.) JP-A-2017-198884 (Claim 1, FIG. 1, FIG. 2, etc.) JP-A-2018-4774 (Claim 1, FIG. 1, FIG. 2, etc.) Japanese Patent No. 4649587 (Claim 1, FIG. 1, etc.) JP-A-2002-239413 (Claims 1, 4, 5, FIG. 1, etc.) JP-A-09-173897 (Claim 1, FIG. 1, FIG. 2, etc.) JP-A-2002-239413 (Claim 1, FIG. 1, etc.)
  • the present invention is included in the air as compared with the case where a ventilation plate having a plurality of ventilation portions having an opening size of 0.005 mm or more and 0.1 mm or less and a thickness of 5 mm or less is not applied as a collection portion.
  • a fine particle collector and its collector that can reduce the total amount of ultrafine particles with a particle size of 100 nm or less with less pressure loss despite the thin thickness of the collecting part in the direction of air passage. It provides an image forming apparatus used.
  • the fine particle collecting device is A ventilation pipe with a flow path space through which air containing fine particles flows, An airflow generator that generates an airflow that flows in the direction in which the air should be sent in the flow path space of the ventilation pipe, It is provided with a collecting portion which is arranged so as to cross the flow path space of the ventilation pipe in a direction intersecting with the air flow and collects fine particles contained in the air.
  • the collecting portion is composed of a ventilation plate having a thickness of 5 mm or less and having a plurality of ventilation portions having an opening size of 0.005 mm or more and 0.1 mm or less.
  • the fine particle collecting device is the collecting device according to the first aspect, wherein the ventilation plate has an aperture ratio of 20% or more and 60% or less.
  • the fine particle collecting device is the collecting device according to the first or second aspect, wherein the ventilation plate is made of a net plate.
  • the fine particle collecting device is the collecting device according to the first or second aspect, wherein the ventilation plate is made of a perforated plate.
  • the fine particle collecting device is the collecting device according to any one of the first to fourth aspects, wherein the ventilation plate is upstream of the airflow generating portion in the direction in which the air is sent. It is located on the side.
  • the image forming apparatus of the sixth aspect of the present invention is Equipped with an exhaust section that collects and exhausts the air existing in the main body of the device
  • the exhaust unit is provided with a fine particle collecting device according to any one of the first to fourth aspects.
  • the image forming apparatus according to the seventh aspect of the present invention further includes a fixing portion for thermally fixing an unfixed toner image to a recording medium in the image forming apparatus according to the sixth aspect, and the exhaust portion is present in the fixing portion. It is provided with an intake port for collecting the air to be collected and an exhaust port for exhausting the collected air to the outside.
  • a ventilation plate having a plurality of ventilation portions having an opening size of 0.005 mm or more and 0.1 mm or less and a thickness of 5 mm or less is not applied as the collection portion.
  • the total amount of ultrafine particles having a particle size of 100 nm or less contained in the air of the collecting portion can be reduced with less pressure loss even though the thickness in the direction in which the air passes is thin.
  • the total amount of ultrafine particles can be reduced while keeping the pressure loss low as compared with the case where the opening ratio of the ventilation plate is not configured to be 20% or more and 60% or less.
  • the total amount of ultrafine particles contained in the air can be more reliably reduced as compared with the case where the ventilation plate is not arranged on the upstream side in the direction of sending air from the airflow generating portion.
  • a collecting portion composed of a ventilation plate having a plurality of ventilation portions having an opening size of 0.005 mm or more and 0.1 mm or less and a thickness of 5 mm or less.
  • the total amount of ultrafine particles having a particle size of 100 nm or less contained in the air inside the device body is pressured even though the thickness in the direction in which the air passes is thin. The loss is small and can be reduced.
  • the total amount of the ultrafine particles can be reduced from the air containing the ultrafine particles generated in the fixing portion.
  • FIG. It is a schematic diagram which shows the whole of the image forming apparatus which concerns on Embodiment 1.
  • FIG. It is a schematic diagram which shows the structure of the fixing device which is a part of the image forming apparatus of FIG. 1 and the collecting apparatus of fine particles.
  • It is sectional drawing which shows the test content adopted in the test T1 and the like.
  • It is a graph which shows the result of having investigated the reduction effect of the total amount of ultrafine particles by a collecting device in test T1.
  • FIG. 1 shows the overall configuration of the image forming apparatus
  • FIG. 2 shows the configuration of a part of the image forming apparatus (mainly a fixing device; and an exhaust unit including a fine particle collecting device).
  • the arrows indicated by the symbols X, Y, and Z in each drawing such as FIG. 1 indicate the width, height, and depth directions of the three-dimensional space assumed in each drawing. Further, in each drawing, the circles at the intersections of the arrows in the X and Y directions indicate that the Z direction points vertically downward in the drawing.
  • the image forming apparatus 1 shown in FIG. 1 is an apparatus for forming an image on paper 9, which is an example of a recording medium, by an electrophotographic method.
  • the image forming apparatus 1 according to the first embodiment is configured as, for example, a printer that forms an image corresponding to image information input from an externally connected device such as an information terminal.
  • the image forming apparatus 1 has a housing 10 having a required appearance shape, and the internal space of the housing 10 is filled with toner as a developer based on image information.
  • An image forming device 2 that forms a constituent toner image and transfers it to paper 9, a paper feeding device 4 that accommodates and sends out the paper 9 to be supplied to a position where the image forming device 2 is transferred, and an image forming device 2. It is provided with a fixing device 5, a fixing device 5, and a fine particle collecting device 6 for collecting fine particles generated from the fixing device 5 and its surroundings, which is an example of a fixing portion for fixing the toner image transferred in 1 to the paper 9.
  • the housing 10 is a structure formed of various support members, exterior materials, and the like in a required shape.
  • the alternate long and short dash line with an arrow in FIG. 1 and the like indicates the main transport path when the paper 9 is transported in the housing 10.
  • the image forming apparatus 2 has a photosensitive drum 21 which is an example of an image holding portion rotating in the direction indicated by the arrow A, and around the photosensitive drum 21, a charging device 22, an exposure device 23, a developing device 24, and a transfer device are used. It is configured by arranging equipment such as 25 and a cleaning device 26.
  • the charging device 22 is a device that charges the outer peripheral surface (image-forming surface) of the photosensitive drum 21 to a required surface potential.
  • the charging device 22 is configured to include, for example, a charging member such as a roll that is brought into contact with an image forming region on the outer peripheral surface of the photosensitive drum 21 and to which a charging current is supplied.
  • the exposure device 23 is a device that forms an electrostatic latent image by exposing the outer peripheral surface of the photosensitive drum 21 after charging based on image information.
  • the exposure apparatus 23 operates by receiving an image signal generated by performing necessary processing in an image processing unit or the like (not shown) for image information input from the outside.
  • the developing device 24 is a device that develops an electrostatic latent image formed on the outer peripheral surface of the photosensitive drum 21 with a developer (toner) of a predetermined color (for example, black) and visualizes it as a monochromatic toner image. is there.
  • the transfer device 25 is a device that electrostatically transfers the toner image formed on the outer peripheral surface of the photosensitive drum 21 onto the paper 9.
  • the transfer device 25 is configured to include a transfer member such as a roll that comes into contact with the outer peripheral surface of the photosensitive drum 21 and is supplied with a transfer current.
  • the cleaning device 26 is a device for cleaning the outer peripheral surface of the photosensitive drum 21 by scraping off unnecessary substances such as unnecessary toner and paper dust adhering to the outer peripheral surface of the photosensitive drum 21. In the image forming apparatus 2, each portion where the photosensitive drum 21 and the transfer apparatus 25 face each other becomes the transfer position TP for transferring the toner image.
  • the paper feeding device 4 is a device configured to accommodate and send out the paper 9 to be supplied to the transfer position TP in the image forming device 2.
  • the paper feeding device 4 is configured by arranging an accommodating body 41 for accommodating the paper 9 and devices such as a sending device 43 for delivering the paper 9.
  • the accommodating body 41 has a loading plate (not shown) for loading and accommodating a plurality of sheets of paper 9 in a required direction, and is attached so that the accommodating body 41 can be pulled out to the outside of the housing 10 to perform operations such as replenishing the paper 9. It is a member.
  • the delivery device 43 is a device that feeds out the paper 9 loaded on the loading plate of the housing 41 one by one by a delivery device such as a plurality of rolls.
  • the paper 9 may be a recording medium such as plain paper, coated paper, or thick paper that can be conveyed in the housing 10 and can transfer and fix the toner image, and the material, form, and the like thereof are particularly restricted. It is not something that is done.
  • the fixing device 5 is a device configured to fix the toner image transferred at the transfer position TP of the image forming device 2 on the paper 9.
  • the fixing device 5 is configured by arranging devices such as a rotating body 51 for heating and a rotating body 52 for pressurization in the internal space of the housing 50 provided with the introduction port 50a and the discharge port 50b of the paper 9. ..
  • the heating rotating body 51 is a rotating body having a roll form, a belt-put form, or the like that rotates in the direction indicated by the arrow, and is heated by a heating portion (not shown) so that the outer surface is maintained at a required temperature. is there.
  • the pressurizing rotating body 52 is a rotating body having a roll form, a belt-put form, or the like that rotates so as to contact and follow the heating rotating body 51 under a required pressurization. As the pressurizing rotating body 52, one heated by the heating unit may be applied.
  • the portion where the heating rotating body 51 and the pressing rotating body 52 come into contact with each other is a nip portion (fixing) that performs processing such as heating and pressurization for fixing the toner image of the unfixed image on the paper 9.
  • Processing unit It is configured as an FN.
  • the portion of the alternate long and short dash line indicated by the reference numeral Rt1 in FIG. 1 is a paper feed transfer path for transporting and supplying the paper 9 in the paper feed device 4 to the transfer position TP.
  • the paper feed transport path Rt1 is provided with a plurality of transport rolls 44a and 44b for sandwiching and transporting the paper 9, and a plurality of guide members (not shown) for guiding the transport of the paper 9 by securing a transport space for the paper 9. It is composed of.
  • the image forming apparatus 1 when a control unit (not shown) receives a command for an operation of forming an image, the image forming apparatus 2 executes a charging operation, an exposure operation, a developing operation, and a transfer operation, while a paper feeding device.
  • the paper feeding operation of the paper 9 from 4 to the transfer position TP is executed.
  • the toner image is transferred to the paper 9 supplied from the paper feeding device 4 to the transfer position TP.
  • the fixing apparatus 5 the paper 9 on which the toner image is transferred is introduced into the nip portion FN, and the fixing operation is executed.
  • the unfixed toner image is fixed on the paper 9.
  • the image forming apparatus 1 includes an exhaust unit that collects and exhausts the air existing in the apparatus main body.
