WO2021093788A1 - 头带式生物信号采集装置及其制备方法 - Google Patents

头带式生物信号采集装置及其制备方法 Download PDF

Info

Publication number
WO2021093788A1
WO2021093788A1 PCT/CN2020/128199 CN2020128199W WO2021093788A1 WO 2021093788 A1 WO2021093788 A1 WO 2021093788A1 CN 2020128199 W CN2020128199 W CN 2020128199W WO 2021093788 A1 WO2021093788 A1 WO 2021093788A1
Authority
WO
WIPO (PCT)
Prior art keywords
microneedle array
signal acquisition
headband
electrode
acquisition device
Prior art date
Application number
PCT/CN2020/128199
Other languages
English (en)
French (fr)
Inventor
方鹏
王迎英
李向新
田岚
李光林
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2021093788A1 publication Critical patent/WO2021093788A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/685Microneedles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes

Definitions

  • the invention relates to the technical field of biological signal acquisition, in particular to a headband type biological signal acquisition device and a preparation method thereof.
  • EEG electroencephalography
  • ERP event-related potential
  • the acquisition of EEG signals necessarily requires electrodes, and the standard EEG recording electrodes used in current mature technologies still have their shortcomings.
  • the current standard EEG cap electrode is a silver/silver chloride (Ag/AgCl) electrode, which is relatively large in size. It is necessary to use a conductive paste through the hair to form a conductive interface between the electrode and the scalp to reduce the interface between the electrode and the scalp. Impedance (electrode-skin interface impedance, EII) to collect EEG signals.
  • EII electrode-skin interface impedance
  • conductive paste will gradually dry out over time and increase EII, on the other hand, it will cause damage to some users with sensitive skin; the process of applying conductive paste is cumbersome and time-consuming, and the scalp and electrodes need to be cleaned after the signal is collected.
  • the conductive paste on the surface will cause discomfort to the subject or patient, especially for some children, it is more difficult to collect EEG signals.
  • MAE microneedle electrode array
  • EEG electroencephalography
  • the microneedle array electrode is expected to overcome the problems of traditional electrodes.
  • the classic lithography and etching technology requires the use of sophisticated equipment in the clean room and is prone to produce toxic waste, which is inconvenient, expensive and environmentally unfriendly; the laser processing method is efficient and flexible, but it uses pure copper materials. Compatibility needs to be considered.
  • laser focusing may not be achieved; 3D printing technology is flexible but not suitable for high-density and small-sized microneedles; until 2016, the team of Lelun Jiang from Sun Yat-Sen University Polyethylene terephthalate film (PET) is used as the substrate to make microneedles using a magnetic traction self-assembly method. This method has a simple manufacturing process and low cost.
  • the electrode was used to collect static and dynamic data.
  • the EMG, ECG and EEG signals of the micro-needle electrodes are better than ordinary flat dry electrodes.
  • the hardness of the PET film is too small, it is difficult for the microneedles to penetrate the soft skin, and the substrate with too much hardness will greatly reduce the comfort of use and is not suitable for wearable devices.
  • the current technology simply illustrates that the microneedle array electrode can be used to collect the EEG signal of the forehead.
  • the traditional Ag/AgCl EEG electrode is still used, and the electrode is worn. It still needs to be fixed with tape, etc., which is still a problem for some users with sensitive skin.
  • the existing Ag/AgCl wet electrode will be affected by environmental temperature, humidity changes and the passage of time due to the conductive gel, and it is not suitable for people with sensitive skin, and a suitable dry electrode is needed to replace it.
  • the microneedle array electrode reduces EII because its microneedles can penetrate the stratum corneum to reach the active epidermis with lower impedance, and the shape of the microneedle electrode can be designed as a thin strip that can pass through the hair gap and pass through the scalp as needed. It is stable in contact with the skin, so it is expected to overcome the difficulties of the above-mentioned electrodes.
  • the magnetic traction self-assembly technology proposed by Sun Yat-sen University makes MAE electrodes.
  • the process is simple, and the produced electrodes can collect the EEG signals of the forehead during blinking.
  • the forehead itself is not interfered by hair, it does not solve the problem of electrode contact with the scalp.
  • it is still necessary to use tape to fix the electrode on the skin to be tested; and the PET film is used as the base of the electrode, the microneedle is not easy to penetrate the skin, and it is difficult to actually use; therefore, the existing MAE electrode cannot actually be used in formal applications.
  • Clinical and laboratory EEG research because the forehead itself is not interfered by hair, it does not solve the problem of electrode contact with the scalp.
  • it is still necessary to use tape to fix the electrode on the skin to be tested; and the PET film is used as the base of the electrode, the microneedle is not easy to penetrate the skin, and it is difficult to actually use; therefore, the existing MAE electrode cannot actually be used in formal applications.
  • Clinical and laboratory EEG research Clinical and laboratory EEG research.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings of the prior art, and provide a headband type biological signal acquisition device and a preparation method thereof.
  • the headband is a clothing material that is safe for the skin.
  • a headband type biological signal acquisition device includes: a headband to be worn on the head of a subject, a plurality of microneedle array electrodes, and an interface between the electrodes and a signal acquisition device, wherein the plurality of microneedle array electrodes are fixed on the headband in a predetermined manner Independently distributed, each microneedle array electrode is used to collect a biological signal of a corresponding brain area, and the electrode and a signal acquisition device interface are connected to the plurality of microneedle array electrodes to output the collected biological signal to an external signal acquisition device To process.
  • the headband is packaged with 9 microneedle array electrodes arranged in a row at equal intervals, and each microneedle array electrode corresponds to a brain area to be tested.
  • the 9 microneedle array electrodes have the same structure, wherein each microneedle array electrode includes a total of 18 microneedles distributed in a rectangular shape of 3 ⁇ 6, and the center spacing of the microneedles is 1 mm.
