WO2021093663A1 - 基于超声检测系统的生物体征检测方法 - Google Patents
基于超声检测系统的生物体征检测方法 Download PDFInfo
- Publication number
- WO2021093663A1 WO2021093663A1 PCT/CN2020/126709 CN2020126709W WO2021093663A1 WO 2021093663 A1 WO2021093663 A1 WO 2021093663A1 CN 2020126709 W CN2020126709 W CN 2020126709W WO 2021093663 A1 WO2021093663 A1 WO 2021093663A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- processing module
- module
- slave
- main processing
- synchronization signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
- G01S15/8927—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/44—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
- A61B8/4444—Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
- A61B8/4461—Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/485—Diagnostic techniques involving measuring strain or elastic properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5207—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/54—Control of the diagnostic device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/90—Identification means for patients or instruments, e.g. tags
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/89—Sonar systems specially adapted for specific applications for mapping or imaging
- G01S15/8906—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
- G01S15/8909—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
- G01S15/8915—Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/52—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
- G01S7/52017—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
- G01S7/52023—Details of receivers
- G01S7/52036—Details of receivers using analysis of echo signal for target characterisation
- G01S7/52042—Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
Definitions
- the embodiments of the present application relate to the field of ultrasound imaging technology, and in particular, to a method for detecting biological signs based on an ultrasound detection system.
- the elasticity and viscosity of tissues are important characteristics of organisms, and much of its information can be modulated to various parameters of shear waves.
- Ultrasound has the advantages of non-destructive, non-ionization, and non-radiation, and is widely used in the medical field.
- the embodiment of the present application provides a biological sign detection method based on an ultrasonic detection system, which is used to simultaneously detect physical signs of multiple dimensions of a biological body through multiple array elements.
- the embodiment of the application provides a biological sign detection method based on an ultrasonic detection system.
- the ultrasonic detection system to which the method is applicable includes: an ultrasonic probe, a first processing module, a second processing module, and a synchronization distribution module, wherein the ultrasonic probe includes at least two Each array element, the first processing module includes a master processing module and at least one slave processing module, and the method includes:
- the second processing module sends a detection instruction to the main processing module; the main processing module generates a first synchronization signal based on the detection instruction, and sends the first synchronization signal to the synchronization distribution module, so that The synchronization distribution module sends the first synchronization signal to the master processing module and the slave processing module in the first processing module; the slave processing module and the master processing module are based on the first processing module
- the synchronization signal controls the respective connected array elements to emit ultrasonic waves, and collect at least 20 frames of echo signals of the ultrasonic waves, wherein the pulse repetition frequency of the echo signals is within the frequency range of 10 Hz-40000 Hz; the second The processing module detects and obtains physical sign information of the organism based on the collected echo signal.
- the method before the second processing module sends the detection instruction to the main processing module, the method further includes: the second processing module configures control for the main processing module and the slave processing module Parameters, so that the main processing module and the slave processing module control the respective connected array elements based on the control parameters.
- control parameter includes a first parameter, and the first parameter is used to control the array element to generate a shear wave.
- the duration of the shear wave generated based on the first parameter is between 1 us and 1s, and the vibration frequency is between 10 Hz and 100,000,000 Hz.
- the method further includes:
- the second processing module sends an excitation instruction to the main processing module; the main processing module generates a second synchronization signal based on the excitation instruction, and sends the second synchronization signal to the synchronization distribution module, so that The synchronization distribution module sends the second synchronization signal to the master processing module and the slave processing module in the first processing module; based on the second synchronization signal, the slave processing module and the The main processing module controls the respective connected array elements to generate shear waves according to the first parameter.
- the slave processing module and the master processing module control the respective connected array elements to generate shear waves in one of the following ways: single-point acoustic radiation force pulse, multi-point Mach cone Mode, multi-point comb wave mode and multi-point surface wave mode.
- control parameter includes a second parameter, and the second parameter is used to control the array element to generate ultrasonic waves.
- the method further includes: the second processing module obtains data from the first processing module The identity information of each module, and the main processing module and the slave processing module are identified according to the identity information of each module.
- the identity information includes identity identification and mode information; the identification of the main processing module and the slave processing module according to the identity information of each module includes:
- the identity of the module is verified according to the identity of the module, and when the verification is passed, it is determined whether the module is the main processing module or the slave based on the mode information of the module. Processing module.
- the identity information includes at least one of the following: a manufacturer identification code, a device identification code, and an auxiliary identification code of the device.
- the ultrasonic detection system further includes a mechanical vibration device; before the second processing module sends a detection instruction to the main processing module, the method further includes: The mechanical vibration device sends an excitation signal to cause the mechanical vibration device to generate a shear wave.
- the second processing module sends a detection instruction to the main processing module in the first processing module, and the main processing module generates a first synchronization signal based on the detection instruction, and sends the first synchronization signal to the synchronization distribution module , So that the synchronization distribution module transmits the first synchronization signal to the master processing module and the slave processing module in the first processing module, so that the slave processing module and the master processing module can control the respective connected array elements to simultaneously transmit ultrasonic waves based on the first synchronization signal , And collect the echo signal, so that the second processing module detects the physical sign information of the organism based on the echo signal collected by each array element. Since the embodiment of the present application can simultaneously transmit ultrasonic waves through multiple array elements, and process echo signals collected by multiple Chen elements, it is possible to detect multiple dimensions of a biological body at the same time, which improves the detection efficiency.
- FIG. 1 is a schematic structural diagram of an ultrasonic inspection system provided by an embodiment of the present application
- FIG. 2 is a schematic structural diagram of an ultrasonic detection system provided by an embodiment of the present application.
- FIG. 3 is a flowchart of a biological sign detection method based on an ultrasonic detection system provided by an embodiment of the present application
- Fig. 4 is a flowchart of a shear wave excitation method provided by an embodiment of the present application.
- Fig. 5 is a flowchart of a method for identifying a master processing module and a slave processing module provided by an embodiment of the present application.
- FIG. 1 is a schematic structural diagram of an ultrasonic inspection system provided by an embodiment of the present application.
- the ultrasonic inspection system includes an ultrasonic probe 10, a first processing module 11, a second processing module 12, and a synchronization distribution.
- Module 13 where the ultrasonic probe includes an array element 101 and an array element 102.
- the first processing module 11 includes a main processing module 111 and a slave processing module 112.
- the array element 101 is connected to the main processing module 111
- the array element 102 is connected to the slave processing module 112.
- the main processing module 111 and the slave processing module 112 are also connected to the synchronization distribution module 13 and the second processing module 12 at the same time.
- the synchronization distribution module 13 is used to distribute synchronization signals to the main processing module 111 and the slave processing module 112 according to the trigger of the main processing module 111.
- the main processing module 111 and the slave processing module 112 are respectively used to control the array element 101 and the array element 102 at the same time.