  • the exhaust unit includes a collection duct 56, a fine particle collection device 6, and an exhaust port 12.
  • an exhaust unit for collecting and exhausting the air existing in the fixing device 5 is provided.
  • the fine particle collecting device 6 includes a ventilation pipe 61, an air flow generating unit 62, a collecting unit 63, and the like, as shown in FIGS. 1 to 3B and the like.
  • the particle size of the fine particles collected by the collecting device 6 is 100 ⁇ m or less.
  • An example of fine particles is so-called ultrafine particles (UFP: UltraFine Particles) having a particle size of 100 nm (0.1 ⁇ m) or less.
  • the particle size is the diameter corresponding to the volume of the sphere.
  • An example of the ultrafine particles to be collected by the collecting device 6 is, for example, fine particles generated by cooling after the components such as wax contained in the toner are volatilized by heating during the fixing process (fixing operation). Ultrafine particles contained in dust).
  • the ventilation pipe 61 is a tubular structure having a flow path space 61a through which air containing fine particles flows.
  • the ventilation pipe 61 in the first embodiment is a square tubular pipe having a substantially rectangular cross-sectional shape in the direction intersecting the air flow in the flow path space 61a.
  • one end 61b of the ventilation pipe 61 is connected to a collection duct 56 provided on the side surface of the housing 50 of the fixing device 5, and the other end 61c of the ventilation pipe 61 is a casing. It is arranged so as to be connected to the exhaust port 12 provided on the back surface portion 10e of the body 10.
  • the collection duct 56 collects and takes in the air existing in or around the housing 50 from the intake port 56a provided at a position above the introduction port 50a and the discharge port 50b in the housing 50 of the fixing device 5. Is.
  • the exhaust port 12 and the collection duct 56 are a part of the exhaust part.
  • the airflow generation unit 62 generates an airflow for flowing in the direction C in which the air should be sent in the flow path space 61a of the ventilation pipe 61.
  • an axial fan is applied as the airflow generating unit 62.
  • the axial fan is present in the frame portion 621 formed with the penetrating portion 621a having a circular cross section and the penetrating portion 621a of the frame portion 621, and is rotatably supported and driven. It is composed of a shaft portion 622 having a built-in motor and a plurality of blade portions 623 erected around the shaft portion 622.
  • the strength of the airflow (air volume or speed) generated by the airflow generating unit 62 for example, the temperature rise or dew condensation in the housing 10 of the image forming apparatus 1 (particularly in the housing 50 of the fixing device 5 in this example). It is preferable to set the range from 0.1 to 1 m 3 / min from the viewpoint of preventing the occurrence of.
  • the collecting unit 63 is arranged so as to cross the flow path space 61a in the middle of the ventilation pipe 61 in a direction intersecting with the air flow, and collects fine particles contained in the air flowing in the flow path space 61a.
  • the collecting portion 63 in the first embodiment has a thickness of having a plurality of venting portions 63a having an opening size of 0.005 mm or more and 0.1 mm or less inside the outer frame 64.
  • D is composed of a ventilation plate having a diameter of 5 mm or less, and specifically, as shown in FIG. 4, has a plurality of meshes (openings) 66 having an opening size of 0.005 mm or more and 0.1 mm or less. It is composed of a net plate 65 having a thickness D of 5 mm or less.
  • the ventilation portion 63a is a gap that penetrates the net plate 65 inside the outer frame 64.
  • the size of the opening of the ventilation portion 63a is the size when actually mounted and used (the flow path area of the portion arranged in the flow path space 61a) in all the ventilation plates.
  • the vertical and horizontal dimensions of the opening of the ventilation portion 63a are averaged values.
  • the thickness D of the ventilation plate is a dimension along the direction C in which the air passes through the ventilation portion 63a, as shown in FIG. 3A.
  • the net plate 65 which is an example of the ventilation plate, is a net-like member in which a plurality of meshes (openings) 66 having substantially the same opening shape are provided so as to be scattered substantially evenly.
  • the net-like member formed by weaving a vertical wire 65a and a horizontal wire 65b by a weave such as a plain weave to form a plurality of meshes (openings) 66.
  • a net plate having a plurality of meshes 66 having a rectangular opening shape is used as the net plate 65
  • the size of the openings (also referred to as mesh openings) of the mesh 66 is all as shown in FIG. It is a value obtained by averaging the top-bottom width Ma and the left-right width Mb in the mesh 66.
  • the wire rods 65a and 65b constituting the net plate 65 have a wire diameter in the range of 0.01 to 0.06 mm from the viewpoint of keeping the size of the opening and the aperture ratio described later within the required range. Is preferably applied.
  • the ventilation plate (net plate 65) having the ventilation portion 63a (mesh 66) of that size When the size of the opening of the ventilation portion 63a (mesh 66) in the ventilation plate (net plate 65) is less than 0.005 mm, the ventilation plate (net plate 65) having the ventilation portion 63a (mesh 66) of that size. There are problems such as difficulty in manufacturing and the pressure loss tends to be excessive. On the contrary, when the size of the opening is larger than 0.1 mm, it becomes difficult or impossible to obtain the effect of reducing UFP contained in the air. If the thickness D of the ventilation plate (net plate 65) exceeds 5 mm, the size of the installation space in which the ventilation plate is installed will increase in the direction of passing air. This thickness D is preferably 4 mm or less, more preferably 2 mm or less.
  • the lower limit of the thickness D is not particularly limited as long as the net plate 65 can be manufactured and the required collection performance (particularly the effect of reducing the total amount of UFP) can be obtained.
  • the lower limit is, for example, 0.02 mm, there is no particular problem.
  • the ventilation plate (net plate 65) is configured so that the opening ratio is 20% or more and 60% or less.
  • the aperture ratio is the ratio of the total opening area of all the ventilation portions 63a (total mesh 66) to the total area of the portion where the ventilation plate (net plate 65) actually contacts the air in the flow path space 61a of the ventilation pipe 61. Is shown as a percentage.
  • the opening ratio of the net plate 65 in FIG. 3B indicates the ratio of the total opening area of the mesh 66 to the flow path area of the ventilation pipe 61 as a percentage. If this aperture ratio is less than 20%, there is a problem that the pressure loss increases and it becomes difficult for air to flow.
  • the aperture ratio is more preferably 25% or more and 40% or less from the viewpoint of surely reducing the pressure loss and surely obtaining the effect of reducing the total amount of fine particles of 100 ⁇ m or less contained in the air.
  • the net plate 65 may be manufactured using, for example, a wire rod made of a metal such as stainless steel or aluminum. Further, the net plate 65 may be manufactured by using a wire rod made of a synthetic resin such as polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene copolymer resin (ABS resin), or polyvinyl chloride.
  • a wire rod made of a metal such as stainless steel or aluminum.
  • the net plate 65 may be manufactured by using a wire rod made of a synthetic resin such as polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene copolymer resin (ABS resin), or polyvinyl chloride.
  • PET polyethylene terephthalate
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • polyvinyl chloride polyvinyl chloride
  • the net plate 65 of the ventilation plate which is an example of the collection unit 63, is used in the ventilation pipe 61 as a flow path of the ventilation pipe 61 rather than the air flow generation unit 62. It is arranged at a position on the upstream side of the air-sending direction C in the space 61a.
  • the collecting device 6 operates at least during the period when the fixing device 5 is operating or a predetermined period after the fixing device 5 is stopped.
  • the airflow generating unit 62 is started to generate an airflow flowing in the direction indicated by the arrow C in the flow path space 61a of the ventilation pipe 61.
  • the air containing the fine particles mainly generated in the fixing operation in the fixing device 5 flows into the flow path space 61a of the ventilation pipe 61 through the collection duct 56 so as to be sucked.
  • the air Ea before collection containing the fine particles that flowed in at this time substantially collides with the net plate 65 of the ventilation plate, which is an example of the collection portion 63, and the ventilation portion 63a of the net plate 65. It passes through the mesh 66 and moves as air Eb after collection. At this time, the air Ea before collection passes through the net plate 65 while colliding with the net plate 65 having a plurality of meshes 66 having an opening size of 0.005 mm or more and 0.1 mm or less.
  • ultrafine particles having a particle size of 100 nm or less are likely to adhere to the wire rod portion of the net plate 65 when they collide with the net plate 65, and as a result, the total amount of ultrafine particles among the fine particles contained in the passing air is reduced. Will be done.
  • the collected air Eb passes through the airflow generating section 62 and is discharged to the outside as the final exhaust air Ec from the exhaust port 12 of the housing 10 of the image forming apparatus 1.
  • the air Ec of the final exhaust becomes air in which the total amount of ultrafine particles is reduced as compared with the air Ea before collection.
  • the reduction of the total amount of ultrafine particles means that the total amount of ultrafine particles when the net plate 65 of the ventilation plate as the collecting portion 63 is provided is compared with the total amount of ultrafine particles when the net plate 65 of the ventilation plate is not provided. That is less.
  • the reduction in the total amount of the ultrafine particles is preferably 30% or more less than the total amount of the ultrafine particles when the net plate 65 is not provided.
  • the test T1 regarding the collection effect at this time is a test conducted in accordance with the test standard (RAL-UZ205) of the blue angel mark, which is a German environmental label.
  • the test T1 is mounted in the space 110 of the test chamber 100, which is a test environment chamber and is set to a highly airtight and predetermined indoor environment (temperature: 23 ° C., humidity: 50% RH).
  • the image forming apparatus 1 to be measured is installed on the pedestal 120 and balanced, the image forming apparatus 1 is activated to perform a predetermined image forming operation for 10 minutes (600 s: sec), and the image forming operation is in progress.
  • the amount of ultrafine particles (UFP) contained in the indoor air within a predetermined time after the operation was stopped was measured by a measuring device (manufactured by TSI: condensed particle counter CPC Model3775) 150.
  • the test chamber 100 has a chamber having a volume of, for example, 5.1 m 3 , and the clean air 132 is supplied into the chamber from the air supply port 103, and the indoor air 133 is exhausted from the exhaust port 104. It has become like.
  • the indoor air 133 exhausted from the test chamber 100 is connected to the measuring device 150 and sent.
  • the image forming apparatus 1 to be measured the one in which the net plate 65 having the following configuration of the collecting portion 63 in the collecting device 6 was installed was applied.
  • an image forming apparatus 1 in which the net plate 65 as a ventilation plate of the collecting portion 63 in the collecting apparatus 6 is not installed is also prepared.
  • the total area of the portion of the net plate 65 that comes into contact with air (the area of the flow path of the ventilation pipe 61) is 14,400 mm 2 .
  • the net plate 65 in the collecting device 6 is a plain weave of a wire rod made of stainless steel (SUS), and has an opening size of 0.22 mm, an aperture ratio of 40%, and a thickness D of 0.
  • a net plate (metal net plate) having a size of 026 mm was used.
  • the collecting device 6 operates an axial fan, which is an airflow generating unit 62, to generate an airflow having an airflow of 0.33 m 3 / min. Further, the collecting device 6 was operated during the period from the start to the stop of the image forming operation in the test.
  • a net plate (PET net plate) obtained by plain weaving a wire rod made of PET was prepared, and a collecting device 6 equipped with the net plate was also used.
  • the image formed by the image forming operation is a BA (blue angel) designated chart having an image area ratio of 5%.
