WO2021093664A1 - 基于超声检测系统的生物体征检测方法 - Google Patents

基于超声检测系统的生物体征检测方法 Download PDF

Info

Publication number
WO2021093664A1
WO2021093664A1 PCT/CN2020/126715 CN2020126715W WO2021093664A1 WO 2021093664 A1 WO2021093664 A1 WO 2021093664A1 CN 2020126715 W CN2020126715 W CN 2020126715W WO 2021093664 A1 WO2021093664 A1 WO 2021093664A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
processing
processing module
processing sub
modules
Prior art date
Application number
PCT/CN2020/126715
Other languages
English (en)
French (fr)
Inventor
孙世博
何琼
徐凯
邵金华
孙锦
段后利
Original Assignee
无锡海斯凯尔医学技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡海斯凯尔医学技术有限公司 filed Critical 无锡海斯凯尔医学技术有限公司
Publication of WO2021093664A1 publication Critical patent/WO2021093664A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device

Definitions

  • the embodiments of the present application relate to the field of ultrasound imaging technology, and in particular, to a method for detecting biological signs based on an ultrasound detection system.
  • the elasticity and viscosity of tissues are important characteristics of organisms, and much of its information can be modulated to various parameters of shear waves.
  • Ultrasound has the advantages of non-destructive, non-ionization, and non-radiation, and is widely used in the medical field.
  • the embodiment of the present application provides a biological sign detection method based on an ultrasonic detection system, which is used to simultaneously detect physical signs of multiple dimensions of a biological body through multiple array elements.
  • the embodiment of the application provides a biological sign detection method based on an ultrasonic detection system.
  • the ultrasonic detection system to which the method is applicable includes: an ultrasonic probe, a first processing module, a second processing module, and a synchronization distribution module, wherein the ultrasonic probe includes at least two Array elements, the first processing module includes at least two parallel processing sub-modules, and the method includes:
  • the second processing module sends a detection instruction to the synchronization distribution module; the synchronization distribution module generates a first synchronization signal based on the detection instruction, and sends the first synchronization signal to each of the processing sub-modules; each The processing sub-module controls the respective connected array elements to emit ultrasonic waves based on the first synchronization signal, and collects echo signals of the ultrasonic waves of at least 20 frames, wherein the pulse repetition frequency of the echo signals is 10 Hz- Within the frequency range of 40000 Hz; the second processing module obtains physical sign information of the biological body based on the collected echo signal detection.
  • the method before the second processing module sends the detection instruction to the synchronization distribution module, the method further includes: the second processing module configures control parameters for each of the processing sub-modules, so that each The processing sub-module controls the respective connected array elements based on the control parameters.
  • control parameter includes a first parameter, and the first parameter is used to control the array element to generate a shear wave.
  • the method further includes: the second processing module sends an excitation instruction to the synchronization distribution module; the synchronization The distribution module generates a second synchronization signal based on the excitation instruction, and sends the second synchronization signal to each of the processing sub-modules; based on the second synchronization signal, each of the processing sub-modules is based on the first parameter Control the connected elements to generate shear waves.
  • each of the processing sub-modules controls the respective connected array elements to generate shear waves in one of the following ways: a single-point acoustic radiation force pulse method, a multi-point Mach cone method, and a multi-point comb Wave-like method and multi-point surface wave method.
  • the duration of the shear wave generated based on the first parameter is between 1 us-1s, and the vibration frequency is between 10 Hz and 100,000,000 Hz.
  • control parameter includes a second parameter, and the second parameter is used to control the array element to generate ultrasonic waves.
  • the method before the second processing module configures control parameters for each of the processing sub-modules, the method further includes:
  • the second processing module obtains the identity of each processing sub-module in the first processing module, and verifies the identity of each processing sub-module based on the identity.
  • the method further includes: the second processing module obtains the address information of each processing submodule while obtaining the identity of each processing submodule in the first processing module; or For each processing sub-module in the first processing module, after the identity verification is passed, the second processing module obtains the address information of the processing sub-module.
  • the identity identifier includes at least one of the following: a manufacturer identification code, a device identification code, and an auxiliary identification code of the device.
  • the ultrasonic detection system further includes a mechanical vibration device; before the second processing module sends a detection instruction to the synchronization distribution module, the method further includes:
  • the second processing module sends an excitation signal to the mechanical vibration device, so that the mechanical vibration device generates a shear wave.
  • the second processing module sends a detection instruction to the synchronization distribution module, and the synchronization distribution module generates a first synchronization signal based on the detection instruction, and sends the first synchronization signal to each processing sub in the first processing module.
  • Module so that each processing sub-module in the first processing module can control the connected array elements to simultaneously emit ultrasonic waves based on the first synchronization signal, and collect echo signals, so that the second processing module is based on the echo signals collected by each array element Detect the physical signs of the organism. Since the embodiment of the present application can simultaneously transmit ultrasonic waves through multiple array elements and process the echo signals collected by the multiple array elements, it is possible to detect multiple dimensions of a biological body at the same time, which improves the detection efficiency.
  • FIG. 1 is a schematic structural diagram of an ultrasonic inspection system provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an ultrasonic detection system provided by an embodiment of the present application.
  • FIG. 3 is a flowchart of a biological sign detection method based on an ultrasonic detection system provided by an embodiment of the present application
  • Fig. 4 is a flowchart of a shear wave excitation method provided by an embodiment of the present application.
  • Fig. 5 is a flowchart of an identity verification method for processing sub-modules provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of an ultrasonic inspection system provided by an embodiment of the present application.
  • the ultrasonic inspection system includes an ultrasonic probe 10, a first processing module 11, a second processing module 12, and a synchronization distribution.