  • the array size of each microneedle array electrode is set to 8 mm ⁇ 3 mm according to the characteristics of hair gaps.
  • the microneedles included in the plurality of microneedle array electrodes are arranged in the same structure, and the length of each microneedle is 500um ⁇ 600um, the microneedle is conical, the bottom diameter is 750um, and the tip diameter is 20um.
  • the substrate of the plurality of microneedle array electrodes is a flexible circuit board
  • the conductive chassis of the plurality of microneedle array electrode substrates is circular
  • the diameter of the circular chassis is 800 um.
  • the microneedle material of the plurality of microneedle array electrodes is a mixture of epoxy resin A and B solvent and pure iron powder, wherein the volume ratio of epoxy resin A and B solvent is 3:1, The weight ratio of oxygen resin A, B solvent and pure iron powder is 1:0.7.
  • a method for preparing a headband type biological signal acquisition device includes: making a flexible substrate for the microneedle array; forming a microneedle array on the chassis of the flexible substrate by magnetic pulling technology; curing the microneedle array, and vacuuming the surface of the microneedle array by magnetron sputtering coating technology Sputter a layer of metal with a uniform texture; make electrodes and signal collection device interfaces; choose clothing materials to make a headband to be worn on the subject's head, and prepare multiple microneedle array electrodes, wires, electrodes and signals
  • the collection device interface is assembled into the headband, wherein the plurality of microneedle array electrodes are independently distributed in a predetermined manner.
  • the magnetron sputtering parameters are set as: Ti, reaction pressure 1pa, sputtering power 300W, sputtering time 5S, thickness 5nm; Au, reaction pressure 1pa, sputtering power 200W, sputtering time 60S, thickness 100nm.
  • the formation of the microneedle array by magnetic traction technology on the chassis of the flexible substrate includes using a pogo needle with a diameter of 0.7mm to dip a mixed reagent of epoxy resin A, B solvent and pure iron powder into the prepared On the chassis of the flexible substrate, pull out the microneedles in a magnetic field with a magnetic field strength of 2000 Gauss.
  • the present invention has the advantages of providing a low-cost, easy-to-use, easy-to-carry, safe and comfortable headband type biological signal acquisition device.
  • the microneedle array electrode contained in the device can be used to record EEG. It solves the problem of the increase in EII of the existing wet electrode due to changes in the conductive gel with time and environmental temperature and humidity.
  • the microneedles of MAE can penetrate the stratum corneum to reach the active epidermis, reducing EII;
  • the provided microneedle electrode can penetrate the hair gap and penetrate the scalp. The length of the needle can ensure that it does not cause damage to the head but can pass through the stratum corneum and make good contact with the scalp, so there is no need to use conductive paste.
  • Fig. 1 is a schematic diagram of a microneedle array electrode substrate according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of a headband type biological signal acquisition device for recording EEG signals according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of the microneedle array substrate provided by the present invention.
  • the microneedle array electrode shown includes 18 microneedles forming a 3 ⁇ 6 rectangular distribution.
  • the chassis of a single microneedle electrode is marked as 101 and the electrode sheet substrate 102 , And shows the electrode and the signal acquisition device interface 103.
  • the electrode chassis 101 can be made of metal materials, such as copper; the electrode substrate 102 can be made of flexible circuit board materials, such as polyimide; the electrode and signal acquisition device interface 103 is used to transmit the signals collected by the microneedle array electrodes to The external signal acquisition device performs processing, such as a computer; the electrode and signal acquisition device interface 103 can be connected to the microneedle array electrode (not shown) by a wire, and communicate with the existing wireless data acquisition system in a wired or wireless manner.
  • FIG. 1 is a headband-type biological signal acquisition device according to an embodiment of the present invention, including 9 pieces
  • the microneedle array electrodes correspond to the positions of brain areas T3, C5, C3, C1, CZ, C2, C4, C6, T4 (where nasion represents the nose), and indicate the headband 201 and one of the microneedle array electrodes 202 , The electrode and the signal acquisition device interface 203.
  • the headband can be fixed on the subject's head (such as the forehead position).
  • 2021 is the front view of the microneedle array electrode, which is composed of 3 ⁇ 6 and a total of 18 microneedles.
  • the inner circle of the concentric circle is the microneedle chassis. 2022 is the side view of the microneedle.
  • the following process is used to prepare the headband type biological signal acquisition device:
  • Step S310 Determine the parameters of the microneedle electrode.
  • the microneedle electrode needs to have a proper aspect ratio.
  • the epidermis includes the stratum corneum and the active epidermis.
  • the stratum corneum is composed of keratinocytes with a thickness of about 15um to 20um, which has a high impedance, while the thickness of the active epidermis is about 200um, which has higher conductivity; while the dermis is distributed with blood vessels, Receptors and so on. If the microneedle penetrates the dermis of the skin, it will cause pain and may cause injury. Therefore, the penetration depth of the microneedle should be between 20um and 200um. Because the skin is soft, it is impossible for the microneedle to penetrate the skin completely.
  • the length of the microneedles is set to about 500um ⁇ 600um according to the characteristics of the skin structure of the head, so as to ensure that the stratum corneum is pierced without causing skin damage.
  • the microneedle is designed to be conical, with a bottom diameter of about 750um and a needle tip diameter of about 20um.
  • step S320 the substrate of the microneedle array electrode is fabricated.
  • the base is mainly made of polyimide with high heat resistance and good dimensional stability.
  • the design is light and thin, has good bending properties, and has a large wiring density. It can fit well on the human head during use.
  • the conductive chassis material is copper, and the diameter of the circular chassis is 800um.