  • the total amount of UFP starts the image forming operation from the result shown in FIG. It can be seen that the amount of increase increases from the time of stopping to the time of stopping, but the rate of increase is small and reduced as compared with the total amount in the image forming apparatus of the comparison standard. In this case, the maximum total amount of UFP was about 4200 (# / cc). At this stage, the total amount of UFP has been reduced by more than 20%. The total amount of UFP is gradually reduced after the image forming operation is stopped, as in the case of the comparison reference image forming apparatus, but the amount is also reduced as compared with the total amount in the comparison reference image forming apparatus. It changes at.
  • the result shown in FIG. 6 is almost the same as the case of the image forming apparatus 1 of the above embodiment. It can be seen that the result of is obtained. That is, even in this case, the total amount of UFP is reduced.
  • net plates 65 set to a plurality of values as the opening size (opening) of the mesh 66 are prepared, and the UFP when each of the mesh plates 65 is attached to the collecting device 6 is used.
  • the reduction rate was investigated.
  • the UFP value was determined based on the method described in the above test standard (RAL-UZ205).
  • the reduction rate of UFP was obtained from the difference between the presence and absence of the net plate 65.
  • the test T1 at this time was carried out in the same manner by preparing a PET net plate in the same manner as the metal net plate as the net plate 65.
  • As the size of the opening of the metal net plate 65 as shown by the horizontal axis of FIG. 7A, five types of 0.01 mm, 0.022 mm, 0.025 mm, 0.032 mm, and 0.067 mm were prepared. ..
  • As the size of the opening of the PET net plate one type of 0.086 mm was prepared as shown by the horizontal axis of FIG. 7B. At this time, both the metal net plate 65 and the PET net plate were adjusted so that the opening ratio was maintained at about 40% even if the size of the opening of the mesh 66 was changed.
  • the reduction rate of UFP tends to gradually increase as the size of the opening of the mesh 66 decreases, and the size of the opening of the mesh 66 increases.
  • the reduction rate of UFP tends to gradually decrease. Therefore, in the case of the metal net plate 65, it can be said that there is an almost inversely proportional correlation between the size of the opening and the reduction rate of UFP. From this result, it can be said that the effect of reducing UFP can be obtained when the size of the opening (opening) is 0.01 mm or more and 0.07 mm or less (about 0.08 mm or less).
  • net plates 65 set to a plurality of values as the opening ratio of the mesh 66 were prepared, and the reduction rate of UFP when each of the net plates 65 was attached to the collection device 6 was investigated.
  • only a metal net plate was prepared as the net plate 65.
  • As the opening ratio of the metal net plate 65 as shown by the horizontal axis of FIG. 8, a net plate having five types of opening ratios of 11%, 13%, 40%, 49.5%, and 60% is prepared. did.
  • a net plate 65 having each of the above aperture ratios was installed in the ventilation pipe 61 of the collecting device 6 to generate an air flow of a constant air volume (0.33 m 3 / min) by the airflow generating unit 62.
  • the pressure loss (Pa) is obtained by measuring the air pressure (Pa) at a position upstream of the net plate 65 and the air pressure (Pa) at a position downstream of the net plate 65, and then obtaining the difference. ) was examined.
  • the air pressure was measured using a differential pressure gauge (manufactured by TESTO: Model5122).
  • the pressure loss is in the range of about 5 to 80 Pa when the aperture ratio is in the range of about 10% to 60%.
  • the pressure loss is high, the amount of air passing through the net plate 65 is likely to be limited. Therefore, for example, it becomes difficult for the air sucked from the fixing device 5 to be exhausted, and the air heated by the fixing operation becomes the fixing device. It becomes easy to stay in the housing 50 of 5 and the housing 10 of the image forming apparatus 1, and the temperature inside the machine tends to rise.
  • the pressure loss is preferably set to 40 Pa or less. From the results shown in FIG. 8, it can be said that it is desirable that the opening ratio of the net plate 65 is 30% or more in order to obtain this preferable pressure loss.
  • the thickness D of the net plate 65 which is a ventilation plate
  • the dimension of the direction C through which the air of the installation space where the net plate 65 is installed passes.
  • the installation space of the net plate 65 can be reduced in size, which can contribute to the miniaturization of the collecting device 6 and the image forming device 1 equipped with the collecting device 6.
  • this collecting device 6 since the net plate 65 is arranged at a position upstream of the airflow generating portion 62 in the direction C in which air is sent, the net plate 65 is collected from the fixing device 5 and introduced into the ventilation pipe 61. The air first comes into contact with the net plate 65 and passes therethrough, and the total amount of ultrafine particles is surely reduced as compared with the case where the air is arranged at a position on the downstream side thereof. Further, it has been confirmed that in this collection device 6, the collection performance of the net plate 65 is unlikely to deteriorate due to clogging of the mesh 66 or the like. Therefore, this collection device 6 has an advantage that it is almost unnecessary to replace the net plate 65, and as a result, the running cost can be suppressed as compared with other types of collection parts that require regular replacement. Maintenance work can be reduced.
  • FIG. 9A shows a particle collecting device according to the second embodiment of the present invention.
  • the collection device 6 according to the first embodiment is changed by applying a perforated plate 67 instead of the net plate 65 as the ventilation plate of the collection unit 63 in the fine particle collection device 6 according to the second embodiment. It has the same configuration as.
  • FIG. 9B is a schematic view showing the configuration of the perforated plate 67 which is the collecting portion in the collecting device of FIG. 9A.
  • the perforated plate 67 is composed of a perforated plate having a plurality of ventilation holes 68 having an opening size of 0.005 mm or more and 0.1 mm or less and a thickness D of 5 mm or less. ..
  • the perforated plate 67 is a plate-shaped member provided with a plurality of vent holes 68 having the same opening shape so as to be scattered substantially evenly.
  • the sizes of the openings of the vent holes 68 of the perforated plate 67 are all the vent holes as shown in FIG.
  • the average diameter R of 68 be the average value.
  • the opening has a shape other than a circle or a rectangle, the diameter corresponding to the circle of the opening is defined as the size of the opening.
  • the ventilation plate (perforated plate 67) is configured so that the opening ratio is 20% or more and 60% or less, as in the case of the net plate 65 in the first embodiment.
  • the significance and preferable range of the aperture ratio range are the same as in the case of the net plate 65 in the first embodiment described above.
  • the opening ratio of the perforated plate 67 in FIG. 9B indicates the ratio of the total opening area of the ventilation holes 68 to the flow path area of the ventilation pipe 61 as a percentage.
  • the perforated plate 67 is also manufactured by using a material made of metal or a material made of synthetic resin, as in the case of the net plate 65 in the first embodiment. More specifically, a plate material made of the material is subjected to a predetermined drilling process to obtain a perforated plate.
  • the collection device 6 operates in substantially the same manner as in the case of the collection device 6 according to the first embodiment.
  • the air Ea before collection containing the fine particles that has flowed into the flow path space 61a of the ventilation pipe 61 due to the operation of the airflow generation unit 62 is collected in the collection unit 6 as shown in FIG. 9A. It almost collides with the perforated plate 67 of the ventilation plate, which is an example of 63, passes through the ventilation hole 68 which is the ventilation portion 63a of the perforated plate 67, and moves as air Eb after collection.
  • the air Ea before collection passes through the perforated plate 67 having a plurality of ventilation holes 68 having an opening size of 0.005 mm or more and 0.1 mm or less.
  • the collected air Eb passes through the airflow generating section 62 and is discharged to the outside as the final exhaust air Ec from the exhaust port 12 of the housing 10 of the image forming apparatus 1.
  • the air Ec of the final exhaust becomes air in which the total amount of ultrafine particles is reduced as compared with the air Ea before collection.
  • each of the perforated plates 67 set to a plurality of values as the size (diameter R) of the openings of the ventilation holes 68 was prepared, and the reduction rate of UFP when each of the perforated plates 67 was attached to the collecting device 6. I investigated about.
  • the test T1 was carried out in the same manner by preparing a PET perforated plate made of PET in addition to the perforated plate made of SUS as the perforated plate 67.
  • As the opening size of the metal perforated plate (so-called punching metal) 67 three types of 0.047 mm, 0.10 mm, and 0.12 mm were prepared as shown on the horizontal axis of FIG. 11A.
  • the reduction rate of UFP tends to increase as the size of the opening of the ventilation hole 68 decreases, and the size of the opening of the ventilation hole 68 increases. It can be seen that the reduction rate of UFP tends to decrease as it becomes. It can also be seen that when the size of the opening is 0.12 mm, the reduction rate of UFP becomes almost zero. Therefore, in the case of the metal perforated plate 67, it can be said that there is an almost inversely proportional correlation between the size of the opening and the reduction rate of UFP. From this result, it can be said that the effect of reducing UFP can be obtained in the metal perforated plate 67 if the opening size is 0.04 mm or more and 0.01 mm or less.
  • the size of the opening of the ventilation hole 68 is 0.04 mm or more and 0. If the range is 1 mm or less, the effect of reducing UFP is likely to be obtained.
  • the change (transition) in the total amount of ultrafine particles (UFP) was similarly investigated by the test T1 in the first embodiment. Even in this case, it has been confirmed that almost the same result as the result of the test T1 in the first embodiment (FIG. 6) can be obtained.
  • the relationship between the aperture ratio of the ventilation holes 68 in the perforated plate 67 and the pressure loss was investigated by the test T2 in the first embodiment. It has been confirmed that the result at this time is almost the same as the result of the test T1 in the first embodiment (FIG. 8).
  • the collecting device 6 according to the second embodiment also has the same other effects obtained by the collecting device 6 according to the first embodiment described above.
  • the collecting device 6 in which the ventilation plate of the collecting unit 63 is arranged at a position on the upstream side of the direction C in which the air is sent from the airflow generating unit 62 is illustrated, but the collecting device 6 is described. It is also possible to arrange the ventilation plate of the collecting portion 63 at a position downstream of the airflow generating portion 62 in the direction C.
  • the fine particle collecting device 6 is applied as a collecting device for collecting fine particles containing ultrafine particles generated by the fixing device 5 of the image forming device 1 has been illustrated.
  • a collecting device for collecting ultrafine particles may be provided in an exhaust unit that collects and exhausts air containing fine particles generated from a component other than the fixing device 5 of the device 1.
  • the collecting device 6 of the present invention may be applied to various devices other than the image forming device if it is necessary to collect ultrafine particles.
  • the image forming apparatus to which the fine particle collecting apparatus 6 is applied is not limited to the image forming apparatus 1 of the format exemplified in the first embodiment, and other formats (multicolor images are formed) using the electrophotographic method. It may be an image forming apparatus (including a format to be used). Further, the image forming apparatus to which the collecting apparatus 6 is applied may be an image forming apparatus that employs an image forming method (for example, a droplet injection method, a printing method, etc.) other than the electrophotographic method.
  • an image forming method for example, a droplet injection method, a printing method, etc.

