WO2021095158A1 - Electromagnetic brake - Google Patents

Electromagnetic brake Download PDF

Info

Publication number
WO2021095158A1
WO2021095158A1 PCT/JP2019/044520 JP2019044520W WO2021095158A1 WO 2021095158 A1 WO2021095158 A1 WO 2021095158A1 JP 2019044520 W JP2019044520 W JP 2019044520W WO 2021095158 A1 WO2021095158 A1 WO 2021095158A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
guide pin
electromagnetic brake
field
electromagnetic
Prior art date
Application number
PCT/JP2019/044520
Other languages
French (fr)
Japanese (ja)
Inventor
岡本 健
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021555690A priority Critical patent/JP7217815B2/en
Priority to CN201980101977.3A priority patent/CN114630971B/en
Priority to PCT/JP2019/044520 priority patent/WO2021095158A1/en
Publication of WO2021095158A1 publication Critical patent/WO2021095158A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B11/00Main component parts of lifts in, or associated with, buildings or other structures
    • B66B11/04Driving gear ; Details thereof, e.g. seals
    • B66B11/08Driving gear ; Details thereof, e.g. seals with hoisting rope or cable operated by frictional engagement with a winding drum or sheave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D49/00Brakes with a braking member co-operating with the periphery of a drum, wheel-rim, or the like
    • F16D49/16Brakes with two brake-blocks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/102Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction brakes