  • the microneedle electrode substrate is a polyimide flexible circuit board.
  • the hardness can ensure that the microneedle can penetrate the skin easily, and can be well combined with the headband, penetrate the hair gap and fit stably Skin, so as to collect EEG and other biological signals.
  • Step S330 pull out the microneedle from the bottom of the electrode base
  • the magnetic traction method is used to pull out the microneedles on the chassis of the substrate.
  • the magnetron parameters are: Ti, reaction pressure 1pa, sputtering power 300W, sputtering time 5S, thickness about 5nm; Au, reaction pressure 1pa, sputtering power 200W, sputtering time 60S, thickness about 100nm.
  • step S340 an interface between the electrode and the signal acquisition device is made.
  • the production interface is used to connect with the wireless signal acquisition system, and then select comfortable and skin-safe clothing materials to make the headband, and assemble the fabricated microneedle array electrodes, wire interface, etc. into the headband, as shown in Figure 2.
  • the provided headband type biological signal acquisition device includes 9 independent microneedle array electrodes arranged in a row, each independent array size is about 8mm ⁇ 3mm, and a total of 3 ⁇ 6 rectangles are distributed. It is composed of 18 microneedles, and the center spacing of the microneedles is 1mm.
  • the spacing between the multiple microneedle array electrodes can be set to be the same or different, for example, different distances can be set according to the target brain area to be measured, and each microneedle array electrode can be of the same or different size and scale.
  • the headband type biological signal acquisition device can overcome the changes in the impedance of the traditional electrode-skin contact interface with time, environmental temperature and humidity, and overcome the noise caused by poor contact between the electrode and the skin caused by movement, pulling, etc.;
  • the use of conductive paste does not require a long time to prepare before use, and the subject does not need to be cleaned after use. At the same time, it reduces the workload of the operator and the user and improves the comfort of use; the size of the microneedle array electrode , Shape, number, arrangement, etc., combined with the existing standard 64-channel EEG cap design, the size of the electrode can be set to just pass the hair gap and contact the scalp.
  • the size and shape of the microneedle array electrode and the arrangement of the microneedle array can be changed according to the needs of use.
  • the number of electrode channels included in the headband, the arrangement of electrode pairs of different channels, etc. can be changed as needed;
  • the material and style design of the headband can be changed according to the needs of the user;
  • the device provided by the present invention can be used to collect EEG signals as well as other bioelectric signals, including EMG and ECG signals; and the microneedle electrode can not only collect EEG signals, but also collect other bioelectric signals, including EMG and ECG signals.
  • As a biosensor to record bioelectric signals it can also be used as a stimulating electrode.
  • it can be used as a stimulating electrode to induce sensory feedback to achieve closed-loop control of the prosthesis.
  • the headband-type biological signal acquisition device prepared by the above method collects the biological signals of each area of the subject’s head, it does not need to be fixed with tape, does not need to use conductive gel or conductive paste, and does not require complicated preparations before use.
  • the user only needs to wear the headband on the part to be tested and connect the acquisition system to start recording the EEG signal; the microneedle array electrode has simple process, low cost, and the substrate thickness is about 0.3mm, and different sizes and shapes can be designed according to requirements And the arrangement of the microneedles; for the headband, choose a thinner material that can be worn next to the body, which is safe and comfortable.
  • the invention can be used in clinical and laboratory research, saves time for preparation of experimental operation, is convenient to operate, and is convenient for collecting EEG signals of the elderly or children.
  • the present invention has the following advantages:
  • the Ag/AgCl electrode needs to use conductive paste to form a conductive interface between the electrode and the scalp to reduce the interface impedance (EII).
  • EII interface impedance
  • the state of the conductive paste will change with time and environment. Changes in temperature and humidity lead to an increase in EII, and in general, the time of EEG experiment is relatively long; on the other hand, conductive paste can cause damage to some users with sensitive skin, which limits the use of electrodes; the headband of the present invention
  • the micro-needle array electrode can pass through the hair gap to make the electrode directly contact the scalp.
  • the micro-needle can pierce the stratum corneum to reduce EII and make stable contact with the scalp. No conductive paste is needed. And because of the design of the headband, no tape is needed.
  • the fixed electrode overcomes the above-mentioned problems of the Ag/AgCl electrode.
  • the headband type microneedle array electrode of the present invention is low in cost, simple and convenient to use, and the material of the headband is a clothing material that is safe for the skin and has good comfort. It is comfortable to wear, will not feel uncomfortable during use, and is easier to be accepted.
  • the contact between the dry electrode and the skin is easily affected by movement and the environment, and the microneedle in the microneedle electrode of the present invention can penetrate into the skin and be in close contact with the skin, reducing environmental interference Impact on signal acquisition.
  • the headband type biological signal acquisition device provided by the present invention
  • a series of experiments were carried out, and a flat plate with the same parameters as the microneedle array electrode shape, size, substrate material, etc. except for the microneedle was produced.
  • Array electrodes are used for comparison.
  • the EEG signals of the motor cortex area and the forehead were collected with a headband microneedle array electrode.
  • the results show that the impedance of the contact interface between the device of the present invention and the scalp can reach ⁇ 25K ⁇ , while the flat electrode>90K ⁇ ; the device of the present invention can record EEG signals, while EEG signals cannot be recorded with ordinary flat electrodes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Psychiatry (AREA)
  • Psychology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