Landscapes

  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Fixing For Electrophotography (AREA)
  • Electrophotography Configuration And Component (AREA)

Abstract

空気中に含まれる100nm以下の超微粒子の総量を、捕集部の空気の通過する方向の厚さが薄いにもかかわらず圧力損失が少なく低減させることができる微粒子の捕集装置等を提供する。微粒子の捕集装置6は、微粒子が含まれる空気を流す流路空間61aを有した通気管61と、通気管61の流路空間61a内で空気が送るべき方向Cに流される気流を発生させる気流発生部62と、通気管61の流路空間61a内を気流と交差する方向に横断する状態で配置され、空気に含まれる微粒子を捕集する捕集部63とを備え、捕集部63は、開口の大きさが0.005mm以上かつ0.1mm以下の複数の通気部63aを有する厚さが5mm以下の通気板で構成されている。

Description

微粒子の捕集装置と画像形成装置
 この発明は、微粒子の捕集装置と画像形成装置に関するものである。
 特許文献1には、電気機器の複数の排気口からの排気を合流させて1つの出口から大気中に排出するためのダクトと、そのダクトの出口の手前側に内蔵されるフィルタおよび電動ファンと、複数の排気口のうちの1つからの排気の有無を検出する空気流センサーと、空気流センサーの出力に基づいて電動ファンの作動を制御する制御装置とを備え、前記空気流センサーが前記複数の排気口のうち排気風速が最も速い排気口に配置されている電気機器用オプション装置が記載されている。また特許文献1には、そのオプション装置を備えた画像形成装置も記載されている。
 特許文献2には、画像形成装置における定着装置から吸引された空気の流路に配置される空気フィルタであって、金属有機構造体又は多孔性配位高分子の粉体である多孔体と、その多孔体を支持する支持体とを備え、その多孔体の平均孔径が5オングストローム以上かつ22オングストローム未満であるフィルタが記載されている。
 特許文献3には、複写機内に装着され、紙にトナー像を加熱固定する際に生じた排気としての空気中のウルトラファインパーティクル(UFP)を除去するフィルタユニットにおいて、フィルタユニットの濾材はプリーツ加工されて枠内に収容されており、その濾材は液体帯電不織布層を含んでなるとともに、その濾材が有する総濾材面積S1をフィルタユニットの開口面積S2で割った比S1/S2が7以上であって、しかもフィルタユニットの粒子エミッションから算出したUFPの除去効率が90%以上である複写機用フィルタユニットが記載されている。
 特許文献4には、排ガス中の粒状物質を捕集する方法に用いる排ガス浄化フィルタとして、排ガスの流れる方向に沿って、前段にウォールスルータイプのフィルタを設置し、後段に排ガスと接触する壁面部分に針状物質あるいは繊維が形成されているフィルタを配置し、針状物質がコーディエライトハニカムの薄壁より成長した針状のコーディエライト結晶であり、繊維が炭化珪素繊維又はセラミックス繊維不織布である排ガス浄化フィルタが記載されている。
 特許文献5には、パンチングメタルを集じん極の後流に取り付けた電気集塵機のダクト除去装置が記載されている。また特許文献5には、パンチングメタルの開口率を20%~60%とすることや、パンチングメタルの開口径を2~10mmにすることも記載されている。
 特許文献6,7には、空気中や排気ガス中に含まれる微粒子を静電吸着方式で捕集する捕集装置や排気浄化装置が記載されている。
特許第6536082号公報(請求項1,5、図6など) 特開2017-198884号公報(請求項1、図1、図2など) 特開2018-4774号公報(請求項1、図1、図2など) 特許第4649587号公報(請求項1、図1など) 特開2002-239413号公報(請求項1,4,5、図1など) 特開平09-173897号公報(請求項1、図1、図2など) 特開2002-239413号公報(請求項1、図1など)
 この発明は、捕集部として開口の大きさが0.005mm以上かつ0.1mm以下の複数の通気部を有する厚さが5mm以下の通気板を適用しない場合に比べて、空気中に含まれる粒径が100nm以下の超微粒子の総量を、捕集部の空気の通過する方向の厚さが薄いにもかかわらず圧力損失を少なく低減させることができる微粒子の捕集装置とその捕集装置を用いた画像形成装置を提供するものである。
 この発明の第1態様の微粒子の捕集装置は、
 微粒子が含まれる空気を流す流路空間を有した通気管と、
 前記通気管の流路空間内で前記空気を送るべき方向に流す気流を発生させる気流発生部と、
 前記通気管の流路空間内を前記気流と交差する方向に横断する状態で配置され、前記空気に含まれる微粒子を捕集する捕集部と、を備え、
 前記捕集部は、開口の大きさが0.005mm以上かつ0.1mm以下の複数の通気部を有する厚さが5mm以下の通気板で構成されているものである。
 この発明の第2態様の微粒子の捕集装置は、上記第1態様の捕集装置において、前記通気板は、開口率が20%以上かつ60%以下になるよう構成されているものである。
 この発明の第3態様の微粒子の捕集装置は、上記第1態様又は第2態様の捕集装置において、前記通気板は網板で構成されているものである。
 この発明の第4態様の微粒子の捕集装置は、上記第1態様又は第2態様の捕集装置において、前記通気板は多孔板で構成されているものである。
 この発明の第5態様の微粒子の捕集装置は、上記第1態様から第4態様のいずれかの捕集装置において、前記通気板は、前記気流発生部よりも前記空気の送られる方向の上流側に配置されているものである。
 この発明の第6態様の画像形成装置は、
 装置本体内に存在する空気を収集して排気する排気部を備え、
 前記排気部には上記第1態様から第4の態様のいずれかの微粒子の捕集装置を備えるものである。
 この発明の第7態様の画像形成装置は、上記第6態様の画像形成装置において、未定着のトナー像を記録媒体に熱定着させる定着部をさらに備え、前記排気部は、前記定着部に存在する空気を収集する吸気口と、前記収集した空気を外部へ排気する排気口と、を備えるものである。
 上記第1態様の微粒子の捕集装置によれば、捕集部として開口の大きさが0.005mm以上かつ0.1mm以下の複数の通気部を有する厚さが5mm以下の通気板を適用しない場合に比べて、捕集部の空気中に含まれる粒径が100nm以下の超微粒子の総量を、空気の通過する方向の厚さが薄いにもかかわらず圧力損失が少なく低減させることができる。
 上記第2態様によれば、通気板の開口率が20%以上かつ60%以下になるよう構成されていない場合に比べて、圧力損失を少なく保ちつつ超微粒子の総量を低減させることができる。
 上記第3態様によれば、通気板が網板で構成されていない場合に比べて、所要の大きさの開口からなる通気部を有した通気板を製作しやすくなる。
 上記第4態様によれば、通気板が多孔板で構成されていない場合に比べて、所要のパターンの開口からなる通気部を有した通気板における開口の大きさの調整がしやすくなる。
 上記第5態様によれば、通気板を気流発生部よりも空気を送る方向の上流側に配置しない場合に比べて、空気中に含まれる超微粒子の総量をより確実に低減させることができる。
 上記第6態様の画像形成装置によれば、捕集装置として開口の大きさが0.005mm以上かつ0.1mm以下の複数の通気部を有する厚さが5mm以下の通気板からなる捕集部を適用した捕集装置を配置しない場合に比べて、装置本体内の空気中に含まれる粒径が100nm以下の超微粒子の総量を、空気の通過する方向の厚さが薄いにもかかわらず圧力損失が少なく低減させることができる。
 上記第7態様によれば、定着部で発生する超微粒子を含む空気から当該超微粒子の総量を低減させることができる。
実施の形態1に係る画像形成装置の全体を示す概要図である。 図1の画像形成装置の一部である定着装置と微粒子の捕集装置の構成を示す概要図である。 図2における微粒子の捕集装置を示す概要図である。 図3Aの捕集装置における捕集部である網板の構成を示す概要図である。 図3Bの網板の構成およびその一部を示す概要図および拡大図である。 試験T1等で採用した試験内容を示す断面概要図である。 試験T1で捕集装置による超微粒子の総量の低減効果について調べた結果を示すグラフ図である。 は金属の網板における目開き(開口の大きさ)と超微粒子の低減率との関係について調べた結果を示すグラフ図である。 PETの網板における目開きと超微粒子の低減率との関係について調べた結果を示すグラフ図である。 金属の網板における開口率と圧力損失との関係について調べた試験T2の結果を示すグラフ図である。 実施の形態2に係る微粒子の捕集装置を示す概要図である。 図9Aの捕集装置における捕集部である多孔板の構成を示す概要図である。 図9Bの多孔板の構成を示す概要図である。 金属の多孔板における開口の大きさと超微粒子の低減率との関係について調べた結果を示すグラフ図である。 はPET多孔板における開口の大きさと超微粒子の低減率との関係について調べた結果を示すグラフ図である。
 以下、この発明を実施するための形態について図面を参照しながら説明する。
[実施の形態1]
 図1と図2は、この発明の実施の形態1に係る微粒子の捕集装置と画像形成装置を示すものである。図1はその画像形成装置の全体の構成を示し、図2はその画像形成装置の一部(主に定着装置;および、微粒子の捕集装置を備える排気部)の構成を示している。
 図1等の各図面中に符号X,Y,Zで示す矢印は、各図面において想定した3次元空間の幅、高さおよび奥行の各方向を示す。また各図面においてX,Yの方向の矢印が交わる部分の丸印は、Zの方向が図面の鉛直下方に向いていることを示している。
<画像形成装置の全体の構成>
 図1に示される画像形成装置1は、電子写真方式により画像を記録媒体の一例である用紙9に形成する装置である。実施の形態1に係る画像形成装置1は、例えば、情報端末機等の外部接続機器から入力される画像情報に対応した画像の形成を行うプリンタとして構成されている。