  • Module 13 where the ultrasound probe includes an array element 101 and an array element 102, the first processing module 11 includes a processing sub-module 111 and a processing sub-module 112, the array element 101 is connected to the processing sub-module 111, and the array element 102 is connected to the processing sub-module 112 ,
  • the processing sub-module 111 and the processing sub-module 112 are also connected to the synchronization distribution module 13 and the second processing module 12 at the same time.
  • the synchronization distribution module 13 is connected to the second processing module 12.
  • the synchronization allocation module 13 is used to allocate synchronization signals to the processing sub-module 111 and the processing sub-module 112 according to the trigger of the second processing module 12, and the processing sub-module 111 and the processing sub-module 112 are used to control the array element 101 and the array element 102 according to the synchronization signal.
  • detection signals (such as ultrasonic waves) are transmitted in different dimensional directions of the biological body, and echo signals of the detection signals are collected.
  • the second processing module 12 is used to process the echo signals to obtain physical sign information of the biological body in different dimensions. In the system shown in FIG.
  • the clock signals of the processing sub-module 111 and the processing sub-module 112 themselves can be generated by the processing sub-module 111 and the processing sub-module 112 themselves.
  • the processing sub-module needs to be The clocks of the module 111 and the processing sub-module 112 are synchronized and calibrated.
  • the ultrasonic inspection system may further include a clock distribution module 14, which is used to provide processing sub-module 111 and processing sub-module. 112 provides a clock signal.
  • the ultrasonic probe may include
  • the first processing module may include at least two parallel processing sub-modules, where one array element is connected to one processing sub-module, and each processing sub-module can be connected to multiple array elements.
  • FIG. 3 is a flowchart of a method for detecting biological signs based on an ultrasonic detection system provided by an embodiment of the present application. As shown in FIG. 3, the method includes:
  • Step 301 The second processing module sends a detection instruction to the synchronization distribution module.
  • the address information of each processing sub-module in the first processing module and the address information of the synchronization distribution module are pre-stored in the second processing module.
  • the second processing module When performing the detection operation, the second processing module obtains the address of the synchronization distribution module, and sends the detection instruction to the synchronization distribution module based on the address.
  • Step 302 The synchronization distribution module generates a first synchronization signal based on the detection instruction, and sends the first synchronization signal to each processing sub-module.
  • the synchronization signal of multiple array elements is generated by the synchronization distribution module after receiving the detection instruction of the second processing module. After the synchronization distribution module generates the synchronization signal, the synchronization signal is transmitted to each processing sub-module in the first processing module. , So that each processing sub-module can simultaneously excite the array element for detection operations.
  • Step 303 Each of the processing sub-modules controls the respective connected array elements to emit ultrasonic waves based on the first synchronization signal, and collects at least 20 frames of echo signals of the ultrasonic waves, wherein the pulses of the echo signals occur repeatedly
  • the frequency is in the frequency range of 10Hz-40000Hz.
  • the second processing module may configure control parameters for each processing sub-module in the first processing module before sending the detection instruction to the synchronization distribution module.
  • the control parameters of each processing sub-module may be the same or different.
  • the sub-modules control the connected array elements based on the control parameters.
  • control parameters include parameters such as the energy size, frequency, and aperture of ultrasonic excitation (for easy distinction, hereinafter referred to as the second parameter).
  • Each processing sub-module controls the connected array element to emit ultrasonic waves with target characteristics according to the second parameter. That is to say, the second processing module in this embodiment can realize the ultrasonic control of the output through the configuration and adjustment of the second parameter.
  • the setting of the second parameter in this embodiment can be associated with the characteristics of the shear wave detected by the target, so that the obtained ultrasonic wave can well detect the shear wave.
  • this embodiment can be exemplarily understood as: the shear wave carrying the biological sign information is generated by the spontaneous vibration inside the biological tissue.
  • the second parameter configured by the second processing device is used to control the respective connected array elements, so that the array elements send out corresponding Ultrasound, and receive the echo signal of the ultrasonic.
  • the shear wave referred to in this embodiment can also be generated by means of external vibration.
  • the ultrasonic inspection system may include a mechanical vibration device, which is connected to the second vibration device.
  • the two processing modules are connected. Before the second processing module executes the method in step 301, the second processing module sends an excitation signal to the mechanical vibration device, so that the mechanical vibration device generates a corresponding shear wave under the excitation of the excitation signal.
  • the structure of the mechanical vibration device can be set according to needs, and it is not unique.
  • the shear wave can also be generated by the array element in the ultrasonic probe.
  • control parameters configured by the second processing module for each processing sub-module can also include the control parameters used to generate the shear wave.
  • the relevant parameters of the shear wave (for easy distinction, hereinafter referred to as the first parameter), each processing sub-module controls the array element to generate the corresponding shear wave according to the first parameter.
  • the tissue movement speed caused by the shear wave can be 1nm /s-10m/s, the movement range of the tissue can be between 0.01 ⁇ m-10mm.
  • Fig. 4 of the example is a flowchart of a shear wave excitation method provided by an embodiment of the present application. As shown in Fig. 4, after the second processing module configures control parameters for each processing sub-module, this embodiment may also include The following shear wave excitation method:
  • Step 401 The second processing module sends an excitation instruction to the synchronization distribution module.
  • Step 402 The synchronization distribution module generates a second synchronization signal based on the excitation instruction, and sends the second synchronization signal to each processing sub-module.
  • Step 403 Based on the second synchronization signal, each processing sub-module controls each connected array element to generate a shear wave according to the first parameter.