- the body transmits detection signals (such as ultrasonic waves) in different dimensions of the body, and collects echo signals of the detection signals.
- the second processing module 12 is used to process the echo signals to obtain physical sign information of the biological body in different dimensions.
- the clock signals of the main processing module 111 and the slave processing module 112 can be generated by the main processing module 111 and the slave processing module 112 themselves.
- the ultrasonic inspection system may further include a clock distribution module 14.
- the clock distribution module 14 is used for the master processing module 111 and the slave processing module. 112 distributes the clock.
- FIG. 1 and FIG. 2 are only an exemplary description and are not the only limitation to the ultrasonic inspection system referred to in the embodiment of the present application.
- the ultrasonic probe may include Two or more array elements
- the first processing module may include a main processing module, and one or more slave processing modules, where one array element is connected to a main processing module or a slave processing module, the main processing module and The slave processing module can connect multiple array elements respectively.
- FIG. 3 is a flowchart of a method for detecting biological signs based on an ultrasonic detection system provided by an embodiment of the present application. As shown in FIG. 3, the method includes:
- Step 301 The second processing module sends a detection instruction to the main processing module.
- the mode information and address information of each module in the first processing module are pre-stored in the second processing module, where the mode information of each module is used to indicate whether each module is a master processing module or a slave processing module.
- the second processing module When performing the detection operation, the second processing module obtains the address of the main processing module, and sends the detection instruction to the main processing module based on the address.
- Step 302 The main processing module generates a first synchronization signal based on the detection instruction, and sends the first synchronization signal to the synchronization distribution module, so that the synchronization distribution module sends the first synchronization signal to all The main processing module and the slave processing module in the first processing module.
- the synchronization signals of the multiple array elements are generated by the main processing module after receiving the detection instruction, and are distributed to the main processing module and the slave processing module in the first processing module through the synchronization distribution module.
- Step 303 The slave processing module and the main processing module control the respective connected array elements to emit ultrasonic waves based on the first synchronization signal, and collect at least 20 frames of echo signals of the ultrasonic waves.
- the pulse repetition frequency is in the frequency range of 10Hz-40000Hz.
- the second processing module may pre-configure control parameters for the main processing module and the slave processing module in the first processing module, the control parameters of the main processing module and the control of the slave processing module before sending the detection instruction to the main processing module
- the parameters can be the same or different, and the main processing module and the slave processing module control the respective connected array elements based on the control parameters.
- control parameters include parameters such as the energy size, frequency, and aperture of ultrasonic excitation (for easy distinction, hereinafter referred to as the second parameter).
- the main processing module and the slave processing module control the respective connected array elements to emit ultrasonic waves with target characteristics according to the second parameter. That is to say, the second processing module in this embodiment can realize the ultrasonic control of the output through the configuration and adjustment of the second parameter.
- the setting of the second parameter in this embodiment can be associated with the characteristics of the shear wave detected by the target, so that the obtained ultrasonic wave can well detect the shear wave.
- the shear wave carrying the biological sign information is generated by the spontaneous vibration inside the biological tissue.
- the slave processing module uses the second parameter configured by the second processing device based on the first synchronization signal and the main processing module to control the connected array elements so that the array elements send Corresponding ultrasonic wave, and receive the echo signal of the ultrasonic wave.
- the shear wave referred to in this embodiment can also be generated by means of external vibration.
- the ultrasonic inspection system may include a mechanical vibration device, which is connected to the second vibration device.
- the two processing modules are connected. Before the second processing module executes the method in step 301, the second processing module sends an excitation signal to the mechanical vibration device, so that the mechanical vibration device generates a corresponding shear wave under the excitation of the excitation signal.
- the structure of the mechanical vibration device can be set according to needs, and it is not unique.
- the shear wave can also be generated by the element in the ultrasonic probe.
- the second processing module can also include the control parameters configured for the main processing module and the slave processing module.
- the main processing module and the slave processing module control the array element to generate the corresponding shear wave according to the first parameter.
- the tissue movement speed can be between 1nm/s-10m/s, and the tissue movement range can be between 0.01 ⁇ m-10mm.
- Fig. 4 of the example is a flowchart of a shear wave excitation method provided by an embodiment of the present application. As shown in Fig. 4, after the second processing module configures control parameters for the master processing module and the slave processing module, this embodiment The following shear wave excitation methods can also be included:
- Step 401 The second processing module sends an excitation instruction to the main processing module.
- Step 402 The main processing module generates a second synchronization signal based on the excitation instruction, and sends the second synchronization signal to the synchronization distribution module, so that the synchronization distribution module sends the second synchronization signal to the synchronization distribution module.
- Step 403 Based on the second synchronization signal, the slave processing module and the master processing module control the respective connected array elements to generate shear waves according to the first parameter.
- the second processing module can configure the communication ports of the main processing module and the slave processing module before sending the excitation instruction to the main processing module to clarify the relationship between the main processing module and the slave processing module.
- the port to which the array element is connected can configure the communication ports of the main processing module and the slave processing module before sending the excitation instruction to the main processing module to clarify the relationship between the main processing module and the slave processing module.
- the second processing module configures the master processing module and the slave processing module with the first parameters for generating shear waves, where the first parameters may include but are not limited to include the following data: The duration and vibration frequency of the shear wave generated by continuous vibration, wherein the duration can be between 1 us-1s, and the vibration frequency can be between 10-100000000 Hz.
- the main processing module After completing the configuration of the first parameter, if the main processing module receives the excitation instruction of the second processing module, the main processing module generates the second synchronization signal according to the excitation instruction of the second processing module, and synchronizes the second synchronization signal through the synchronization distribution module.
- the signal is allocated to the main processing module and the slave processing module in the first processing module.
- the main processing module and the slave processing module in the first processing module control the respective connected array elements in one of the following ways Three kinds of shear waves are generated: the way of single-point acoustic radiation force pulse, the way of multi-point Mach cone, the way of multi-point comb wave and the way of multi-point surface wave.
- the duration of continuous vibration to generate shear waves may be 60 us, for example, and the vibration frequency may be 2.4 million Hz, for example.
- the tissue motion speed caused by the shear wave may be, for example, 1 m/s, and the tissue motion range caused by the shear wave may be, for example, 1 mm.
- Step 304 The second processing module obtains physical sign information of the organism based on the collected echo signal detection.
- the second processing module first separates the shear wave carrying the biological information from the echo signal, and further, analyzes and obtains the shear wave from the shear wave based on a preset processing method Information on the physical signs of the organism.
- the method of separating the shear wave from the echo signal and analyzing and obtaining the biological sign information from the shear wave can refer to the related technology, which will not be repeated here.