 この画像形成装置1は、図1に示されるように、所要の外観形状からなる筐体10を有しており、その筐体10の内部空間に、画像情報に基づいて現像剤としてのトナーで構成されるトナー像を形成して用紙9に転写する像形成装置2と、像形成装置2の転写を行う位置に供給すべき用紙9を収容して送り出す給紙装置4と、像形成装置2で転写されたトナー像を用紙9に定着させる定着部の一例である定着装置5、定着装置5およびその周辺から発生する微粒子を捕集する微粒子の捕集装置6等を備えている。
 ここで、画像情報は、例えば、文字、図形、写真、模様等の画像に関係する情報である。また筐体10は、各種の支持部材、外装材等で所要の形状に形成された構造物である。図1等における矢付きの一点鎖線は、筐体10内で用紙9が搬送されるときの主な搬送経路を示している。
 像形成装置2は、矢印Aで示す方向に回転する像保持部の一例である感光ドラム21を有し、その感光ドラム21の周囲に、帯電装置22、露光装置23、現像装置24、転写装置25、清掃装置26等の機器を配置して構成されている。
 このうち、帯電装置22は、感光ドラム21の外周面(像形成可能面)を所要の表面電位に帯電させる装置である。この帯電装置22は、例えば感光ドラム21の外周面の像形成域に接触させるとともに帯電電流が供給されるロール等の帯電部材を備えて構成されている。露光装置23は、感光ドラム21の帯電後の外周面に画像情報に基づく露光をして静電潜像を形成する装置である。この露光装置23は、外部から入力される画像情報が図示しない画像処理部等で所要の処理が施されて生成される画像信号を受けて作動する。
 現像装置24は、感光ドラム21の外周面に形成された静電潜像を対応する所定の色(例えばブラック)の現像剤(トナー)により現像して単色のトナー像として顕像化する装置である。転写装置25は、感光ドラム21の外周面に形成されたトナー像を用紙9に静電的に転写させる装置である。この転写装置25は、感光ドラム21の外周面に接触するとともに転写電流が供給されるロール等の転写部材を備えて構成されている。清掃装置26は、感光ドラム21の外周面に付着する不要なトナー、紙粉等の不要物をかき取るように除去して感光ドラム21の外周面を清掃する装置である。
 像形成装置2では、感光ドラム21と転写装置25が対向する各部位がトナー像の転写を行う転写位置TPになる。
 給紙装置4は、像形成装置2における転写位置TPに供給すべき用紙9を収容して送り出すよう構成された装置である。この給紙装置4は、用紙9を収容する収容体41と、用紙9を送り出す送出装置43等の機器を配置して構成されている。
 収容体41は、複数枚の用紙9を所要の向きで積載して収容する図示しない積載板を有し、筐体10の外部に引き出して用紙9の補充等の作業ができるよう取り付けられた収容部材である。送出装置43は、収容体41の積載板上に積載されている用紙9を、複数のロール等の送り出し機器により1枚ずつ繰り出す装置である。
 用紙9は、筐体10内での搬送が可能であってトナー像の転写および定着が可能な普通紙、コート紙、厚紙等の記録媒体であればよく、その材質、形態等については特に制約されるものでない。
 定着装置5は、像形成装置2の転写位置TPで転写されたトナー像を用紙9に定着させるよう構成された装置である。この定着装置5は、用紙9の導入口50aや排出口50bが設けられた筐体50の内部空間に、加熱用回転体51、加圧用回転体52等の機器を配置して構成されている。
 加熱用回転体51は、矢印で示す方向に回転するロール形態、ベルト-パット形態等からなる回転体であり、図示しない加熱部により外表面が所要の温度に保たれるよう加熱されるものである。加圧用回転体52は、加熱用回転体51に所要の加圧下で接触して追従するよう回転するロール形態、ベルト-パット形態等からなる回転体である。加圧用回転体52は、加熱部により加熱されるものを適用してもよい。
 この定着装置5では、加熱用回転体51と加圧用回転体52が接触する部位が、未定着像のトナー像を用紙9に定着するための加熱、加圧等の処理をするニップ部(定着処理部)FNとして構成されている。
 図1における符号Rt1で示す一点鎖線の部分は、給紙装置4にある用紙9を転写位置TPまで搬送して供給する給紙搬送路である。この給紙搬送路Rt1は、用紙9を挟持して搬送する複数の搬送ロール44a,44bや、用紙9の搬送空間を確保して用紙9の搬送を案内する図示しない複数の案内部材等を配置して構成されている。
 この画像形成装置1では、画像を形成する動作の指令を図示しない制御部が受けると、像形成装置2において帯電動作、露光動作、現像動作および転写動作が実行され、その一方で、給紙装置4から転写位置TPへの用紙9の給紙動作が実行される。これにより、感光ドラム21上にトナー像が形成された後、そのトナー像が給紙装置4から転写位置TPに供給された用紙9に転写される。
 続いて、画像形成装置1では、定着装置5において、トナー像が転写された用紙9がニップ部FNに導入されて定着動作が実行される。これにより、未定着のトナー像が用紙9に定着される。定着後の用紙9は、例えば排出ロール45により筐体10の外部にある図示しない収容部に排出されて収容される。
 以上により、画像形成装置1による1枚の用紙9片面への画像形成動作が完了する。
 画像形成装置1は、装置本体内に存在する空気を収集して排気する排気部を備える。図1から図3A等に示されるように、排気部は、収集ダクト56と、微粒子の捕集装置6と、排気口12とを備える。なお、図1から図3A等に示される例では、定着装置5に存在する空気を収集して排気する排気部が設けられている。
<微粒子の捕集装置の構成>
 次に、微粒子の捕集装置6は、図1から図3B等に示されるように、通気管61、気流発生部62、捕集部63等を備えている。
 この捕集装置6により捕集する微粒子の粒径は100μm以下である。微粒子の一例は、粒径が100nm(0.1μm)以下のいわゆる超微粒子(UFP:UltraFine Particle)である。ここで、粒径は、球体積相当径である。
 この捕集装置6が捕集の対象とする超微粒子の一例は、例えば、トナーに含まれるワックス等の成分が定着処理(定着動作)時の加熱により揮発した後に冷却されて生成される微粒子(粉じん)に含まれる超微粒子である。
 通気管61は、微粒子が含まれる空気を流す流路空間61aを有する管状の構造物である。
 実施の形態1における通気管61は、流路空間61aの気流と交差する方向への横断面の形状がほぼ矩形からなる角筒状の管である。図2や図3Aに示されるように、通気管61の一端部61bが定着装置5の筐体50の側面部に設けられた収集ダクト56に接続され、通気管61の他端部61cが筐体10の背面部10eに設けた排気口12と接続されるよう配置されている。収集ダクト56は、定着装置5の筐体50における導入口50aおよび排出口50bよりも上方の位置に設けられた吸気口56aから筐体50内やその周辺に存在する空気を収集して取り入れるものである。排気口12および収集ダクト56は排気部の一部である。
 気流発生部62は、通気管61の流路空間61a内で上記空気を送るべき方向Cに流すための気流を発生させる。
 実施の形態1では、気流発生部62として軸流ファンを適用している。軸流ファンは、例えば、図3Aに示されるように、断面円形の貫通部621aが形成された枠部621と、その枠部621の貫通部621aに存在して回転可能に支持されるとともに駆動モータが内蔵された軸部622と、その軸部622の周囲に立設された複数枚の羽根部623とで構成されている。
 気流発生部62で発生させる気流の強さ(風量又は風速)については、例えば、画像形成装置1の筐体10内(本例では特に定着装置5の筐体50内)における温度の上昇や結露の発生を防止する等の観点から、0.1~1m3/分の範囲に設定することが好ましい。
 捕集部63は、通気管61の途中部分における流路空間61a内を気流と交差する方向に横断する状態で配置され、その流路空間61a内を流れる空気に含まれる微粒子を捕集する。
 実施の形態1における捕集部63は、図3B等に示されるように、開口の大きさが0.005mm以上かつ0.1mm以下の複数の通気部63aを外枠64の内部に有する厚さDが5mm以下の通気板で構成されており、具体的には、図4に示されるように開口の大きさが0.005mm以上かつ0.1mm以下の複数の網目(開き目)66を有する厚さDが5mm以下の網板65で構成されている。
 ここで、通気部63aは、外枠64の内部で網板65を貫通した隙間である。通気部63aの開口の大きさは、開口が矩形の場合、実際に装着して使用するときの大きさ(流路空間61a内に配置される部分の流路面積)の通気板にあるすべての通気部63aの開口における縦および横の寸法を平均した値とする。通気板の厚さDは、図3Aに示されるように、空気が通気部63aを通過する方向Cに沿う寸法である。
 通気板の一例である網板65は、図4に示されるように、ほぼ同じ開口形状の網目(開き目)66がほぼ均等に散在するよう複数設けられている網状の部材である。より具体的には、縦用の線材65aと横用の線材65bを平織等の織り方で織って複数の網目(開き目)66を形成してなる網状の部材である。網板65として開口形状が矩形からなる網目66が複数設けられた網板を用いる場合、その網目66の開口の大きさ(目開きともいう)とは、図4に示されるように、すべての網目66における天地幅Maおよび左右幅Mbを平均した値となる。
 網板65を構成する線材65a,65bは、上記開口の大きさや後述する開口率を所要の範囲内におさめる等の観点からすると、その線径が0.01~0.06mmの範囲内のものを適用することが好ましい。 
 通気板(の網板65)における通気部63a(網目66)の開口の大きさが0.005mm未満の場合は、その大きさの通気部63a(網目66)を有する通気板(網板65)を製造することが困難になることや、圧力損失が過大になりやすくなること等の不具合がある。反対に開口の大きさが0.1mmよりも大きい場合は、特に空気中に含まれるUFPを低減する効果が得られにくくなるか又は得られなくなる。
 通気板(網板65)の厚さDが5mmを越える場合は、その通気板を設置する設置スペースの空気を通過させる方向の寸法の増加を招いてしまう。この厚さDは、好ましくは4mm以下、より好ましくは2mm以下である。ちなみに、この厚さDの下限値は、網板65の製造が可能であってかつ所要の捕集性能(特にUFPの総量の低減効果)を得ることが可能であれば特に制約されるものでないが、その下限値は例えば0.02mmであれば特に支障ない。