  • the second processing module can configure the communication ports of each processing sub-module before sending the excitation instruction to the synchronization distribution module to clarify the connection between each processing sub-module and the array element. Ports so that the array element is connected to these ports.
  • the second processing module configures the first parameters for generating shear waves for each processing sub-module, where the first parameters may include, but are not limited to, the following data: continuous vibration generation
  • the duration and vibration frequency of the shear wave where the duration can be between 1 us-1s, and the vibration frequency can be between 10 Hz and 100,000,000 Hz.
  • each processing sub-module in a processing module controls the respective connected array elements to generate shear waves in one of the following ways: single-point acoustic radiation force pulses, multiple Point Mach cone method, multi-point comb wave method, and multi-point surface wave method.
  • the duration of continuous vibration to generate shear waves may be 60 us, for example, and the vibration frequency may be 2.4 million Hz, for example.
  • the tissue motion speed caused by the shear wave may be, for example, 1 m/s, and the tissue motion range caused by the shear wave may be, for example, 1 mm.
  • Step 304 The second processing module obtains physical sign information of the organism based on the collected echo signal detection.
  • the second processing module first separates the shear wave carrying the biological information from the echo signal, and further, analyzes and obtains the shear wave from the shear wave based on a preset processing method Information on the physical signs of the organism.
  • the method of separating the shear wave from the echo signal and analyzing and obtaining the biological sign information from the shear wave can refer to the related technology, which will not be repeated here.
  • the second processing module sends a detection instruction to the synchronization distribution module, and the synchronization distribution module generates a first synchronization signal based on the detection instruction, and sends the first synchronization signal to each processing sub-module in the first processing module , So that the processing sub-modules in the first processing module can control their connected array elements to simultaneously emit ultrasonic waves based on the first synchronization signal, and collect echo signals, so that the second processing module detects the echo signals based on the echo signals collected by each array element Get information about the physical signs of the organism. Since this embodiment can simultaneously transmit ultrasonic waves through multiple array elements and process the echo signals collected by the multiple array elements, it is possible to detect multiple dimensions of a biological body at the same time, which improves the detection efficiency.
  • FIG. 5 is a flowchart of an identity verification method for processing sub-modules according to an embodiment of the present application. As shown in FIG. 5, the method includes:
  • Step 501 Obtain the identity of each processing sub-module in the first processing module.
  • Step 502 Verify the identity of each processing sub-module based on the identity of each processing sub-module.
  • the identity identifier of each processing sub-module is unique.
  • the identity identifier referred to in this embodiment may include at least one of the following identifiers: manufacturer identification code, device identification code, and auxiliary identification code.
  • the second processing module may first obtain the identity of the processing sub-module from the first processing module, and then detect whether the identity of the processing sub-module is consistent with the pre-stored identity of the processing sub-module. If they are consistent, The identity verification is passed, otherwise the verification fails. .
  • the second processing module may also obtain the address information of the processing sub-module while acquiring the identity of the processing sub-module, so that when the processing sub-module’s identity verification is passed, the identity of the processing sub-module can be compared with the identity of the processing sub-module.
  • the address is bound to facilitate the transmission of messages.
  • the second processing module may first obtain the identity of the processing sub-module, and after the identity of the sub-module to be processed is verified, the address information of the processing sub-module is obtained from the first processing module, and the The identity of the processing sub-module is bound to the address.
  • the second processing module can obtain the identity and/or address information of the processing sub-modules one by one. In this way of identification, the amount of data acquired by the second processing module in a single time is small, which takes up a lot of time. Transmission resources are less, or in other embodiments, the second processing module can also acquire the identity and/or address information of all processing sub-modules in the first processing module at the same time. This identification method can reduce the number of the second processing module and the address information. The number of interactions of the first processing module has a high recognition efficiency.
  • the user can also expand or delete the modules in the first processing module.
  • the second processing module monitors its own communication port. When it is detected that a new module in the first processing module is connected to its own free communication port, the second processing module sends a message to the communication port through the communication port. The newly connected module sends query information and receives the identity and address information returned by the newly connected module,
  • the second processing module can also monitor the connection status of the currently connected processing submodule. If it detects that a processing submodule is disconnected, it can first try to reconnect. A successful reconnection will delete the currently stored data of the module.
  • the ultrasonic inspection system can adapt to the requirements of different inspection tasks.
  • the various aspects, implementations, implementations or features in the embodiments described in this application can be used alone or in any combination. All aspects in the described embodiments can be implemented by software, hardware, or a combination of software and hardware.
  • the described embodiments may also be embodied by a computer readable medium storing computer readable code, the computer readable code including instructions executable by at least one computing device.
  • the computer-readable medium can be associated with any data storage device capable of storing data, which can be read by a computer system.
  • the computer readable medium used for example may include read-only memory, random access memory, CD-ROM, HDD, DVD, magnetic tape, optical data storage device, and the like.
  • the computer-readable medium may also be distributed in computer systems connected through a network, so that the computer-readable code can be stored and executed in a distributed manner.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种基于超声检测系统的生物体征检测方法,方法包括:第二处理模块(12)向同步分配模块(13)发送检测指令,同步分配模块(13)基于检测指令生成第一同步信号,并将第一同步信号发送给第一处理模块(11)中的各处理子模块(111,112),使得第一处理模块(11)中的各处理子模块(111,112)基于第一同步信号控制各自连接的阵元(101,102)同时发射超声波,并采集回波信号,从而第二处理模块(12)基于各阵元(101,102)采集得到的回波信号检测得到生物体的体征信息,方法能够同时对生物体的多个维度进行检测,提高检测效率。

