WO2021093843A1 - 黑水虻饲养及蛹壳复合材料制备方法 - Google Patents

黑水虻饲养及蛹壳复合材料制备方法 Download PDF

Info

Publication number
WO2021093843A1
WO2021093843A1 PCT/CN2020/128626 CN2020128626W WO2021093843A1 WO 2021093843 A1 WO2021093843 A1 WO 2021093843A1 CN 2020128626 W CN2020128626 W CN 2020128626W WO 2021093843 A1 WO2021093843 A1 WO 2021093843A1
Authority
WO
WIPO (PCT)
Prior art keywords
black water
pupa shell
shell
pupa
powder
Prior art date
Application number
PCT/CN2020/128626
Other languages
English (en)
French (fr)
Inventor
邹智挥
曾春燕
高晨
文艺桦
陈建
吴进三
杜娟
鲁越
张雪梅
胡雪菲
杨涛
葛非凡
孙亚丽
袁帅
陈治均
Original Assignee
四川轻化工大学
四川智翔翼科技有限公司
四川智仁发生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川轻化工大学, 四川智翔翼科技有限公司, 四川智仁发生物科技有限公司 filed Critical 四川轻化工大学
Priority to US17/776,998 priority Critical patent/US20230000111A1/en
Priority to GB2208664.9A priority patent/GB2605324A/en
Publication of WO2021093843A1 publication Critical patent/WO2021093843A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/10Animals; Substances produced thereby or obtained therefrom
    • A01N63/14Insects
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • A23K10/26Animal feeding-stuffs from material of animal origin from waste material, e.g. feathers, bones or skin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • A23K10/38Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material from distillers' or brewers' waste
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/70Feeding-stuffs specially adapted for particular animals for birds
    • A23K50/75Feeding-stuffs specially adapted for particular animals for birds for poultry
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/90Feeding-stuffs specially adapted for particular animals for insects, e.g. bees or silkworms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/80Food processing, e.g. use of renewable energies or variable speed drives in handling, conveying or stacking
    • Y02P60/87Re-use of by-products of food processing for fodder production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • Heishui Fly can circulate 7-10 generations a year. In a suitable environment, a generation can be completed in 28 to 35 days. A pair of Heishui horsefly can lay nearly 1,000 eggs, from eggs to mature larvae, the individual growth of Heishui horsefly is nearly 4,000 times. Each stage of the insect body itself can be used as important economic value. Heishui horsefly larvae can be produced after drying and crushing. It is a health product for aquatic products and livestock and poultry breeding. According to research, Heishui horsefly larvae powder has high amino acid content, crude fat content, and calcium content. It is a suitable additive for pig feed and fish feed; Manure "fly carbon fertilizer" is a high-quality organic fertilizer and soil conditioner.
  • the Heishui horsefly has many of the above-mentioned additional economic values, for example, the dried and pulverized products of Heishui horsefly larvae are used in pig feed, and the manure of Heishui horsefly.
  • Carbon fertilizer is a high-quality organic fertilizer and soil conditioner, but it grows in Heishui horsefly.
  • the large amount of pupa shell produced in the process has not been further utilized.
  • the body of the black water horsefly contains a large amount of protein, lipid, oil, chitin and antibacterial peptides. Among them, a large amount of protein in the black water horsefly can be used. After being dried, ground and crushed, it is added to pig feed, fish and shrimp feed, and has high nutritional value.
  • Antibacterial peptides are a kind of antibacterial peptide that can resist and inhibit E. coli, Staphylococcus aureus and Salmonella.
  • Substances, insect antibacterial peptides are natural products, which are not easy to develop resistance. These antibacterial peptides have antibacterial ability against bacteria and fungi, as well as killing viruses, tumor cells and protozoa.
  • the polymer substrate is polyterephthalate, polyamide, polyolefin, polyurethane, polymethylmethacrylate, polyvinylpyrrolidone, cellulose, polyvinyl alcohol, biodegradable high Any one or a mixture of molecular materials.
  • the novel antibacterial and antifungal additive of the present invention is prepared by mixing black water horsefly pupa shell pretreatment powder and oyster shell powder, and the weight content of the oyster shell powder is not less than 20%.
  • Starch waste residues such as starchy food waste such as noodles, bread, steamed bread, leftovers, etc.
  • step S2 Add the powdered black water horsefly pupa shells that have passed through step S2 into 12 equivalents of hydrochloric acid solution 52 for stirring, and then separate and filter;
  • the function of this step is mainly to remove the mineral salt components in the pupa shell
  • step S4 Put the powdered black water fly pupa shell that has passed through step S3 into a 30wt% high-concentration sodium hydroxide solution 53 with stirring, and then separate and filter;
  • step S5 Dry the powdered black water horsefly pupa shell after step S4, and then pulverize and grind into particles or powder of the black water horsefly pupa shell pretreatment powder of the required particle size.
  • the preparation of pupa shell powder can be completed quickly and simply, and high-purity chitosan can be extracted, and relatively high yield can be obtained compared with the traditional method.
  • Table 1 shows the yield of chitosan in the black water fly pupa shell powder prepared by the above method and the traditional method:
  • the black water fly pupa shell powder prepared in Example 1 was melt blended with different polymer substrates such as polypropylene, polyenamine, polylactic acid, polyethylene terephthalate, etc., respectively, and prepared different
  • the black water horsefly pupa shell polymer composite material enables the black water horsefly pupa shell powder 3 to be evenly distributed in the polymer material 20.
  • the specific method is to mix the polymer substrate powder and the black water horsefly pupa shell powder evenly. Heating and melting make the two uniformly mixed.
  • the polymer substrate does not contain black water horsefly pupa shell powder, it shows no antibacterial effect.
  • the mass ratio of black water horsefly pupa shell powder in the mixture reaches 0.1%, the composite material starts to show antibacterial effect.
  • the mass ratio of the shell powder in the mixture reaches 20%, except for the polypropylene-based composite material, the antibacterial rate is 99.6%, and the other composite materials have an antibacterial rate of 100%.
  • the relative cell proliferation rate which reflects the cell activity, also showed a significant increase with the increase of the content of black water fly pupa shell powder.
  • the specific test parameters are shown in Table 2.
  • the powder is melted and then melted and plasticized from an extruder, and then extruded through a slit die die, so that the melt is tightly attached to the cooling roller, and then stretched and trimmed. , Coiling and other processes made of sheets.
  • the specific test performance is shown in Table 3.
  • the carboxymethyl cellulose film without black water horsefly pupa shell powder does not have any antibacterial effect, and the antibacterial rate increases with the increase of the black water horsefly pupa shell powder content.
  • As the black water fly pupa shell is a natural biological material, its cell activity also increases with the increase of the black water fly pupa shell powder content.
  • the black water fly pupa shell powder According to the weight of 0.1% and 20% by weight of the solid content of the water-based polyurethane, add the black water fly pupa shell powder to the pyridine-containing water-based polyurethane and stir at 1000 rpm. Then, scrape a few pieces of the film with a 600um thick scraper and dry it in an oven for 8 hours. The black water fly pupa shell composite film is prepared. Its antibacterial rate and relative cell proliferation rate test performance are shown in Table 4.
  • the specific test performance is shown in Table 3.
  • the polyvinyl alcohol film without black water horsefly pupa shell powder does not have any antibacterial effect, and the antibacterial rate increases with the increase of the black water horsefly pupa shell powder content.
  • As the black water fly pupa shell is a natural biological material, its cell activity also increases with the increase of the black water fly pupa shell powder content.
  • the black water horsefly pupa shell powder was dissolved in 1.8% acetic acid aqueous solution to prepare the black water horsefly pupa shell gel.
  • the calcined oyster shell powder was added to the black water horsefly pupa shell, and the ratio of the oyster shell powder was 20%.
  • 40%, 60%, 80% first vibrate and disperse with a high-sonic cell crusher for 10 minutes to avoid agglomeration of oyster shell powder, and then stir the oyster shell powder evenly in the black water fly pupa shell gel at a speed of 300 rpm, and then It is dried to remove water, and is pulverized to prepare an antibacterial and antifungal black water fly pupa shell composite powder.
  • Table 6 shows that although the black water fly pupa shell has good antibacterial properties, it does not have a good antifungal effect. As the content of oyster shell powder increases, its anti-mold effect will be better. This new type of composite bio-based powder can be used as an excellent antibacterial and antifungal additive.