 また、通気板(網板65)は、開口率が20%以上かつ60%以下になるよう構成されている。
 開口率は、通気管61の流路空間61a内で通気板(網板65)が実際に空気と接触させる部分の全面積に対するすべての通気部63a(全網目66)の全開口面積が占める割合を百分率で示したものになる。具体的には、図3Bの網板65の開口率は、通気管61の流路面積当たりの網目66の全開口面積の割合を百分率で示したものである。この開口率が20%未満である場合は、圧力損失が増加し空気が流れにくくなる等の不具合がある。反対に開口率が60%を越える場合は、特に空気中に含まれるUFPを低減する効果が得られなくなる。
 この開口率については、圧力損失を確実に低減するとともに空気中に含まれる100μm以下の微粒子の総量を低減させる効果を確実に得る観点等からすると、25%以上かつ40%以下がより好ましい。
 網板65は、例えば、ステンレス、アルミニウム等の金属からなる線材を用いて製作されてもよい。また網板65は、ポリエチレンテレフタレート(PET)、アクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS樹脂)、ポリ塩化ビニル等の合成樹脂からなる線材を用いて製作されたものであってもよい。
 この捕集装置6では、図2や図3Aに示されるように、捕集部63の一例である通気板の網板65を、通気管61において気流発生部62よりも通気管61の流路空間61a内の空気の送られる方向Cの上流側の位置に配置している。
 そして、この捕集装置6は、定着装置5が作動している時期やその停止後の所定期間に少なくとも作動する。
 すなわち、捕集装置6は、作動時期になると、気流発生部62が始動して、通気管61の流路空間61a内に矢印Cで示す方向に流れる気流が発生する。
 これにより、定着装置5において定着動作で主に発生する微粒子が含まれる空気が、収集ダクト56を介して通気管61の流路空間61a内に吸引されるよう流れ込む。
 このとき流れ込んだ微粒子を含む捕集前の空気Eaは、図3Aに示されるように、捕集部63の一例である通気板の網板65にほぼ衝突するとともに、網板65の通気部63aである網目66を通過し、捕集後の空気Ebとして移動する。
 この際、捕集前の空気Eaは、開口の大きさが0.005mm以上かつ0.1mm以下の複数の網目66を有する網板65に衝突しながら網板65を通過する。これにより、粒径が100nm以下の超微粒子も網板65に衝突した際に網板65の線材部分に付着しやすくなり、この結果、通過する空気に含まれる微粒子のうち超微粒子の総量が低減される。
 この捕集後の空気Ebは、気流発生部62を通過して、最終排気の空気Ecとして画像形成装置1の筐体10の排気口12から外部に排出される。
 この最終排気の空気Ecは、捕集前の空気Eaに比べて、超微粒子の総量が低減された空気になる。
 超微粒子の総量の低減とは、捕集部63としての通気板の網板65を設けた場合における超微粒子の総量が、その通気板の網板65を設けない場合における超微粒子の総量に比べて、少なくなっていることである。
 この超微粒子の総量の低減は、好ましくは、網板65を設けない場合における超微粒子の総量に対して3割以上少なくなることである。
<捕集効果に関する試験T1>
 次に、この捕集装置6の捕集効果に関して行った試験T1について説明する。
 このときの捕集効果に関する試験T1は、ドイツの環境ラベルであるブルーエンジェルマークの試験規格(RAL-UZ205)に準拠して行った試験である。
 試験T1は、図5に示されるように、試験環境室である密閉性の高く所定の室内環境(温度:23℃、湿度:50%RH)に設定された試験チャンバー100の空間110内における載置台120上に測定対象となる画像形成装置1を設置して平衡化した後、その画像形成装置1を起動させて所定の画像形成動作を10分間(600s:秒)行い、その画像形成動作中と動作停止後の所定時間内における室内の空気に含まれる超微粒子(UFP)の量などについて測定装置(TSI社製:凝縮粒子計数器CPC Model3775)150により測定することで行った。
 試験チャンバー100は、その容積が例えば5.1m3からなる室内を有し、給気口103から清浄された空気132が室内に供給されるとともに、排気口104から室内の空気133が排気されるようになっている。試験チャンバー100から排気された室内の空気133は、測定装置150に接続されて送られるようになっている。
 測定対象の画像形成装置1としては、捕集装置6における捕集部63の下記構成からなる網板65を設置したものを適用した。比較基準の画像形成装置1として、捕集装置6における捕集部63の通気板としての網板65を設置しないものも用意した。
 捕集装置6は、網板65の空気と接触させる部分の全面積(通気管61の流路面積)を14,400mm2とした。捕集装置6における網板65としては、ステンレス(SUS)からなる線材を平織したものであって、網目66における開口の大きさが0.22mm、開口率が40%、厚さDが0.026mmである網板(金属の網板)を用いた。捕集装置6は、その動作の際に、気流発生部62である軸流ファンを作動させて風量が0.33m3/分になるような気流を発生させた。さらに、捕集装置6は、試験における画像形成動作の開始から停止までの期間、作動させた。
 網板65の別の実施例として、PETからなる線材を平織した網板(PETの網板)を用意し、それを装着した捕集装置6も使用した。
 画像形成動作で形成した画像は、画像面積率が5%からなるBA(ブルーエンジェル)指定のチャートである。
 そして、この試験T1では、超微粒子(UFP)の総量(体積)の変化(推移)について調べた。そのときの結果を図6に示す。
 図6に示される結果から、捕集装置6に通気板(網板65)を装着しない比較基準の画像形成装置の場合には、UFPの総量が、画像形成動作を開始してから停止させるまでの間(0~600sまでの間)に急激に増えて最大の総量が約64000(#/cc)まで達し、その画像形成動作を停止してから徐々に低減し、4000s経過した時点で約1/6の総量まで低減することがわかる。
 図6におけるグラフの縦軸の単位内の「#」はUFPの個数を示す。
 これに対して、捕集装置6に金属の網板65を装着した実施例の画像形成装置1の場合には、図6に示される結果から、UFPの総量が、画像形成動作を開始してから停止させるまでの間に増えるが、比較基準の画像形成装置における総量に比べて、増加する割合が少なく低減されていることがわかる。この場合、UFPの最大の総量は、約4200(#/cc)であった。この段階では、UFPの総量が約2割強低減されている。
 UFPの総量は、比較基準の画像形成装置の場合と同様に、画像形成動作を停止してから徐々に低減するが、そのときも比較基準の画像形成装置における総量に比べて、低減された量で推移する。
 さらに、捕集装置6にPETの網板65を装着した別の実施例の画像形成装置1の場合にも、図6に示される結果から、上記実施例の画像形成装置1の場合とほぼ同様の結果が得られることがわかる。つまり、この場合にも、UFPの総量が低減される。
 続いて、この試験T1において網板65における網目66の開口の大きさとUFPの低減率の関係について調べた。このときの結果を図7Aおよび図7Bに示す。
 このときの試験T1では、網目66の開口の大きさ(目開き)として複数の値に設定した網板65をそれぞれ用意し、その各網板65を捕集装置6に装着したときのUFPの低減率について調べた。
 UFP値は、上記試験規格(RAL-UZ205)に記載の方法に基づいて求めた。UFPの低減率は、網板65の有無の差から求めた。
 このときの試験T1は、網板65として金属の網板に加えて、PETの網板も同様に用意して同様に行った。
 金属の網板65の開口の大きさとしては、図7Aの横軸に示されるように0.01mm、0.022mm、0.025mm、0.032mm、0.067mmの5種類のものを用意した。PETの網板の開口の大きさとしては、図7Bの横軸に示されるように、0.086mmの1種類のものを用意した。この際、金属の網板65とPETの網板のいずれも、網目66の開口の大きさを変更しても、開口率についてはすべて40%程度に保たれるよう調整した。
 図7Aに示される結果から、金属の網板65では、その網目66の開口の大きさが小さくなるにつれてUFPの低減率が徐々に高くなる傾向にあり、その網目66の開口の大きさが大きくなるにつれてUFPの低減率が逆に徐々に低くなる傾向にあることがわかる。
 このため、金属の網板65の場合、開口の大きさとUFPの低減率との間にはほぼ反比例する相関関係にあるといえそうである。この結果から開口の大きさ(目開き)が0.01mm以上でかつ0.07mm以下(約0.08mm以下)の範囲であれば、UFPを低減する効果が得られることがいえる。
 図7Bに示される結果から、PETの網板65では、その網目66の開口の大きさを0.086mmにした場合、UFPの低減率が約15%になることがわかった。
 以上の試験T1の結果を総合すると、捕集部63の通気板として網板65を適用した捕集装置6にあっては、網目66の開口の大きさが約0.005mm以上でかつ約0.09mm以下の範囲であれば、UFPを低減させる効果が得られそうである。
<捕集効果に関する試験T2>
 捕集装置6の網板65における網目66の開口率と圧力損失との関係について調べる試験T2を行った。この試験T2の結果について図8に示す。
 このときの試験T2では、網目66の開口率として複数の値に設定した網板65をそれぞれ用意し、その各網板65を捕集装置6に装着したときのUFPの低減率について調べた。
 このときの試験T2では、網板65として金属の網板のみを用意した。その金属の網板65の開口率としては、図8の横軸に示されるように11%、13%、40%、49.5%、60%の5種類の開口率を有する網板を用意した。
 試験T2は、上記の各開口率を有する網板65を捕集装置6の通気管61内に設置して気流発生部62による一定の風量(0.33m3/分)の気流を発生させたときに、その網板65よりも上流側の位置での空気圧(Pa)と網板65よりも下流側の位置での空気圧(Pa)とを測定した後にその差分を求めることで圧力損失(Pa)を調べた。空気圧は、差圧計(TESTO社製:Model5122)を用いて測定した。