Definitions

  • the present invention relates to, for example, an electromagnetic brake used in an elevator hoist.
  • An electromagnetic brake is an example of a brake that is a braking device.
  • the electromagnetic brake consists of an armature that is a movable part, a field that is a fixed part, an electromagnetic coil for sucking or braking the armature, and a spring that presses a braking surface against the armature.
  • the electromagnetic coil is provided in the field, and the field is composed of an inner pole portion surrounded by the electromagnetic coil and an outer pole portion outside the coil.
  • Patent Document 1 a structure in which the field faces the armature is known (for example, Patent Document 1).
  • the electromagnetic brake with the above configuration has a guide pin on the outer pole that guides the movement of the armature. Since this guide pin also has a function of receiving torque generated on the braking surface of the electromagnetic brake, strength is required. Therefore, it is necessary to prepare a guide pin having a size corresponding to the strength required to receive the torque. However, when such a guide pin exists, it is necessary to widen the width of the outer pole portion according to the size of the guide pin in order to secure the magnetic path cross-sectional area. Further, even when the guide pin is arranged in the inner pole portion, it is necessary to widen the width of the inner pole portion according to the size of the guide pin. Therefore, there is a problem that it is difficult to miniaturize the electromagnetic brake.
  • the present invention has been made to solve such a problem, and an object of the present invention is to obtain a miniaturized electromagnetic brake by simplifying the arrangement of components of the electromagnetic brake.
  • the electromagnetic brake according to the present invention includes an armature in which an electromagnetic coil, a shoe in contact with and detached from a braking surface are attached to one surface, and the other surface of the armature.
  • a guide pin formed on either the field or the armature to guide the reciprocating movement of the armature, and a guide pin arranged on the guide pin, in a direction in which the armature is separated from the field when the electromagnetic coil is not energized. It is equipped with an elastic member that can be moved to.
  • the present invention it is possible to reduce the size of the electromagnetic brake while ensuring the magnetic path cross-sectional area by simplifying the arrangement of the components of the electromagnetic brake. Further, since the hole for the guide pin and the hole for the spring can be shared, it is possible to reduce the processing cost in the electromagnetic brake.
  • FIG. It is sectional drawing of the electromagnetic brake of Embodiment 1.
  • FIG. It is sectional drawing which shows the time of braking of the electromagnetic brake of Embodiment 1.
  • FIG. It is a front view of the field of the electromagnetic brake of Embodiment 1.
  • FIG. It is sectional drawing of the hoisting machine of the elevator provided with the electromagnetic brake of Embodiment 1.
  • FIG. It is sectional drawing of the electromagnetic brake of Embodiment 2.
  • FIG. It is a front view of the field of the electromagnetic brake of Embodiment 2.
  • FIG. It is a front view of the field of the electromagnetic brake of Embodiment 3.
  • FIG. It is a front view of the field of the electromagnetic brake of Embodiment 3.
  • Embodiment 1 The electromagnetic brake of this embodiment will be described with reference to FIGS. 1 to 4.
  • FIG. 1 is a cross-sectional view of the electromagnetic brake according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view showing the braking time of the electromagnetic brake
  • FIG. 3 is a front view of the field of the electromagnetic brake
  • FIG. It is sectional drawing of the hoisting machine of an elevator.
  • the electromagnetic brake 100 of the first embodiment will be described with reference to FIGS. 1 to 4.
  • the electromagnetic brake 100 of the first embodiment has an armature 11 which is a movable portion capable of reciprocating in a direction in which a shoe 12 mounted on one surface is brought into contact with and detached from a braking surface, and a surface of the armature 11 opposite to the braking surface. It is provided with a field 13 provided so as to face the above.
  • the electromagnetic brake 100 further includes an electromagnetic coil 14, a guide pin 15, and a spring 16.
  • the electromagnetic coil 14, the guide pin 15, and the spring 16 are provided in the field 13 of the electromagnetic brake 100.
  • the electromagnetic coil 14 has a function of attracting the armature 11 to the field 13 side by the electromagnetic force generated by energization. As shown in FIG. 3, the electromagnetic coil 14 is provided in a circular shape so as to surround the guide pin 15 in the field 13 when the armature 11 side is viewed from the field 13 side.
  • the guide pin 15 has a function of guiding the movement when the armature 11, which is a movable part, reciprocates.
  • the guide pin 15 is provided with a shaft provided in a direction parallel to the direction in which the armature 11 reciprocates (hereinafter, referred to as an axial direction).
  • the armature 11 receives a force that is displaced in a direction orthogonal to the axial direction of the guide pin 15 (hereinafter referred to as a braking direction) due to the frictional force applied to the shoe 12 when the electromagnetic brake 100 is braked, but the guide pin 15 is electromagnetic. It has a role of restraining the armature 11 from being displaced in the braking direction when the brake 100 is braked.
  • a pair of storage portions 13a for storing the guide pins 15 are formed in the field 13.
  • the shape of the storage portion 13a is formed corresponding to the shape of the guide pin 15 so that the guide pin 15 can be accommodated.
  • the guide pin 15 may be stored in the storage portion 13a and may not be fixed to the storage portion 13a.
  • the guide pin 15 may be housed in the storage portion 13a and may be provided so as to project from the field 13.
  • the inside of the electromagnetic coil 14 (center side in the radial direction) in the field 13 is called an inner pole portion, and the storage portion 13a is provided in the inner pole portion.
  • the guide pin 15 has a cylindrical shape having a hollow structure, and the spring 16 is housed in the hollow portion.
  • the spring 16 is provided so as to constantly apply an elastic force to the armature 11 in a direction away from the field 13. That is, as shown in FIG. 2, the spring 16 is provided in a state of protruding from the hollow structure of the guide pin 15.
  • the spring 16 is used in the first embodiment, any elastic member having the same function as the spring 16 may be used, and rubber may be used in addition to the spring.
  • the guide pin 15 is configured to have a storage portion 13a on the field 13 side and be arranged on the field side storage portion 13a, but a storage portion may be provided on the armature 11 side and arranged on the armature 11 side storage portion.
  • the electromagnetic brake 100 of the first embodiment has a structure in which two guide pins 15 and two springs 16 are arranged, but each of them may be one or three or more. Further, the numbers of the guide pins 15 and the springs 16 do not have to be the same. If two or more guide pins 15 are arranged, the reciprocating movement of the armature 11 can be easily restrained in the axial direction, which is preferable.
  • the armature 11 is formed with a guide hole 11a into which the guide pin 15 is inserted.
  • the armature 11 is provided so as to operate with the guide pin 15 inserted into the guide hole 11a.
  • the guide pin 15 guides the operation of the armature 11 in the axial direction of the guide pin 15 in a state of being inserted into the guide hole 11a.
  • the armature-side tip of the guide pin 15 is arranged so as to maintain the state of being inserted into the guide hole 11a.
  • the guide pin 15 also functions as a torque receiving portion that receives the torque received by the armature 11 via the shoe 12 when the electromagnetic brake 100 is braked. That is, in the electromagnetic brake 100 of the first embodiment, the guide pin 15 can prevent the armature 11 from being displaced in the braking direction, so that the shoe 12 can uniformly press the braking surface.
  • the guide hole 11a can be formed by directly processing the armature 11.
  • the diameter of the guide hole 11a is formed to be slightly larger than the diameter of the guide pin 15.
  • the inner diameter of the guide hole 11a may be such that the armature 11 can be restrained in the axial direction by the guide pin 15 and can operate, and the guide pin 15 can operate smoothly.
  • a member such as a bush may be used between the guide pin 15 and the guide hole 11a.
  • the electromagnetic brake 100 of the first embodiment when the energization of the electromagnetic coil 14 is cut off, the electromagnetic force generated by the electromagnetic coil 14 disappears, and the elastic force of the spring 16 causes the armature 11 to move away from the field 13. Moving. As a result, the shoe 12 presses the braking surface, and the electromagnetic brake 100 exerts a braking force. Further, when the electromagnetic coil 14 is energized, the armature 11 is attracted to the field 13 by the electromagnetic force generated in the electromagnetic coil 14, the armature 11 is separated from the braking surface against the elastic force of the spring 16, and the electromagnetic brake 100 is in the braking state. To cancel.
  • the spring 16 is housed in the space formed by the guide pin inner wall 15a of the hollow guide pin 15. As shown in FIG. 2, the spring 16 is provided so as to protrude from the guide pin in a state where the electromagnetic coil 14 is not energized and the armature 11 is not attracted to the field 13 side. That is, by housing the spring 16 in the guide pin 15, the arrangement of the component parts in the electromagnetic brake 100 is simplified. Therefore, it is possible to reduce the size of the electromagnetic brake 100 while ensuring the magnetic path cross-sectional area. Further, the storage portion 13a on the field 13 side for storing the guide pin 15 can be shared with the spring storage portion for storing the spring 16. Therefore, the electromagnetic brake 100 of the first embodiment does not need to be provided with accommodating portions for both the guide pin 15 and the spring 16, and the processing cost can be reduced.
  • the guide pin 15 has a cylindrical shape, but the shape is not limited to such a shape.
  • the guide pin 15 can arrange the spring 16 inside the hollow structure, guides the operation of the armature 11, and has an outer diameter shape capable of receiving torque during electromagnetic brake braking, and is polygonal or the like. It may be formed in the shape of.
  • the guide pin 15 does not have to have a penetrating structure such as a tubular shape as long as it can be stored in the storage portion 13a and the spring 16 can be arranged. It should be noted that not only the case where the guide pin has one hollow structure but also the structure where the guide pin has a plurality of hollow structures is included in the tubular shape. When the guide pin has a plurality of hollow structures, a spring may be arranged in each of the plurality of hollow structures. When the storage portion on the armature side is provided and the guide pin is arranged in the storage portion, the spring 16 is provided so as to constantly apply an elastic force to the field 13.
  • the electromagnetic brake 100 of the first embodiment when the energization of the electromagnetic coil 14 is cut off, the electromagnetic force generated by the electromagnetic coil 14 disappears, and the elasticity provided by the spring 16 to the field 13 is eliminated. The force causes the armature 11 to move away from the field 13. As a result, the shoe 12 presses the braking surface, and the electromagnetic brake 100 exerts a braking force. Further, when the electromagnetic coil 14 is energized, the armature 11 is attracted to the field 13 by the electromagnetic force generated in the electromagnetic coil 14, the armature 11 is separated from the braking surface against the elastic force of the spring 16, and the electromagnetic brake 100 is in the braking state. To cancel.
  • the configuration in which the guide pin described above is housed on the armature side can be similarly applied to the following other embodiments.
  • the electromagnetic brake 100 of the first embodiment further includes a switch 17.
  • the switch 17 includes a base portion 17a and a contact portion 17b, the base portion 17a is provided on the side surface of the field 13, and the contact portion 17b is provided on the base portion 17a.
  • the switch 17 determines the braking of the electromagnetic brake 100.
  • FIG. 2 shows a state when the electromagnetic brake is braked. In this case, the armature 11 and the switch 17 are separated from each other, and the switch 17 is in an electrically non-contact state. On the other hand, when the electromagnetic brake 100 is in the non-braking state as shown in FIG.
  • the armature 11 is attracted to the field 13 side by electromagnetic suction, the armature 11 pushes the switch 17, and the switch 17 is in an electrically contact state, that is, energized. It will be in the state of being. In this way, the switch 17 can determine the braking of the electromagnetic brake 100.
  • the switch 17 is pushed in according to the amount of operation of the armature 11 when the armature 11 is attracted to the field 13 side by the energization of the electromagnetic coil 14.
  • the switch 17 determines the braking of the electromagnetic brake 100 according to the amount pushed into the armature 11.
  • the movement of the armature 11 is constrained in the axial direction by the guide pin 15, so that the armature 11 can be prevented from tilting with respect to the field 13.
  • the switch 17 can normally determine the braking of the electromagnetic brake 100.
  • the armature 11 When the armature 11 is pulled toward the field 13, if the armature 11 is not constrained in the axial direction and is tilted with respect to the field 13, the amount of pushing the switch 17 becomes smaller according to the amount of movement of the armature 11. Or the armature 11 does not push the switch 17. Then, although the armature 11 operates in the axial direction, the switch 17 is not properly pushed in according to the operation of the armature 11, and the switch 17 cannot normally determine the braking of the electromagnetic brake 100.
  • FIG. 4 is a cross-sectional view showing an elevator hoisting machine 500 using the electromagnetic brake 100 of the first embodiment.
  • the elevator hoisting machine 500 includes a rope wheel 51 around which a main rope (not shown) used in the elevator is wound, a rotor 52 and a stator 53 constituting a motor for rotating the rope wheel 51, and rotation of the rotor 52. It is composed of a plurality of electromagnetic brakes 100 that brake the rotation of the rope wheel 51 through braking, and a housing 55 that arranges the electromagnetic brake 100, the stator 53, and the rotor 52 via the bearing 54.
  • the electromagnetic brake 100 of the elevator hoisting machine 500 cuts off the energization of the electromagnetic coil 14 to release the force that draws the armature 11 toward the field 13, and causes the armature 11 to move away from the field 13 by the elastic force of the spring 16.
  • a braking force is exerted by the frictional force to brake the rotation of the rope wheel 51.
  • the armature 11 resists the elastic force of the spring 16 and is attracted to the field 13 side, and the shoe 12 is moved away from the rotor 52. By moving it, the braking state of the rotation of the sheave 51 is released.
  • the electromagnetic brake 100 of the first embodiment simplifies the arrangement of component parts by accommodating the spring 16 in the guide pin 15. Therefore, it is possible to reduce the size of the electromagnetic brake 100 while ensuring the magnetic path cross-sectional area. Therefore, in the elevator hoisting machine 500 having the electromagnetic brake 100 of the first embodiment, the elevator hoisting machine 500 can also be miniaturized by reducing the size of the electromagnetic brake 100.
  • FIG. 5 is a cross-sectional view showing an electromagnetic brake according to a second embodiment of the present invention.
  • FIG. 6 is a front view of the field in the electromagnetic brake according to the second embodiment of the present invention.
  • the electromagnetic brake of this embodiment will be described with reference to FIGS. 5 to 6. Overlapping description of the components common to the first embodiment will be omitted.
  • the storage portion 21a of the guide pin 25 is provided in the armature 21, and the guide pin 25 is housed in the storage portion 21a of the armature 21. Further, the guide hole 23a is provided at a position facing the storage portion 21a in the field 23, and the guide pin 25 is inserted into the guide hole 23a.
  • the function of the guide pin 25 is the same as that of the guide pin of the first embodiment. Further, the guide pin 25 has a cylindrical shape having a hollow structure, and the point that the spring 26 is housed in the hollow portion is the same as that of the first embodiment.
  • two guide holes 23a are provided in the outer pole portion of the electromagnetic coil 24, and the guide pin 25 is inserted into the guide hole 23a.
  • the storage portion 21a on the armature 21 side for storing the guide pin 25 can be shared with the spring storage portion for storing the spring 26. This simplifies the arrangement of components in the electromagnetic brake 200. Therefore, it is not necessary to provide storage portions for both the guide pin 25 and the spring 26, and the electromagnetic brake 200 can be miniaturized while ensuring the magnetic path cross-sectional area, and the processing cost can be reduced. ..
  • the guide hole 23a is provided in the outer pole portion of the electromagnetic coil 24, it is possible to shorten the peripheral length of the coil. Therefore, it is possible to reduce the cost of the electromagnetic coil and the required voltage.
  • FIG. 7 is a cross-sectional view showing an electromagnetic brake according to a third embodiment of the present invention.
  • FIG. 8 is a front view of the field in the electromagnetic brake according to the third embodiment of the present invention.
  • the electromagnetic brake of this embodiment will be described with reference to FIGS. 7 to 8. Overlapping description will be omitted for the components common to the first and second embodiments.
  • one guide pin 35 is provided.
  • the field 33 is provided with a storage portion 33a for storing the guide pin 35, and the guide pin 35 is arranged in the storage portion 33a.
  • the storage portion 33a is provided at the inner pole portion of the electromagnetic coil 34.
  • the armature 31 is provided with one guide hole 31a at a position facing the storage portion 33a, and the guide pin 35 is inserted into the guide hole 31a.
  • the guide pin 35 has a cylindrical shape having a hollow structure.
  • the guide pin 35 has four cylindrical hollow structures, and the hollow structure is formed by the inner wall 35a.
  • the cylindrical hollow structure is evenly provided in the circumferential direction.
  • a spring 36 is housed in each of the hollow portions of the guide pin 35. Therefore, the spring 36 can uniformly apply the elastic force to the armature 31.
  • the spring 36 Since the spring 36 is housed in the hollow portion of the guide pin 35, it is not necessary to separately provide a spring storage portion for storing the spring 36. In this way, the arrangement of the components in the electromagnetic brake 300 is simplified. Therefore, it is not necessary to provide storage portions for both the guide pin 35 and the spring 36, and the electromagnetic brake 300 can be miniaturized while ensuring the magnetic path cross-sectional area, and the processing cost can be reduced. ..
  • the armature is attracted to the field side by energizing the electromagnetic coil. On the contrary, the armature is repelled to the braking surface side when the electromagnetic coil is energized. You may let it.
  • a magnet 18 is provided in the armature 11, and the armature 11 provided with the magnet 18 repels when the electromagnetic coil 14 is energized to repel the armature 11. It can be operated toward the braking surface side. In other words, the magnet 18 which is the repulsive means moves the armature 11 away from the field 13.
  • the electromagnetic brake 100 operates. To do.
  • the armature 11 with a magnet 18 and to operate the armature 11 in the same manner as described above.
  • the electromagnetic brake used in the elevator hoisting machine has been described, but the present invention is not limited to the elevator hoisting machine and can be applied to other braking devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Braking Arrangements (AREA)