- the detection instruction is sent to the main processing module in the first processing module through the second processing module, and the main processing module generates a first synchronization signal based on the detection instruction, and sends the first synchronization signal to the synchronization distribution module, So that the synchronization distribution module transmits the first synchronization signal to the master processing module and the slave processing module in the first processing module, so that the slave processing module and the master processing module can control the respective connected array elements to simultaneously transmit ultrasonic waves based on the first synchronization signal, And collect the echo signal, so that the second processing module detects the physical sign information of the biological body based on the echo signal collected by each array element. Since this embodiment can simultaneously transmit ultrasonic waves through multiple array elements, and process echo signals collected by multiple Chen elements, it is possible to detect multiple dimensions of a biological body at the same time, which improves the detection efficiency.
- the second processing module before the second processing module sends a detection instruction to the main processing module or configures control parameters for the main processing module and the slave processing module, it may include identifying the main processing module and the slave processing module.
- the second processing module obtains the identity information of each module in the first processing module, and identifies the master processing module and the slave processing module according to the identity information of each module, wherein the identity referred to in this embodiment is The information includes identification and mode information.
- FIG. 5 is a flowchart of a method for identifying a master processing module and a slave processing module provided by an embodiment of the present application. As shown in FIG. 5, the method includes:
- Step 501 The second processing module obtains the identity and mode information of each module in the first processing module.
- the working mode corresponding to the main processing module is the master mode
- the working mode corresponding to the slave processing module is the slave mode
- the mode information of the module is used to indicate whether the working mode of the module is the master mode or the slave mode.
- the identity identifier of each module is unique.
- the identity identifier referred to in this embodiment may include at least one of the following identifiers: the manufacturer identification code of the device, the device identification code, and the auxiliary identification code.
- Step 502 For each module in the first processing module, the identity of the module is verified according to the identity of the module, and when the verification is passed, it is determined that the module is the main processing module based on the mode information of the module. Module or slave processing module.
- the second processing module may first obtain the identities of the modules from the first processing module, and if it is detected that the identities of these modules are pre-stored in the second processing module, then The second processing module then obtains the mode information of each module from the first processing module, so as to determine whether each module is the main processing module or the slave processing module according to the mode information of each module.
- the second processing module can also acquire the identity and mode information of each module in the first processing module at the same time in one acquisition action, and further, verify the identity of each module. If the verification is passed, it is further determined whether each module is a master processing module or a slave processing module according to the mode information of each module.
- the second processing module can also acquire the address information of each module while acquiring the mode information of each module, so that after determining the main processing module and the slave processing module, the mode and address of each module are bound, Facilitate the transmission of messages.