 図8に示される結果から、上記開口率からなる網板65では、開口率が約10%~60%の範囲にあるときに、圧力損失が約5~80Paの範囲になることがわかる。
 ちなみに、圧力損失が高い場合は、網板65を通過する空気の量が制限されやすいため、例えば、定着装置5から吸引した空気が排気されにくくなり、定着動作で高温になった空気が定着装置5の筐体50内や画像形成装置1の筐体10内に留まりやすくなって機内の温度が上昇しやすくなってしまう。圧力損失が高い場合は、気流発生部62などの駆動に負荷がかかりやすくなることや、騒音が発生しやすくなることもある。
 このため、圧力損失は、好ましくは40Pa以下に設定するとよい。この好ましい圧力損失を得るためには、図8に示される結果からすると、網板65における開口率が30%以上であることが望ましいといえる。
 この実施の形態1に係る捕集装置6では、通気板である網板65の厚さDが5mm以下であることから、その網板65を設置する設置スペースの空気を通過させる方向Cの寸法を小さくすることが可能になり、例えば、網板65の設置スペースを省サイズ化して捕集装置6やその捕集装置6を装備する画像形成装置1の小型化に貢献することができる。特に通常の不織布のようなフィルタや、プリーツ形式のフィルタなどの他種の捕集部に比べると、その設置スペースの省サイズ化が可能になり有利である。
 この捕集装置6では、網板65を気流発生部62よりも空気が送られる方向Cの上流側の位置に配置されているので、定着装置5から捕集されて通気管61に導入される空気が最初に網板65に接触して通過するようになり、その下流側の位置に配置した場合に比べると、超微粒子の総量が確実に低減される。
 さらに、この捕集装置6では、網目66の目詰まり等に起因した網板65の捕集性能の低下が起こりにくいことが確認されている。このため、この捕集装置6は、網板65の交換がほぼ不要となる利点があり、この結果、定期的な交換が必要な他種の捕集部に比べて、ランニングコストの抑制化やメンテナンス作業の軽減化が図れる。
[実施の形態2]
 図9Aは、この発明の実施の形態2に係る微粒子の捕集装置を示すものである。
 実施の形態2に係る微粒子の捕集装置6は、捕集部63の通気板として、網板65に代えて多孔板67を適用して変更した以外は実施の形態1に係る捕集装置6と同じ構成からなるものである。
 図9Bは、図9Aの補集装置における捕集部である多孔板67の構成を示す概要図である。多孔板67は、図9B等に示されるように、開口の大きさが0.005mm以上かつ0.1mm以下の複数の通気孔68を有する厚さDが5mm以下の多孔板で構成されている。
 この多孔板67は、図9Bや図10に示されるように、同じ開口形状の通気孔68がほぼ均等に散在するよう複数設けられている板状の部材である。多孔板67として開口形状が円形からなる通気孔68が複数設けられた多孔板を用いる場合、多孔板67の通気孔68の開口の大きさは、図10に示されるように、すべての通気孔68の直径Rを平均した値とする。
 なお、開口が円形でも矩形でもないその他の形状である場合、開口の円相当径を開口の大きさとする。
 通気板の他例である多孔板67における通気部63aとしての通気孔68の開口の大きさの範囲(0.005mm以上かつ0.1mm以下)の意義や多孔板67の厚さDの意義などについては、既述した実施の形態1における網板65の場合と同様である。
 通気板(多孔板67)は、実施の形態1における網板65の場合と同様に、開口率が20%以上かつ60%以下になるよう構成されている。
 この開口率の範囲の意義や好ましい範囲についても、既述した実施の形態1における網板65の場合と同様である。具体的には、図9Bの多孔板67の開口率は、通気管61の流路面積当たりの通気孔68の全開口面積の割合を百分率で示したものである。
 多孔板67についても、実施の形態1における網板65の場合と同様に、金属からなる材料や合成樹脂からなる材料を用いて製作される。より具体的には、その材料からなる板材に所定の孔開け加工を施すことで多孔板とする。
 この多孔板67を適用した捕集装置6においても、その所定の作動時期が到来すると、実施の形態1に係る捕集装置6の場合とほぼ同様に動作する。
 すなわち、この捕集装置6では、気流発生部62の作動により通気管61の流路空間61a内に流れ込んだ微粒子を含む捕集前の空気Eaが、図9Aに示されるように、捕集部63の一例である通気板の多孔板67にほぼ衝突するとともに、多孔板67の通気部63aである通気孔68を通過し、捕集後の空気Ebとして移動する。
 この際、捕集前の空気Eaは、開口の大きさが0.005mm以上かつ0.1mm以下の複数の通気孔68を有する多孔板67を通過する。これにより、100nm以下の超微粒子も多孔板67に衝突した際に多孔板67の非通気孔部分等に付着しやすくなり、この結果、通過する空気に含まれる微粒子のうち超微粒子の総量が低減される。
 捕集後の空気Ebは、気流発生部62を通過して、最終排気の空気Ecとして画像形成装置1の筐体10の排気口12から外部に排出される。
 この最終排気の空気Ecは、捕集前の空気Eaに比べて、超微粒子の総量が低減された空気になる。
<捕集効果に関する試験T1>
 次に、この捕集装置6の捕集効果に関して行った試験T1について説明する。
 実施の形態1で採用した試験T1において多孔板67における通気孔68の開口の大きさとUFPの低減率の関係について調べた。このときの結果を図11Aおよび図11Bに示す。
 試験T1では、通気孔68の開口の大きさ(直径R)として複数の値に設定した多孔板67をそれぞれ用意し、その各多孔板67を捕集装置6に装着したときのUFPの低減率について調べた。
 試験T1は、多孔板67としてSUSからなる多孔板に加えて、PETからなるPET多孔板も同様に用意して同様に行った。
 金属の多孔板(いわゆるパンチングメタル)67の開口の大きさとしては、図11Aの横軸に示されるように0.047mm、0.10mm、0.12mmの3種類のものを用意した。PET多孔板の開口の大きさとしては、図11Bの横軸に示されるように、0.086mmからなるものを用意した。この際、金属の多孔板67とPET多孔板のいずれも、通気孔68の開口の大きさを変更しても、開口率についてはすべて40%程度に保たれるよう調整した。
 図11Aに示される結果から、金属の多孔板67では、その通気孔68の開口の大きさが小さくなるにつれてUFPの低減率が高くなる傾向にあり、その通気孔68の開口の大きさが大きくなるにつれてUFPの低減率が逆に低くなる傾向にあることがわかる。なお、開口の大きさが0.12mmの場合は、UFPの低減率がほぼゼロになることもわかる。
 このため、金属の多孔板67の場合、開口の大きさとUFPの低減率との間にはほぼ反比例する相関関係にあるといえそうである。またこの結果から、金属の多孔板67では、開口の大きさが0.04mm以上でかつ0.01mm以下の範囲であれば、UFPを低減する効果が得られることがいえる。
 図11Bに示される結果から、PETの多孔板67では、その通気孔68の開口の大きさを0.086mmにした場合、UFPの低減率が約15%になることがわかった。
 以上の試験T1の結果を総合すると、捕集部63の通気板として多孔板67を適用した捕集装置6にあっては、通気孔68の開口の大きさが0.04mm以上でかつ0.1mm以下の範囲であれば、UFPを低減させる効果が得られそうである。
 ちなみに、この金属の多孔板67やPET多孔板67を適用した捕集装置6についても、実施の形態1における試験T1により超微粒子(UFP)の総量の変化(推移)を同様に調べた。
 この場合においても、実施の形態1における同試験T1の結果(図6)とほぼ同様の結果が得られることが確認されている。
 この金属の多孔板67やPET多孔板67を適用した捕集装置6についても、実施の形態1における試験T2により多孔板67における通気孔68の開口率と圧力損失との関係について調べた。
 このときの結果は、実施の形態1における同試験T1の結果(図8)とほぼ同様の結果が得られることが確認されている。
 この実施の形態2に係る捕集装置6によっても、既述した実施の形態1に係る捕集装置6により得られる他の効果が同様に得られる。
[変形例]
 この発明は、実施の形態1、2で例示した内容に何ら限定されるものではなく種々の変更が可能であり、例えば、以下に挙げるような変形例も含むものである。
 実施の形態1、2では、捕集部63の通気板を気流発生部62よりも空気が送られる方向Cの上流側の位置に配置した捕集装置6を例示したが、捕集装置6は、捕集部63の通気板を気流発生部62よりもその方向Cの下流側の位置に配置することも可能である。
 実施の形態1、2では、微粒子の捕集装置6を画像形成装置1の定着装置5で発生する超微粒子が含まれる微粒子を捕集する捕集装置として適用する場合を例示したが、画像形成装置1の定着装置5以外の構成部分から発生する微粒子を含む空気を収集して排気する排気部に、超微粒子を捕集する捕集装置を設けてもよい。
 この発明の捕集装置6は、超微粒子の捕集が必要であれば、画像形成装置以外の各種の装置に適用してもよい。
 この他、微粒子の捕集装置6を適用する画像形成装置は、実施の形態1で例示した形式の画像形成装置1に限定されず、電子写真方式を利用した他の形式(多色画像を形成する形式も含む)の画像形成装置であってもよい。さらに、捕集装置6を適用する画像形成装置については、電子写真方式以外の画像形成方式(例えば液滴噴射方式、印刷方式など)を採用する画像形成装置であっても構わない。
 本願は、2019年11月12日付出願の日本国特願2019-204828に基づき優先権を主張する。
1 …画像形成装置
5 …定着装置(定着部の一例)
6 …微粒子の捕集装置
9 …用紙(記録媒体の一例)
12…排気口(排気部の一部)
56…収集ダクト(排気部の一部)
61…通気管
61a…流路空間
62…気流発生部
63…捕集部
63a…通気部
65…網板(通気板の一例)
66…網目(通気部の一例)
67…多孔板(通気板の一例)
68…通気孔(通気部の一例)
C …空気が送られる方向(空気の通過する方向)
D …厚さ
 