Abstract

An electromagnetic brake according to the present invention is used in an elevator hoist, for example, and is provided with: an electromagnetic coil; an armature, to one surface of which a shoe that contacts/separates from a braking surface is attached; a field provided facing the other surface of the armature; a guide pin that is formed on either the field or the armature and guides reciprocal movement of the armature; and an elastic member that is arranged on the guide pin and moves the armature in a direction away from the field when the electromagnetic coil is not energized.

Description

電磁ブレーキElectromagnetic brake
 この発明は、例えばエレベータの巻上機に用いられる電磁ブレーキに関する。 The present invention relates to, for example, an electromagnetic brake used in an elevator hoist.
 近年、エレベータ用巻上機は、昇降路の省スペース化と小型化が求められており、エレベータ用巻上機の構成部品の1つであるブレーキも小型化が求められている。制動装置であるブレーキの一例として、電磁ブレーキがある。電磁ブレーキは、可動部であるアーマチュアと、固定部であるフィールドと、アーマチュアを吸引し又は制動させるための電磁コイルと、制動面をアーマチュアに押し当てるばねとから成る。電磁コイルはフィールドに設けられており、フィールドは電磁コイルによって囲われている内極部とコイルの外側の外極部により構成されている。電磁ブレーキの構造としては、フィールドがアーマチュアと対向している構造が知られている(例えば、特許文献1)。 In recent years, elevator hoisting machines have been required to save space and downsize the hoistway, and brakes, which are one of the components of elevator hoisting machines, are also required to be downsized. An electromagnetic brake is an example of a brake that is a braking device. The electromagnetic brake consists of an armature that is a movable part, a field that is a fixed part, an electromagnetic coil for sucking or braking the armature, and a spring that presses a braking surface against the armature. The electromagnetic coil is provided in the field, and the field is composed of an inner pole portion surrounded by the electromagnetic coil and an outer pole portion outside the coil. As a structure of the electromagnetic brake, a structure in which the field faces the armature is known (for example, Patent Document 1).
特開2013-148125号公報Japanese Unexamined Patent Publication No. 2013-148125
 上記構成の電磁ブレーキには、外極部にアーマチュアの動作をガイドするガイドピンが存在している。このガイドピンは、電磁ブレーキ制動面で生じるトルクを受ける機能も有しているため、強度が必要となる。そのため、上記トルクを受けるために必要な強度に応じた大きさのガイドピンを準備する必要がある。しかしながら、このようなガイドピンが存在する場合、磁路断面積を確保するためにガイドピンの大きさに応じて外極部の幅を広げる必要がある。また、ガイドピンを内極部に配置した場合においても同様に、ガイドピンの大きさに応じて内極部の幅を広げる必要がある。そのため、電磁ブレーキを小型化することは難しいという課題がある。 The electromagnetic brake with the above configuration has a guide pin on the outer pole that guides the movement of the armature. Since this guide pin also has a function of receiving torque generated on the braking surface of the electromagnetic brake, strength is required. Therefore, it is necessary to prepare a guide pin having a size corresponding to the strength required to receive the torque. However, when such a guide pin exists, it is necessary to widen the width of the outer pole portion according to the size of the guide pin in order to secure the magnetic path cross-sectional area. Further, even when the guide pin is arranged in the inner pole portion, it is necessary to widen the width of the inner pole portion according to the size of the guide pin. Therefore, there is a problem that it is difficult to miniaturize the electromagnetic brake.
 この発明は、かかる課題を解決するためになされたものであって、電磁ブレーキの構成部品の配置を簡素化することで小型化した電磁ブレーキを得ることを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to obtain a miniaturized electromagnetic brake by simplifying the arrangement of components of the electromagnetic brake.
 上述した課題を解決し、目的を達成するために、本発明に係る電磁ブレーキは、電磁コイルと、制動面に接離するシューが一方の面に取付けられたアーマチュアと、アーマチュアの他方の面と対向して設けられたフィールドと、フィールド又はアーマチュアの何れか一方に形成され、アーマチュアの往復動をガイドするガイドピンと、ガイドピンに配置され、電磁コイルが通電していない時にアーマチュアをフィールドと離れる方向に移動させる弾性部材と、を備えている。 In order to solve the above-mentioned problems and achieve the object, the electromagnetic brake according to the present invention includes an armature in which an electromagnetic coil, a shoe in contact with and detached from a braking surface are attached to one surface, and the other surface of the armature. A guide pin formed on either the field or the armature to guide the reciprocating movement of the armature, and a guide pin arranged on the guide pin, in a direction in which the armature is separated from the field when the electromagnetic coil is not energized. It is equipped with an elastic member that can be moved to.
 この発明によれば、電磁ブレーキの構成部品の配置の簡素化により、磁路断面積を確保しつつ電磁ブレーキを小型化することが可能である。また、ガイドピン用穴とばね用の穴とを共通化できるので、電磁ブレーキにおける加工コストを削減することが可能である。 According to the present invention, it is possible to reduce the size of the electromagnetic brake while ensuring the magnetic path cross-sectional area by simplifying the arrangement of the components of the electromagnetic brake. Further, since the hole for the guide pin and the hole for the spring can be shared, it is possible to reduce the processing cost in the electromagnetic brake.
実施の形態1の電磁ブレーキの断面図である。It is sectional drawing of the electromagnetic brake of Embodiment 1. FIG. 実施の形態1の電磁ブレーキの制動時を示す断面図である。It is sectional drawing which shows the time of braking of the electromagnetic brake of Embodiment 1. FIG. 実施の形態1の電磁ブレーキのフィールドの正面図である。It is a front view of the field of the electromagnetic brake of Embodiment 1. FIG. 実施の形態1の電磁ブレーキを備えたエレベータの巻上機の断面図である。It is sectional drawing of the hoisting machine of the elevator provided with the electromagnetic brake of Embodiment 1. FIG. 実施の形態2の電磁ブレーキの断面図である。It is sectional drawing of the electromagnetic brake of Embodiment 2. FIG. 実施の形態2の電磁ブレーキのフィールドの正面図である。It is a front view of the field of the electromagnetic brake of Embodiment 2. 実施の形態3の電磁ブレーキの断面図である。It is sectional drawing of the electromagnetic brake of Embodiment 3. FIG. 実施の形態3の電磁ブレーキのフィールドの正面図である。It is a front view of the field of the electromagnetic brake of Embodiment 3. 実施の形態1の電磁ブレーキの変形例の断面図である。It is sectional drawing of the modification of the electromagnetic brake of Embodiment 1. FIG.
 以下、この発明の実施の形態の電磁ブレーキについてエレベータの巻上機の電磁ブレーキを例に添付の図面を参照して説明する。各図では、同一又は相当する部分に同一の符号を付している。重複する説明は、適宜簡略化あるいは省略する。なお、以下の実施の形態によりこの発明が限定されるものではない。 Hereinafter, the electromagnetic brake according to the embodiment of the present invention will be described with reference to the attached drawings, taking the electromagnetic brake of the elevator hoist as an example. In each figure, the same or corresponding parts are designated by the same reference numerals. Overlapping description will be simplified or omitted as appropriate. The present invention is not limited to the following embodiments.
実施の形態1.
 本実施の形態の電磁ブレーキについて図1~図4を用いて説明する。
Embodiment 1.
The electromagnetic brake of this embodiment will be described with reference to FIGS. 1 to 4.
 図1はこの発明の実施の形態1にかかる電磁ブレーキの断面図、図2は電磁ブレーキの制動時を示す断面図、図3は電磁ブレーキのフィールドの正面図、図4は電磁ブレーキを備えたエレベータの巻上機の断面図である。 FIG. 1 is a cross-sectional view of the electromagnetic brake according to the first embodiment of the present invention, FIG. 2 is a cross-sectional view showing the braking time of the electromagnetic brake, FIG. 3 is a front view of the field of the electromagnetic brake, and FIG. It is sectional drawing of the hoisting machine of an elevator.
 図1~図4を参照し実施の形態1の電磁ブレーキ100について説明する。実施の形態1の電磁ブレーキ100は、一面に取付けられたシュー12を制動面に接離する方向に往復動可能な可動部であるアーマチュア11と、このアーマチュア11の制動面とは反対側の面と対向して設けられたフィールド13とを備えている。電磁ブレーキ100はさらに、電磁コイル14、ガイドピン15、及びばね16を備えている。電磁コイル14とガイドピン15とばね16は、電磁ブレーキ100のフィールド13に設けられている。 The electromagnetic brake 100 of the first embodiment will be described with reference to FIGS. 1 to 4. The electromagnetic brake 100 of the first embodiment has an armature 11 which is a movable portion capable of reciprocating in a direction in which a shoe 12 mounted on one surface is brought into contact with and detached from a braking surface, and a surface of the armature 11 opposite to the braking surface. It is provided with a field 13 provided so as to face the above. The electromagnetic brake 100 further includes an electromagnetic coil 14, a guide pin 15, and a spring 16. The electromagnetic coil 14, the guide pin 15, and the spring 16 are provided in the field 13 of the electromagnetic brake 100.
 フィールド13における各構成について詳細に説明する。電磁コイル14は、通電により生じた電磁力によりアーマチュア11をフィールド13側に吸引する機能を備えている。図3の通り、電磁コイル14は、アーマチュア11側からフィールド13側をみて、フィールド13においてガイドピン15の周囲を囲むよう円形に設けられている。 Each configuration in field 13 will be described in detail. The electromagnetic coil 14 has a function of attracting the armature 11 to the field 13 side by the electromagnetic force generated by energization. As shown in FIG. 3, the electromagnetic coil 14 is provided in a circular shape so as to surround the guide pin 15 in the field 13 when the armature 11 side is viewed from the field 13 side.