- the second processing module can identify the identity and mode of each module in the first processing module one by one. In this way of identification, the second processing module acquires a small amount of data at a time, which occupies transmission There are fewer resources, or in other embodiments, the second processing module can also identify the identities and patterns of all modules in the first processing module at the same time. This identification method can reduce the interaction between the second processing module and the first processing module. The number of times has a high recognition efficiency.
- the user can also expand or delete the modules in the first processing module.
- the second processing module monitors its own communication port. When it is detected that a new module in the first processing module is connected to its own free communication port, the second processing module sends a message to the communication port through the communication port. The newly connected module sends query information and receives the identity and mode information returned by the newly connected module, so as to identify the working mode of the newly connected module according to the received mode information.
- the second processing module when the newly connected module is a slave processor Module, the second processing module records that the working mode corresponding to the identity of the module is the slave mode, or when the new access module is in the master mode, the second processing module first detects whether the current first processing module includes the main processing module, If it is not included, the working mode corresponding to the identity of the module is recorded as the main mode, and if it is included, error information is fed back.
- this description is only an example and is not the only limitation to this application.
- the second processing module can also monitor the connection status of the currently connected main processing module and the slave processing module. If the main processing module is detected or the slave processing module is disconnected, first You can try to reconnect, if you cannot reconnect successfully, delete the currently stored data of the module.
- the main processing module and/or the slave processing module can be flexibly increased or decreased, so that the ultrasonic detection system can adapt to the needs of different detection tasks.
- the various aspects, implementations, implementations or features in the embodiments described in this application can be used alone or in any combination. All aspects in the described embodiments can be implemented by software, hardware, or a combination of software and hardware.
- the described embodiments may also be embodied by a computer readable medium storing computer readable code, the computer readable code including instructions executable by at least one computing device.
- the computer-readable medium can be associated with any data storage device capable of storing data, which can be read by a computer system.
- the computer readable medium used for example may include read-only memory, random access memory, CD-ROM, HDD, DVD, magnetic tape, optical data storage device, and the like.
- the computer-readable medium may also be distributed in computer systems connected through a network, so that the computer-readable code can be stored and executed in a distributed manner.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Biophysics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Abstract
一种基于超声检测系统的生物体征检测方法,包括:第二处理模块向第一处理模块中的主处理模块发送检测指令(301),主处理模块基于检测指令生成第一同步信号,并将第一同步信号发送给同步分配模块,以使同步分配模块将第一同步信号传输给第一处理模块中的主处理模块和从处理模块(302),使得从处理模块和主处理模块能够基于第一同步信号控制各自连接的阵元同时发射超声波,并采集回波信号(303),从而第二处理模块基于各阵元采集得到的回波信号检测得到生物体的体征信息(304),基于超声检测系统的生物体征检测方法能够同时对生物体的多个维度进行检测,提高检测效率。
Description
本申请实施例涉及超声成像技术领域,尤其涉及一种基于超声检测系统的生物体征检测方法。
组织的弹性、粘性是生物体的重要表征,其很多信息均可以被调制到剪切波的各种参数上。
超声波具有无损、无电离、无辐射的优点,在医疗领域被广泛应用。
利用超声波来定量化的检测剪切波的参数信息,进而获取组织的粘、弹性信息,特别是弹性信息,目前使用最为广泛,应用最为成功的是瞬时弹性成像设备,但该设备只有一个阵元、一个通道,一次只能获取一个方向上的信息。
而医学研究人员对于更多维度信息的渴求,越来越迫切。
因此如何将超声波定量化检测剪切波的技术,扩展为多个阵元,多个通道,且便于扩展,从而可以实现二维乃至多维方向上粘弹性的检测,目前并没有很好的方法。
发明内容
本申请实施例提供一种基于超声检测系统的生物体征检测方法,用以通过多阵元同时对生物体的多个维度的体征进行检测。
本申请实施例提供一种基于超声检测系统的生物体征检测方法,该方法适用的超声检测系统包括:超声探头、第一处理模块、第二处理模块和同步分配模块,其中超声探头中包括至少两个阵元,第一处理模块包括一个主处理模块和至少一个从处理模块,该方法包括:
所述第二处理模块向所述主处理模块发送检测指令;所述主处理模块基 于所述检测指令生成第一同步信号,并将所述第一同步信号发送给所述同步分配模块,以使所述同步分配模块将所述第一同步信号发送给所述第一处理模块中的所述主处理模块和所述从处理模块;所述从处理模块和所述主处理模块基于所述第一同步信号控制各自连接的阵元发射超声波,并采集至少20帧的所述超声波的回波信号,其中,所述回波信号的脉冲重复发生频率在10Hz-40000Hz的频率范围内;所述第二处理模块基于采集到的所述回波信号检测获得生物体的体征信息。
在一种实施方式中,所述第二处理模块向所述主处理模块发送检测指令之前,所述方法还包括:所述第二处理模块为所述主处理模块和所述从处理模块配置控制参数,以使所述主处理模块和所述从处理模块基于所述控制参数对各自连接的阵元进行控制。
在一种实施方式中,所述控制参数包括第一参数,所述第一参数用于控制所述阵元产生剪切波。
在一种实施方式中,基于所述第一参数产生的剪切波的时长在1us到1s之间,振动频率在10Hz到100000000Hz之间。
在一种实施方式中,所述第二处理模块为所述主处理模块和所述从处理模块配置控制参数之后,所述方法还包括:
所述第二处理模块向所述主处理模块发送激励指令;所述主处理模块基于所述激励指令生成第二同步信号,并将所述第二同步信号发送给所述同步分配模块,以使所述同步分配模块将所述第二同步信号发送给所述第一处理模块中的所述主处理模块和所述从处理模块;基于所述第二同步信号,所述从处理模块和所述主处理模块根据所述第一参数控制各自连接的阵元产生剪切波。
在一种实施方式中,所述从处理模块和所述主处理模块控制各自连接的阵元以如下方式中的一种产生剪切波:单点声辐射力脉冲的方式、多点马赫锥的方式、多点梳状波的方式以及多点面状波的方式。
在一种实施方式中,所述控制参数包括第二参数,所述第二参数用于控制所述阵元产生超声波。
在一种实施方式中,所述第二处理模块为所述主处理模块和所述从处理模块配置控制参数之前,所述方法还包括:所述第二处理模块获取所述第一 处理模块中各模块的身份信息,并根据所述各模块的身份信息,识别主处理模块和从处理模块。
在一种实施方式中,所述身份信息中包括身份标识和模式信息;所述根据所述各模块的身份信息,识别主处理模块和从处理模块,包括:
针对所述第一处理模块中的每个模块,根据所述模块的身份标识对所述模块的身份进行验证,并在验证通过时,基于所述模块的模式信息确定模块是主处理模块或从处理模块。
在一种实施方式中,所述身份信息包括如下中的至少一种:设备的厂商识别码、设备识别码和辅助识别码。
在一种实施方式中,所述超声检测系统还包括机械振动装置;所述第二处理模块向所述主处理模块发送检测指令之前,所述方法还包括:所述第二处理模块口向所述机械振动装置发送激励信号,以使所述机械振动装置产生剪切波。
本申请实施例中,通过第二处理模块向第一处理模块中的主处理模块发送检测指令,主处理模块基于该检测指令生成第一同步信号,并将该第一同步信号发送给同步分配模块,以使同步分配模块将第一同步信号传输给第一处理模块中的主处理模块和从处理模块,使得从处理模块和主处理模块能够基于第一同步信号控制各自连接的阵元同时发射超声波,并采集回波信号,从而第二处理模块基于各阵元采集得到的回波信号检测得到生物体的体征信息。由于本申请实施例可以通过多个阵元同时发射超声波,并对多个陈元采集到的回波信号进行处理,因此能够同时对生物体的多个维度进行检测,提高了检测效率。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种超声检测系统的结构示意图;
图2是本申请实施例提供的一种超声检测系统的结构示意图;
图3是本申请实施例提供的一种基于超声检测系统的生物体征检测方法的流程图;
图4是本申请实施例提供的一种剪切波的激励方法的流程图;
图5是本申请实施例提供的一种识别主处理模块和从处理模块的方法流程图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤的过程或结构的装置不必限于清楚地列出的那些结构或步骤而是可包括没有清楚地列出的或对于这些过程或装置固有的其它步骤或结构。
图1是本申请实施例提供的一种超声检测系统的结构示意图,如图1所示,示例的,该超声检测系统包括超声探头10、第一处理模块11、第二处理模块12和同步分配模块13,其中超声探头包括阵元101和阵元102、第一处理模块11包括主处理模块111和从处理模块112,阵元101与主处理模块111连接,阵元102与从处理模块112连接,主处理模块111和从处理模块112还同时与同步分配模块13和第二处理模块12连接。同步分配模块13用于根据主处理模块111的触发给主处理模块111和从处理模块112分配同步信号,主处理模块111和从处理模块112分别用于控制阵元101和阵元102同时在生物体的不同维度方向上发射检测信号(比如超声波),并采集检测信号的回波信号,第二处理模块12用于对回波信号进行处理,获取生物体不同维度上的体征信息。在图1所示的系统中主处理模块111和从处理模块112的时钟信号可以由主处理模块111和从处理模块112自身产生,在这种情况下,在系统初始化时,需要对主处理模块111和从处理模块112的时钟进行同步和校准。或者如图2所示,在一些实施例里中,在图1所示结构的基础上, 超声检测系统还可以包括时钟分配模块14,时钟分配模块14用于为主处理模块111和从处理模块112分配时钟。当然图1和图2仅是一种示例性的说明并不是对本申请实施例所称的超声检测系统的唯一限定,实际上,在本申请实施例所称的超声检测系统中,超声探头可以包括两个或两个以上的阵元,第一处理模块中可以包括一个主处理模块,以及一个及以上的从处理模块,其中,一个阵元连接一个主处理模块或从处理模块,主处理模块和从处理模块可以分别连接多个阵元。
基于上述的超声检测系统,本申请实施例提供了一种基于超声检测系统的生物体征检测方法,用以通过多阵元对生物体多个维度的体征信息进行检测。示例的,图3是本申请实施例提供的一种基于超声检测系统的生物体征检测方法的流程图,如图3所示,该方法包括:
步骤301、第二处理模块向所述主处理模块发送检测指令。
在本实施例中,第二处理模块中预先存储有第一处理模块中各模块的模式信息和地址信息,其中,各模块的模式信息用于指示各模块是主处理模块还是从处理模块。
在执行检测操作时,第二处理模块获取主处理模块的地址,并基于该地址将检测指令发送给主处理模块。
步骤302、主处理模块基于所述检测指令生成第一同步信号,并将所述第一同步信号发送给所述同步分配模块,以使所述同步分配模块将所述第一同步信号发送给所述第一处理模块中的所述主处理模块和所述从处理模块。
本实施例为了实现同时对生物体的多个维度的检测,在执行检测操作时,需要触发超声探头中的多个阵元同时工作。其中,多个阵元的同步信号由主处理模块接收到检测指令之后生成,并通过同步分配模块分配给第一处理模块中的主处理模块和从处理模块。
步骤303、从处理模块和所述主处理模块基于所述第一同步信号控制各自连接的阵元发射超声波,并采集至少20帧的所述超声波的回波信号,其中,所述回波信号的脉冲重复发生频率在10Hz-40000Hz的频率范围内。
本实施例中,第二处理模块可以在向主处理模块发送检测指令之前预先为第一处理模块中的主处理模块和从处理模块配置控制参数,主处理模块的控制参数和从处理模块的控制参数可以相同也可以不同,主处理模块和从处 理模块基于该控制参数对各自连接的阵元进行控制。
在本实施例中该控制参数包括诸如超声波激发的能量大小、频率,孔径等参数(为了方便区分,以下简称第二参数)。主处理模块和从处理模块根据第二参数控制各自连接的阵元发出具有目标特征的超声波。也就是说本实施例中的第二处理模块可以通过对第二参数的配置和调整实现对输出的超声波控制。
这里需要说明的是本实施例对于第二参数的设置可以与目标检测的剪切波的特征相关联,使得得到的超声波能够很好的对剪切波进行检测。
为了便于理解,在本实施例可示例性的理解成:携带有生物体体征信息的剪切波由生物体组织内部自发振动产生。从处理模块在接收到同步分配模块分配的第一同步信号之后,基于第一同步信号与主处理模块一同采用第二处理装置配置的第二参数对各自连接的阵元进行控制,使得阵元发出相应的超声波,并接收该超声波的回波信号。
在另外一些实施例里中,本实施例所称的剪切波还可以通过外部振动的方式产生,比如在一种实施方式中,超声检测系统中可以包括机械振动装置,该机械振动装置与第二处理模块连接,第二处理模块在执行步骤301的方法之前第二处理模块向机械振动装置发送激励信号,以使得机械振动装置在激励信号的激励下产生相应的剪切波。其中,机械振动装置的结构可以根据需要进行设置,并不唯一。在另一种实施方式中,剪切波还可以由超声探头中的阵元产生,在这种实施方式中,第二处理模块为主处理模块和从处理模块配置的控制参数中还可以包括用于生成剪切波的相关参数(为了便于区分,以下简称第一参数),主处理模块和从处理模块根据第一参数控制阵元生成相应的剪切波,示例的,该剪切波引起的组织运动速度可以在1nm/s-10m/s之间,组织的运动范围可以在0.01μm-10mm之间。
示例的图4是本申请实施例提供的一种剪切波的激励方法的流程图,如图4所示,在第二处理模块为主处理模块和从处理模块配置控制参数之后,本实施例还可以包括如下的剪切波激励方法:
步骤401、所述第二处理模块向所述主处理模块发送激励指令。
步骤402、主处理模块基于所述激励指令生成第二同步信号,并将所述第二同步信号发送给所述同步分配模块,以使所述同步分配模块将所述第二 同步信号发送给所述第一处理模块中的所述主处理模块和所述从处理模块。
步骤403、基于所述第二同步信号,所述从处理模块和所述主处理模块根据所述第一参数控制各自连接的阵元产生剪切波。
示例的,在图4实施例中,第二处理模块在向主处理模块发送激励指令之前,可以对主处理模块和从处理模块的通讯端口进行配置,以明确主处理模块和从处理模块中与阵元连接的端口。