Claims (7)

  1.  微粒子が含まれる空気を流す流路空間を有した通気管と、
     前記通気管の流路空間内で前記空気を送るべき方向に流す気流を発生させる気流発生部と、
     前記通気管の流路空間内を前記気流と交差する方向に横断する状態で配置され、前記空気に含まれる微粒子を捕集する捕集部と、を備え、
     前記捕集部は、開口の大きさが0.005mm以上かつ0.1mm以下の複数の通気部を有する厚さが5mm以下の通気板で構成されている微粒子の捕集装置。
  2.  前記通気板は、開口率が20%以上かつ60%以下になるよう構成されている請求項1に記載の捕集装置。
  3.  前記通気板は網板で構成されている請求項1又は2に記載の捕集装置。
  4.  前記通気板は多孔板で構成されている請求項1又は2に記載の捕集装置。
  5.  前記通気板は、前記気流発生部よりも前記空気の送られる方向の上流側に配置されている請求項1乃至4のいずれか1項に記載の捕集装置。
  6.  装置本体内に存在する空気を収集して排気する排気部を備え、
     前記排気部は請求項1乃至4のいずれか1項に記載の微粒子の捕集装置を備える画像形成装置。
  7.  未定着のトナー像を記録媒体に熱定着させる定着部をさらに備え、
     前記排気部は、前記定着部に存在する空気を収集する吸気口と、前記収集した空気を外部へ排気する排気口と、
     を備える請求項6に記載の画像形成装置。
     
PCT/JP2020/018156 2019-11-12 2020-04-28 微粒子の捕集装置と画像形成装置 WO2021095287A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080069402.0A CN114467061A (zh) 2019-11-12 2020-04-28 微粒子捕集装置及图像形成装置
EP20888174.8A EP4060421A4 (en) 2019-11-12 2020-04-28 PARTICLE CAPTURE DEVICE AND IMAGE PRODUCING DEVICE
US17/698,058 US20220203285A1 (en) 2019-11-12 2022-03-18 Particulate capturing device and image forming device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-204828 2019-11-12
JP2019204828A JP2021076772A (ja) 2019-11-12 2019-11-12 微粒子の捕集装置と画像形成装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/698,058 Continuation US20220203285A1 (en) 2019-11-12 2022-03-18 Particulate capturing device and image forming device

Publications (1)

Publication Number Publication Date
WO2021095287A1 true WO2021095287A1 (ja) 2021-05-20

Family

ID=75899014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018156 WO2021095287A1 (ja) 2019-11-12 2020-04-28 微粒子の捕集装置と画像形成装置

Country Status (5)

Country Link
US (1) US20220203285A1 (ja)
EP (1) EP4060421A4 (ja)
JP (1) JP2021076772A (ja)
CN (1) CN114467061A (ja)
WO (1) WO2021095287A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236082B2 (ja) 1983-11-30 1990-08-15 Nippon Filing Co Ltd Idodanaseigyosochi
JPH09173897A (ja) 1995-12-25 1997-07-08 Mitsubishi Heavy Ind Ltd 粒子捕集装置
JP2002239413A (ja) 2001-02-21 2002-08-27 Mitsubishi Heavy Ind Ltd 電気集塵機のダスト除去装置
US20060083563A1 (en) * 2004-10-14 2006-04-20 Samsung Electronics Co., Ltd. Used developer cleaning system and image forming apparatus having the same
JP4649587B2 (ja) 2004-06-29 2011-03-09 独立行政法人産業技術総合研究所 排ガス浄化フィルター及び粒状物質の捕集方法
JP2013190651A (ja) * 2012-03-14 2013-09-26 Konica Minolta Inc 画像形成装置
JP2017198884A (ja) 2016-04-28 2017-11-02 京セラドキュメントソリューションズ株式会社 空気フィルター、画像形成装置
JP2018004774A (ja) 2016-06-28 2018-01-11 日本バイリーン株式会社 複写機用フィルタユニット
JP2018004996A (ja) * 2016-07-04 2018-01-11 シャープ株式会社 光触媒フィルター、光触媒フィルター積層体、排気ユニット及び画像形成装置
JP2018077295A (ja) * 2016-11-08 2018-05-17 キヤノン株式会社 画像形成装置
JP2019184699A (ja) * 2018-04-04 2019-10-24 富士ゼロックス株式会社 粉体処理装置
JP2019204828A (ja) 2018-05-22 2019-11-28 三菱電機株式会社 半導体装置、電力変換装置、および半導体装置の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386150C (zh) * 2005-08-17 2008-05-07 云南菲尔特环保科技有限公司 一种陶瓷催化剂载体、微粒捕集器和微粒捕集装置及其制备方法
JP6308201B2 (ja) * 2015-11-19 2018-04-11 コニカミノルタ株式会社 捕集装置及び画像形成装置
JP2017194602A (ja) * 2016-04-21 2017-10-26 コニカミノルタ株式会社 微粒子除去装置、画像形成装置および画像形成方法
JP2019120858A (ja) * 2018-01-10 2019-07-22 エイチピー プリンティング コリア カンパニー リミテッド 画像形成装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0236082B2 (ja) 1983-11-30 1990-08-15 Nippon Filing Co Ltd Idodanaseigyosochi
JPH09173897A (ja) 1995-12-25 1997-07-08 Mitsubishi Heavy Ind Ltd 粒子捕集装置
JP2002239413A (ja) 2001-02-21 2002-08-27 Mitsubishi Heavy Ind Ltd 電気集塵機のダスト除去装置
JP4649587B2 (ja) 2004-06-29 2011-03-09 独立行政法人産業技術総合研究所 排ガス浄化フィルター及び粒状物質の捕集方法
US20060083563A1 (en) * 2004-10-14 2006-04-20 Samsung Electronics Co., Ltd. Used developer cleaning system and image forming apparatus having the same
JP2013190651A (ja) * 2012-03-14 2013-09-26 Konica Minolta Inc 画像形成装置
JP2017198884A (ja) 2016-04-28 2017-11-02 京セラドキュメントソリューションズ株式会社 空気フィルター、画像形成装置
JP2018004774A (ja) 2016-06-28 2018-01-11 日本バイリーン株式会社 複写機用フィルタユニット
JP2018004996A (ja) * 2016-07-04 2018-01-11 シャープ株式会社 光触媒フィルター、光触媒フィルター積層体、排気ユニット及び画像形成装置
JP2018077295A (ja) * 2016-11-08 2018-05-17 キヤノン株式会社 画像形成装置
JP2019184699A (ja) * 2018-04-04 2019-10-24 富士ゼロックス株式会社 粉体処理装置
JP2019204828A (ja) 2018-05-22 2019-11-28 三菱電機株式会社 半導体装置、電力変換装置、および半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4060421A4

Also Published As

Publication number Publication date
EP4060421A1 (en) 2022-09-21
US20220203285A1 (en) 2022-06-30
CN114467061A (zh) 2022-05-10
EP4060421A4 (en) 2023-11-29
JP2021076772A (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
JP5915590B2 (ja) 画像形成装置
JP4961823B2 (ja) 画像形成装置
JP7484265B2 (ja) 微粒子の捕集装置と画像形成装置
JP2019120858A (ja) 画像形成装置
US11561506B2 (en) Image forming apparatus with mesh member in air inlet of exhaust device
US20220203277A1 (en) Particle capturing device and image forming device
JP2006208718A (ja) 画像形成装置
WO2021095287A1 (ja) 微粒子の捕集装置と画像形成装置
JP2023183606A (ja) 画像形成装置
CN110711433B (zh) 微粒的捕获装置及图像形成装置
JP6600958B2 (ja) 画像形成装置
JP2023177972A (ja) 微粒子の捕集装置と画像形成装置
US20220373967A1 (en) Image forming apparatus having exhaust device with plurality of mesh members
JP7183637B2 (ja) 微粒子の捕集装置および画像形成装置
JP7172269B2 (ja) 微粒子の捕集装置および画像形成装置
JP2007298781A (ja) 画像形成装置
JPS62296166A (ja) 画像形成装置
JP2002268385A (ja) 画像形成装置
JP2007333992A (ja) 画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20888174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020888174

Country of ref document: EP

Effective date: 20220613