 ガイドピン15は、可動部であるアーマチュア11が往復動する際の動きをガイドする機能を備えている。ガイドピン15は、アーマチュア11が往復動する方向に平行な方向(以下、軸方向とする。)に軸を備えた状態で設けられている。アーマチュア11は、電磁ブレーキ100の制動時にシュー12に掛かる摩擦力によりガイドピン15の軸方向と直交する方向(以下、制動方向とする。)に変位する力を受けるが、ガイドピン15は、電磁ブレーキ100の制動時にアーマチュア11が制動方向に変位しないよう拘束する役割を備えている。 The guide pin 15 has a function of guiding the movement when the armature 11, which is a movable part, reciprocates. The guide pin 15 is provided with a shaft provided in a direction parallel to the direction in which the armature 11 reciprocates (hereinafter, referred to as an axial direction). The armature 11 receives a force that is displaced in a direction orthogonal to the axial direction of the guide pin 15 (hereinafter referred to as a braking direction) due to the frictional force applied to the shoe 12 when the electromagnetic brake 100 is braked, but the guide pin 15 is electromagnetic. It has a role of restraining the armature 11 from being displaced in the braking direction when the brake 100 is braked.
 フィールド13にはガイドピン15を収納する一対の収納部13aが形成されている。収納部13aの形状は、ガイドピン15が収まるようガイドピン15の形状に対応して形成されている。ガイドピン15は収納部13aに収納されていればよく、収納部13aに固定されていなくてもよい。図1に示した通り、ガイドピン15は収納部13aに収納され、フィールド13から突出して設けられていてもよい。フィールド13における電磁コイル14の内側(径方向中心側)は内極部と呼ばれ、収納部13aは内極部に設けられている。また、ガイドピン15は中空構造を有する円筒型となっており、中空部分にばね16が収められている。 A pair of storage portions 13a for storing the guide pins 15 are formed in the field 13. The shape of the storage portion 13a is formed corresponding to the shape of the guide pin 15 so that the guide pin 15 can be accommodated. The guide pin 15 may be stored in the storage portion 13a and may not be fixed to the storage portion 13a. As shown in FIG. 1, the guide pin 15 may be housed in the storage portion 13a and may be provided so as to project from the field 13. The inside of the electromagnetic coil 14 (center side in the radial direction) in the field 13 is called an inner pole portion, and the storage portion 13a is provided in the inner pole portion. Further, the guide pin 15 has a cylindrical shape having a hollow structure, and the spring 16 is housed in the hollow portion.
 ばね16は、常時アーマチュア11をフィールド13から離れる方向に弾性力を付与するように設けられている。すなわち、図2の通り、ばね16はガイドピン15の中空構造から飛び出した状態で設けられている。なお、実施の形態1ではばね16を用いたが、ばね16と同様の機能を有する弾性部材であればよく、ばねの他にゴムを用いてもよい。 The spring 16 is provided so as to constantly apply an elastic force to the armature 11 in a direction away from the field 13. That is, as shown in FIG. 2, the spring 16 is provided in a state of protruding from the hollow structure of the guide pin 15. Although the spring 16 is used in the first embodiment, any elastic member having the same function as the spring 16 may be used, and rubber may be used in addition to the spring.
 ガイドピン15は、フィールド13側に収納部13aを設け、フィールド側収納部13aに配置する構成としたが、アーマチュア11側に収納部を設け、アーマチュア11側収納部に配置してもよい。実施の形態1の電磁ブレーキ100は、ガイドピン15及びばね16をそれぞれ2個ずつ配置する構造としたが、それぞれ1個でもよいし3個以上でもよい。また、ガイドピン15とばね16の個数は一致させなくてもよい。ガイドピン15は、2個以上配置すればアーマチュア11の往復動を軸方向により拘束しやすくできるため好ましい。 The guide pin 15 is configured to have a storage portion 13a on the field 13 side and be arranged on the field side storage portion 13a, but a storage portion may be provided on the armature 11 side and arranged on the armature 11 side storage portion. The electromagnetic brake 100 of the first embodiment has a structure in which two guide pins 15 and two springs 16 are arranged, but each of them may be one or three or more. Further, the numbers of the guide pins 15 and the springs 16 do not have to be the same. If two or more guide pins 15 are arranged, the reciprocating movement of the armature 11 can be easily restrained in the axial direction, which is preferable.
 続いて、アーマチュア11について説明する。アーマチュア11には、ガイドピン15を挿入するガイド用穴11aが形成されている。アーマチュア11は、ガイドピン15がガイド用穴11aに挿入された状態で動作するように設けられている。言い換えれば、ガイドピン15はアーマチュア11が動作してシュー12が制動面を押圧する際、ガイド用穴11aに挿入された状態でアーマチュア11の動作をガイドピン15の軸方向へガイドする。また、ガイドピン15のアーマチュア側先端は、ガイド用穴11aに挿入された状態を維持するように配置されている。また、ガイドピン15は、電磁ブレーキ100の制動時にシュー12を介してアーマチュア11が受けるトルクを受けるトルク受け部としても機能する。すなわち、実施の形態1の電磁ブレーキ100では、ガイドピン15によってアーマチュア11が制動方向へ変位することを抑制できるので、シュー12が制動面を均一に押圧することができる。 Next, the armature 11 will be explained. The armature 11 is formed with a guide hole 11a into which the guide pin 15 is inserted. The armature 11 is provided so as to operate with the guide pin 15 inserted into the guide hole 11a. In other words, when the armature 11 operates and the shoe 12 presses the braking surface, the guide pin 15 guides the operation of the armature 11 in the axial direction of the guide pin 15 in a state of being inserted into the guide hole 11a. Further, the armature-side tip of the guide pin 15 is arranged so as to maintain the state of being inserted into the guide hole 11a. The guide pin 15 also functions as a torque receiving portion that receives the torque received by the armature 11 via the shoe 12 when the electromagnetic brake 100 is braked. That is, in the electromagnetic brake 100 of the first embodiment, the guide pin 15 can prevent the armature 11 from being displaced in the braking direction, so that the shoe 12 can uniformly press the braking surface.
 ガイド用穴11aは、アーマチュア11に直接加工して形成することができる。ガイド用穴11aの径は、ガイドピン15の径よりもわずかに大きく形成されている。ガイド用穴11aの内径寸法は、ガイドピン15によりアーマチュア11が軸方向に拘束されて動作でき、ガイドピン15が円滑に動作できるものであればよい。さらにアーマチュア11が制動方向へ変位することを抑制し、電磁ブレーキ100の制動性を向上させるために、ガイドピン15とガイド用穴11aの間にブッシュ等の隙間を埋める部材を用いてもよい。 The guide hole 11a can be formed by directly processing the armature 11. The diameter of the guide hole 11a is formed to be slightly larger than the diameter of the guide pin 15. The inner diameter of the guide hole 11a may be such that the armature 11 can be restrained in the axial direction by the guide pin 15 and can operate, and the guide pin 15 can operate smoothly. Further, in order to suppress the armature 11 from being displaced in the braking direction and improve the braking performance of the electromagnetic brake 100, a member such as a bush may be used between the guide pin 15 and the guide hole 11a.
 実施の形態1の電磁ブレーキ100では、電磁コイル14への通電が遮断されると、電磁コイル14で生じた電磁力は消失し、ばね16の弾性力によりアーマチュア11は、フィールド13から離れる方向に移動する。その結果、シュー12は制動面を押圧し、電磁ブレーキ100は制動力を発揮する。また、電磁コイル14に通電すると、電磁コイル14に生じた電磁力で、アーマチュア11はフィールド13に引き寄せられ、ばね16の弾性力に逆らってアーマチュア11は制動面から離れ、電磁ブレーキ100は制動状態を解除する。 In the electromagnetic brake 100 of the first embodiment, when the energization of the electromagnetic coil 14 is cut off, the electromagnetic force generated by the electromagnetic coil 14 disappears, and the elastic force of the spring 16 causes the armature 11 to move away from the field 13. Moving. As a result, the shoe 12 presses the braking surface, and the electromagnetic brake 100 exerts a braking force. Further, when the electromagnetic coil 14 is energized, the armature 11 is attracted to the field 13 by the electromagnetic force generated in the electromagnetic coil 14, the armature 11 is separated from the braking surface against the elastic force of the spring 16, and the electromagnetic brake 100 is in the braking state. To cancel.
 実施の形態1の電磁ブレーキ100によれば、中空形状のガイドピン15のガイドピン内壁15aにより形成された空間にばね16が収められている。図2に示す通り、電磁コイル14に通電がされておらずアーマチュア11がフィールド13側に吸引されていない状態において、ばね16はガイドピンから突出するように設けられている。すなわち、ばね16をガイドピン15に収めることにより電磁ブレーキ100における構成部品の配置を簡素化している。そのため磁路断面積を確保しつつ電磁ブレーキ100を小型化することが可能である。また、ガイドピン15を収納するフィールド13側の収納部13aは、ばね16を収納するためのばね収納部と共通化することができる。そのため、実施の形態1の電磁ブレーキ100は、ガイドピン15及びばね16の両方の収納部を設ける必要がなく、加工コストを低減することが可能である。 According to the electromagnetic brake 100 of the first embodiment, the spring 16 is housed in the space formed by the guide pin inner wall 15a of the hollow guide pin 15. As shown in FIG. 2, the spring 16 is provided so as to protrude from the guide pin in a state where the electromagnetic coil 14 is not energized and the armature 11 is not attracted to the field 13 side. That is, by housing the spring 16 in the guide pin 15, the arrangement of the component parts in the electromagnetic brake 100 is simplified. Therefore, it is possible to reduce the size of the electromagnetic brake 100 while ensuring the magnetic path cross-sectional area. Further, the storage portion 13a on the field 13 side for storing the guide pin 15 can be shared with the spring storage portion for storing the spring 16. Therefore, the electromagnetic brake 100 of the first embodiment does not need to be provided with accommodating portions for both the guide pin 15 and the spring 16, and the processing cost can be reduced.