一种头带式生物信号采集装置及其制备方法。该装置包括:用于佩戴在受试者头部的头带(201),多个微针阵列电极(202),电极与信号采集设备接口(103,203),其中多个微针阵列电极(202)固定在头带(201)并以预定方式独立分布,每个微针阵列电极(202)用于采集对应脑区的生物信号,电极与信号采集设备接口(103,203)与多个微针阵列电极(202)连接以将采集的生物信号输出至外部的信号采集设备进行处理。该装置成本低廉、使用简单、携带方便、安全舒适并能够缩短实验时间。

Description

头带式生物信号采集装置及其制备方法 技术领域
本发明涉及生物信号采集技术领域,尤其涉及一种头带式生物信号采集装置及其制备方法。
背景技术
脑电信号(electroencephalography,EEG)的监测,是目前各种生物医学领域中用于人体健康状况和疾病早期诊断的重要手段,EEG及其相关联的事件相关电位(event-related potential,ERP)的相关研究广泛应用于神经科学、认知科学、认知心理学、神经科学和心理生理学研究中。
EEG信号的采集必然需要电极,目前成熟的技术中使用的标准的EEG记录电极仍有其不足。例如,目前标准脑电帽的电极是银/氯化银(Ag/AgCl)电极,尺寸比较大,需要使用导电膏穿过头发,在电极与头皮之间形成导电界面,来降低电极与头皮界面阻抗(electrode-skin interface impedance,EII),从而采集EEG信号。导电膏一方面会随着时间慢慢变干而增加EII,另一方面会对一些皮肤敏感的使用者造成伤害;打导电膏的过程繁琐,耗时长,信号采集完成后还需要清洁头皮和电极上的导电膏,而且会给受试者或者患者造成不适感,尤其对一些小孩,采集EEG信号更加困难。为了克服上述问题,2000年,英国皇家理工学院的Criss等人设计了一种微针电极阵列(MAE)并用于采集脑电信号(electroencephalography,EEG)。微针电极不需要导电凝胶,可以刺穿皮肤角质层到达导电性高的活性表皮,一方面降低电极与皮肤接触界面阻抗(EII),另一方面与皮肤接触稳定不易受环境干扰;而且使用方便,前后都不需要复杂的准备和清洁过程,因此微针阵列电极有望克服传统电极存在的问题。
对于MAE的制作,经典的光刻和蚀刻技术需要在净室中使用精密的装备且容易产生有毒废料,不方便、昂贵且不环保;激光加工的方法效率高且灵活,但是使用纯铜材料生物兼容性有待考虑,对于高密度且微小尺寸的微针,激光聚焦可能达不到;3D打印技术虽灵活但同样不适合高密度且微小尺寸的微针;直至2016年,中山大学的蒋乐伦团队以聚对苯二甲酸乙醇脂膜(polyethylene terephthalate film,PET)为基底,使用磁牵引自组装的方法制作微针,该方法制作工艺简单、成本低廉,之后于2017年使用该电极分别采集静态和动态的EMG、ECG和EEG信号,并证明用微针电极采集到的信号质量优于普通的平板干电极。但是由于PET膜硬度太小,微针很难刺入柔软的皮肤,而硬度太大的基底会大大降低使用的舒适性,不适于可穿戴设备。此外,目前的技术只是简单的说明了可以用微针阵列电极来采集前额的EEG信号,对于被头发覆盖的头皮的EEG信号的采集目前仍然使用传统的Ag/AgCl脑电电极,而且电极的佩戴仍然需要使用胶布等来固定,这对于一些皮肤敏感的使用者仍然是个问题。
就电极而言,现有的Ag/AgCl湿电极因导电凝胶会受环境温度、湿度变化以及时间推移的影响,且不适用于皮肤敏感者,需要合适的干电极来代替。而微针阵列电极因其微针能穿透角质层到达阻抗较低的活性表皮来降低EII,并且微针电极的形状可以根据需要设计成可穿过头发缝隙的细长条形,穿过头皮与皮肤接触稳定,因此有望克服上述电极存在的困难。中山大学提出的磁牵引自组装技术制作MAE电极,工艺简单,且制作的电极可以采集眨眼时前额的EEG信号,但是由于前额本身不受头发的干扰,因此并没有解决电极与头皮接触的问题,而且仍然需要用胶带将电极固定在待测皮肤位置;而且使用PET膜作为电极的基底,微针不易刺入皮肤,实际使用起来比较困难;因此现有的MAE电极实际上还无法应用于正式的临床和实验室的EEG研究中。
技术解决方案
本发明的目的在于克服上述现有技术的缺陷,提供一种头带式生物信号采集装置及其制备方法,采集头部的生物信号时,不需要导电膏也不需要胶布固定,使用方便舒适且头带为对皮肤安全的衣物材料。
根据本发明的第一方面,提供了一种头带式生物信号采集装置。该装置包括:用于佩戴在受试者头部的头带,多个微针阵列电极,电极与信号采集设备接口,其中所述多个微针阵列电极固定在所述头带并以预定方式独立分布,每个微针阵列电极用于采集对应脑区的生物信号,所述电极与信号采集设备接口与所述多个微针阵列电极连接以将采集的生物信号输出至外部的信号采集设备进行处理。
在一些实施例中,所述头带上封装有以等间距排列成一列的9个微针阵列电极,每个微针阵列电极对应一个待测的脑区。
在一些实施例中,所述9个微针阵列电极具有相同结构,其中每个微针阵列电极包括呈矩形分布的3×6共18个微针,微针的中心间距为1mm。
在一些实施例中,根据头发缝隙特征将每个微针阵列电极的阵列尺寸设置为8mm×3mm。
在一些实施例中,所述多个微针阵列电极所包含的微针设置为相同的结构,每个微针的长度是500um~600um,微针为圆锥形,底部直径是750um,针尖直径是20um。
在一些实施例中,所述多个微针阵列电极的基底是柔性电路板,所述多个微针阵列电极基底的导电底盘是圆形,圆形底盘直径是800um。
在一些实施例中,所述多个微针阵列电极的微针材料是环氧树脂A、B溶剂和纯铁粉的混合物,其中环氧树脂A与B溶剂的体积比是3:1,环氧树脂A、B溶剂与纯铁粉的重量比是1:0.7。
根据本发明的第二方面,提供一种头带式生物信号采集装置的制备方法。该方法包括:制作微针阵列的柔性基底;在柔性基底的底盘上通过磁牵引技术形成微针阵列;固化所述微针阵列,并通过磁控溅射镀膜技术在所述微针阵列表面真空溅镀一层质地均匀的金属;制作电极与信号采集设备接口;选择衣物材料制作用于佩戴在受试着头部的头带,将制作好的多个微针阵列电极、导线、电极与信号采集设备接口组装入头带,其中所述多个微针阵列电极以预定方式独立分布。
在一些实施例中,磁控溅射参数设置为:Ti,反应气压1pa,溅射功率300W,溅射时间5S,厚5nm;Au,反应气压1pa,溅射功率200W,溅射时间60S,厚100nm。
在一些实施例中,所述在柔性基底的底盘上通过磁牵引技术形成微针阵列包括使用直径0.7mm的弹簧针头蘸取环氧树脂A、B溶剂和纯铁粉的混合试剂滴在制备好的柔性基底的底盘上,在磁场强度为2000高斯的磁场中拉出微针。
与现有技术相比,本发明的优点在于:提供一种成本低廉、使用简单、携带方便、安全舒适的头带式生物信号采集装置,该装置所包含的微针阵列电极的可用于记录EEG等生物信号,解决了现有的湿电极因导电凝胶随时间以及环境温度和湿度等变化而导致的EII增加的问题,MAE的微针可以刺穿角质层到到达活性表皮,降低EII;解决了生物信号采集时因使用导电膏而在使用前需要消耗过长的准备时间,而且使用完成后需要麻烦的清洁过程的问题,所提供的微针电极可以通过头发的缝隙,刺入头皮,微针的长度可以保证不对头部造成伤害但可以穿过角质层与头皮良好接触,因此不需要使用导电膏。
附图说明
以下附图仅对本发明作示意性的说明和解释,并不用于限定本发明的范围,其中:
图1是根据本发明一个实施例的微针阵列电极基底的示意图;
图2是根据本发明一个实施例的用于记录EEG信号的头带式生物信号采集装置的示意图。
本发明的实施方式
为了使本发明的目的、技术方案、设计方法及优点更加清楚明了,以下结合附图通过具体实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用于解释本发明,并不用于限定本发明。
在本文示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
图1是本发明提供的微针阵列基底的示意图,其中,示出的微针阵列电极包括18个微针,形成3×6矩形分布,单个微针电极的底盘标记为101、电极片基底102,并示出了电极与信号采集设备接口103。
电极底盘101可采用金属材料,例如铜;电极片基底102可采用柔性电路板材料加工,例如,聚酰亚胺;电极与信号采集设备接口103用于将微针阵列电极采集到的信号传送至外部的信号采集设备进行处理,例如计算机等;电极与信号采集设备接口103可采用导线与微针阵列电极连接(未示出),采用有线方式或无线方式与现有的无线数据采集系统通信。
结合图1,可将多块微针阵列电极封装于头戴式设备中,以采集不同脑区的生物信号,图2是根据本发明一个实施例的头带式生物信号采集装置,包含9块微针阵列电极,分别对应脑区T3,C5,C3,C1,CZ,C2,C4,C6,T4的位置(其中nasion表示鼻部),并示意了头带201、其中一块微针阵列电极202、电极与信号采集设备接口203。使用时,可将头带固定在受试者的头部(例如前额位置)。2021为微针阵列电极的主视示意,由3×6共18个微针组成,同心圆的内圆是微针底盘。2022为微针的侧视示意。利用该装置采集脑部生物信号时,可通过选择参考电极和记录电极,利用电位差来获得EEG等生物信号,具体的采集过程属于现有技术,在此不再赘述。
在一个实施例中,采用以下过程制备头带式生物信号采集装置:
步骤S310,确定微针电极的参数。
微针电极需要有合适的长径比。根据人体皮肤表面的结构,由外至内依次为表皮、真皮和皮下组织。表皮包括角质层和活性表皮,角质层由角化细胞组成,厚度约15um~20um具有很高的阻抗,而活性表皮厚度约为200um则有较高的导电性;而真皮层则分布有血管、感受器等。如果微针刺入皮肤的真皮层则会导致疼痛并可能造成伤害,因此微针的刺入深度应为20um~200um之间,因为皮肤是柔软的,导致微针不可能全部刺入皮肤。
例如,根据头部皮肤结构特征将微针的长度设置为约500um~600um,从而保证刺穿角质层但不会导致皮肤损伤。又如,将微针设计为圆锥形,底部直径约为750um,针尖直径约为20um。
步骤S320,制作微针阵列电极的基底。
例如,使用Altium Designer 14软件绘制PCB原理图(如图1所示),然后加工基底。基底主要以耐热性高尺寸稳定性好的聚酰亚胺为主,设计轻而薄、有很好的弯折性、布线密度较大,使用时能较好地贴合于人体头部,导电底盘材料为铜,圆形底盘直径为800um。
在本发明实施例中,微针电极基底为聚亚酰胺柔性电路板,硬度既可以保证微针比较容易地刺入皮肤,同时可以很好的结合头带,穿过头发缝隙并稳定的贴合皮肤,从而采集EEG等生物信号。
步骤S330,在电极基底底盘拉出微针
具体地,使用磁牵引的方法在基底的底盘上拉出微针,微针材料为环氧树脂A、B溶剂(体积比:A/B=3/1)和纯铁粉的混合物(重量比:环氧树脂溶剂/铁粉=1/0.7)。使用直径约为0.7mm的弹簧针头蘸取混合试剂滴在制备好的柔性基底的底盘上,在磁场强度约为2000高斯的磁场中拉出微针。然后室温下将其放在磁铁中间24小时至微针完全固化,贴上掩膜板,采用磁控溅射的方法在微针上镀上一层金膜,磁控参数为:Ti,反应气压1pa,溅射功率300W,溅射时间5S,厚约5nm;Au,反应气压1pa,溅射功率200W,溅射时间60S,厚约100nm。
步骤S340,制作电极与信号采集设备接口。
例如,制作接口用于与无线信号采集系统连接,然后选择舒适且对皮肤安全的衣物材料制作头带,将制作好的微针阵列电极、导线接口等组装入头带,如图2所示。
在一个实施例中,所提供的头带式生物信号采集装置包括9个独立的微针阵列电极,排成一列,每个独立的阵列尺寸约为8mm×3mm,由矩形分布的3×6共18个微针组成,微针的中心间距为1mm。其中,多个微针阵列电极之间的间距可设置为相同或不同,例如,根据测量的目标脑区设置不同的距离间隔,并且每个微针阵列电极可采用相同或不同的尺寸和规模。
本发明提供的头带式生物信号采集装置,能够克服传统电极与皮肤接触界面阻抗随时间、环境温度和湿度等的变化,克服因运动、拉扯等导致的电极与皮肤接触不良引入噪声;不需要使用导电膏,使用前不需要花很长时间准备,使用后受试者也不需要清洁,同时减少了操作者和使用者的工作量,并提高了使用的舒适度;微针阵列电极的尺寸、形状、数目、排列方式等结合现有的标准64通道的脑电帽设计,电极的尺寸能够设置为刚好可以通过头发的缝隙与头皮接触。
应理解的是,可以根据使用需要更改微针阵列电极的尺寸、形状以及微针阵列的排布方式,头带中包含电极通道的数目、不同通道电极对的排列等都可以根据需要更改;用于头带的材料和样式设计可以根据使用者的需求更改;本发明提供的装置除了用来采集EEG信号,还可用来采集其他生物电信号,包括EMG和ECG信号等;而且微针电极不仅可以作为生物传感器来记录生物电信号,还可以作为刺激电极,例如在康复假肢研究领域中作为刺激电极来诱发感觉反馈实现假肢的闭环控制。
利用上述方法制备的头带式生物信号采集装置采集受试者头部各区域的生物信号时,不需要使用胶带固定、不需要使用导电凝胶或导电膏、使用前不需要复杂的准备工作,使用者只需将头带戴在待测部位,连接采集系统即可开始记录EEG信号;微针阵列电极工艺简单、成本低廉、基底厚度约为0.3mm,而且可以根据需求设计不同的尺寸、形状以及微针的排布等;对于头带,选择较薄的普通可贴身穿的材料,安全舒适。本发明可用于临床、实验室研究,节省实验操作准备时间,操作方便,便于对老人或者小孩的EEG信号采集。
综上所述,现有技术相比,本发明具有以下优势:
1)、与现有标准的Ag/AgCl电极相比,Ag/AgCl电极需要使用导电膏在电极和头皮之间形成导电界面,降低界面阻抗(EII),一方面导电膏状态会随时间、环境温度和湿度变化,导致EII增加,而一般情况下EEG实验的时间都比较长;另一方面导电膏会对一些皮肤敏感的使用者造成伤害,这限制了电极的使用对象;本发明的头带式微针阵列电极可以穿过头发的缝隙使电极与头皮直接接触,微针可以刺穿角质层降低EII,并与头皮稳定接触,不需要导电膏,而且因为头带的设计,不需要用胶带来固定电极,因此克服了上述Ag/AgCl电极存在的问题。
2)、与现有的用于EEG信号采集的标准脑电帽相比,现有的标准脑电电极尺寸比较大,此外由于佩戴传统脑电帽时间过长,导致使用者因为时间过长而感觉疲劳和不适,尤其对于小孩和一些体弱的老年人,采集EEG信号的过程是非常困难的。而本发明中因不需要导电膏,简化了使用过程,避免了上述性困难。
3)、与现有标准的脑电帽相比,而本发明的头带式微针阵列电极成本低廉,且使用起来简单方便,而且头带的材料为对皮肤安全且舒适度好的衣物材料,穿戴舒适,使用过程中不会感觉不舒服,更容易被接受。
4)、与现有的干电极相比,干电极与皮肤接触易受运动、环境的影响,而本发明的微针电极中的微针能够刺入皮肤而与皮肤紧密接触,降低了环境干扰对信号采集的影响。
进一步地,为了证明本发明提供的头带式生物信号采集装置的性能,进行了一系列实验,并制作了与微针阵列电极形状、尺寸、基底材料等除了微针以外的参数完全相同的平板阵列电极作为对比。用头带式微针阵列电极采集了运动皮层区域以及前额的EEG信号,结果表明:本发明的装置与头皮接触界面的阻抗能达到<25KΩ,而平板电极>90KΩ;用本发明的装置可以记录到EEG信号,而用普通平板电极无法记录到EEG信号。
需要说明的是,虽然上文按照特定顺序描述了各个步骤,但是并不意味着必须按照上述特定顺序来执行各个步骤,实际上,这些步骤中的一些可以并发执行,甚至改变顺序,只要能够实现所需要的功能即可。
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (10)