Abstract

一种黑水虻饲养方法及黑水虻蛹壳粉末制备方法,包括如下步骤:S1.将黑水虻蛹壳干燥后磨碎成粉状;S2.将粉状黑水虻蛹壳加入氢氧化钠水溶液中搅拌后分离过滤;S3.将蛹壳加入氢氯酸溶液中进行搅拌后分离过滤;S4.将蛹壳置入氢氧化钠水溶液中搅拌后分离过滤;S5.将蛹壳干燥后筛选出颗粒状的所述黑水虻蛹壳预处理粉末。一种黑水虻蛹壳复合材料及薄膜制备方法及抗菌抗霉添加剂,可以有效提高黑水虻蛹壳中的几丁聚糖产率,制得的蛹壳粉末可以用于制备黑水虻蛹壳高分子复合材料纤维及薄膜等,抗菌效果大幅提升。将黑水虻蛹壳粉与牡蛎壳粉末复合,可作为一种新型的抗菌抗霉添加剂。

Description

黑水虻饲养及蛹壳复合材料制备方法 技术领域
本发明属于材料技术领域,涉及生物高分子材料技术,具体涉及一种黑水虻饲养及蛹壳粉末、复合材料及薄膜,与新型的抗菌抗霉添加剂制备方法。
背景技术
随着材料科学迅速发展及环境保护意识增长,大量剩食厨余和畜禽粪便…等相关农畜业及食品废弃物经常产生影响环境、空气与水质之问题,于是,便有相关学者专家提出「循环经济」的概念,其中,生物循环部分便是将产品由生物可分解的原料制成,产品可优先进行层级应用尽可能发挥最高价值;无法应用之「生质原料」经过生化原料萃取、沼气、堆肥等程序后,可安全的回归生态圈做为养分;因此,以循环经济概念的使用农业性资源,是发展农、林、渔、牧相关产业相当重要的依据,可大量将农畜业及食品废弃物经过回收分解再利用的方式在生物循环中生生不息的被使用,进一步消除废弃物的概念。
我国环境污染有很大一部分来自畜牧废弃物,每年产生数百万吨的畜牧废弃物如:猪粪、鸡粪、牛粪…等各类动物粪便,污染水源、土壤和空气,以及大量的食品废弃物如厨余、菜渣…等,若能够转换成为可再利用资源,便可提升环境保护及循环经济的价值,因此,黑水虻便成为大幅转换农畜业及食品废弃物成为可再利用之循环经济的重要角色,黑水虻是一种资源昆虫,又叫亮斑扁角水虻,英文名称为Hermetiaillucens(L.)又俗称Black Soldier Fly(简称BSF);黑水虻可以消化将大量的剩食厨余和畜禽粪便,并转化成为新型昆虫蛋白及新型微生物及虫粪有机肥,可以解决原本会影响环境、空气与水质之问题,同时产生出昆虫蛋白质和肥沃的微生态有机肥,凈化了生态环境,减轻了环境的负担。
黑水虻的生命周期大约为28天,大致上分为卵期、幼虫期、蛹期及成虫期,卵期大约为2~4天,卵团直径约1毫米,长椭圆形,初产时呈淡黄色到奶色,后期逐渐加深,每个卵团大约包含有500~800颗卵。成虫产卵有趋缝性,利用此特性以瓦楞板进行卵团的搜集;幼虫期大约为15天左右,黑水虻幼虫体型丰满,头部很小,显黄黑色,表皮结实具韧性,一龄期时初孵化时为乳白色,大约1.8mm长,其二与三龄期大小差异不大,在四到五龄期时消化食物最有效率,每天可食与自己体重相当之食物,并在武陵期时称「老熟幼虫」,此时蛋白质含量最高;蛹期约15天左右,包含预蛹阶段与蛹期,黑水虻幼虫经五龄期后身体逐渐转变为黑色,并且趋于硬化,停止进食,进入预蛹阶段,预蛹阶段黑水虻无需食物,会找寻干燥、隐蔽的场所化蛹,会出现迁出食物的行为,且同时具有避旋旋光性与趋缝性的特性,化蛹之后,蛹壳为暗棕色,为末龄幼虫蜕皮形成的围蛹,剖开可见蛹体;接着,黑水虻便会羽化为成虫,成虫黑水虻仅剩5天左右的生命,蛹羽化为成虫后,仅取食水和叶片上的汁液,完成飞翔求偶交配后则由雌虫产卵。
黑水虻一年可循环7-10代。在适宜的环境中,28~35天即可完成一个世代。一对黑水虻可产卵近千粒,从卵到老熟幼虫,黑水虻个体增长近4,000倍,各阶段虫体本身皆可成为重要经济价值利用,黑水虻幼虫干燥粉碎后可以制作为水产与畜禽养殖的保健品,根据研究显示,黑水虻幼虫粉的胺基酸含量、粗脂肪含量、钙含量都很高,是猪饲料及鱼饲料的 合适添加成分;黑水虻的粪便「虻碳肥」是一种优质有机肥和土壤改良剂,颗粒均匀、无异味,保水透气能力比一般土壤高2到3倍,其中包含18种胺基酸,含有机质42.2%,有益菌达每克20万至2亿个区间,且仅需少量虻碳肥仅可达到最高的效益,可有效增加土壤有机质的含量,提高有益微生物菌群,减低害虫对蔬菜的威胁,减少化肥的使用量,改善土壤环境,最终达到增肥、抗病、养土的目的。