 また、上記構成の電磁ブレーキ100では、ガイドピン15を円筒型としたことで、制動面で生じた制動方向を含む平面における全方向からのブレーキトルクを均等に受けることが可能である。また、円筒型であればガイドピンを製作する際の加工作業が行いやすい。なお、実施の形態1では、ガイドピン15を円筒型としたが、そのような形状に限定されない。ガイドピン15は、中空構造の内側にばね16を配置することができ、アーマチュア11の動作をガイドし、電磁ブレーキ制動時のトルクを受けることができる外径形状を有していれば多角形等の形状で形成してもよい。また、ガイドピン15は、収納部13aに収納でき、ばね16を配置することができる構造であれば、筒型のような貫通した構造でなくてもよい。なお、ガイドピンが1つの中空構造を有する場合だけでなく、ガイドピンが中空構造を複数有する構造も筒型に含まれるものとする。ガイドピンが複数の中空構造を有する場合、複数の中空構造のそれぞれにばねを配置するようにしてもよい。なお、アーマチュア側の収納部を設け、収納部にガイドピンを配置した場合、ばね16は、フィールド13に対して常時弾性力を付与するように設けられることになる。この場合、実施の形態1の電磁ブレーキ100では、電磁コイル14への通電が遮断されると、電磁コイル14で生じた電磁力は消失し、ばね16がフィールド13に対して付与している弾性力によりアーマチュア11は、フィールド13から離れる方向に移動する。その結果、シュー12は制動面を押圧し、電磁ブレーキ100は制動力を発揮する。また、電磁コイル14に通電すると、電磁コイル14に生じた電磁力で、アーマチュア11はフィールド13に引き寄せられ、ばね16の弾性力に逆らってアーマチュア11は制動面から離れ、電磁ブレーキ100は制動状態を解除する。以上説明したガイドピンがアーマチュア側に収納されている構成は以下の他の実施の形態においても同様に適用することが可能である。 Further, in the electromagnetic brake 100 having the above configuration, by making the guide pin 15 cylindrical, it is possible to evenly receive the brake torque from all directions on the plane including the braking direction generated on the braking surface. Further, if it is a cylindrical type, it is easy to perform processing work when manufacturing a guide pin. In the first embodiment, the guide pin 15 has a cylindrical shape, but the shape is not limited to such a shape. The guide pin 15 can arrange the spring 16 inside the hollow structure, guides the operation of the armature 11, and has an outer diameter shape capable of receiving torque during electromagnetic brake braking, and is polygonal or the like. It may be formed in the shape of. Further, the guide pin 15 does not have to have a penetrating structure such as a tubular shape as long as it can be stored in the storage portion 13a and the spring 16 can be arranged. It should be noted that not only the case where the guide pin has one hollow structure but also the structure where the guide pin has a plurality of hollow structures is included in the tubular shape. When the guide pin has a plurality of hollow structures, a spring may be arranged in each of the plurality of hollow structures. When the storage portion on the armature side is provided and the guide pin is arranged in the storage portion, the spring 16 is provided so as to constantly apply an elastic force to the field 13. In this case, in the electromagnetic brake 100 of the first embodiment, when the energization of the electromagnetic coil 14 is cut off, the electromagnetic force generated by the electromagnetic coil 14 disappears, and the elasticity provided by the spring 16 to the field 13 is eliminated. The force causes the armature 11 to move away from the field 13. As a result, the shoe 12 presses the braking surface, and the electromagnetic brake 100 exerts a braking force. Further, when the electromagnetic coil 14 is energized, the armature 11 is attracted to the field 13 by the electromagnetic force generated in the electromagnetic coil 14, the armature 11 is separated from the braking surface against the elastic force of the spring 16, and the electromagnetic brake 100 is in the braking state. To cancel. The configuration in which the guide pin described above is housed on the armature side can be similarly applied to the following other embodiments.
 実施の形態1の電磁ブレーキ100は、さらにスイッチ17を備えている。スイッチ17は、ベース部分17aと接触部分17bとからなり、ベース部分17aはフィールド13の側面に設けられており、ベース部分17aに接触部分17bが設けられている。スイッチ17は、電磁ブレーキ100の制動を判定する。図2は電磁ブレーキの制動時の状態を示したものであるが、この場合、アーマチュア11とスイッチ17は離れている状態であり、スイッチ17は電気的には非接触の状態となっている。一方、図1のように電磁ブレーキ100が非制動状態の際、アーマチュア11はフィールド13側に電磁吸引により引き寄せられ、アーマチュア11がスイッチ17を押し込み、スイッチ17は電気的に接触状態、すなわち通電している状態となる。このようにスイッチ17は、電磁ブレーキ100の制動を判定することができる。 The electromagnetic brake 100 of the first embodiment further includes a switch 17. The switch 17 includes a base portion 17a and a contact portion 17b, the base portion 17a is provided on the side surface of the field 13, and the contact portion 17b is provided on the base portion 17a. The switch 17 determines the braking of the electromagnetic brake 100. FIG. 2 shows a state when the electromagnetic brake is braked. In this case, the armature 11 and the switch 17 are separated from each other, and the switch 17 is in an electrically non-contact state. On the other hand, when the electromagnetic brake 100 is in the non-braking state as shown in FIG. 1, the armature 11 is attracted to the field 13 side by electromagnetic suction, the armature 11 pushes the switch 17, and the switch 17 is in an electrically contact state, that is, energized. It will be in the state of being. In this way, the switch 17 can determine the braking of the electromagnetic brake 100.
 スイッチ17は、電磁コイル14の通電によりアーマチュア11がフィールド13側に引き寄せられる際、アーマチュア11の動作量に応じて押し込まれる。スイッチ17は、アーマチュア11に押し込まれた量に応じて電磁ブレーキ100の制動を判定する。実施の形態1の電磁ブレーキ100は、ガイドピン15によりアーマチュア11の動作が軸方向へ拘束されるため、アーマチュア11がフィールド13に対して傾斜することを抑えられる。その結果、スイッチ17は、正常に電磁ブレーキ100の制動を判定することができる。 The switch 17 is pushed in according to the amount of operation of the armature 11 when the armature 11 is attracted to the field 13 side by the energization of the electromagnetic coil 14. The switch 17 determines the braking of the electromagnetic brake 100 according to the amount pushed into the armature 11. In the electromagnetic brake 100 of the first embodiment, the movement of the armature 11 is constrained in the axial direction by the guide pin 15, so that the armature 11 can be prevented from tilting with respect to the field 13. As a result, the switch 17 can normally determine the braking of the electromagnetic brake 100.
 アーマチュア11がフィールド13側へ引き寄せられる際、アーマチュア11が軸方向に拘束されず、フィールド13に対して傾いた状態であると、アーマチュア11の動作量に応じてスイッチ17を押し込む量が小さくなってしまう、またはアーマチュア11がスイッチ17を押し込まない状態となってしまう。そうすると、アーマチュア11が軸方向へ動作したにもかかわらずアーマチュア11の動作に応じて適切にスイッチ17が押し込まれず、スイッチ17が正常に電磁ブレーキ100の制動を判定することができなくなる。 When the armature 11 is pulled toward the field 13, if the armature 11 is not constrained in the axial direction and is tilted with respect to the field 13, the amount of pushing the switch 17 becomes smaller according to the amount of movement of the armature 11. Or the armature 11 does not push the switch 17. Then, although the armature 11 operates in the axial direction, the switch 17 is not properly pushed in according to the operation of the armature 11, and the switch 17 cannot normally determine the braking of the electromagnetic brake 100.
 図4は、実施の形態1の電磁ブレーキ100を用いたエレベータの巻上機500を示す断面図である。エレベータの巻上機500は、エレベータで用いられる主索(図示せず)が巻き掛けられる綱車51と、綱車51を回転させるモータを構成するロータ52及びステータ53と、ロータ52の回転の制動することを介して綱車51の回動を制動する複数の電磁ブレーキ100と、電磁ブレーキ100とステータ53と軸受54を介したロータ52とを配置するハウジング55とから構成される。 FIG. 4 is a cross-sectional view showing an elevator hoisting machine 500 using the electromagnetic brake 100 of the first embodiment. The elevator hoisting machine 500 includes a rope wheel 51 around which a main rope (not shown) used in the elevator is wound, a rotor 52 and a stator 53 constituting a motor for rotating the rope wheel 51, and rotation of the rotor 52. It is composed of a plurality of electromagnetic brakes 100 that brake the rotation of the rope wheel 51 through braking, and a housing 55 that arranges the electromagnetic brake 100, the stator 53, and the rotor 52 via the bearing 54.
 エレベータの巻上機500が有する電磁ブレーキ100の動作について説明する。実施の形態1の電磁ブレーキ100は、電磁コイル14への通電を遮断してアーマチュア11をフィールド13側へ引き寄せる力を解除し、ばね16の弾性力でアーマチュア11をフィールド13から離れる方向へ動作させ、シュー12を回転するロータ52へ押圧することで摩擦力により制動力を発揮し、綱車51の回動を制動する。一方、制動状態の電磁ブレーキ100において電磁コイル14への通電を開始することで、アーマチュア11をばね16の弾性力に抵抗してフィールド13側へ引き寄せるようにし、シュー12をロータ52から離れる方向へ移動させることで綱車51の回動の制動状態を解除する。 The operation of the electromagnetic brake 100 of the elevator hoisting machine 500 will be described. The electromagnetic brake 100 of the first embodiment cuts off the energization of the electromagnetic coil 14 to release the force that draws the armature 11 toward the field 13, and causes the armature 11 to move away from the field 13 by the elastic force of the spring 16. By pressing the shoe 12 against the rotating rotor 52, a braking force is exerted by the frictional force to brake the rotation of the rope wheel 51. On the other hand, by starting the energization of the electromagnetic coil 14 in the electromagnetic brake 100 in the braking state, the armature 11 resists the elastic force of the spring 16 and is attracted to the field 13 side, and the shoe 12 is moved away from the rotor 52. By moving it, the braking state of the rotation of the sheave 51 is released.
 先に説明した通り、実施の形態1の電磁ブレーキ100は、ばね16をガイドピン15に収めることにより構成部品の配置を簡素化している。そのため磁路断面積を確保しつつ電磁ブレーキ100を小型化することが可能である。したがって、実施の形態1の電磁ブレーキ100を有するエレベータの巻上機500においては、電磁ブレーキ100が小型化されることによりエレベータの巻上機500も小型化することが可能である。 As described above, the electromagnetic brake 100 of the first embodiment simplifies the arrangement of component parts by accommodating the spring 16 in the guide pin 15. Therefore, it is possible to reduce the size of the electromagnetic brake 100 while ensuring the magnetic path cross-sectional area. Therefore, in the elevator hoisting machine 500 having the electromagnetic brake 100 of the first embodiment, the elevator hoisting machine 500 can also be miniaturized by reducing the size of the electromagnetic brake 100.