  1. 一种头带式生物信号采集装置,其特征在于,包括:用于佩戴在受试者头部的头带,多个微针阵列电极,电极与信号采集设备接口,其中所述多个微针阵列电极固定在所述头带并以预定方式独立分布,每个微针阵列电极用于采集对应脑区的生物信号,所述电极与信号采集设备接口与所述多个微针阵列电极连接以将采集的生物信号输出至外部的信号采集设备进行处理。
  2. 根据权利要求1所述的头带式生物信号采集装置,其特征在于,所述头带封装有以等间距排列成一列的9个微针阵列电极,每个微针阵列电极对应一个待测的脑区。
  3. 根据权利要求2所述的头带式生物信号采集装置,其特征在于,所述9个微针阵列电极具有相同结构,其中每个微针阵列电极包括呈矩形分布的3×6共18个微针,微针的中心间距为1mm。
  4. 根据权利要求3所述的头带式生物信号采集装置,其特征在于,根据头发缝隙特征将每个微针阵列电极的阵列尺寸设置为8mm×3mm。
  5. 根据权利要求1所述的头带式生物信号采集装置,其特征在于,所述多个微针阵列电极所包含的微针设置为相同的结构,每个微针的长度是500um~600um,微针为圆锥形,底部直径是750um,针尖直径是20um。
  6. 根据权利要求1所述的头带式生物信号采集装置,其特征在于,所述多个微针阵列电极的基底是柔性电路板,所述多个微针阵列电极基底的导电底盘是圆形,圆形底盘直径是800um。
  7. 根据权利要求1所述的头带式生物信号采集装置,其特征在于,所述多个微针阵列电极的微针材料是环氧树脂A、B溶剂和纯铁粉的混合物,其中环氧树脂A与B溶剂的体积比是3:1,环氧树脂A、B溶剂与纯铁粉的重量比是1:0.7。
  8. 一种头带式生物信号采集装置的制备方法,包括:
    制作微针阵列的柔性基底;
    在柔性基底的底盘上通过磁牵引技术形成微针阵列;
    固化所述微针阵列,并通过磁控溅射镀膜技术在所述微针阵列表面真空溅镀一层质地均匀的金属;
    制作电极与信号采集设备接口;
    选择衣物材料制作用于佩戴在受试着头部的头带,将制作好的多个微针阵列电极、导线、电极与信号采集设备接口组装入头带,其中所述多个微针阵列电极以预定方式独立分布。
  9. 根据权利要求8所述的制备方法,其中,磁控溅射参数设置为:Ti,反应气压1pa,溅射功率300W,溅射时间5S,厚5nm;Au,反应气压1pa,溅射功率200W,溅射时间60S,厚100nm。
  10. 根据权利要求8所述的制备方法,其中,所述在柔性基底的底盘上通过磁牵引技术形成微针阵列包括使用直径0.7mm的弹簧针头蘸取环氧树脂A、B溶剂和纯铁粉的混合试剂滴在制备好的柔性基底的底盘上,在磁场强度为2000高斯的磁场中拉出微针。
PCT/CN2020/128199 2019-11-14 2020-11-11 头带式生物信号采集装置及其制备方法 WO2021093788A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911112370.3A CN110811611A (zh) 2019-11-14 2019-11-14 头带式生物信号采集装置及其制备方法
CN201911112370.3 2019-11-14