Description

基于超声检测系统的生物体征检测方法 技术领域
本申请实施例涉及超声成像技术领域,尤其涉及一种基于超声检测系统的生物体征检测方法。
背景技术
组织的弹性、粘性是生物体的重要表征,其很多信息均可以被调制到剪切波的各种参数上。
超声波具有无损、无电离、无辐射的优点,在医疗领域被广泛应用。
利用超声波来定量化的检测剪切波的参数信息,进而获取组织的粘、弹性信息,特别是弹性信息,目前使用最为广泛,应用最为成功的是瞬时弹性成像设备,但该设备只有一个阵元、一个通道,一次只能获取一个方向上的信息。
而医学研究人员对于更多维度信息的渴求,越来越迫切。
因此如何将超声波定量化检测剪切波的技术,扩展为多个阵元,多个通道,且便于扩展,从而可以实现二维乃至多维方向上粘弹性的检测,目前并没有很好的方法。
发明内容
本申请实施例提供一种基于超声检测系统的生物体征检测方法,用以通过多阵元同时对生物体的多个维度的体征进行检测。
本申请实施例提供一种基于超声检测系统的生物体征检测方法,该方法适用的超声检测系统包括:超声探头、第一处理模块、第二处理模块和同步分配模块,其中超声探头中包括至少两个阵元,第一处理模块包括至少两个并行的处理子模块,该方法包括:
所述第二处理模块向所述同步分配模块发送检测指令;所述同步分配模 块基于所述检测指令生成第一同步信号,并将所述第一同步信号发送给各所述处理子模块;各所述处理子模块基于所述第一同步信号控制各自连接的阵元发射超声波,并采集至少20帧的所述超声波的回波信号,其中,所述回波信号的脉冲重复发生频率在10Hz-40000Hz的频率范围内;所述第二处理模块基于采集到的所述回波信号检测获得生物体的体征信息。
在一种实施方式中,所述第二处理模块向所述同步分配模块发送检测指令之前,所述方法还包括:所述第二处理模块为各所述处理子模块配置控制参数,以使各所述处理子模块基于所述控制参数对各自连接的阵元进行控制。
在一种实施方式中,所述控制参数包括第一参数,所述第一参数用于控制所述阵元产生剪切波。
在一种实施方式中,所述第二处理模块为各所述处理子模块配置控制参数之后,所述方法还包括:所述第二处理模块向所述同步分配模块发送激励指令;所述同步分配模块基于所述激励指令生成第二同步信号,并将所述第二同步信号发送给各所述处理子模块;基于所述第二同步信号,各所述处理子模块根据所述第一参数控制各自连接的阵元产生剪切波。
在一种实施方式中,各所述处理子模块控制各自连接的阵元以如下方式中的一种产生剪切波:单点声辐射力脉冲的方式、多点马赫锥的方式、多点梳状波的方式以及多点面状波的方式。
在一种实施方式中,基于所述第一参数产生的剪切波的时长在1us-1s之间,振动频率在10Hz-100000000Hz之间。
在一种实施方式中,所述控制参数包括第二参数,所述第二参数用于控制所述阵元产生超声波。
在一种实施方式中,所述第二处理模块为各所述处理子模块配置控制参数之前,所述方法还包括:
所述第二处理模块获取所述第一处理模块中各处理子模块的身份标识,并基于所述身份标识,对各处理子模块的身份进行验证。
在一种实施方式中,所述方法还包括:所述第二处理模块在获取所述第一处理模块中各处理子模块的身份标识的同时,获取所述各处理子模块的地址信息;或者针对所述第一处理模块中的每个处理子模块,在身份验证通过后,所述第二处理模块获取所述处理子模块的地址信息。
在一种实施方式中,所述身份标识包括如下中的至少一种:设备的厂商识别码、设备识别码和辅助识别码。
在一种实施方式中,所述超声检测系统还包括机械振动装置;所述第二处理模块向所述同步分配模块发送检测指令之前,所述方法还包括:
所述第二处理模块向所述机械振动装置发送激励信号,以使所述机械振动装置产生剪切波。
本申请实施例中,通过第二处理模块向同步分配模块发送检测指令,同步分配模块基于该检测指令生成第一同步信号,并将该第一同步信号发送给第一处理模块中的各处理子模块,使得第一处理模块中的各处理子模块能够基于第一同步信号控制各自连接的阵元同时发射超声波,并采集回波信号,从而第二处理模块基于各阵元采集得到的回波信号检测得到生物体的体征信息。由于本申请实施例可以通过多个阵元同时发射超声波,并对多个阵元采集到的回波信号进行处理,因此能够同时对生物体的多个维度进行检测,提高了检测效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种超声检测系统的结构示意图;
图2是本申请实施例提供的一种超声检测系统的结构示意图;
图3是本申请实施例提供的一种基于超声检测系统的生物体征检测方法的流程图;
图4是本申请实施例提供的一种剪切波的激励方法的流程图;
图5是本申请实施例提供的一种处理子模块的身份验证方法的流程图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书的术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤的过程或结构的装置不必限于清楚地列出的那些结构或步骤而是可包括没有清楚地列出的或对于这些过程或装置固有的其它步骤或结构。
图1是本申请实施例提供的一种超声检测系统的结构示意图,如图1所示,示例的,该超声检测系统包括超声探头10、第一处理模块11、第二处理模块12和同步分配模块13,其中超声探头包括阵元101和阵元102、第一处理模块11包括处理子模块111和处理子模块112,阵元101与处理子模块111连接,阵元102与处理子模块112连接,处理子模块111和处理子模块112还同时与同步分配模块13和第二处理模块12连接。同步分配模块13与第二处理模块12连接。同步分配模块13用于根据第二处理模块12的触发给处理子模块111和处理子模块112分配同步信号,处理子模块111和处理子模块112用于根据同步信号控制阵元101和阵元102同时在生物体的不同维度方向上发射检测信号(比如超声波),并采集检测信号的回波信号,第二处理模块12用于对回波信号进行处理,获取生物体不同维度上的体征信息。在图1所示的系统中处理子模块111和处理子模块112自身的时钟信号可以由处理子模块111和处理子模块112自身产生,在这种情况下,在系统初始化时,需要对处理子模块111和处理子模块112的时钟进行同步和校准。或者如图2所示,在一些实施例里中,在图1所示结构的基础上,超声检测系统还可以包括时钟分配模块14,时钟分配模块14用于为处理子模块111和处理子模块112提供时钟信号。当然图1和图2仅是一种示例性的说明并不是对本申请实施例所称的超声检测系统的唯一限定,实际上,在本申请实施例所称的超声检测系统中,超声探头可以包括两个或两个以上的阵元,第一处理模块中可以包括至少两个并行的处理子模块,其中,一个阵元连接一个处理子模块,每个处理子模块可以连接多个阵元。
基于上述的超声检测系统,本申请实施例提供了一种基于超声检测系统 的生物体征检测方法,用以通过多阵元对生物体多个维度的体征信息进行检测。示例的,图3是本申请实施例提供的一种基于超声检测系统的生物体征检测方法的流程图,如图3所示,该方法包括:
步骤301、第二处理模块向所述同步分配模块发送检测指令。
在本实施例中,第二处理模块中预先存储有第一处理模块中各处理子模块的地址信息以及同步分配模块的地址信息。
在执行检测操作时,第二处理模块获取同步分配模块的地址,并基于该地址将检测指令发送给同步分配模块。
步骤302、同步分配模块基于所述检测指令生成第一同步信号,并将所述第一同步信号发送给各处理子模块。
本实施例为了实现同时对生物体的多个维度的检测,在执行检测操作时,需要触发超声探头中的多个阵元同时工作。其中,多个阵元的同步信号由同步分配模块接收到第二处理模块的检测指令之后生成,同步分配模块在生成同步信号后,将同步信号分别传输给第一处理模块中的各处理子模块,使得各处理子模块能够同时激励阵元进行检测操作。
步骤303、各所述处理子模块基于所述第一同步信号控制各自连接的阵元发射超声波,并采集至少20帧的所述超声波的回波信号,其中,所述回波信号的脉冲重复发生频率在10Hz-40000Hz的频率范围内。
本实施例中,第二处理模块可以在向同步分配模块发送检测指令之前预先为第一处理模块中的各处理子模块配置控制参数,各处理子模块的控制参数可以相同也可以不同,各处理子模块基于该控制参数对各自连接的阵元进行控制。
在本实施例中该控制参数包括诸如超声波激发的能量大小、频率,孔径等参数(为了方便区分,以下简称第二参数)。各处理子模块根据第二参数控制各自连接的阵元发出具有目标特征的超声波。也就是说本实施例中的第二处理模块可以通过对第二参数的配置和调整实现对输出的超声波控制。
这里需要说明的是本实施例对于第二参数的设置可以与目标检测的剪切波的特征相关联,使得得到的超声波能够很好的对剪切波进行检测。
为了便于理解,本实施例可示例性的理解成:携带有生物体体征信息的剪切波由生物体组织内部自发振动产生。各处理子模块在接收到同步分配模 块分配的第一同步信号之后,基于第一同步信号采用第二处理装置为各自配置的第二参数对各自连接的阵元进行控制,使得阵元发出相应的超声波,并接收该超声波的回波信号。
在另外一些实施例里中,本实施例所称的剪切波还可以通过外部振动的方式产生,比如在一种实施方式中,超声检测系统中可以包括机械振动装置,该机械振动装置与第二处理模块连接,第二处理模块在执行步骤301的方法之前第二处理模块向机械振动装置发送激励信号,以使得机械振动装置在激励信号的激励下产生相应的剪切波。其中,机械振动装置的结构可以根据需要进行设置,并不唯一。在另一种实施方式中,剪切波还可以由超声探头中的阵元产生,在这种实施方式中,第二处理模块为各处理子模块配置的控制参数中还可以包括用于生成剪切波的相关参数(为了便于区分,以下简称第一参数),各处理子模块根据第一参数控制阵元生成相应的剪切波,示例的,该剪切波引起的组织运动速度可以在1nm/s-10m/s之间,组织的运动范围可以在0.01μm-10mm之间。
示例的图4是本申请实施例提供的一种剪切波的激励方法的流程图,如图4所示,在第二处理模块为各处理子模块配置控制参数之后,本实施例还可以包括如下的剪切波激励方法:
步骤401、所述第二处理模块向所述同步分配模块发送激励指令。
步骤402、同步分配模块基于所述激励指令生成第二同步信号,并将所述第二同步信号发送给各处理子模块。
步骤403、基于所述第二同步信号,各处理子模块根据所述第一参数控制各自连接的阵元产生剪切波。
示例的,在图4实施例中,第二处理模块在向同步分配模块发送激励指令之前,可以对各处理子模块的通讯端口进行配置,以明确各处理子模块中用于与阵元连接的端口,使得阵元与该些端口连接。
进一步的,在完成通信端口的配置之后,第二处理模块为各处理子模块配置用于产生剪切波的第一参数,其中,第一参数可以包括但不局限于包括如下数据:连续振动产生剪切波的时长和振动频率,其中,该时长可以在1us-1s之间,振动频率可以在10Hz-100000000Hz之间。
在完成第一参数的配置之后,若同步分配模块接收到第二处理模块的激 励指令,则同步分配模块根据第二处理模块的激励指令生成第二同步信号,并将第二同步信号分配给第一处理模块中的各处理子模块,各处理子模块在接收到第二同步信号之后控制各自连接的阵元以如下方式中的一种产生剪切波:单点声辐射力脉冲的方式、多点马赫锥的方式、多点梳状波的方式以及多点面状波的方式。其中,持续振动产生剪切波的时长比如可以是60us,振动频率比如可以是2400000Hz。该剪切波引起的组织运动速度比如可以是1m/s,该剪切波引起的组织运动范围比如可以是1mm。当然这里仅是对剪切波的示例说明而不是唯一限定。
步骤304、第二处理模块基于采集到的所述回波信号检测获得生物体的体征信息。
示例的,第二处理模块在得到回波信号后,先从回波信号中分离出携带有生物体体征信息的剪切波,进一步的,再基于预设的处理方法从剪切波中解析获得生物体的体征信息。其中,从回波信号中分离剪切波,以及从剪切波中解析获得生物体体征信息的方法可以参照相关技术,在这里不再赘述。
本实施例中,通过第二处理模块向同步分配模块发送检测指令,同步分配模块基于该检测指令生成第一同步信号,并将该第一同步信号发送给第一处理模块中的各处理子模块,使得第一处理模块中的各处理子模块能够基于第一同步信号控制各自连接的阵元同时发射超声波,并采集回波信号,从而第二处理模块基于各阵元采集得到的回波信号检测得到生物体的体征信息。由于本实施例可以通过多个阵元同时发射超声波,并对多个阵元采集到的回波信号进行处理,因此能够同时对生物体的多个维度进行检测,提高了检测效率。
在本申请的一个实施例中,在第二处理模块向同步分配模块发送检测指令或者为第一处理模块中各处理子模块配置控制参数之前,还可以包括用于对处理子模块的身份进行验证的的步骤。示例的,图5是本申请实施例提供的一种处理子模块的身份验证方法的流程图,如图5所示,该方法包括:
步骤501、获取所述第一处理模块中各处理子模块的身份标识。
步骤502、基于各处理子模块的身份标识对各处理子模块的身份进行验证。
在本实施例中,每个处理子模块的身份标识都具有唯一性,示例的,本 实施例所称的身份标识可以包括如下标识中的至少一种:厂商识别码、设备识别码和辅助识别码。在本实施例中,第二处理模块可以先从第一处理模块中获取处理子模块的身份标识,再检测处理子模块的身份标识是否与预先存储的处理子模块的身份标识一致,若一致,则身份验证通过,否则验证失败。。
在一些实施方式中,第二处理模块在获取处理子模块的身份标识的同时还可以获取该处理子模块的地址信息,以便在处理子模块的身份验证通过时,将处理子模块的身份标识与地址进行绑定,方便消息的传输。
在另外一些实施方式中,第二处理模块可以先获取处理子模块的身份标识,待处理子模块的身份标识验证通过后,在从第一处理模块中获取该处理子模块的地址信息,并将该处理子模块的身份标识与地址进行绑定。
在一些实施方式中,第二处理模块可以逐个的对处理子模块的身份标识和/或地址信息进行获取,在这种识别方式中,第二处理模块单次获取的数据量较少,占用的传输资源较少,或者在另一些实施方式中第二处理模块也可以同时对第一处理模块中所有处理子模块的身份标识和/地址信息进行获取,这种识别方式能够减少第二处理模块与第一处理模块的交互次数,具有较高的识别效率。
另外,在一些实施方式中,用户还可以对第一处理模块中的模块进行扩充或删减。比如在一些可能的场景中,第二处理模块对自身的通讯端口进行监控,当检测到第一处理模块中有新的模块与自身的空闲通讯端口连接时,第二处理模块通过该通讯端口向新接入的模块发送查询信息,并接收新接入的模块返回的身份标识和地址信息,
又比如在另一些可能的场景中,第二处理模块还可以对当前连接的处理子模块的连接状态进行监控,若检测到有处理子模块断开连接,则首先可以尝试进行重新连接,若无法成功重新连接则删除当前存储的该模块的数据。
本实施例,通过在检测生物体体征信息之前对第一处理模块中各处理子模块的身份进行验证,能够方便对第一处理模块中处理子模块的监控和管理。同时通过处理子模块的扩充机制和删减机制,能够方便对第一处理模块中的处理子模块进行增减,使得超声检测系统能够适应不同检测任务的需求。
在本申请实施例中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否 则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。
本申请所描述的实施例中的各方面、实施方式、实现或特征能够单独使用或以任意组合的方式使用。所描述的实施例中的各方面可由软件、硬件或软硬件的结合实现。所描述的实施例也可以由存储有计算机可读代码的计算机可读介质体现,该计算机可读代码包括可由至少一个计算装置执行的指令。所述计算机可读介质可与任何能够存储数据的数据存储装置相关联,该数据可由计算机系统读取。用于举例的计算机可读介质可以包括只读存储器、随机存取存储器、CD-ROM、HDD、DVD、磁带以及光数据存储装置等。所述计算机可读介质还可以分布于通过网络联接的计算机系统中,这样计算机可读代码就可以分布式存储并执行。
上述技术描述可参照附图,这些附图形成了本申请的一部分,并且通过描述在附图中示出了依照所描述的实施例的实施方式。虽然这些实施例描述的足够详细以使本领域技术人员能够实现这些实施例,但这些实施例是非限制性的;这样就可以使用其它的实施例,并且在不脱离所描述的实施例的范围的情况下还可以做出变化。比如,流程图中所描述的操作顺序是非限制性的,因此在流程图中阐释并且根据流程图描述的两个或两个以上操作的顺序可以根据若干实施例进行改变。作为另一个例子,在若干实施例中,在流程图中阐释并且根据流程图描述的一个或一个以上操作是可选的,或是可删除的。另外,某些步骤或功能可以添加到所公开的实施例中,或两个以上的步骤顺序被置换。所有这些变化被认为包含在所公开的实施例以及权利要求中。

Claims (11)

  1. 一种基于超声检测系统的生物体征检测方法,其特征在于,所述超声检测系统包括超声探头、第一处理模块、第二处理模块和同步分配模块,其中所述超声探头中包括至少两个阵元,所述第一处理模块包括至少两个并行的处理子模块,所述方法包括:
    所述第二处理模块向所述同步分配模块发送检测指令;
    所述同步分配模块基于所述检测指令生成第一同步信号,并将所述第一同步信号发送给各所述处理子模块;
    各所述处理子模块基于所述第一同步信号控制各自连接的阵元发射超声波,并采集至少20帧的所述超声波的回波信号,其中,所述回波信号的脉冲重复发生频率在10Hz-40000Hz的频率范围内;
    所述第二处理模块基于采集到的所述回波信号检测获得生物体的体征信息。
  2. 根据权利要求1所述的方法,其特征在于,所述第二处理模块向所述同步分配模块发送检测指令之前,所述方法还包括:
    所述第二处理模块为各所述处理子模块配置控制参数,以使各所述处理子模块基于所述控制参数对各自连接的阵元进行控制。
  3. 根据权利要求2所述的方法,其特征在于,所述控制参数包括第一参数,所述第一参数用于控制所述阵元产生剪切波。
  4. 根据权利要求3所述的方法,其特征在于,所述第二处理模块为各所述处理子模块配置控制参数之后,所述方法还包括:
    所述第二处理模块向所述同步分配模块发送激励指令;
    所述同步分配模块基于所述激励指令生成第二同步信号,并将所述第二同步信号发送给各所述处理子模块;
    基于所述第二同步信号,各所述处理子模块根据所述第一参数控制各自连接的阵元产生剪切波。
  5. 根据权利要求4所述的方法,其特征在于,各所述处理子模块控制各自连接的阵元以如下方式中的一种产生剪切波:
    单点声辐射力脉冲的方式、多点马赫锥的方式、多点梳状波的方式以及多点面状波的方式。
  6. 根据权利要求4所述的方法,其特征在于,基于所述第一参数产生的剪切波的时长在1us至1s之间,振动频率在10Hz至100000000Hz之间。
  7. 根据权利要求2所述的方法,其特征在于,所述控制参数包括第二参数,所述第二参数用于控制所述阵元产生超声波。
  8. 根据权利要求2-7中任一项所述的方法,其特征在于,所述第二处理模块为各所述处理子模块配置控制参数之前,所述方法还包括:
    所述第二处理模块获取所述第一处理模块中各处理子模块的身份标识,并基于所述身份标识,对各处理子模块的身份进行验证。
  9. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    所述第二处理模块在获取所述第一处理模块中各处理子模块的身份标识的同时,获取所述各处理子模块的地址信息;或者
    针对所述第一处理模块中的每个处理子模块,在身份验证通过后,所述第二处理模块获取所述处理子模块的地址信息。
  10. 根据权利要求9所述的方法,其特征在于,所述身份标识包括如下中的至少一种:
    设备的厂商识别码、设备识别码和辅助识别码。
  11. 根据权利要求1所述的方法,其特征在于,所述超声检测系统还包括机械振动装置;
    所述第二处理模块向所述同步分配模块发送检测指令之前,所述方法还包括:
    所述第二处理模块向所述机械振动装置发送激励信号,以使所述机械振动装置产生剪切波。
PCT/CN2020/126715 2019-11-12 2020-11-05 基于超声检测系统的生物体征检测方法 WO2021093664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911098170.7A CN110720949B (zh) 2019-11-12 2019-11-12 基于超声检测系统的生物体征检测方法
CN201911098170.7 2019-11-12

Publications (1)

Publication Number Publication Date
WO2021093664A1 true WO2021093664A1 (zh) 2021-05-20

Family

ID=69223901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126715 WO2021093664A1 (zh) 2019-11-12 2020-11-05 基于超声检测系统的生物体征检测方法

Country Status (2)

Country Link
CN (1) CN110720949B (zh)
WO (1) WO2021093664A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110720949B (zh) * 2019-11-12 2020-10-30 无锡海斯凯尔医学技术有限公司 基于超声检测系统的生物体征检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363836A (zh) * 2012-10-07 2015-02-18 梅约医学教育与研究基金会 通过利用超声换能器元件的子群发射超声来进行剪切波弹性成像的系统和方法
US20160030005A1 (en) * 2014-07-30 2016-02-04 General Electric Company Systems and methods for steering multiple ultrasound beams
CN105615921A (zh) * 2014-11-26 2016-06-01 株式会社东芝 超声波探头及超声波诊断装置
CN105748106A (zh) * 2016-04-22 2016-07-13 毛军卫 超声探头以及具有该超声探头的超声检测设备
CN106154251A (zh) * 2016-06-27 2016-11-23 中国科学院苏州生物医学工程技术研究所 超声波束合成方法、超声成像方法和超声弹性成像方法
CN106419955A (zh) * 2016-09-07 2017-02-22 苏州国科昂卓医疗科技有限公司 超声波合成方法及应用、剪切波超声弹性成像方法及应用
CN110720948A (zh) * 2019-11-12 2020-01-24 无锡海斯凯尔医学技术有限公司 基于超声检测系统的生物体征检测方法
CN110720949A (zh) * 2019-11-12 2020-01-24 无锡海斯凯尔医学技术有限公司 基于超声检测系统的生物体征检测方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2652654A1 (fr) * 1989-09-29 1991-04-05 Philips Electronique Lab Echographe ultrasonore utilisant un dispositif numerique de formation de voies en reception.
JP2000254120A (ja) * 1999-03-11 2000-09-19 Toshiba Corp 3次元超音波診断装置
US6676602B1 (en) * 2002-07-25 2004-01-13 Siemens Medical Solutions Usa, Inc. Two dimensional array switching for beamforming in a volume
CN101690672A (zh) * 2009-09-26 2010-04-07 哈尔滨工业大学(威海) 基于阵列探头的实时光声成像装置
CN102297900B (zh) * 2011-06-24 2012-12-26 中国航空工业集团公司北京航空制造工程研究所 一种多通道超声脉冲信号并行同步采集方法
CN103698747A (zh) * 2013-12-12 2014-04-02 中国科学院自动化研究所 频分制超声波定位系统及方法
US10420536B2 (en) * 2014-03-14 2019-09-24 Alpinion Medical Systems Co., Ltd. Software-based ultrasound imaging system
CN108272469B (zh) * 2017-12-22 2021-02-26 深圳先进技术研究院 一种双频率血管内超声成像探头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104363836A (zh) * 2012-10-07 2015-02-18 梅约医学教育与研究基金会 通过利用超声换能器元件的子群发射超声来进行剪切波弹性成像的系统和方法
US20160030005A1 (en) * 2014-07-30 2016-02-04 General Electric Company Systems and methods for steering multiple ultrasound beams
CN105615921A (zh) * 2014-11-26 2016-06-01 株式会社东芝 超声波探头及超声波诊断装置
CN105748106A (zh) * 2016-04-22 2016-07-13 毛军卫 超声探头以及具有该超声探头的超声检测设备
CN106154251A (zh) * 2016-06-27 2016-11-23 中国科学院苏州生物医学工程技术研究所 超声波束合成方法、超声成像方法和超声弹性成像方法
CN106419955A (zh) * 2016-09-07 2017-02-22 苏州国科昂卓医疗科技有限公司 超声波合成方法及应用、剪切波超声弹性成像方法及应用
CN110720948A (zh) * 2019-11-12 2020-01-24 无锡海斯凯尔医学技术有限公司 基于超声检测系统的生物体征检测方法
CN110720949A (zh) * 2019-11-12 2020-01-24 无锡海斯凯尔医学技术有限公司 基于超声检测系统的生物体征检测方法

Also Published As

Publication number Publication date
CN110720949A (zh) 2020-01-24
CN110720949B (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2021093663A1 (zh) 基于超声检测系统的生物体征检测方法
CN105212968B (zh) 弹性检测方法和设备
CN103142252B (zh) 实现频谱多普勒角度自动偏转的方法及系统
WO2021093664A1 (zh) 基于超声检测系统的生物体征检测方法
CN110292395A (zh) 超声成像方法与设备
CN115518860A (zh) 一种阵列换能器的激励方法、设备及存储介质
WO2020113397A1 (zh) 一种超声成像方法以及超声成像系统
US9192360B2 (en) Ultrasound system and method of obtaining ultrasound image
WO2015084140A1 (en) A system and method for emulating multiple independent wireless client devices in the cloud
US9594062B2 (en) System and method for testing transducer elements of an acoustic probe
WO2021258645A1 (zh) 治疗用超声波的调整方法、装置、计算机设备和存储介质
WO2021008219A1 (zh) 检测模式控制电路
US20150016226A1 (en) Beamformer, beamforming method, ultrasonic imaging apparatus, and control method of ultrasonic imaging apparatus
CN102247167A (zh) 一种带无线探头的b超仪及其实现方法
CN105943087A (zh) 超声微泡空化设备的成像处理方法及处理系统
CN115994057A (zh) 芯片总线的检测方法、装置、电子设备和存储介质
CN112790785B (zh) 剪切波弹性成像方法及系统
CN112666561B (zh) 超声扫查系统、设备、方法及终端
CN108814643A (zh) 一种超声波扫描方法和装置
US11090030B2 (en) Ultrasound apparatus and ultrasound emission method
CN110742648B (zh) 超声成像系统
CN108226741B (zh) 一种dma自测试电路
CN110742649B (zh) 超声成像系统
Dos Santos et al. Automated Characterization of Matrix Transducer Arrays using the Verasonics Imaging System
WO2022141052A1 (zh) 剪切波弹性成像方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886835

Country of ref document: EP

Kind code of ref document: A1