実施の形態2.
 図5は、本発明の実施の形態2にかかる電磁ブレーキを示す断面図である。図6は、本発明の実施の形態2にかかる電磁ブレーキにおけるフィールドの正面図である。本実施の形態の電磁ブレーキについて図5~図6を用いて説明する。実施の形態1と共通する構成要素について重複する説明を省略する。
Embodiment 2.
FIG. 5 is a cross-sectional view showing an electromagnetic brake according to a second embodiment of the present invention. FIG. 6 is a front view of the field in the electromagnetic brake according to the second embodiment of the present invention. The electromagnetic brake of this embodiment will be described with reference to FIGS. 5 to 6. Overlapping description of the components common to the first embodiment will be omitted.
 実施の形態2の電磁ブレーキ200において、ガイドピン25の収納部21aは、アーマチュア21に設けられており、ガイドピン25はアーマチュア21の収納部21aに収められている。また、ガイド用穴23aはフィールド23において収納部21aと対向する位置に設けられており、ガイドピン25はガイド用穴23aに挿入されている。ガイドピン25の機能は、実施の形態1のガイドピンと同様である。また、ガイドピン25は中空構造である円筒型となっており、中空部分にばね26が収められている点は実施の形態1と同様である。 In the electromagnetic brake 200 of the second embodiment, the storage portion 21a of the guide pin 25 is provided in the armature 21, and the guide pin 25 is housed in the storage portion 21a of the armature 21. Further, the guide hole 23a is provided at a position facing the storage portion 21a in the field 23, and the guide pin 25 is inserted into the guide hole 23a. The function of the guide pin 25 is the same as that of the guide pin of the first embodiment. Further, the guide pin 25 has a cylindrical shape having a hollow structure, and the point that the spring 26 is housed in the hollow portion is the same as that of the first embodiment.
 実施の形態2の電磁ブレーキ200において、ガイド用穴23aは、電磁コイル24の外極部に2つ設けられており、ガイド用穴23aにはガイドピン25が挿入されている。 In the electromagnetic brake 200 of the second embodiment, two guide holes 23a are provided in the outer pole portion of the electromagnetic coil 24, and the guide pin 25 is inserted into the guide hole 23a.
 ガイドピン25を収納するアーマチュア21側の収納部21aは、ばね26を収納するためのばね収納部と共通化することができる。これにより電磁ブレーキ200における構成部品の配置を簡素化している。そのため、ガイドピン25及びばね26の両方の収納部を設ける必要がなく、磁路断面積を確保しつつ電磁ブレーキ200を小型化することが可能であり、加工コストを低減することが可能である。 The storage portion 21a on the armature 21 side for storing the guide pin 25 can be shared with the spring storage portion for storing the spring 26. This simplifies the arrangement of components in the electromagnetic brake 200. Therefore, it is not necessary to provide storage portions for both the guide pin 25 and the spring 26, and the electromagnetic brake 200 can be miniaturized while ensuring the magnetic path cross-sectional area, and the processing cost can be reduced. ..
 ガイド用穴23aが電磁コイル24の外極部に設けられているため、コイルの周長を短くすることが可能となる。そのため、電磁コイルのコスト低減及び所要電圧の低減をすることが可能となる。 Since the guide hole 23a is provided in the outer pole portion of the electromagnetic coil 24, it is possible to shorten the peripheral length of the coil. Therefore, it is possible to reduce the cost of the electromagnetic coil and the required voltage.
実施の形態3.
 図7は、本発明の実施の形態3にかかる電磁ブレーキを示す断面図である。図8は、本発明の実施の形態3にかかる電磁ブレーキにおけるフィールドの正面図である。本実施の形態の電磁ブレーキについて図7~図8を用いて説明する。実施の形態1および2と共通する構成要素については重複する説明を省略する。
Embodiment 3.
FIG. 7 is a cross-sectional view showing an electromagnetic brake according to a third embodiment of the present invention. FIG. 8 is a front view of the field in the electromagnetic brake according to the third embodiment of the present invention. The electromagnetic brake of this embodiment will be described with reference to FIGS. 7 to 8. Overlapping description will be omitted for the components common to the first and second embodiments.
 実施の形態3の電磁ブレーキ300において、ガイドピン35が1つ設けられている。フィールド33にはガイドピン35を収納する収納部33aが設けられており、ガイドピン35は収納部33aに配置されている。収納部33aは、電磁コイル34の内極部に設けられている。また、アーマチュア31には、収納部33aに対向する位置にガイド用穴31aが1つ設けられており、ガイド用穴31aにはガイドピン35が挿入されている。 In the electromagnetic brake 300 of the third embodiment, one guide pin 35 is provided. The field 33 is provided with a storage portion 33a for storing the guide pin 35, and the guide pin 35 is arranged in the storage portion 33a. The storage portion 33a is provided at the inner pole portion of the electromagnetic coil 34. Further, the armature 31 is provided with one guide hole 31a at a position facing the storage portion 33a, and the guide pin 35 is inserted into the guide hole 31a.
 図7及び図8に示す通り、ガイドピン35は中空構造を有する円筒型となっている。ガイドピン35は円筒形状の中空構造を4つ備えており、内壁35aにより中空構造が形成されている。円筒形状の中空構造は、円周方向に均等に設けられている。ガイドピン35の中空部分にはそれぞればね36が収められている。そのため、ばね36はアーマチュア31により均等に弾性力を付与することが可能である。 As shown in FIGS. 7 and 8, the guide pin 35 has a cylindrical shape having a hollow structure. The guide pin 35 has four cylindrical hollow structures, and the hollow structure is formed by the inner wall 35a. The cylindrical hollow structure is evenly provided in the circumferential direction. A spring 36 is housed in each of the hollow portions of the guide pin 35. Therefore, the spring 36 can uniformly apply the elastic force to the armature 31.
 ばね36がガイドピン35の中空部分に収められることにより、ばね36を収納するためのばね収納部を別途設ける必要がなくなる。このようにして電磁ブレーキ300における構成部品の配置を簡素化している。そのため、ガイドピン35及びばね36の両方の収納部を設ける必要がなく、磁路断面積を確保しつつ電磁ブレーキ300を小型化することが可能であり、加工コストを低減することが可能である。 Since the spring 36 is housed in the hollow portion of the guide pin 35, it is not necessary to separately provide a spring storage portion for storing the spring 36. In this way, the arrangement of the components in the electromagnetic brake 300 is simplified. Therefore, it is not necessary to provide storage portions for both the guide pin 35 and the spring 36, and the electromagnetic brake 300 can be miniaturized while ensuring the magnetic path cross-sectional area, and the processing cost can be reduced. ..
 なお、上記の実施の形態1~3の電磁ブレーキでは、電磁コイルの通電により、アーマチュアをフィールド側へ引き寄せるようにしたが、これとは逆に、電磁コイルの通電時にアーマチュアを制動面側へ反発させるようにしてもよい。この場合は、例えば、図9の実施の形態1の変形例に示すようにアーマチュア11に磁石18を設けておき、電磁コイル14の通電時に磁石18を備えるアーマチュア11が反発することによりアーマチュア11を制動面側へ動作させることができる。言い換えると、反発手段である磁石18がアーマチュア11をフィールド13と離れる方向へ移動させている。すなわち、電磁コイル14が通電していない時は、ばね16がアーマチュア11を吸引する弾性力が磁石の反発力に勝るために、アーマチュア11はフィールド13側に引き寄せられているが、電磁コイル14の通電時は磁石の反発力がばね16のアーマチュア11側に及ぼす弾性力に勝ることによって、アーマチュア11が制動面側に反発され、シュー12が制動面に押圧されることによって、電磁ブレーキ100が動作する。図示しないものの実施の形態2及び3においてそれぞれアーマチュア11に磁石18を設けて上記と同様に動作させるような変形は可能である。また、上記実施の形態では、エレベータの巻上機に用いられる電磁ブレーキについて説明したが、この発明は、エレベータの巻上機に限定されず、その他のブレーキ装置に適用することもできる。 In the electromagnetic brakes of the above-described first to third embodiments, the armature is attracted to the field side by energizing the electromagnetic coil. On the contrary, the armature is repelled to the braking surface side when the electromagnetic coil is energized. You may let it. In this case, for example, as shown in the modified example of the first embodiment of FIG. 9, a magnet 18 is provided in the armature 11, and the armature 11 provided with the magnet 18 repels when the electromagnetic coil 14 is energized to repel the armature 11. It can be operated toward the braking surface side. In other words, the magnet 18 which is the repulsive means moves the armature 11 away from the field 13. That is, when the electromagnetic coil 14 is not energized, the armature 11 is attracted to the field 13 side because the elastic force of the spring 16 attracting the armature 11 exceeds the repulsive force of the magnet. When energized, the repulsive force of the magnet exceeds the elastic force exerted on the armature 11 side of the spring 16, so that the armature 11 is repelled toward the braking surface side and the shoe 12 is pressed against the braking surface, so that the electromagnetic brake 100 operates. To do. Although not shown, in the second and third embodiments, it is possible to provide the armature 11 with a magnet 18 and to operate the armature 11 in the same manner as described above. Further, in the above embodiment, the electromagnetic brake used in the elevator hoisting machine has been described, but the present invention is not limited to the elevator hoisting machine and can be applied to other braking devices.
 11,21,31 アーマチュア、12,22,32 シュー、13,23,33 フィールド、14,24,34 電磁コイル、15,25,35 ガイドピン、15a,25a,35a ガイドピン内壁、13a,21a,33a 収納部、11a,23a,31a ガイド用穴、16,26,36 ばね、17,27,37 スイッチ、17a,27a,37a ベース部分、17b,27b,37b 接触部分、18 磁石、100,200,300 電磁ブレーキ、51 綱車、52 ロータ、53 ステータ、54 軸受、55 ハウジング、500 エレベータ用巻上機 11,21,31 Armature, 12,22,32 Shoe, 13,23,33 Field, 14,24,34 Electromagnetic coil, 15,25,35 Guide pin, 15a, 25a, 35a Guide pin inner wall, 13a, 21a, 33a storage part, 11a, 23a, 31a guide hole, 16,26,36 spring, 17,27,37 switch, 17a, 27a, 37a base part, 17b, 27b, 37b contact part, 18 magnet, 100,200, 300 electromagnetic brakes, 51 sheaves, 52 rotors, 53 stators, 54 bearings, 55 housings, 500 elevator hoisting machines

Claims (7)

  1.  電磁コイルと、
     制動面に接離するシューが一方の面に取付けられたアーマチュアと、
     前記アーマチュアの他方の面と対向して設けられたフィールドと、
     前記フィールド又は前記アーマチュアの何れか一方に形成され、前記アーマチュアの往復動をガイドするガイドピンと、
     前記ガイドピンに配置され、前記電磁コイルが通電していない時に前記アーマチュアを前記フィールドと離れる方向に移動させる弾性部材と、を備えることを特徴とする電磁ブレーキ。
    With an electromagnetic coil
    An armature with a shoe attached to and from the braking surface on one side,
    A field provided facing the other side of the armature,
    A guide pin formed in either the field or the armature to guide the reciprocating movement of the armature.
    An electromagnetic brake that is arranged on the guide pin and includes an elastic member that moves the armature away from the field when the electromagnetic coil is not energized.
  2.  電磁コイルと、
     制動面に接離するシューが一方の面に取付けられたアーマチュアと、
     前記アーマチュアの他方の面と対向して設けられたフィールドと、
     前記フィールド又は前記アーマチュアの何れか一方に形成され、前記アーマチュアの往復動をガイドするガイドピンと、
     前記ガイドピンに配置され、前記電磁コイルが通電していない時に前記アーマチュアを前記フィールドと近づく方向に移動させる弾性部材と、を備え、
     前記電磁コイルの通電時に前記アーマチュアの前記他方の面に備えられた反発手段によって、前記アーマチュアを前記フィールドと離れる方向に移動させる、ことを特徴とする電磁ブレーキ。
    With an electromagnetic coil
    An armature with a shoe attached to and from the braking surface on one side,
    A field provided facing the other side of the armature,
    A guide pin formed in either the field or the armature to guide the reciprocating movement of the armature.
    An elastic member arranged on the guide pin and moving the armature in a direction approaching the field when the electromagnetic coil is not energized is provided.
    An electromagnetic brake characterized in that when the electromagnetic coil is energized, the armature is moved in a direction away from the field by a repulsive means provided on the other surface of the armature.
  3.  前記ガイドピンは前記弾性部材を配置する中空構造を有していることを特徴とする請求項1又は2に記載の電磁ブレーキ。 The electromagnetic brake according to claim 1 or 2, wherein the guide pin has a hollow structure in which the elastic member is arranged.
  4.  前記ガイドピンは、円筒型であることを特徴とする請求項1~3の何れか1項に記載の電磁ブレーキ。 The electromagnetic brake according to any one of claims 1 to 3, wherein the guide pin is cylindrical.
  5.  前記ガイドピンを2個以上備えることを特徴とする請求項1~4の何れか1項に記載の電磁ブレーキ。 The electromagnetic brake according to any one of claims 1 to 4, wherein the electromagnetic brake is provided with two or more of the guide pins.
  6.  前記ガイドピンは、前記電磁コイルの外極部に設けられていることを特徴とする請求項1~5の何れか1項に記載の電磁ブレーキ。 The electromagnetic brake according to any one of claims 1 to 5, wherein the guide pin is provided on an outer pole portion of the electromagnetic coil.
  7.  前記ガイドピンに前記弾性部材を2個以上配置することを特徴とする請求項1~6の何れか1項に記載の電磁ブレーキ。 The electromagnetic brake according to any one of claims 1 to 6, wherein two or more elastic members are arranged on the guide pin.
PCT/JP2019/044520 2019-11-13 2019-11-13 Electromagnetic brake WO2021095158A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021555690A JP7217815B2 (en) 2019-11-13 2019-11-13 electromagnetic brake
CN201980101977.3A CN114630971B (en) 2019-11-13 2019-11-13 Electromagnetic brake
PCT/JP2019/044520 WO2021095158A1 (en) 2019-11-13 2019-11-13 Electromagnetic brake

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044520 WO2021095158A1 (en) 2019-11-13 2019-11-13 Electromagnetic brake

Publications (1)

Publication Number Publication Date
WO2021095158A1 true WO2021095158A1 (en) 2021-05-20

Family

ID=75911934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044520 WO2021095158A1 (en) 2019-11-13 2019-11-13 Electromagnetic brake

Country Status (3)

Country Link
JP (1) JP7217815B2 (en)
CN (1) CN114630971B (en)
WO (1) WO2021095158A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234837A (en) * 1988-07-25 1990-02-05 Fuji Photo Film Co Ltd Silver halide color photographic sensitive material
JP2013148125A (en) * 2012-01-17 2013-08-01 Mitsubishi Electric Corp Braking device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0723622Y2 (en) * 1988-08-30 1995-05-31 神鋼電機株式会社 Electromagnetic clutch / brake with noise prevention structure
JP5070280B2 (en) * 2006-04-17 2012-11-07 オーチス エレベータ カンパニー Permanent magnet type elevator disc brake
JP6194204B2 (en) * 2013-08-08 2017-09-06 小倉クラッチ株式会社 Electromagnetic drum brake
CN204529199U (en) * 2014-11-27 2015-08-05 爱力维特驱动科技(苏州)有限公司 A kind of stop mechanism of elevator traction machine
CN104753245B (en) * 2015-03-12 2017-03-29 江苏大学 A kind of friction electromagnetism composite braking structure based on Electric Motor Wheel
CN106246765A (en) * 2016-10-11 2016-12-21 江苏大学 A kind of double plate electromagnetic brake and the braking method when different operating mode thereof
CN110506022B (en) * 2017-04-17 2020-09-08 三菱电机株式会社 Elevator hoist brake and elevator hoist
CN208120649U (en) * 2018-04-03 2018-11-20 上海佐锦精密机械有限公司 A kind of brake device for elevator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0234837A (en) * 1988-07-25 1990-02-05 Fuji Photo Film Co Ltd Silver halide color photographic sensitive material
JP2013148125A (en) * 2012-01-17 2013-08-01 Mitsubishi Electric Corp Braking device

Also Published As

Publication number Publication date
JP7217815B2 (en) 2023-02-03
CN114630971B (en) 2023-07-25
JPWO2021095158A1 (en) 2021-05-20
CN114630971A (en) 2022-06-14

Similar Documents

Publication Publication Date Title
KR20120089585A (en) Rotating electrical machine and rotating apparatus
WO2021095158A1 (en) Electromagnetic brake
JP2007218333A (en) Braking device
JP2007022772A (en) Hoisting machine for elevator
CN106921246B (en) Inner rotor type motor
US6827189B2 (en) Electromagnetically actuated, single-surface friction coupling, without a rotor slip ring
JP2006199408A (en) Hoist machine for elevator
KR101179773B1 (en) Elevator hoist
US10899582B2 (en) Electric motor and an elevator system
JP4455042B2 (en) Elevator hoisting machine
JP2005053672A (en) Braking device of hoisting machine for elevator
JP2540200Y2 (en) Non-excitation type electromagnetic brake
KR20100051111A (en) Hoist for elevator and brake system
JP5210488B2 (en) Hoisting machine
JP4451034B2 (en) Braking device
JP2022102789A (en) Off-brake
JP4451033B2 (en) Braking device
KR20040036729A (en) Electromagnetic brake
JP2001320856A (en) Motor with built-in brake
JP2001227569A (en) Holding device for shaft to move in straight line
JP2022066417A (en) motor
WO2020111095A1 (en) Transport device
CN115217863A (en) Brake device and elevator hoist
JP2017034892A (en) Solenoid drive brake device, and linear motor
JP2000027901A (en) Non-excited actuation type electromagnetic brake

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555690

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952554

Country of ref document: EP

Kind code of ref document: A1