进一步的,在完成通信端口的配置之后,第二处理模块为主处理模块和从处理模块配置用于产生剪切波的第一参数,其中,第一参数可以包括但不局限于包括如下数据:连续振动产生剪切波的时长和振动频率,其中,该时长可以在1us-1s之间,振动频率可以在10-100000000Hz之间。
在完成第一参数的配置之后,若主处理模块接收到第二处理模块的激励指令,则主处理模块根据第二处理模块的激励指令生成第二同步信号,并通过同步分配模块将第二同步信号分配给第一处理模块中的主处理模块和从处理模块,第一处理模块中的主处理模块和从处理模块在接收到第二同步信号之后控制各自连接的阵元以如下方式中的一种产生剪切波:单点声辐射力脉冲的方式、多点马赫锥的方式、多点梳状波的方式以及多点面状波的方式。其中,持续振动产生剪切波的时长比如可以是60us,振动频率比如可以是2400000Hz。该剪切波引起的组织运动速度比如可以是1m/s,该剪切波引起的组织运动范围比如可以是1mm。当然这里仅是对剪切波的示例说明而不是唯一限定。
步骤304、第二处理模块基于采集到的所述回波信号检测获得生物体的体征信息。
示例的,第二处理模块在得到回波信号后,先从回波信号中分离出携带有生物体体征信息的剪切波,进一步的,再基于预设的处理方法从剪切波中解析获得生物体的体征信息。其中,从回波信号中分离剪切波,以及从剪切波中解析获得生物体体征信息的方法可以参照相关技术,在这里不再赘述。
本实施例中,通过第二处理模块向第一处理模块中的主处理模块发送检测指令,主处理模块基于该检测指令生成第一同步信号,并将该第一同步信号发送给同步分配模块,以使同步分配模块将第一同步信号传输给第一处理模块中的主处理模块和从处理模块,使得从处理模块和主处理模块能够基于 第一同步信号控制各自连接的阵元同时发射超声波,并采集回波信号,从而第二处理模块基于各阵元采集得到的回波信号检测得到生物体的体征信息。由于本实施例可以通过多个阵元同时发射超声波,并对多个陈元采集到的回波信号进行处理,因此能够同时对生物体的多个维度进行检测,提高了检测效率。
在本申请的一个实施例中,在第二处理模块向主处理模块发送检测指令或者为所述主处理模块和所述从处理模块配置控制参数之前,可以包括识别主处理模块和从处理模块的方法,在该方法中,第二处理模块通过获取第一处理模块中各模块的身份信息,根据各模块的身份信息来识别主处理模块以及从处理模块,其中,本实施例中所称的身份信息包括身份标识和模式信息。示例的,图5是本申请实施例提供的一种识别主处理模块和从处理模块的方法流程图,如图5所示,该方法包括:
步骤501、所述第二处理模块获取所述第一处理模块中各模块的身份标识和模式信息。
本实施例中主处理模块对应的工作模式为主模式,从处理模块对应的工作模式为从模式,模块的模式信息用于指示模块的工作模式是主模式还是从模式。
在本实施例中每个模块的身份标识具有唯一性,示例的,本实施例所称的身份标识可以包括如下标识中的至少一种:设备的厂商识别码、设备识别码和辅助识别码。
步骤502、针对所述第一处理模块中的每个模块,根据所述模块的身份标识对所述模块的身份进行验证,并在验证通过时,基于所述模块的模式信息确定模块是主处理模块或从处理模块。
示例的,在一种可行的实施方式中,第二处理模块可以先从第一处理模块中获取各模块的身份标识,若检测到该些模块的身份标识预先存储在第二处理模块中,则第二处理模块再从第一处理模块中获取各模块的模式信息,从而根据各模块的模式信息,确定各模块是主处理模块还是从处理模块。
在另一种可行的实施方式中,第二处理模块还可以在一次获取动作中同时获取第一处理模块中各模块的身份标识和模式信息,进一步的,再对各模块的身份标识进行验证,若验证通过,则进一步根据各模块的模式信息确定 各模块是主处理模块还是从处理模块。
在一些实施方式中,第二处理模块在获取各模块模式信息的同时还可以获取各模块的地址信息,以便在确定主处理模块和从处理模块后,将各模块的模式与地址进行绑定,方便消息的传输。
在一些实施方式中,第二处理模块可以逐个对第一处理模块中各模块的身份和模式进行识别,在这种识别方式中,第二处理模块单次获取的数据量较少,占用的传输资源较少,或者在另一些实施方式中第二处理模块也可以同时对第一处理模块中所有模块的身份和模式进行识别,这种识别方式能够减少第二处理模块与第一处理模块的交互次数,具有较高的识别效率。
另外,在一些实施方式中,用户还可以对第一处理模块中的模块进行扩充或删减。比如在一些可能的场景中,第二处理模块对自身的通讯端口进行监控,当检测到第一处理模块中有新的模块与自身的空闲通讯端口连接时,第二处理模块通过该通讯端口向新接入的模块发送查询信息,并接收新接入的模块返回的身份标识和模式信息,从而根据接收到的模式信息识别新接入模块的工作模式,例如,当新接入模块为从处理模块时,第二处理模块记录该模块的身份标识对应的工作模式为从模式,或者当新接入模块为主模式时,第二处理模块首先检测当前第一处理模块中是否包括主处理模块,若不包括,则记录该模块的身份标识对应的工作模式为主模式,若包括,则反馈错误信息。当然这里仅为示例说明并不是对本申请的唯一限定。
又比如在另一些可能的场景中,第二处理模块还可以对当前连接的主处理模块和从处理模块的连接状态进行监控,若检测到有主处理模块或从处理模块断开连接,则首先可以尝试进行重新连接,若无法成功重新连接则删除当前存储的该模块的数据。
本实施例,通过在检测生物体体征信息之前对第一处理模块中各模块的身份和模式进行识别,能够为检测操作的准确执行提供保障。同时通过模块的扩充机制和删减机制,能够实现对主处理模块和/或从处理模块的灵活增减,使得超声检测系统能够适应不同检测任务的需求。
在本申请实施例中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否 则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。
本申请所描述的实施例中的各方面、实施方式、实现或特征能够单独使用或以任意组合的方式使用。所描述的实施例中的各方面可由软件、硬件或软硬件的结合实现。所描述的实施例也可以由存储有计算机可读代码的计算机可读介质体现,该计算机可读代码包括可由至少一个计算装置执行的指令。所述计算机可读介质可与任何能够存储数据的数据存储装置相关联,该数据可由计算机系统读取。用于举例的计算机可读介质可以包括只读存储器、随机存取存储器、CD-ROM、HDD、DVD、磁带以及光数据存储装置等。所述计算机可读介质还可以分布于通过网络联接的计算机系统中,这样计算机可读代码就可以分布式存储并执行。
上述技术描述可参照附图,这些附图形成了本申请的一部分,并且通过描述在附图中示出了依照所描述的实施例的实施方式。虽然这些实施例描述的足够详细以使本领域技术人员能够实现这些实施例,但这些实施例是非限制性的;这样就可以使用其它的实施例,并且在不脱离所描述的实施例的范围的情况下还可以做出变化。比如,流程图中所描述的操作顺序是非限制性的,因此在流程图中阐释并且根据流程图描述的两个或两个以上操作的顺序可以根据若干实施例进行改变。作为另一个例子,在若干实施例中,在流程图中阐释并且根据流程图描述的一个或一个以上操作是可选的,或是可删除的。另外,某些步骤或功能可以添加到所公开的实施例中,或两个以上的步骤顺序被置换。所有这些变化被认为包含在所公开的实施例以及权利要求中。
Claims (11)
- 一种基于超声检测系统的生物体征检测方法,其特征在于,所述超声检测系统包括超声探头、第一处理模块、第二处理模块和同步分配模块,其中所述超声探头中包括至少两个阵元,所述第一处理模块包括一个主处理模块和至少一个从处理模块,所述方法包括:所述第二处理模块向所述主处理模块发送检测指令;所述主处理模块基于所述检测指令生成第一同步信号,并将所述第一同步信号发送给所述同步分配模块,以使所述同步分配模块将所述第一同步信号发送给所述第一处理模块中的所述主处理模块和所述从处理模块;所述从处理模块和所述主处理模块基于所述第一同步信号控制各自连接的阵元发射超声波,并采集至少20帧的所述超声波的回波信号,其中,所述回波信号的脉冲重复发生频率在10Hz-40000Hz的频率范围内;所述第二处理模块基于采集到的所述回波信号检测获得生物体的体征信息。
- 根据权利要求1所述的方法,其特征在于,所述第二处理模块向所述主处理模块发送检测指令之前,所述方法还包括:所述第二处理模块为所述主处理模块和所述从处理模块配置控制参数,以使所述主处理模块和所述从处理模块基于所述控制参数对各自连接的阵元进行控制。
- 根据权利要求2所述的方法,其特征在于,所述控制参数包括第一参数,所述第一参数用于控制所述阵元产生剪切波。
- 根据权利要求3所述的方法,其特征在于,所述第二处理模块为所述主处理模块和所述从处理模块配置控制参数之后,所述方法还包括:所述第二处理模块向所述主处理模块发送激励指令;所述主处理模块基于所述激励指令生成第二同步信号,并将所述第二同步信号发送给所述同步分配模块,以使所述同步分配模块将所述第二同步信号发送给所述第一处理模块中的所述主处理模块和所述从处理模块;基于所述第二同步信号,所述从处理模块和所述主处理模块根据所述第一参数控制各自连接的阵元产生剪切波。
- 根据权利要求4所述的方法,其特征在于,所述从处理模块和所述主 处理模块控制各自连接的阵元以如下方式中的一种产生剪切波:单点声辐射力脉冲的方式、多点马赫锥的方式、多点梳状波的方式以及多点面状波的方式。
- 根据权利要求4所述的方法,其特征在于,基于所述第一参数产生的剪切波的时长在1us到1s之间,振动频率在10Hz到100000000Hz之间。
- 根据权利要求2所述的方法,其特征在于,所述控制参数包括第二参数,所述第二参数用于控制所述阵元产生超声波。
- 根据权利要求2-7中任一项所述的方法,其特征在于,所述第二处理模块为所述主处理模块和所述从处理模块配置控制参数之前,所述方法还包括:所述第二处理模块获取所述第一处理模块中各模块的身份信息,并根据所述各模块的身份信息,识别主处理模块和从处理模块。
- 根据权利要求8所述的方法,其特征在于,所述身份信息中包括身份标识和模式信息;所述根据所述各模块的身份信息,识别主处理模块和从处理模块,包括:针对所述第一处理模块中的每个模块,根据所述模块的身份标识对所述模块的身份进行验证,并在验证通过时,基于所述模块的模式信息确定模块是主处理模块或从处理模块。