黑水虻虽然有上述许多附加的经济价值,例如黑水虻幼虫干燥粉碎产品用于猪饲料、黑水虻的粪便虻碳肥是一种优质有机肥和土壤改良剂,但在黑水虻生长过程中所产生的大量的蛹壳部分并未进一步利用,根据研究显示,黑水虻体内具备大量蛋白质、脂质、油质、几丁质及抗菌肽,其中,黑水虻体内的大量蛋白质可经由干燥研磨粉碎后加入猪饲料及鱼、虾饲料当中,具备高度营养价值;黑水虻所含动物性脂肪之油质产制生质柴油的油品性能参数大多都能符合欧盟生质柴油标准规范,显示黑水虻足以成为生质柴油的新型料源;然而,目前尚未大量利用的黑水虻蛹壳中含有丰富的几丁质及抗菌肽,其中,几丁质又名甲壳素,其化学结构与天然纤维素相似,是一种特殊的糖蛋白,可有效广泛用于医学、生物工程、轻工、食品等领域;而黑水虻可以在大量的厨余、肥料中生存并且不会生病的原因就在于黑水虻本体具有独特的免疫系统,体内能大量合成抗菌肽,杀灭已侵入的病菌,抗菌肽为一种能够抵抗并且抑制大肠杆菌菌、金黄色葡萄球菌和还沙门氏菌的物质,昆虫抗菌肽属天然产物,不易产生抗药性,这些抗菌肽对细菌、真菌有抗菌能力,对病毒、肿瘤细胞及原虫也有杀伤作用。
综上所述,若能将大量的黑水虻蛹壳等生物废弃物进行回收,将其处理后作为高分子基体内容物以降低基材的成本、同时补强高分子基体性能及功效,如:无毒、抗菌且具有良好机械性质及伸张率,可大幅提升废弃黑水虻壳蛹回收再利用的经济价值,形成高效能且低成本的黑水虻蛹壳高分子复合材料。
发明内容
有鉴于此,发明人针对上述需求及缺失加以研究改进,研发出一种能够有效利用黑水虻蛹壳及回收再制造的高分子进行加工合成的方法,以提供一个无毒、抗菌且具有良好机械性质及伸张率的黑水虻蛹壳高分子复合材料,提供消费者更加创新独特且质量优良的产品,为本发明的发明动机。
本发明所述黑水虻饲养方法,采用淀粉类厨馀食物或酒糟或秸秆饲养。
本发明所述黑水虻蛹壳粉末制备方法,包括如下步骤:
S1.将黑水虻蛹壳干燥后磨碎成粉状;
S2.将粉状黑水虻蛹壳加入3~4wt%氢氧化钠水溶液中搅拌后分离过滤;
S3.将经过步骤S2的粉状黑水虻蛹壳加入10-13当量浓度的氢氯酸溶液中进行搅拌后分离过滤;
S4.将经过步骤S3的粉状黑水虻蛹壳置入20-40wt%氢氧化钠水溶液中搅拌后分离过滤;
S5.将经过步骤S4的粉状黑水虻蛹壳干燥后经粉碎研磨成所需求粒度颗粒或粉末状的所述黑水虻蛹壳预处理粉末。
本发明所述黑水虻蛹壳复合材料制备方法,将黑水虻蛹壳预处理粉末与高分子基 材按照重量比0.1-25%的比例混合后加热熔融。
优选的,熔融后再拉丝形成纤维状复合材料。
优选的,所述高分子基材为聚对苯二甲酸酯类、聚酰胺、聚烯烃类、聚氨酯、聚甲基丙烯酸甲酯、聚乙烯基吡咯烷酮、纤维素、聚乙烯醇、生物可降解高分子类材料中的任意一种或多种的混合物。
本发明所述黑水虻蛹壳复合薄膜制备方法,将黑水虻蛹壳预处理粉末加入液态基材中,高速搅拌后制备薄膜,将膜烘干,得到所述黑水虻蛹壳高分子复合薄膜。
优选的,制备薄膜的方法为流延法。
优选的,所述液态基材为聚乙烯醇水溶液、水性聚氨酯或羧甲基纤维素水溶液中的任意一种.
本发明所述新型的抗菌抗霉添加剂,为黑水虻蛹壳预处理粉末与牡蛎壳粉末混合而成,牡蛎壳粉末重量含量不小于20%。
采用本发明所述黑水虻饲养方法,可以有效提高黑水虻蛹壳中的几丁聚糖产率。
采用本发明制得的蛹壳粉末可以用于制备黑水虻蛹壳高分子复合材料纤维及薄膜等,得到的这些高分子复合材料,抗菌效果大幅提升。
由于黑水虻蛹壳粉颗粒在高分子基体中的添加,可以提升其生物降解的效率,提升高分子的细胞活性,降低生物毒性。当黑水虻蛹壳高分子复合材料废弃掩埋时,可以促进其在土壤掩埋后微生物分解的转化率,并可作为农作物的生长养分。同时,本发明采用原本被当成废物丢弃的黑水虻蛹壳作为原料,降低大量成本。