Publications (1)

Publication Number Publication Date
WO2021093788A1 true WO2021093788A1 (zh) 2021-05-20

Family

ID=69555124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/128199 WO2021093788A1 (zh) 2019-11-14 2020-11-11 头带式生物信号采集装置及其制备方法

Country Status (2)

Country Link
CN (1) CN110811611A (zh)
WO (1) WO2021093788A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110811611A (zh) * 2019-11-14 2020-02-21 深圳先进技术研究院 头带式生物信号采集装置及其制备方法
CN113662552B (zh) * 2021-08-31 2022-12-20 复旦大学 一种在顶颞区三维均匀分布的脑电极阵列及其制备方法
CN114190948A (zh) * 2021-12-14 2022-03-18 深圳先进技术研究院 一种可长期植入多脑区记录电极阵列制作方法及使用方法
CN115349876B (zh) * 2022-09-22 2023-09-15 北京市神经外科研究所 一种肌电采集系统
CN116350200A (zh) * 2023-03-02 2023-06-30 中国科学院深圳先进技术研究院 一种电生理信号与血液微循环信号同步检测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102579041A (zh) * 2012-02-09 2012-07-18 上海交通大学 能克服头发障碍的阵列式柔性脑电干电极及其制备方法
WO2015143443A1 (en) * 2014-03-21 2015-09-24 University Of Utah Research Foundation Multi-site electrode arrays and methods of making the same
CN105615874A (zh) * 2016-03-01 2016-06-01 中国科学院半导体研究所 可用于动态心电测量的柔性心电电极及制作方法
CN106983507A (zh) * 2017-02-21 2017-07-28 中山大学 一种用于人体电信号测量的柔性微电极阵列及制作方法
CN207821815U (zh) * 2017-06-16 2018-09-07 华南理工大学 一种柔性干式电极
CN109171718A (zh) * 2018-08-03 2019-01-11 北京大学 微针电极阵列装置
CN109998533A (zh) * 2019-01-11 2019-07-12 北京大学 一种柔性微针电极阵列装置及制备方法
CN110811611A (zh) * 2019-11-14 2020-02-21 深圳先进技术研究院 头带式生物信号采集装置及其制备方法
CN110811598A (zh) * 2019-11-14 2020-02-21 深圳先进技术研究院 腕带式生物信号采集设备及其制作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3235426A3 (en) * 2012-10-15 2018-02-21 Jordan Neuroscience, Inc. Wireless eeg unit
JP6675535B2 (ja) * 2015-09-30 2020-04-01 東海光学株式会社 脳活動検出システム、脳活動検出システムを使用した脳活動の解析方法、そのような脳活動の解析方法による個人特性の評価方法及び個人の見え方の評価方法
CN107582051A (zh) * 2017-10-12 2018-01-16 公安部南昌警犬基地 一种动物情绪脑电分析设备
WO2019178615A1 (en) * 2018-03-16 2019-09-19 Jordan Neuroscience, Inc. Eeg headgear assembly with electrode positioning system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102579041A (zh) * 2012-02-09 2012-07-18 上海交通大学 能克服头发障碍的阵列式柔性脑电干电极及其制备方法
WO2015143443A1 (en) * 2014-03-21 2015-09-24 University Of Utah Research Foundation Multi-site electrode arrays and methods of making the same
CN105615874A (zh) * 2016-03-01 2016-06-01 中国科学院半导体研究所 可用于动态心电测量的柔性心电电极及制作方法
CN106983507A (zh) * 2017-02-21 2017-07-28 中山大学 一种用于人体电信号测量的柔性微电极阵列及制作方法
CN207821815U (zh) * 2017-06-16 2018-09-07 华南理工大学 一种柔性干式电极
CN109171718A (zh) * 2018-08-03 2019-01-11 北京大学 微针电极阵列装置
CN109998533A (zh) * 2019-01-11 2019-07-12 北京大学 一种柔性微针电极阵列装置及制备方法
CN110811611A (zh) * 2019-11-14 2020-02-21 深圳先进技术研究院 头带式生物信号采集装置及其制备方法
CN110811598A (zh) * 2019-11-14 2020-02-21 深圳先进技术研究院 腕带式生物信号采集设备及其制作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
REN, LEI ET AL.: "Fabrication of Flexible Microneedle Array Electrodes for Wearable Bio-Signal Recording", SENSORS, vol. 18, no. 4, 13 April 2018 (2018-04-13), ISSN: 1424-8220 *
WU, CHENG ET AL.: "Fabrication of Dry Electroencephalography Electrode Using Flexible Substrate MEMS Technique", JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY, vol. 45, no. 7, 31 July 2011 (2011-07-31), pages 1035 - 1040, XP055812615, ISSN: 1006-2467 *

Also Published As

Publication number Publication date
CN110811611A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
WO2021093788A1 (zh) 头带式生物信号采集装置及其制备方法
WO2021093789A1 (zh) 腕带式生物信号采集设备及其制作方法
Chen et al. Flexible inorganic bioelectronics
Fu et al. Dry electrodes for human bioelectrical signal monitoring
Ferrari et al. Conducting polymer tattoo electrodes in clinical electro-and magneto-encephalography
Yang et al. Breathable electronic skins for daily physiological signal monitoring
Niu et al. Surface bioelectric dry Electrodes: A review
O’Mahony et al. Microneedle-based electrodes with integrated through-silicon via for biopotential recording
Wang et al. PDMS-based low cost flexible dry electrode for long-term EEG measurement
JP5100340B2 (ja) 自己付着性電極及びそれの製造方法
Srivastava et al. Long term biopotential recording by body conformable photolithography fabricated low cost polymeric microneedle arrays
Kaveh et al. Wireless user-generic ear EEG
US20080009763A1 (en) Microprobe array structure and method for manufacturing the same
O’Mahony et al. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes
Zhang et al. A motion interference-insensitive flexible dry electrode
CN114728539A (zh) 用于柔软适形传感器和导体的吸收性基底的快速制造
Zhou et al. Characterization of impedance properties of metal dry bioelectrodes with surface microstructure arrays
CN111407271A (zh) 一种自供电柔性电极的智能可穿戴组件
Yuan et al. State of the art of non-invasive electrode materials for brain–computer interface
KR101785287B1 (ko) 마이크로니들 전극 패치 및 이의 제조 방법
Guo et al. A self-wetting paper electrode for ubiquitous bio-potential monitoring
Wang et al. Robust tattoo electrode prepared by paper-assisted water transfer printing for wearable health monitoring
Wang et al. Towards improving the quality of electrophysiological signal recordings by using microneedle electrode arrays
CN211560089U (zh) 腕带式生物信号采集设备
Petrossian et al. Advances in electrode materials for scalp, forehead, and ear EEG: a mini-review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20887367

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20887367

Country of ref document: EP

Kind code of ref document: A1