- 根据权利要求9所述的方法,其特征在于,所述身份信息包括如下中的至少一种:设备的厂商识别码、设备识别码和辅助识别码。
- 根据权利要求1所述的方法,其特征在于,所述超声检测系统还包括机械振动装置;所述第二处理模块向所述主处理模块发送检测指令之前,所述方法还包括:所述第二处理模块向所述机械振动装置发送激励信号,以使所述机械振动装置产生剪切波。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20886437.1A EP4046577A4 (en) | 2019-11-12 | 2020-11-05 | METHOD OF DETECTING BIOLOGICAL SIGNS BASED ON AN ULTRASONIC DETECTION SYSTEM |
JP2022527784A JP7336162B2 (ja) | 2019-11-12 | 2020-11-05 | 超音波検出システムに基づく生体サインの検出方法 |
US17/743,257 US20220265246A1 (en) | 2019-11-12 | 2022-05-12 | Method for detecting biological signs based on ultrasonic detection system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911098005.1 | 2019-11-12 | ||
CN201911098005.1A CN110720948B (zh) | 2019-11-12 | 2019-11-12 | 基于超声检测系统的生物体征检测方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/743,257 Continuation US20220265246A1 (en) | 2019-11-12 | 2022-05-12 | Method for detecting biological signs based on ultrasonic detection system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021093663A1 true WO2021093663A1 (zh) | 2021-05-20 |
Family
ID=69223893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/126709 WO2021093663A1 (zh) | 2019-11-12 | 2020-11-05 | 基于超声检测系统的生物体征检测方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220265246A1 (zh) |
EP (1) | EP4046577A4 (zh) |
JP (1) | JP7336162B2 (zh) |
CN (1) | CN110720948B (zh) |
WO (1) | WO2021093663A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110720949B (zh) * | 2019-11-12 | 2020-10-30 | 无锡海斯凯尔医学技术有限公司 | 基于超声检测系统的生物体征检测方法 |
CN110720948B (zh) * | 2019-11-12 | 2021-02-02 | 无锡海斯凯尔医学技术有限公司 | 基于超声检测系统的生物体征检测方法 |
CN116763260B (zh) * | 2023-08-21 | 2023-12-19 | 北京中医药大学 | 一种便携式生物信号同步处理设备和方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5088496A (en) * | 1989-09-29 | 1992-02-18 | U.S. Philips Corporation | Ultrasonic echography apparatus utilizing a digital device for forming channels, in the receiving mode |
CN102599931A (zh) * | 2011-01-25 | 2012-07-25 | 富士胶片株式会社 | 超声波探测器和超声波诊断设备 |
CN103698747A (zh) * | 2013-12-12 | 2014-04-02 | 中国科学院自动化研究所 | 频分制超声波定位系统及方法 |
CN108272469A (zh) * | 2017-12-22 | 2018-07-13 | 深圳先进技术研究院 | 一种双频率血管内超声成像探头 |
WO2018178379A1 (en) * | 2017-03-31 | 2018-10-04 | Koninklijke Philips N.V. | System and method for ultrasound shear wave elastography using external mechanical vibrations |
CN110720948A (zh) * | 2019-11-12 | 2020-01-24 | 无锡海斯凯尔医学技术有限公司 | 基于超声检测系统的生物体征检测方法 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5810731A (en) * | 1995-11-13 | 1998-09-22 | Artann Laboratories | Method and apparatus for elasticity imaging using remotely induced shear wave |
JP4519547B2 (ja) | 2004-07-09 | 2010-08-04 | 株式会社日立メディコ | 超音波診断装置 |
FR2905180B1 (fr) | 2006-08-22 | 2008-12-05 | Super Sonic Imagine | Sonde d'imagerie ultrasonore pour imager une modification transitoire d'un milieu |
CN101474083A (zh) * | 2009-01-15 | 2009-07-08 | 西安交通大学 | 血管力学特性超分辨成像与多参数检测的系统与方法 |
US20110125022A1 (en) | 2009-11-25 | 2011-05-26 | Siemens Medical Solutions Usa, Inc. | Synchronization for multi-directional ultrasound scanning |
CN102113899A (zh) * | 2009-12-30 | 2011-07-06 | 东软飞利浦医疗设备系统有限责任公司 | 基于超声回波的血管实时二维动态信息提取方法 |
JP5597455B2 (ja) * | 2010-06-25 | 2014-10-01 | 株式会社東芝 | 超音波診断装置、超音波画像処理装置及び超音波画像処理プログラム |
CN201767983U (zh) * | 2010-08-12 | 2011-03-23 | 陈庆武 | 超声动态弹性成像探头 |
KR101460692B1 (ko) * | 2011-06-09 | 2014-11-13 | 삼성전자주식회사 | 2차원 트랜스듀서-어레이를 구동시키는 장치, 의료영상시스템 및 2차원 트랜스듀서-어레이를 구동시키는 방법 |
EP2756330B1 (en) | 2011-09-12 | 2018-09-05 | B-K Medical ApS | Ultrasound imaging console |
JP6193124B2 (ja) * | 2011-11-17 | 2017-09-06 | 株式会社日立製作所 | 超音波診断装置及び超音波画像生成方法 |
CN104135937B (zh) | 2012-02-21 | 2017-03-29 | 毛伊图像公司 | 使用多孔超声确定材料刚度 |
US11167154B2 (en) * | 2012-08-22 | 2021-11-09 | Medtronic, Inc. | Ultrasound diagnostic and therapy management system and associated method |
EP2833792B1 (en) | 2012-10-07 | 2024-06-12 | Mayo Foundation For Medical Education And Research | Method for shear wave elastography by transmitting ultrasound with subgroups of ultrasound transducer elements |
WO2014175068A1 (ja) * | 2013-04-22 | 2014-10-30 | ソニー株式会社 | 超音波処理装置および方法、並びにプログラム |
KR20150069920A (ko) * | 2013-12-16 | 2015-06-24 | 삼성메디슨 주식회사 | 초음파 진단 장치 및 그 동작방법 |
KR102346128B1 (ko) * | 2014-12-31 | 2022-01-03 | 삼성메디슨 주식회사 | 초음파 진단 장치, 웨어러블 장치, 그에 따른 초음파 진단 장치 제어방법, 그에 따른 웨어러블 장치 제어방법 및 그를 기록한 기록 매체 |