附图说明
图1为本发明所述黑水虻蛹壳复合材料形成纤维后的一种具体实施方式示意图;
图2为本发明所述黑水虻蛹壳粉末的一个具体制作流程示意图;
图3为本发明所述黑水虻蛹壳复合材料的纤维制作流程示意图。
图中附图标记名称为:
1-黑水虻蛹壳高分子复合纤维
2-高分子基材
20-高分子复合材料
3-黑水虻蛹壳粉末
30-黑水虻蛹壳
301-步骤S2处理后的黑水虻蛹壳粉末
302-步骤S3处理后的黑水虻蛹壳粉末
303-步骤S4处理后的黑水虻蛹壳粉末
4-研磨机
5-搅拌机
51-低浓度氢氧化钠溶液
52-氢氯酸溶液
53-高浓度氢氧化钠溶液
6-震动筛选机
7-黑水虻蛹壳高分子复合材料
具体实施方式
下面结合附图,对本发明的具体实施方式作进一步的详细说明。
具体实施例1
对五组黑水虻幼虫分别喂食
(1)淀粉废渣,例如面条、面包、馒头、剩饭等淀粉类餐厨垃圾;
(2)酒糟;
(3)秸秆;
(4)肉类;
(5)禽畜粪便;
将五种喂食方式的黑水虻成虫后留下的蛹壳进行收集;
用以下方式制备黑水虻蛹壳粉末:
S1.将黑水虻蛹壳干燥后通过研磨机4磨碎成粉状;
S2.将粉状黑水虻蛹壳加入3.5wt%的低浓度氢氧化钠溶液51中,通过搅拌机5搅拌后分离过滤;本步骤的作用主要是去除蛹壳表面的蛋白质;
S3.将经过步骤S2的粉状黑水虻蛹壳加入12当量浓度的氢氯酸溶液52中进行搅拌后分离过滤;
本步骤的作用主要是去除蛹壳内的矿物盐成分;
S4.将经过步骤S3的粉状黑水虻蛹壳置入30wt%的高浓度氢氧化钠溶液53中搅拌后分离过滤;
S5.将经过步骤S4的粉状黑水虻蛹壳干燥后经粉碎研磨成所需求粒度尺寸的颗粒或粉末状的所述黑水虻蛹壳预处理粉末。
采用上述方法,可以快速、简单的完成蛹壳粉末制备,并提取高纯度的几丁聚糖,相对传统方式可以获得相对较高的产率。
表一为采用上述方式和传统方式制备的黑水虻蛹壳粉末的几丁聚糖的产率:
表1
Figure PCTCN2020128626-appb-000001
从表1中可见,不同的食物来源会影响黑水虻蛹壳中提取几丁聚糖的产率,其中以 淀粉废渣的食物来源为最优,酒糟第二,而禽畜粪便的产率为最低。本发明与传统制备方式处理黑水虻蛹壳所获得的几丁聚糖产率表明了在同样的食物来源下,本发明的新工艺会比传统工艺的产率提升约5-8%。并且新工艺相比传统工艺,大幅减少工艺流程,制程不繁琐,更适合产业化。
具体实施例2
将实施例1制备得到的黑水虻蛹壳粉末分别与不同的高分子基材如聚丙烯、聚烯胺、聚乳酸、聚对苯二甲酸乙二醇酯等进行熔融共混,分别制备不同的黑水虻蛹壳高分子复合材料,使黑水虻蛹壳粉粉末3能够均匀分布于该高分子材料20中,具体方式为将高分子基材粉末与黑水虻蛹壳粉末混合均匀后加温熔融使二者均匀混合。
再通过热塑设备等经过抽丝即可产生如图1所示的黑水虻蛹壳高分子复合纤维1,可以进一步将得到的复合纤维由纺纱织布或涂布方式将黑水虻蛹壳高分子复合纤维制成无毒、安全、抗菌、透气性能且具有良好机械性能和伸张率的黑水虻蛹壳高分子复合纤维产品7,如图3所示。
当高分子基材中不含黑水虻蛹壳粉时都呈现无抗菌效果,当黑水虻蛹壳粉末在混合物中质量比达到0.1%时,复合材料开始呈现抗菌效果,当黑水虻蛹壳粉末在混合物中质量比达到20%时,除了聚丙烯基复合材料抗菌率为99.6%,其它复合材料抗菌率皆为100%。而反映细胞活性的细胞相对增殖率也随着黑水虻蛹壳粉的含量增加而呈现大幅提升,具体测试参数如表2所示。
表2
Figure PCTCN2020128626-appb-000002
具体实施例3
分别以14.925克和12克羧甲基纤维素溶解于100ml水溶液中,分别以0.075克和3克的黑水虻蛹壳粉添加至羧甲基纤维素水溶液,以1000rpm高速搅拌将粉末分散于羧甲基纤维素中,用厚度600um的刮刀刮膜数片,于烘箱中干燥8小时,分别制备黑水虻蛹壳含量分别为0.5%与20%的黑水虻蛹壳复合薄膜。制备薄膜的方法也可以为流延法,将粉末熔融后从挤出机熔融塑化,通过狭缝机头模口挤出,使熔料紧贴在冷却辊筒上,经过拉伸、切边、卷取等工序制成的片材。
具体测试性能如表3所示,未添加黑水虻蛹壳粉末的羧甲基纤维素薄膜并无任何抗菌效果,抗菌率随着黑水虻蛹壳粉末含量增加而提升。由于黑水虻蛹壳为天然生物材料,因此其细胞活性也随着黑水虻蛹壳粉含量增加而增加。
表3
Figure PCTCN2020128626-appb-000003
具体实施例4
将多元醇聚丁二醇己二酸、聚醚二醇和内乳化剂二羟甲基丙酸加至配有定速搅拌器、控温器等装置的四口分离式反应槽中,以105℃下反应20分钟后得到混合物,分离移除水份;然后降温至温度80℃时加入黑水虻蛹壳,在转速300rpm下添加氢化苯基甲烷二异氰酸酯、2,6-吡啶二甲醇以及数滴用DMAC(二甲基乙酰胺)稀释至5%的二月桂酸二丁基锡催化剂
反应器中反应2.5小时,得到末端含NCO(异氰酸酯)基团的预聚物;随后利用丙酮加工法分散成水性PU分散液;待温度降至55℃时,加入三乙基胺进行中和反应20分钟;之后将转速提高至1000rpm添加去离子水至65wt%浓度,搅拌至聚合物均匀分散于水中;最后再将链延长剂乙二胺加入进行链延长反应,反应30分钟;所得产物为固含量35wt%的含吡啶水性聚氨酯。
按照水性聚氨酯固含量重量的0.1%与20%重量,取黑水虻蛹壳粉末加入含吡啶水性聚氨酯中进行1000rpm高速搅拌然后,用厚度600um的刮刀刮膜数片,于烘箱中干燥8小时,制备得到黑水虻蛹壳复合薄膜。对其进行抗菌率和细胞相对增殖率测试性能如表4所示,
表4
Figure PCTCN2020128626-appb-000004
具体实施例5
分别以29.85克和24克聚乙烯醇溶解于85℃的200ml水溶液中,分别以0.15克和6克的黑水虻蛹壳粉添加至聚乙烯醇水溶液,以500rpm速度搅拌将粉末分散于羧甲基纤维素中,用厚度600um的刮刀刮膜数片,于烘箱中80℃下干燥10小时,分别制备得到黑水虻蛹壳含量分别为0.1%与20%的黑水虻蛹壳复合薄膜。
具体测试性能如表3所示,未添加黑水虻蛹壳粉末的聚乙烯醇薄膜并无任何抗菌效果,抗菌率随着黑水虻蛹壳粉末含量增加而提升。由于黑水虻蛹壳为天然生物材料,因此其细胞活性也随着黑水虻蛹壳粉含量增加而增加。
表5
Figure PCTCN2020128626-appb-000005
前文所述的为本发明的各个优选实施例,各个优选实施例中的优选实施方式如果不是明显自相矛盾或以某一优选实施方式为前提,各个优选实施方式都可以任意叠加组合使用,所述实施例以及实施例中的具体参数仅是为了清楚表述发明人的发明验证过程,并非用以限制本发明的专利保护范围,本发明的专利保护范围仍然以其权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。
具体实施例6
将黑水虻蛹壳粉溶解于1.8%醋酸水溶液中制备成黑水虻蛹壳凝胶,将锻烧后的牡蛎壳粉末加入黑水虻蛹壳,与牡蛎壳粉的比例分别为为20%、40%、60%、80%,先以高声波细胞碎仪振动分散10分钟,避免牡蛎壳粉团聚,再以300rpm速度搅拌将牡蛎壳粉末均匀分散于黑水虻蛹壳凝胶中,然后烘干除水,经粉碎后制备成一种抗菌抗霉的黑水虻蛹壳复合粉末。将不同比例的牡蛎壳粉末,经抗菌与抗霉测试得表6,从表中可以得知黑水虻蛹壳虽然有很好的抗菌性能,但其没有很好的抗霉的作用,随着牡蛎壳粉末含量的增加,其抗霉的效果就愈佳。此一新型复合生物基粉末,可作为一种优异的抗菌抗霉添加剂。
表6
Figure PCTCN2020128626-appb-000006
以上为本发明的各种实施方式,其描述较为具体和详细,但不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明的构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明的保护范围应以所附权利要求为准。

Claims (9)

  1. 黑水虻饲养方法,其特征在于,采用淀粉类厨馀食物或酒糟或秸秆饲养。
  2. 黑水虻蛹壳粉末制备方法,其特征在于,包括如下步骤:
    S1.将黑水虻蛹壳干燥后磨碎成粉状;
    S2.将粉状黑水虻蛹壳加入3~4wt%氢氧化钠水溶液中搅拌后分离过滤;
    S3.将经过步骤S2的粉状黑水虻蛹壳加入10-13当量浓度的氢氯酸溶液中进行搅拌后分离过滤;
    S4.将经过步骤S3的粉状黑水虻蛹壳置入20-40wt%氢氧化钠水溶液中搅拌后分离过滤;
    S5.将经过步骤S4的粉状黑水虻蛹壳干燥后经粉碎研磨成所需求粒度颗粒或粉末状的所述黑水虻蛹壳预处理粉末。
  3. 黑水虻蛹壳复合材料制备方法,其特征在于,将黑水虻蛹壳预处理粉末与高分子基材按照重量比0.1-25%的比例混合后加热熔融。
  4. 如权利要求3所述的复合材料制备方法,其特征在于,熔融后再拉丝形成纤维状复合材料。
  5. 如权利要求3所述的复合材料制备方法,其特征在于,所述高分子基材为聚对苯二甲酸酯类、聚酰胺、聚烯烃类、聚氨酯、聚甲基丙烯酸甲酯、聚乙烯基吡咯烷酮、纤维素、聚乙烯醇、生物可降解高分子类材料中的任意一种或多种的混合物。
  6. 黑水虻蛹壳复合薄膜制备方法,其特征在于,将黑水虻蛹壳预处理粉末加入液态基材中,高速搅拌后制备薄膜,将膜烘干,得到所述黑水虻蛹壳高分子复合薄膜。
  7. 如权利要求6所述的复合薄膜制备方法,其特征在于,制备薄膜的方法为流延法。
  8. 如权利要求6所述的复合薄膜制备方法,其特征在于,所述液态基材为聚乙烯醇水溶液、水性聚氨酯或羧甲基纤维素水溶液中的任意一种。
  9. 一种新型的抗菌抗霉添加剂,其特征在于,为黑水虻蛹壳预处理粉末与牡蛎壳粉末混合而成,牡蛎壳粉末重量含量不小于20%。
PCT/CN2020/128626 2019-11-14 2020-11-13 黑水虻饲养及蛹壳复合材料制备方法 WO2021093843A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/776,998 US20230000111A1 (en) 2019-11-14 2020-11-13 Method for feeding Hermetia illucens and used as for preparing composite material of pupariums
GB2208664.9A GB2605324A (en) 2019-11-14 2020-11-13 Hermetia illucens (L.) breeding method and preparation method for hermetia illucens (L.) pupa shell composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911116411.6A CN110800695A (zh) 2019-11-14 2019-11-14 黑水虻饲养及蛹壳复合材料制备方法
CN201911116411.6 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021093843A1 true WO2021093843A1 (zh) 2021-05-20

Family

ID=69502805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128626 WO2021093843A1 (zh) 2019-11-14 2020-11-13 黑水虻饲养及蛹壳复合材料制备方法

Country Status (4)

Country Link
US (1) US20230000111A1 (zh)
CN (1) CN110800695A (zh)
GB (1) GB2605324A (zh)
WO (1) WO2021093843A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023194546A1 (fr) * 2022-04-06 2023-10-12 Innovafeed Utilisation de pupariums d'insecte, de mouches mortes ou leurs mélanges, et de frass pour augmenter la croissance de plantes
WO2023194553A1 (fr) * 2022-04-06 2023-10-12 Innovafeed Utilisation de pupariums d'insecte pour augmenter la croissance de plantes
WO2023194397A1 (fr) * 2022-04-06 2023-10-12 Innovafeed Utilisation de graisse d'insecte comme pesticide

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110800695A (zh) * 2019-11-14 2020-02-18 四川轻化工大学 黑水虻饲养及蛹壳复合材料制备方法
CN111253183A (zh) * 2020-03-04 2020-06-09 广州丰晟生态环境有限公司 一种防治柑橘黄龙病的特效有机肥、其制备方法及应用
KR102428964B1 (ko) * 2020-06-22 2022-08-03 안동대학교 산학협력단 동애등에 추출물을 포함하는 항균 조성물
CN112341841A (zh) * 2020-10-15 2021-02-09 四川轻化工大学 一种长效型的天然多功能添加剂制备方法及应用
CN115176766B (zh) * 2022-08-09 2023-05-05 深圳市中兴恒熙环保有限公司 一种利用餐余垃圾饲养黑水虻幼虫的方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266855A (zh) * 1999-09-15 2000-09-20 天津大学 一种壳聚糖的制备方法
CN101321465A (zh) * 2005-11-30 2008-12-10 日本天然素材株式会社 由两步烧成贝壳粉末构成的抗霉抗菌剂
CN103435716A (zh) * 2013-07-22 2013-12-11 苏州三和开泰花线织造有限公司 一种蚕蛹甲壳素提取工艺
CN108126231A (zh) * 2017-12-01 2018-06-08 高产明 一种高强度抑菌医用纱布的制备方法
US20180360008A1 (en) * 2017-06-20 2018-12-20 Radu Popa System and method for propagating dipteran larvae
CN110115252A (zh) * 2019-06-27 2019-08-13 天津易世东生态科技有限公司 一种黑水虻生物降解餐厨垃圾的方法
CN110800695A (zh) * 2019-11-14 2020-02-18 四川轻化工大学 黑水虻饲养及蛹壳复合材料制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007106582A2 (en) * 2006-03-15 2007-09-20 Promethean Lifesciences, Inc. Preparation and storage of stable, biologically active materials
CN102344685B (zh) * 2010-08-05 2014-03-12 中国科学院化学研究所 一种制备纳米纤维素微纤增强聚合物复合材料的方法
CN102504296A (zh) * 2011-09-26 2012-06-20 常州绿之源高分子材料有限公司 水溶性壳聚糖/聚乙烯醇复合薄膜的制备方法
CN102585035B (zh) * 2012-01-18 2013-10-23 广东省昆虫研究所 一种从黑水虻中提取壳聚糖的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266855A (zh) * 1999-09-15 2000-09-20 天津大学 一种壳聚糖的制备方法
CN101321465A (zh) * 2005-11-30 2008-12-10 日本天然素材株式会社 由两步烧成贝壳粉末构成的抗霉抗菌剂
CN103435716A (zh) * 2013-07-22 2013-12-11 苏州三和开泰花线织造有限公司 一种蚕蛹甲壳素提取工艺
US20180360008A1 (en) * 2017-06-20 2018-12-20 Radu Popa System and method for propagating dipteran larvae
CN108126231A (zh) * 2017-12-01 2018-06-08 高产明 一种高强度抑菌医用纱布的制备方法
CN110115252A (zh) * 2019-06-27 2019-08-13 天津易世东生态科技有限公司 一种黑水虻生物降解餐厨垃圾的方法
CN110800695A (zh) * 2019-11-14 2020-02-18 四川轻化工大学 黑水虻饲养及蛹壳复合材料制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIN RENREN, LIU JIE: "Technology for Artificial Reproduction of Black Soldier Fly (Hermetia illucens)", PLANTING AND GROWING, no. 10, 1 January 2016 (2016-01-01), pages 53 - 54, XP055811816, ISSN: 1673-3339, DOI: 10.13270/j.cnki.kxzh.2016.10.034 *
YU,JUAN; XU, JUNHUA , FAN YIMIN: "A Review of Antibacterial Properties of Chitosan", JOURNAL OF FORESTRY ENGINEERING, vol. 3, no. 5, 31 December 2018 (2018-12-31), CN, pages 20 - 27, XP009528067, ISSN: 2096-1359, DOI: 10.13360/j.issn.2096-1359.2018.05.003 *
ZHANG QUAN, ZHANG WAN-YU, YIN JIN, QI TIAN, YAN YONG-BIN: "Preparation and Properties of Edible Starch/Chitosan Composite Films", PACKAGING ENGINEERING, vol. 36, no. 13, 1 July 2015 (2015-07-01), pages 40 - 46, XP055811813, DOI: 10.19554/j.cnki.1001-3563.2015.13.010 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023194546A1 (fr) * 2022-04-06 2023-10-12 Innovafeed Utilisation de pupariums d'insecte, de mouches mortes ou leurs mélanges, et de frass pour augmenter la croissance de plantes
WO2023194553A1 (fr) * 2022-04-06 2023-10-12 Innovafeed Utilisation de pupariums d'insecte pour augmenter la croissance de plantes
WO2023194397A1 (fr) * 2022-04-06 2023-10-12 Innovafeed Utilisation de graisse d'insecte comme pesticide
FR3134287A1 (fr) * 2022-04-06 2023-10-13 Innovafeed Utilisation de graisse d’insecte comme pesticide
FR3134286A1 (fr) * 2022-04-06 2023-10-13 Innovafeed Utilisation de pupariums d’insecte pour augmenter la croissance de plantes
FR3134288A1 (fr) * 2022-04-06 2023-10-13 Innovafeed Utilisation de pupariums d’insecte, de mouches mortes ou leurs mélanges, et de frass pour augmenter la croissance de plantes

Also Published As

Publication number Publication date
GB2605324A8 (en) 2022-10-05
GB2605324A (en) 2022-09-28
CN110800695A (zh) 2020-02-18
US20230000111A1 (en) 2023-01-05
GB202208664D0 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
WO2021093843A1 (zh) 黑水虻饲养及蛹壳复合材料制备方法
CN101965905B (zh) 一种利用木薯淀粉加工废渣制备生物饲料的方法
CN100355361C (zh) 鲆鲽鱼类微颗粒饲料的配制方法
CN111406714B (zh) 一种新鲜鸡粪的处理方法
CN100342797C (zh) 一种黄鳝浮水性饲料及制造方法
CN106616005A (zh) 一种利用糖厂滤泥生产鱼饲料的方法
CN101524112A (zh) 一种养殖场粪便等废弃物的环保处理系统循环工艺
CN113875881A (zh) 一种黑水虻饲料蛋白及其制备方法
CN104413255A (zh) 一种秸秆生化饲料生产方法
CN109574765A (zh) 一种微生物菌肥
CN113548915A (zh) 一种高原羊粪生物有机肥及其加工方法
KR20150035843A (ko) 추어용 복합사료 및 이의 제조방법
CN202456333U (zh) 水产幼苗生物饲料生产系统
CN108976064A (zh) 一种以蚕沙为主要原料的复合有机肥生产方法
RU2410896C2 (ru) Способ приготовления корма для иглокожих
CN104824457A (zh) 一种喂食幼虫用的粪便处理方法
CN103918612A (zh) 用蝇蛆处理赤霉素发酵残渣生产昆虫蛋白和有机肥的方法
CN107509861A (zh) 一种秸秆生化饲料的加工方法
CN107912609A (zh) 一种生物水产养殖肥及其制备方法
CN106221254A (zh) 一种稻草植物纤维合成树脂及其制备工艺
CN108975970A (zh) 一种以蚕沙菌渣有机颗粒肥生产方法
TWI680140B (zh) 黑水虻蛹殼聚酯複合纖維之製造方法
Maulana et al. Physical properties and protein content evaluation of fermented floating feed containing black soldier fly maggots as a potential alternative for fish feed
RU2812457C1 (ru) Способ переработки пищевых и органических отходов личинкой мухи Hermetia Illucens с получением биогумуса
CN106046836A (zh) 一种棉秆植物纤维合成树脂及其制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886619

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202208664

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20201113

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886619

Country of ref document: EP

Kind code of ref document: A1