CN105411622B (zh) * | 2015-12-03 | 2016-08-17 | 西安邮电大学 | 一种用于控制超声相控阵连续波发射的控制方法及系统 |
KR20170076456A (ko) * | 2015-12-21 | 2017-07-04 | 삼성전자주식회사 | 초음파 영상장치 및 초음파 영상장치의 제어방법 |
CN205458786U (zh) * | 2016-03-08 | 2016-08-17 | 郑州人民医院 | 声触诊弹性成像及量化分析的新触发技术及装置 |
CN206063170U (zh) * | 2016-06-27 | 2017-04-05 | 中国科学院苏州生物医学工程技术研究所 | 微型超声装置 |
US20180210632A1 (en) * | 2017-01-20 | 2018-07-26 | General Electric Company | Method and ultrasound imaging system for adjusting an ultrasound image with a touch screen |
ES2833934T3 (es) | 2017-03-27 | 2021-06-16 | Echosens | Dispositivo y procedimiento para medir las propiedades viscoelásticas de un medio viscoelástico |
EP3764914B1 (en) * | 2018-03-15 | 2023-11-15 | Koninklijke Philips N.V. | Variable intraluminal ultrasound transmit pulse generation and control devices, systems, and methods |
JP7228214B2 (ja) | 2018-03-24 | 2023-02-24 | エラスタンス イメージング エルエルシー | エラストグラフィ撮像およびビスコエラストグラフィ撮像のためのシステムおよび方法 |
JP7052530B2 (ja) * | 2018-04-25 | 2022-04-12 | コニカミノルタ株式会社 | 超音波診断装置、および、超音波信号処理方法 |
CN108836384A (zh) * | 2018-04-27 | 2018-11-20 | 沈阳东软医疗系统有限公司 | 超声成像方法、装置及超声成像设备 |
CN109164171B (zh) * | 2018-09-13 | 2023-08-29 | 深圳达闼科技控股有限公司 | 一种超声检测方法、超声检测系统及相关装置 |
CN109805958B (zh) * | 2019-02-22 | 2021-03-16 | 无锡海斯凯尔医学技术有限公司 | 超声成像设备 |
CN110301938A (zh) * | 2019-07-15 | 2019-10-08 | 无锡海斯凯尔医学技术有限公司 | 探头和组织弹性检测系统 |
CN110301939A (zh) * | 2019-07-15 | 2019-10-08 | 无锡海斯凯尔医学技术有限公司 | 组织成像和参数检测系统 |
-
2019
- 2019-11-12 CN CN201911098005.1A patent/CN110720948B/zh active Active
-
2020
- 2020-11-05 WO PCT/CN2020/126709 patent/WO2021093663A1/zh unknown
- 2020-11-05 JP JP2022527784A patent/JP7336162B2/ja active Active
- 2020-11-05 EP EP20886437.1A patent/EP4046577A4/en active Pending
-
2022
- 2022-05-12 US US17/743,257 patent/US20220265246A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5088496A (en) * | 1989-09-29 | 1992-02-18 | U.S. Philips Corporation | Ultrasonic echography apparatus utilizing a digital device for forming channels, in the receiving mode |
CN102599931A (zh) * | 2011-01-25 | 2012-07-25 | 富士胶片株式会社 | 超声波探测器和超声波诊断设备 |
CN103698747A (zh) * | 2013-12-12 | 2014-04-02 | 中国科学院自动化研究所 | 频分制超声波定位系统及方法 |
WO2018178379A1 (en) * | 2017-03-31 | 2018-10-04 | Koninklijke Philips N.V. | System and method for ultrasound shear wave elastography using external mechanical vibrations |
CN108272469A (zh) * | 2017-12-22 | 2018-07-13 | 深圳先进技术研究院 | 一种双频率血管内超声成像探头 |
CN110720948A (zh) * | 2019-11-12 | 2020-01-24 | 无锡海斯凯尔医学技术有限公司 | 基于超声检测系统的生物体征检测方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4046577A4 (en) | 2022-11-30 |
US20220265246A1 (en) | 2022-08-25 |
CN110720948A (zh) | 2020-01-24 |
JP7336162B2 (ja) | 2023-08-31 |
JP2023501607A (ja) | 2023-01-18 |
CN110720948B (zh) | 2021-02-02 |
EP4046577A1 (en) | 2022-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021093663A1 (zh) | 基于超声检测系统的生物体征检测方法 | |
CN103142252B (zh) | 实现频谱多普勒角度自动偏转的方法及系统 | |
CN110292395A (zh) | 超声成像方法与设备 | |
CN105699788A (zh) | 一种供电时序的测量方法、示波器和系统 | |
CN115518860B (zh) | 一种阵列换能器的激励方法、设备及存储介质 | |
WO2021093664A1 (zh) | 基于超声检测系统的生物体征检测方法 | |
CN113507337A (zh) | 时钟同步精度的确定方法、装置、介质及设备 | |
CN115604144B (zh) | 测试方法及装置、电子设备和存储介质 | |
CN109281651B (zh) | 一种应用于柱面超声阵列的超声井壁成像方法 | |
CN103829974A (zh) | 能量多普勒血流复合成像方法及系统 | |
CN109805958A (zh) | 超声成像设备 | |
WO2020024255A1 (zh) | 检查模式的切换方法以及超声设备 | |
WO2021008219A1 (zh) | 检测模式控制电路 | |
IT202100012350A1 (it) | Sistema smaterializzato, multiutente per l’acquisizione, la generazione e l’elaborazione di immagini ecografiche | |
CN102247167B (zh) | 一种带无线探头的b超仪及其实现方法 | |
CN112666561B (zh) | 超声扫查系统、设备、方法及终端 | |
CN208125855U (zh) | 一种多路短路检测装置及系统 | |
CN106725610A (zh) | 基于移动声束相干激励剪切波的弹性测量方法及系统 | |
CN115061091B (zh) | 一种雷达数据处理方法、系统及电子设备 | |
CN115994057A (zh) | 芯片总线的检测方法、装置、电子设备和存储介质 | |
WO2019191921A1 (zh) | 确定参考信号的方法、用户设备及计算机存储介质 | |
CN104321019B (zh) | 超声波观测系统 | |
CN110384516B (zh) | 探头扫查的控制方法、装置、设备及存储介质 | |
KR101555271B1 (ko) | 초음파 영상 재구성을 위한 데이터 처리 방법 및 장치 | |
JP2014174108A (ja) | 探知プログラム、記録媒体、探知装置、ネットワーク探知システム及び探知方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20886437 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022527784 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020886437 Country of ref document: EP Effective date: 20220517 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |