WO2021258645A1 - 治疗用超声波的调整方法、装置、计算机设备和存储介质 - Google Patents

治疗用超声波的调整方法、装置、计算机设备和存储介质 Download PDF

Info

Publication number
WO2021258645A1
WO2021258645A1 PCT/CN2020/132863 CN2020132863W WO2021258645A1 WO 2021258645 A1 WO2021258645 A1 WO 2021258645A1 CN 2020132863 W CN2020132863 W CN 2020132863W WO 2021258645 A1 WO2021258645 A1 WO 2021258645A1
Authority
WO
WIPO (PCT)
Prior art keywords
lesion area
ultrasonic
cavitation
boundary
ultrasound
Prior art date
Application number
PCT/CN2020/132863
Other languages
English (en)
French (fr)
Inventor
陈惠人
Original Assignee
飞依诺科技(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 飞依诺科技(苏州)有限公司 filed Critical 飞依诺科技(苏州)有限公司
Publication of WO2021258645A1 publication Critical patent/WO2021258645A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • This application relates to the technical field of medical equipment, and in particular to a method, device, computer equipment, and storage medium for adjusting ultrasonic waves for treatment.
  • Ultrasound diagnosis has many advantages such as non-invasiveness, real-time performance, convenient operation, and low price, making it one of the most widely used auxiliary diagnostic methods in clinical practice.
  • Ultrasound diagnosis uses high-frequency, low-energy diagnostic ultrasound to obtain better images, and contrast agents can also be used to improve the image quality of ultrasound diagnosis.
  • a method for adjusting ultrasonic waves for treatment comprising:
  • the transmission parameters of the treatment ultrasonic wave are adjusted.
  • the obtaining the outline boundary of the lesion area includes:
  • the therapeutic ultrasonic waves correspond to scan lines;
  • the contour boundary of the lesion area is determined according to the start depth and the end depth of each scan line corresponding to the treatment ultrasound.
  • the determining the ultrasonic cavitation field distribution within the outline boundary of the lesion area by transmitting the therapeutic ultrasonic wave to the lesion area includes:
  • the determining the ultrasonic cavitation field distribution within the contour boundary of the lesion area by transmitting therapeutic ultrasonic waves to the lesion area includes:
  • the ultrasonic cavitation field distribution within the contour boundary of the lesion area is determined.
  • the determining the ultrasonic cavitation field distribution within the contour boundary of the lesion area according to the radio frequency signal of the ultrasonic cavitation pulse and the generated ultrasonic image includes:
  • a quantitative analysis is performed on the area of the highlighted area in the ultrasound image to determine the ultrasound cavitation field distribution within the contour boundary of the lesion area.
  • the emission parameter includes any one or more of pulse width, emission frequency, and emission voltage.
  • the adjusting the transmission parameters of the treatment ultrasonic wave according to the ultrasonic cavitation field distribution within the contour boundary of the lesion area includes:
  • the transmission parameter of the treatment ultrasonic wave is increased.
  • a device for adjusting ultrasonic waves for treatment comprising:
  • the boundary acquisition module is used to acquire the contour boundary of the lesion area
  • a field distribution determining module configured to determine the ultrasonic cavitation field distribution within the contour boundary of the lesion area by transmitting therapeutic ultrasound to the lesion area;
  • the parameter adjustment module is configured to adjust the transmission parameters of the treatment ultrasonic waves according to the ultrasonic cavitation field distribution within the contour boundary of the lesion area.
  • a computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the steps of any one of the above adjustment methods when the computer program is executed.
  • a computer-readable storage medium has a computer program stored thereon, and when the computer program is executed by a processor, the steps of the adjustment method described in any one of the above are implemented.
  • the above-mentioned adjustment method, device, computer equipment, and storage medium of the treatment ultrasonic wave obtain the contour boundary of the lesion area and transmit the treatment ultrasonic wave to the lesion area to determine the ultrasonic cavitation field distribution within the contour boundary of the lesion area;
  • the ultrasonic cavitation field distribution within the contour boundary of the lesion area adjusts the transmission parameters of the treatment ultrasound, so as to realize the accurate adjustment of the treatment ultrasound transmission parameters.
  • Fig. 1 is a schematic flow chart of a method for adjusting treatment ultrasonic waves in an embodiment
  • FIG. 2a is a schematic flowchart of step S102 in an embodiment
  • Figure 2b is a schematic diagram of scan lines in an embodiment
  • Figure 3a is a schematic flow chart of a method for adjusting treatment ultrasonic waves in an embodiment
  • Fig. 3b is a schematic diagram of an intermediate cavitation value line according to an embodiment
  • FIG. 4 is a schematic flowchart of step S104 in an embodiment
  • FIG. 5a is a schematic flowchart of step S404 in an embodiment
  • Figure 5b is a schematic diagram of an original ultrasound image in an embodiment
  • Figure 5c is a schematic diagram of an ultrasound image after contrast enhancement in an embodiment
  • Figure 5d is a schematic diagram of an ultrasound image processed by Gaussian filtering in an embodiment
  • Fig. 6 is a schematic flow chart of a method for adjusting treatment ultrasonic waves in an embodiment
  • FIG. 7 is a structural block diagram of a device for adjusting treatment ultrasonic waves in an embodiment
  • Fig. 8 is an internal structure diagram of a computer device in an embodiment.
  • a method for adjusting ultrasonic waves for treatment includes the following steps:
  • the lesion refers to a limited diseased tissue with pathogenic microorganisms.
  • the lesion area refers to the area where the diseased tissue is located.
  • the ultrasound probe of the ultrasound medical device is controlled to transmit the frequency and energy to the patient's region of interest to meet the therapeutic ultrasound requirements for ultrasound therapy practice, so as to achieve the purpose of ultrasound therapy and to image the region of interest.
  • the user can obtain the contour boundary of the lesion area through polygon fitting, multi-spline or hand-drawing.
  • S104 Determine the ultrasonic cavitation field distribution within the contour boundary of the lesion area by transmitting the therapeutic ultrasonic wave to the lesion area.
  • the microbubble nuclei in the liquid will also periodically oscillate with the ultrasonic frequency.
  • the periodic oscillating motion of microbubbles with sound pressure and its radius as the equilibrium radius is called steady-state cavitation.
  • the bubble's vibration will turn to be controlled by the inertia of the surrounding medium.
  • the cavitation nucleus expands rapidly in the half-period of the negative pressure phase of the ultrasonic field, and shrinks sharply to implosion in the half-period of the positive pressure phase.
  • the frequency range of therapeutic ultrasound may be 0.5 MHz to 10 MHz, and preferably, the frequency range of therapeutic ultrasound may be 1.0 MHz to 6.3 MHz.
  • Ultrasonic cavitation field distribution refers to the distribution of ultrasonic cavitation intensity within the contour boundary of the lesion area.
  • the ultrasonic probe is used to transmit the therapeutic ultrasonic wave to the lesion area, and the therapeutic ultrasonic wave acts on the tissue cells in the lesion area, and the microbubbles burst to release a large amount of energy.
  • the magnitude and corresponding position of the energy released by the rupture of the microbubbles can be known, so as to determine the ultrasonic cavitation field distribution within the outline boundary of the lesion area.
  • S106 According to the ultrasonic cavitation field distribution within the contour boundary of the lesion area, adjust the transmission parameters of the treatment ultrasonic wave.
  • the emission parameter refers to the parameter variable that determines the intensity of the ultrasonic wave for treatment.
  • the treatment ultrasonic wave is transmitted to the lesion area, and the distribution of the ultrasonic cavitation intensity in the lesion area is analyzed through the formed ultrasonic image, and the ultrasonic cavitation field distribution within the contour boundary of the lesion area is determined. Therefore, the intensity of the ultrasonic cavitation field at different positions in the lesion area can be known, and the actual distribution of the ultrasonic cavitation field can be combined to determine the treatment ultrasonic waves required for different locations in the lesion area, thereby adaptively adjusting the emission of the treatment ultrasonic waves parameter.
  • the ultrasonic cavitation field distribution within the contour boundary of the lesion area is determined; thereby according to the ultrasonic cavitation within the contour boundary of the lesion area Field distribution, adjust the transmission parameters of the treatment ultrasound, and realize the accurate adjustment of the treatment ultrasound transmission parameters. Further, according to the actual distribution of the ultrasonic cavitation intensity, the ultrasonic probe is controlled with high precision to emit targeted therapeutic ultrasonic waves to improve the therapeutic effect.
  • step S102 obtaining the contour boundary of the lesion area includes the following steps:
  • S204 Determine the contour boundary of the lesion area according to the start depth and the end depth of each scan line corresponding to the treatment ultrasound.
  • the ultrasonic probe generates high-frequency ultrasonic waves to form a transmission beam to enter the human body.
  • Each element of the probe receives the echo scattered or reflected from the tissue structure of the human body to form a receiving beam.
  • the signal processing channel of the ultrasound imaging system extracts the information in the ultrasound echo to form various imaging scan line data to generate scan lines.
  • the treatment ultrasound corresponds to a scan line, and each scan line corresponds to a transmitting array and a receiving array.
  • each scan line of the therapeutic ultrasound has two intersections with the outer frame of the lesion area. Generally, the upper intersection point is the start depth, and the lower intersection point is the end depth.
  • the ultrasonic probe is used to transmit the therapeutic ultrasonic wave to the lesion area, and the tissue structure in the lesion area scatters or reflects the therapeutic ultrasonic wave to form a receiving beam.
  • scan lines are generated. According to the starting depth and ending depth of each scan line, the contour boundary of the lesion area is determined.
  • the efficiency of extracting the lesion contour is improved, and the operation can be shortened. time spent.
  • step S104 by transmitting therapeutic ultrasonic waves to the lesion area, determining the ultrasonic cavitation field distribution within the outline boundary of the lesion area includes:
  • S302 Determine the ultrasonic cavitation intensity information within the contour boundary of the lesion area by transmitting the treatment ultrasonic wave to the lesion area;
  • S304 Determine an isocavitation value curve within the outline boundary of the lesion area according to the cavitation intensity information within the outline boundary of the lesion area;
  • step S106 according to the ultrasonic cavitation field distribution within the contour boundary of the lesion area, adjusting the transmission parameters of the treatment ultrasonic wave includes:
  • S306 Adjust the emission parameters of the treatment ultrasound according to the equal-cavitation value curve within the contour boundary of the lesion area.
  • the ultrasonic cavitation intensity information refers to the ultrasonic cavitation intensity generated when cavitation occurs when the therapeutic ultrasonic wave is emitted in the lesion area.
  • Ultrasonic cavitation intensity information can be used to characterize the cavitation intensity, which can be a cavitation intensity value, or a cavitation value derived from the cavitation intensity value.
  • the cavitation value matches the user's behavior and is convenient for the user Quickly understand the intensity distribution of ultrasonic cavitation in the lesion area. It is understandable that the ultrasonic cavitation intensity can be directly regarded as the cavitation value in some cases.
  • the isocavitation value curve is a closed curve formed by adjacent points with equal cavitation intensity or equal cavitation value in the contour of the lesion area.
  • the ultrasonic probe is used to transmit therapeutic ultrasound to the lesion area. Cavitation occurs when the therapeutic ultrasonic wave is emitted in the lesion area, and the microbubbles release energy, which can form an energy field, that is, an ultrasonic cavitation field, within the contour boundary of the lesion area. Combined with the obtained ultrasound images, the ultrasound cavitation intensity within the contour boundary of the lesion area is analyzed, and the ultrasound cavitation intensity information within the contour boundary of the lesion area is determined. In determining the ultrasonic cavitation intensity information, search for equal cavitation values or cavitation strengths, and connect the points corresponding to these equal cavitation values to form an equal cavitation value curve or equal cavitation intensity curve (as shown in Figure 3b). Show).
  • Each equal cavitation value curve or equal cavitation intensity curve has a different cavitation intensity or the same cavitation intensity. Combined with the distribution of the equal cavitation value curve within the contour boundary of the lesion area, the emission parameters of the therapeutic ultrasound are carried out. adjust.
  • the transmission parameter includes a transmission frequency and/or a transmission voltage.
  • the equal cavitation value can gradually increase from the border of the lesion to the center. Since the array element corresponding to the ultrasound scan line is uniform in the spatial position distribution, in general, different cavitation value curves can be basically evenly distributed in the lesion area. However, due to the differences in human lesion tissues, the isocavitation value can also gradually decrease from the boundary of the lesion to the center, or the density of different cavitation value curves is different, that is, the different cavitation value curves are in the lesion. The distribution within the area can be uneven.
  • the distribution of the isocavitation value curve within the contour boundary of the lesion area is uniform or uneven, or gradually increases from the lesion boundary to the center, or gradually decreases from the lesion boundary to the center, the combination in this embodiment, etc.
  • adaptively adjust the emission parameters of the therapeutic ultrasound to achieve the same effect as the cavitation value in this area. For example, taking the equal cavitation value gradually increases from the boundary of the lesion to the center, and the distribution of different equal cavitation value curves is uniform, the emission parameters of the therapeutic ultrasound corresponding to the lesion boundary can be increased to increase the space at the lesion boundary.
  • step S104 by transmitting therapeutic ultrasonic waves to the lesion area, determining the ultrasonic cavitation field distribution within the outline boundary of the lesion area includes:
  • S402 Transmit an ultrasonic cavitation pulse to the lesion area, and generate a corresponding ultrasonic image
  • S404 Determine the ultrasonic cavitation field distribution within the contour boundary of the lesion area according to the radio frequency signal of the ultrasonic cavitation pulse and the generated ultrasonic image.
  • the treatment ultrasound adopts pulsed ultrasound.
  • the treatment ultrasonic wave may be an ultrasonic cavitation pulse, which is a pulsed ultrasonic wave used to generate a cavitation effect.
  • the ultrasonic cavitation pulse corresponds to a radio frequency signal, and has corresponding transmission parameters, such as transmission frequency (Frequency), pulse width (Pulse Width) and transmission voltage (Voltage).
  • the ultrasound probe transmits an ultrasound cavitation pulse TX(D) to the lesion area.
  • the human tissue in the lesion area scatters and reflects the ultrasonic cavitation pulse to generate echo signals, and generate corresponding ultrasonic images according to the echo signals. in:
  • TX(D) TX(Frequency, Pulse Width, Voltage);
  • the transmission frequency (Frequency), pulse width (Pulse Width) and transmission voltage (Voltage) of the ultrasonic cavitation pulse TX are known, and the focus effect function FS (Detection) is known. Further, if the ultrasonic cavitation pulse TX is applied to each scan line, the cavitation intensity value or the cavitation value can be subsequently calculated to determine the ultrasonic cavitation field distribution within the contour boundary of the lesion area.
  • ultrasonic cavitation pulses are transmitted to the lesion area, and corresponding ultrasonic images are generated; and according to the radio frequency signal of the ultrasonic cavitation pulse and the generated ultrasonic images, the ultrasonic cavitation field distribution within the outline boundary of the lesion area is determined. This provides a basis for adjusting the transmission parameters and ensures that the adjustment of the transmission parameters is accurate and effective.
  • determining the ultrasonic cavitation field distribution within the contour boundary of the lesion area according to the radio frequency signal of the ultrasonic cavitation pulse and the generated ultrasonic image includes:
  • S504 Perform contrast enhancement and Gaussian filtering processing on the original ultrasound image to eliminate interference fringes in the original ultrasound image to obtain an ultrasound image;
  • S506 Perform quantitative analysis on the area of the highlighted area in the ultrasound image, and determine the ultrasound cavitation field distribution within the contour boundary of the lesion area.
  • the B-mode real-time imaging system is used to experimentally monitor the ultrasonic cavitation caused by ultrasonic cavitation pulses under different acoustic radiation energy to obtain the original ultrasonic image.
  • the two-dimensional digital image processing algorithm is used to eliminate the interference fringes produced by the focused ultrasound in the B-ultrasound image, as shown in Figures 5c and 5d.
  • the original ultrasound image is subjected to contrast enhancement and Gaussian filtering respectively to eliminate the interference in the original ultrasound image. Streaks, get ultrasound images. Ultrasound images include several highlight areas, and the area of the highlight area is related to the intensity of ultrasound cavitation.
  • the area of the highlight area in the ultrasound image is quantitatively analyzed to determine the ultrasound cavitation intensity within the contour boundary of the lesion area. Therefore, according to the ultrasonic cavitation intensity at each position within the contour boundary of the lesion area, the ultrasonic cavitation field distribution within the contour boundary of the lesion area is determined.
  • the ultrasonic cavitation caused by the ultrasonic cavitation pulse is monitored to obtain the original ultrasonic image; contrast enhancement and Gaussian filtering are performed on the original ultrasonic image to eliminate interference fringes in the original ultrasonic image to obtain the ultrasonic image, and
  • the ultrasound image includes several highlight areas; the area of the highlight area in the ultrasound image is quantitatively analyzed to determine the ultrasound cavitation field distribution within the contour boundary of the lesion area. Provide a basis for adjusting the transmission parameters and ensure that the adjustment of the transmission parameters is accurate and effective.
  • the emission parameter includes any one or more of pulse width, emission frequency, and emission voltage.
  • the adjustment of the transmission parameters of the treatment ultrasonic wave includes: within the contour boundary of the lesion area, in the area with high ultrasonic cavitation intensity, reducing the amount of the ultrasonic cavitation field used for treatment Transmitting parameters; and/or within the contour boundary of the lesion area, in areas where the ultrasonic cavitation intensity is small, increase the transmitting parameters of the therapeutic ultrasonic waves.
  • the equal cavitation value can gradually increase from the lesion boundary to the center, increase the transmission parameters of the treatment ultrasound corresponding to the lesion boundary to improve the cavitation effect at the lesion boundary.
  • the emission parameters of the therapeutic ultrasound corresponding to the center of the lesion are reduced to reduce the cavitation effect at the center of the lesion, so as to achieve the effect of basically the same cavitation value in the lesion area.
  • the emission parameters of the therapeutic ultrasound corresponding to the lesion boundary are reduced to reduce the cavitation effect at the lesion boundary.
  • Increase the transmission parameters of the therapeutic ultrasonic wave corresponding to the center of the lesion to improve the cavitation effect at the center of the lesion, so as to achieve the effect of basically the same cavitation value in the lesion area.
  • the transmission parameters of the treatment ultrasonic waves are adaptively adjusted to achieve basically the same effect of the cavitation value in the lesion area.
  • a method for adjusting treatment ultrasonic waves is provided.
  • the treatment ultrasonic waves use pulsed ultrasound as an example for illustration.
  • the method includes the following steps:
  • S604 Transmit an ultrasonic cavitation pulse to the lesion area, and generate a corresponding ultrasonic image.
  • S606 Determine the cavitation intensity information within the contour boundary of the lesion area according to the radio frequency signal of the ultrasonic cavitation pulse and the generated ultrasonic image.
  • the ultrasonic cavitation caused by the ultrasonic cavitation pulse is monitored to obtain the original ultrasonic image; the contrast enhancement and Gaussian filtering are performed on the original ultrasonic image to eliminate the interference fringes in the original ultrasonic image to obtain the ultrasonic image; The area of the bright area is quantitatively analyzed to determine the cavitation intensity information within the contour boundary of the lesion area.
  • S608 Determine an isocavitation value curve in the contour boundary of the lesion area according to the cavitation intensity information in the contour boundary of the lesion area.
  • S610 Adjust the emission parameters of the treatment ultrasound according to the equal cavitation value curve within the contour boundary of the lesion area.
  • a device 700 for adjusting ultrasonic waves for treatment including: a boundary acquiring module 710, a field distribution determining module 720, and a parameter adjusting module 730, wherein:
  • the boundary acquiring module 710 is used to acquire the outline boundary of the lesion area
  • the field distribution determining module 720 is configured to determine the ultrasonic cavitation field distribution within the outline boundary of the lesion area by transmitting therapeutic ultrasonic waves to the lesion area;
  • the parameter adjustment module 730 is configured to adjust the transmission parameters of the treatment ultrasonic waves according to the ultrasonic cavitation field distribution within the contour boundary of the lesion area.
  • the boundary acquisition module 710 is further configured to transmit therapeutic ultrasound to the lesion area; the therapeutic ultrasound corresponds to a scan line; according to the initial depth and the initial depth of each scan line corresponding to the therapeutic ultrasound The termination depth is used to determine the contour boundary of the lesion area.
  • the field distribution determination module 720 is further configured to determine the ultrasonic cavitation intensity information within the outline boundary of the lesion area by transmitting therapeutic ultrasonic waves to the lesion area; To determine the isocavitation value curve within the contour boundary of the lesion area;
  • the parameter adjustment module 730 is further configured to adjust the emission parameters of the treatment ultrasound according to the isocavitation value curve within the contour boundary of the lesion area.
  • the field distribution determining module 720 is further configured to transmit ultrasonic cavitation pulses to the lesion area and generate corresponding ultrasonic images; determine according to the radio frequency signals of the ultrasonic cavitation pulses and the generated ultrasonic images The ultrasonic cavitation field distribution within the contour boundary of the lesion area.
  • the field distribution determining module 720 is also used to monitor the ultrasonic cavitation caused by the ultrasonic cavitation pulse to obtain an original ultrasonic image; perform contrast enhancement and Gaussian filtering processing on the original ultrasonic image to eliminate The interference fringes in the original ultrasound image are used to obtain the ultrasound image; the area of the highlighted area in the ultrasound image is quantitatively analyzed to determine the ultrasound cavitation field distribution within the contour boundary of the lesion area.
  • the emission parameter includes any one or more of pulse width, emission frequency, and emission voltage.
  • the parameter adjustment module 730 is further configured to reduce the transmission parameters of the treatment ultrasound in the area with high ultrasonic cavitation intensity within the contour boundary of the lesion area; and/or in the lesion area Within the contour boundary, in a region where the ultrasonic cavitation intensity is small, the transmission parameter of the therapeutic ultrasonic wave is increased.
  • the various modules in the above-mentioned therapeutic ultrasonic adjustment device can be implemented in whole or in part by software, hardware, and a combination thereof.
  • the foregoing modules may be embedded in the form of hardware or independent of the processor in the computer device, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the foregoing modules.
  • a computer device may be an ultrasonic diagnosis and treatment device (such as an integrated ultrasonic diagnosis and treatment medical device), and the computer device may also be a terminal.
  • the internal structure of the computer device may be as shown in FIG. 8 Show.
  • the computer equipment includes a processor, a memory, a communication interface, a display screen and an input device connected through a system bus. Among them, the processor of the computer device is used to provide calculation and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and a computer program.
  • the internal memory provides an environment for the operation of the operating system and computer programs in the non-volatile storage medium.
  • the communication interface of the computer device is used to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be implemented through WIFI, an operator's network, NFC (near field communication) or other technologies.
  • WIFI wireless fidelity
  • NFC near field communication
  • the computer program is executed by the processor, a method for adjusting the ultrasonic for treatment is realized.
  • the display screen of the computer equipment can be a liquid crystal display screen or an electronic ink display screen
  • the input device of the computer equipment can be a touch layer covered on the display screen, or it can be a button, trackball or touchpad set on the housing of the computer equipment , It can also be an external keyboard, touchpad, or mouse.
  • FIG. 8 is only a block diagram of a part of the structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may Including more or fewer parts than shown in the figure, or combining some parts, or having a different arrangement of parts.
  • a computer device including a memory and a processor, and a computer program is stored in the memory.
  • the processor executes the computer program, the following steps are implemented: obtaining the outline boundary of the lesion area; The ultrasonic cavitation field distribution in the contour boundary of the lesion area is determined by transmitting the treatment ultrasonic wave; and the transmission parameters of the treatment ultrasonic wave are adjusted according to the ultrasonic cavitation field distribution in the contour boundary of the lesion area.
  • the processor further implements the following steps when executing the computer program: transmitting the therapeutic ultrasonic wave to the lesion area; the therapeutic ultrasonic wave corresponds to a scan line; according to the start of each scan line corresponding to the therapeutic ultrasonic wave The starting depth and ending depth are used to determine the contour boundary of the lesion area.
  • the processor further implements the following steps when executing the computer program: determining the ultrasonic cavitation intensity information within the outline boundary of the lesion area by transmitting the therapeutic ultrasound to the lesion area; Determine the isocavitation value curve within the contour boundary of the lesion area; adjust the emission parameters of the treatment ultrasound according to the isocavitation value curve within the contour boundary of the lesion area.
  • the processor further implements the following steps when executing the computer program: transmitting an ultrasonic cavitation pulse to the lesion area and generating a corresponding ultrasonic image; according to the radio frequency signal of the ultrasonic cavitation pulse and the generated ultrasonic image To determine the ultrasonic cavitation field distribution within the contour boundary of the lesion area.
  • the processor further implements the following steps when executing the computer program: monitoring the ultrasonic cavitation caused by the ultrasonic cavitation pulse to obtain an original ultrasonic image; performing contrast enhancement and Gaussian filtering processing on the original ultrasonic image , Eliminating the interference fringes in the original ultrasound image to obtain the ultrasound image; performing quantitative analysis on the area of the highlighted area in the ultrasound image to determine the ultrasound cavitation field distribution within the contour boundary of the lesion area.
  • the emission parameter includes any one or more of pulse width, emission frequency, and emission voltage.
  • the processor further implements the following steps when executing the computer program: within the contour boundary of the lesion area, in an area with high ultrasonic cavitation intensity, reducing the transmission parameters of the treatment ultrasonic wave; and/or Within the contour boundary of the lesion area, in an area with a low ultrasonic cavitation intensity, the transmission parameter of the treatment ultrasonic wave is increased.
  • a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the following steps are realized: obtaining the contour boundary of the lesion area; Ultrasound determines the ultrasonic cavitation field distribution within the contour boundary of the lesion area; adjusts the transmission parameters of the treatment ultrasonic wave according to the ultrasonic cavitation field distribution within the contour boundary of the lesion area.
  • the following steps are also implemented: transmitting therapeutic ultrasound to the lesion area; the therapeutic ultrasound corresponding to a scan line; according to the scan line corresponding to the therapeutic ultrasound
  • the starting depth and ending depth determine the contour boundary of the lesion area.
  • the following steps are further implemented: determining the ultrasonic cavitation intensity information within the outline boundary of the lesion area by transmitting therapeutic ultrasound to the lesion area; For the cavitation intensity information within the boundary, an isocavitation value curve is determined within the contour boundary of the lesion area; and the emission parameter of the treatment ultrasound is adjusted according to the isocavitation value curve within the contour boundary of the lesion area.
  • the following steps are further implemented: transmitting ultrasonic cavitation pulses to the lesion area and generating corresponding ultrasonic images; according to the radio frequency signals of the ultrasonic cavitation pulses and the generated ultrasound Image to determine the ultrasonic cavitation field distribution within the contour boundary of the lesion area.
  • the following steps are also implemented: monitoring the ultrasonic cavitation caused by the ultrasonic cavitation pulse to obtain an original ultrasonic image; performing contrast enhancement and Gaussian filtering on the original ultrasonic image Processing, eliminating interference fringes in the original ultrasound image to obtain the ultrasound image; performing quantitative analysis on the area of the highlighted area in the ultrasound image to determine the ultrasound cavitation field distribution within the contour boundary of the lesion area.
  • the emission parameter includes any one or more of pulse width, emission frequency, and emission voltage.
  • the following steps are further implemented: within the contour boundary of the lesion area, in an area with high ultrasonic cavitation intensity, reducing the transmission parameters of the treatment ultrasonic wave; and/or Within the contour boundary of the lesion area, in an area with a low ultrasonic cavitation intensity, the transmission parameter of the treatment ultrasonic wave is increased.
  • Non-volatile memory may include read-only memory (Read-Only Memory, ROM), magnetic tape, floppy disk, flash memory, or optical storage.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM may be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM), etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Surgical Instruments (AREA)

Abstract

本申请涉及一种治疗用超声波的调整方法、装置、计算机设备和存储介质,通过获取病灶区域的轮廓边界,并向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布;从而根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数,实现了治疗用超声波发射参数的准确调整。

Description

治疗用超声波的调整方法、装置、计算机设备和存储介质 技术领域
本申请涉及医疗设备技术领域,特别是涉及一种治疗用超声波的调整方法、装置、计算机设备和存储介质。
背景技术
超声诊断因其无创性、实时性、操作方便、价格便宜等诸多优势,使其成为临床上应用最为广泛的辅助诊断的手段之一。超声诊断使用频率高、能量低的诊断用超声以得到较好的图像,也可以使用造影剂来改善超声诊断的图像质量。
随着超声技术及其生物学效应的不断发展,超声治疗的功能逐步在临床实现,比如高强度超声海扶治疗、高能量的超声空化治疗、和低功率的超声化疗增敏等。
然而,传统技术中,超声诊疗一体化的医疗设备在临床使用时,治疗用超声波发射参数的调整存在不准确的问题。
发明内容
基于此,有必要针对上述技术问题,提供一种能够准确调整治疗用超声波发射参数的调整方法、装置、计算机设备和存储介质。
一种治疗用超声波的调整方法,所述方法包括:
获取病灶区域的轮廓边界;
通过向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布;
根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数。
在其中一个实施例中,所述获取病灶区域的轮廓边界,包括:
向所述病灶区域发射治疗用超声波;所述治疗用超声波对应有扫描线;
根据所述治疗用超声波对应的各扫描线的起始深度和终止深度,确定所述病灶区域的轮廓边界。
在其中一个实施例中,所述通过向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布,包括:
通过向所述病灶区域发射治疗用超声波,确定所述病灶区域轮廓边界内的超声空化强度信息;
根据所述病灶区域轮廓边界内的空化强度信息,在所述病灶区域轮廓边界内确定等空化值曲线;
所述根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数,包括:
根据所述病灶区域轮廓边界内的等空化值曲线,调整所述治疗用超声波的发射参数。
在其中一个实施例中,所述通过向所述病灶区域发射治疗用超声波,确定所述病灶区域的轮廓边界内的超声空化场分布,包括:
向所述病灶区域发射超声空化脉冲,并生成对应的超声图像;
根据所述超声空化脉冲的射频信号以及生成的超声图像,确定所述病灶区域轮廓边界内的超声空化场分布。
在其中一个实施例中,所述根据所述超声空化脉冲的射频信号以及生成的超声图像,确定所述病灶区域轮廓边界内的超声空化场分布,包括:
对所述超声空化脉冲引发的超声空化进行监测,得到原始超声图像;
对所述原始超声图像进行对比度增强和高斯滤波处理,消除所述原始超声图像中的干涉条纹,得到所述超声图像;
对所述超声图像中高亮区域的面积进行量化分析,确定所述病灶区域轮廓边界内的超声空化场分布。
在其中一个实施例中,所述发射参数包括脉冲宽度、发射频率、发射电压中任一个或者多个。
在其中一个实施例中,所述根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数,包括:
在所述病灶区域轮廓边界内,在超声空化强度大的区域,减少所述治疗用超声波的发射参数;和/或
在所述病灶区域轮廓边界内,在超声空化强度小的区域,增大所述治疗用超声波的发射参数。
一种治疗用超声波的调整装置,所述装置包括:
边界获取模块,用于获取病灶区域的轮廓边界;
场分布确定模块,用于通过向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布;
参数调整模块,用于根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数。
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述的调整方法的步骤。
一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的调整方法的步骤。
上述治疗用超声波的调整方法、装置、计算机设备和存储介质,通过获取病灶区域的轮廓边界,并向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布;从而根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数,实现了治疗用超声波发射参数的准确调整。
附图说明
图1为一个实施例中治疗用超声波的调整方法的流程示意图;
图2a为一个实施例中S102步骤的流程示意图;
图2b为一个实施例中扫描线的示意图;
图3a为一个实施例中治疗用超声波的调整方法的流程示意图;
图3b为一个实施例中等空化值线的示意图;
图4为一个实施例中S104步骤的流程示意图;
图5a为一个实施例中S404步骤的流程示意图;
图5b为一个实施例中原始超声图像的示意图;
图5c为一个实施例中对比度增强后的超声图像的示意图;
图5d为一个实施例中高斯滤波处理后的超声图像的示意图;
图6为一个实施例中治疗用超声波的调整方法的流程示意图;
图7为一个实施例中治疗用超声波的调整装置的结构框图;
图8为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在一个实施例中,如图1所示,提供了一种治疗用超声波的调整方法,该方法包括以下步骤:
S102,获取病灶区域的轮廓边界。
其中,病灶是指一个局限的、具有病原微生物的病变组织。病灶区域是指病变组织所在的区域。具体地,控制超声波医疗设备的超声探头向患者的感兴趣区域发射频率和能量满足超声治疗实践所需要的治疗用超声,以实现超声治疗的目的,并对该感兴趣区域成像。用户可以通过多边形拟合、多次样条或手绘等方式得到病灶区域的轮廓边界。
S104,通过向病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布。
其中,当超声波通过液体时,液体各处的声压会发生周期性的变化,相应地,液体中的微泡核也会随超声频率发生周期性的振荡。微泡随声压以其半径为平衡半径做周期性的振荡运动称为稳态空化。当作用声强增大,使气泡的振荡幅度可与其平衡尺寸相比拟时,气泡的振动即转而由其周围媒质的惯性所控制。空化核在超声场负压相半周期迅速膨胀,而在正压相半周期又急剧收缩至内爆,这种空化称作瞬态空化或惯性空化。瞬态空化时气泡振荡十分猛烈,最初气泡先是爆炸式地膨胀,随后又迅速萎陷。在最后萎陷阶段,会产生局部高温、高 压现象(泡内部的压力和温度可以达到几百上千个大气压和数千开),此外还伴随强大冲击波、高速微射流、自由基的产生。这些极端的物理条件和化学基团的形成对正常细胞的结构和酶的生物活性有极大的破坏作用,但同时对肿瘤细胞可进行有效的杀伤。治疗用超声的频率范围可以是0.5MHz至10MHz,优选地,治疗用超声的频率范围可以是1.0MHz至6.3MHz。超声空化场分布是指超声空化强度在病灶区域轮廓边界内的分布情况。具体的,通过超声探头向病灶区域发射治疗用超声波,治疗用超声波对病灶区域内的组织细胞作用,微泡破裂释放大量的能量。通过对该病灶区域对应的超声图像进行分析,可以得知微泡破裂释放的能量的大小及对应的位置,从而确定病灶区域轮廓边界内的超声空化场分布。
S106,根据病灶区域轮廓边界内的超声空化场分布,调整治疗用超声波的发射参数。
其中,发射参数是指决定治疗用超声波强度的参数变量。具体的,向病灶区域发射治疗用超声波,通过所成的超声图像分析超声空化强度在病灶区域的分布,确定病灶区域轮廓边界内的超声空化场分布。从而可知病灶区域内不同位置处超声空化场强度,进而结合该超声空化场分布的实际情况,确定病灶区域内的不同位置所需的治疗用超声波,从而适应性地调整治疗用超声波的发射参数。
上述治疗用超声波的调整方法中,通过获取病灶区域的轮廓边界,并向病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布;从而根据病灶区域轮廓边界内的超声空化场分布,调整治疗用超声波的发射参数,实现了治疗用超声波发射参数的准确调整。进一步地,根据超声空化强度的实际分布情况高精度的控制超声探头发射有针对性的治疗用超声波,提升治疗效果。
在一个实施例中,如图2a所示,在步骤S102中,获取病灶区域的轮廓边界,包括以下步骤:
S202,向病灶区域发射治疗用超声波;
S204,根据治疗用超声波对应的各扫描线的起始深度和终止深度,确定病 灶区域的轮廓边界。
其中,超声探头产生高频超声波进而形成发射波束进入人体。探头的各阵元接收来自人体组织结构散射或反射的回波,形成接收波束。超声成像系统的信号处理通道提取超声回波中的信息,形成各种成像的扫描线数据,以生成扫描线,治疗用超声波对应有扫描线,且每根扫描线对应有发射阵列和接收阵列。如图2b所示,治疗用超声波的各条扫描线与病灶区域的外边框具有两个交点。一般上交点为起始深度(Start depth),下交点为终止深度(End depth)。
具体的,通过超声探头向病灶区域发射治疗用超声波,病灶区域内的组织结构对治疗用超声波进行散射或者反射,形成接收波束。经过信息提取生成扫描线。根据各条扫描线上的起始深度和终止深度,确定病灶区域的轮廓边界。
本实施例中,通过向病灶区域发射治疗用超声波,并根据治疗用超声波对应的各扫描线的起始深度和终止深度,确定病灶区域的轮廓边界,提升了提取病灶轮廓的效率,可以缩短手术花费的时间。
在一个实施例中,如图3a所示,在步骤S104中,通过向病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布,包括:
S302,通过向病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化强度信息;
S304,根据病灶区域轮廓边界内的空化强度信息,在病灶区域轮廓边界内确定等空化值曲线;
在步骤S106中,根据病灶区域轮廓边界内的超声空化场分布,调整治疗用超声波的发射参数,包括:
S306,根据病灶区域轮廓边界内的等空化值曲线,调整治疗用超声波的发射参数。
其中,超声空化强度信息是指治疗用超声波发射在病灶区域时发生空化所产生的超声空化强度。超声空化强度信息可以用于表征空化强度的大小,可以是空化强度值,也可以是根据空化强度值衍生的空化值,该空化值与用户的使用行为所匹配,便于用户快速了解病灶区域的超声空化强度分布。可以理解的是,超声空化强度在有些情况下可以直接认定为空化值。等空化值曲线是病灶 区域轮廓内空化强度或者空化值相等的相邻个点所连成的闭合曲线。
具体的,通过超声探头向病灶区域发射治疗用超声波,治疗用超声波发射在病灶区域时发生空化,微泡释放出能量,可以在病灶区域轮廓边界内形成能量场即超声空化场。结合得到的超声图像,对病灶区域轮廓边界内的超声空化强度进行分析,确定病灶区域轮廓边界内的超声空化强度信息。在确定超声空化强度信息中,查找数值相等的空化值或者空化强度,将这些相等空化值对应的点相互连接,构成等空化值曲线或者等空化强度曲线(如图3b所示)。每一条等空化值曲线或者等空化强度曲线具有不同的空化强度或者相同的空化强度,结合病灶区域轮廓边界内的等空化值曲线的分布情况,对治疗用超声波的发射参数进行调整。
示例性地,发射参数包括发射频率和/或发射电压。等空化值可以从病灶边界向中心逐渐变大。由于超声扫描线对应的阵元在空间位置的分布上是均匀的,则一般情况下,不同的空化值曲线可以基本均匀分布在病灶区域内。但是,由于人体病灶组织的差异性,等空化值也可以从病灶的边界向中心逐渐变小,或者不同的空化值曲线之间的疏密程度不同,即不同的空化值曲线在病灶区域内的分布可以是不均匀的。无论病灶区域轮廓边界内的等空化值曲线的分布情况是均匀的还是不均匀的,或者从病灶边界向中心逐渐变大,或者从病灶的边界向中心逐渐变小,本实施例中结合等空化值曲线的分布情况,适应性地调整治疗用超声波的发射参数,以达到此区域内的空化值基本相同的效果。比如:以等空化值从病灶的边界向中心逐渐变大,且不同的等空化值曲线分布均匀为例,可以加大病灶边界对应的治疗用超声波的发射参数以提高病灶边界处的空化效果,也可以减小病灶中心对应的治疗用超声波的发射参数以降低病灶中心处的空化效果,或调整病灶区域内的所有治疗用超声波的发射参数以达到病灶区域内的空化值基本相同的效果。
在一个实施例中,如图4所示,在步骤S104中,通过向病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布,包括:
S402,向病灶区域发射超声空化脉冲,并生成对应的超声图像;
S404,根据超声空化脉冲的射频信号以及生成的超声图像,确定病灶区域 轮廓边界内的超声空化场分布。
其中,治疗用超声波采用脉冲型超声波。治疗用超声波可以是超声空化脉冲,超声空化脉冲是用于产生空化效应的脉冲型超声波。超声空化脉冲对应有射频信号,且设有对应的发射参数,比如:发射频率(Frequency)、脉冲宽度(Pulse Width)和发射电压(Voltage)。具体的,超声探头向病灶区域发射超声空化脉冲TX(D)。病灶区域的人体组织对超声空化脉冲散射和反射,生成回波信号,根据回波信号生成对应的超声图像。其中:
TX(D)=TX(Frequency,Pulse Width,Voltage);
由于超声空化脉冲TX的发射频率(Frequency)、脉冲宽度(Pulse Width)和发射电压(Voltage)均已知,且已知聚焦效应函数FS(Detection)。进一步地,每根扫描线均应用该超声空化脉冲TX,则后续可以计算得到空化强度值或者空化值,从而确定病灶区域轮廓边界内的超声空化场分布。
本实施例中,向病灶区域发射超声空化脉冲,并生成对应的超声图像;并根据超声空化脉冲的射频信号以及生成的超声图像,确定病灶区域轮廓边界内的超声空化场分布。这为调整发射参数提供依据,确保发射参数的调整是准确有效的。
在一个实施例中,如图5a所示,在步骤S404中,根据超声空化脉冲的射频信号以及生成的超声图像,确定病灶区域轮廓边界内的超声空化场分布,包括:
S502,对超声空化脉冲引发的超声空化进行监测,得到原始超声图像;
S504,对原始超声图像进行对比度增强和高斯滤波处理,消除原始超声图像中的干涉条纹,得到超声图像;
S506,对超声图像中高亮区域的面积进行量化分析,确定病灶区域轮廓边界内的超声空化场分布。
具体的,如图5b所示,采用B模式实时成像系统对不同声辐射能量下的超声空化脉冲引发的超声空化进行实验监测,得到原始超声图像。接着,利用二维数字图像处理算法消除聚焦超声在B超图像中产生的干涉条纹,如图5c和5d所示,对原始超声图像分别进行对比度增强和高斯滤波处理,消除原始超声图 像中的干涉条纹,得到超声图像。超声图像包括若干个高亮区域,高亮区域的面积与超声空化强度有关,因此,对超声图像中高亮区域的面积进行量化分析,确定病灶区域轮廓边界内的超声空化强度。从而根据病灶区域轮廓边界内的各位置处的超声空化强度,确定病灶区域轮廓边界内的超声空化场分布。
本实施例中,对超声空化脉冲引发的超声空化进行监测,得到原始超声图像;并对原始超声图像进行对比度增强和高斯滤波处理,消除原始超声图像中的干涉条纹,得到超声图像,且超声图像包括若干个高亮区域;对超声图像中高亮区域的面积进行量化分析,确定病灶区域轮廓边界内的超声空化场分布。为调整发射参数提供依据,确保发射参数的调整是准确有效的。
在一个实施例中,发射参数包括脉冲宽度、发射频率、发射电压中任一个或者多个。
在一个实施例中,根据病灶区域轮廓边界内的超声空化场分布,调整治疗用超声波的发射参数,包括:在病灶区域轮廓边界内,在超声空化强度大的区域,减少治疗用超声波的发射参数;和/或在病灶区域轮廓边界内,在超声空化强度小的区域,增大治疗用超声波的发射参数。
示例性地,在病灶区域轮廓边界内,若等空化值可以从病灶边界向中心逐渐变大,加大病灶边界对应的治疗用超声波的发射参数以提高病灶边界处的空化效果,也可以减小病灶中心对应的治疗用超声波的发射参数以降低病灶中心处的空化效果,从而实现病灶区域内的空化值基本相同的效果。
示例性地,在病灶区域轮廓边界内,若等空化值可以从病灶边界向中心逐渐变小,减小病灶边界对应的治疗用超声波的发射参数以降低病灶边界处的空化效果,也可以增大病灶中心对应的治疗用超声波的发射参数以提高病灶中心处的空化效果,从而实现病灶区域内的空化值基本相同的效果。
本实施例中,结合不同的实际情况,对治疗用超声波的发射参数进行适应性的调整,实现病灶区域内的空化值基本相同的效果。
在一个实施例中,如图6所示,提供了一种治疗用超声波的调整方法,治疗用超声波采用脉冲型超声波为例进行说明,该方法包括以下步骤:
S602,获取病灶区域的轮廓边界。
S604,向病灶区域发射超声空化脉冲,并生成对应的超声图像。
S606,根据超声空化脉冲的射频信号以及生成的超声图像,确定病灶区域轮廓边界内的空化强度信息。
具体的,对超声空化脉冲引发的超声空化进行监测,得到原始超声图像;对原始超声图像进行对比度增强和高斯滤波处理,消除原始超声图像中的干涉条纹,得到超声图像;对超声图像中高亮区域的面积进行量化分析,确定病灶区域轮廓边界内的空化强度信息。
S608,根据病灶区域轮廓边界内的空化强度信息,在病灶区域轮廓边界内确定等空化值曲线。
S610,根据病灶区域轮廓边界内的等空化值曲线,调整治疗用超声波的发射参数。
具体的,在病灶区域轮廓边界内,在超声空化强度大的区域,减少治疗用超声波的发射参数;和/或在病灶区域轮廓边界内,在超声空化强度小的区域,增大治疗用超声波的发射参数。
应该理解的是,虽然上述流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,上述流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图7所示,提供了一种治疗用超声波的调整装置700,包括:边界获取模块710、场分布确定模块720和参数调整模块730,其中:
边界获取模块710,用于获取病灶区域的轮廓边界;
场分布确定模块720,用于通过向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布;
参数调整模块730,用于根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数。
在一个实施例中,边界获取模块710,还用于向所述病灶区域发射治疗用超声波;所述治疗用超声波对应有扫描线;根据所述治疗用超声波对应的各扫描线的起始深度和终止深度,确定所述病灶区域的轮廓边界。
在一个实施例中,场分布确定模块720还用于通过向所述病灶区域发射治疗用超声波,确定所述病灶区域轮廓边界内的超声空化强度信息;根据所述病灶区域轮廓边界内的空化强度信息,在所述病灶区域轮廓边界内确定等空化值曲线;
参数调整模块730,还用于根据所述病灶区域轮廓边界内的等空化值曲线,调整所述治疗用超声波的发射参数。
在一个实施例中,场分布确定模块720,还用于向所述病灶区域发射超声空化脉冲,并生成对应的超声图像;根据所述超声空化脉冲的射频信号以及生成的超声图像,确定所述病灶区域轮廓边界内的超声空化场分布。
在一个实施例中,场分布确定模块720,还用于对所述超声空化脉冲引发的超声空化进行监测,得到原始超声图像;对所述原始超声图像进行对比度增强和高斯滤波处理,消除所述原始超声图像中的干涉条纹,得到所述超声图像;对所述超声图像中高亮区域的面积进行量化分析,确定所述病灶区域轮廓边界内的超声空化场分布。
在一个实施例中,所述发射参数包括脉冲宽度、发射频率、发射电压中任一个或者多个。
在一个实施例中,参数调整模块730,还用于在所述病灶区域轮廓边界内,在超声空化强度大的区域,减少所述治疗用超声波的发射参数;和/或在所述病灶区域轮廓边界内,在超声空化强度小的区域,增大所述治疗用超声波的发射参数。
关于治疗用超声波的调整装置的具体限定可以参见上文中对于治疗用超声波的调整方法的限定,在此不再赘述。上述治疗用超声波的调整装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是超声诊断治疗设备(比如超声诊疗一体化的医疗设备),该计算机设备也可以是终端,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器、通信接口、显示屏和输入装置。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机程序。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、运营商网络、NFC(近场通信)或其他技术实现。该计算机程序被处理器执行时以实现一种治疗用超声波的调整方法。该计算机设备的显示屏可以是液晶显示屏或者电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:获取病灶区域的轮廓边界;通过向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布;根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:向所述病灶区域发射治疗用超声波;所述治疗用超声波对应有扫描线;根据所述治疗用超声波对应的各扫描线的起始深度和终止深度,确定所述病灶区域的轮廓边界。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:通过向所述病灶区域发射治疗用超声波,确定所述病灶区域轮廓边界内的超声空化强度信息;根据所述病灶区域轮廓边界内的空化强度信息,在所述病灶区域轮廓边界 内确定等空化值曲线;根据所述病灶区域轮廓边界内的等空化值曲线,调整所述治疗用超声波的发射参数。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:向所述病灶区域发射超声空化脉冲,并生成对应的超声图像;根据所述超声空化脉冲的射频信号以及生成的超声图像,确定所述病灶区域轮廓边界内的超声空化场分布。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:对所述超声空化脉冲引发的超声空化进行监测,得到原始超声图像;对所述原始超声图像进行对比度增强和高斯滤波处理,消除所述原始超声图像中的干涉条纹,得到所述超声图像;对所述超声图像中高亮区域的面积进行量化分析,确定所述病灶区域轮廓边界内的超声空化场分布。
在一个实施例中,所述发射参数包括脉冲宽度、发射频率、发射电压中任一个或者多个。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:在所述病灶区域轮廓边界内,在超声空化强度大的区域,减少所述治疗用超声波的发射参数;和/或在所述病灶区域轮廓边界内,在超声空化强度小的区域,增大所述治疗用超声波的发射参数。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:获取病灶区域的轮廓边界;通过向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布;根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:向所述病灶区域发射治疗用超声波;所述治疗用超声波对应有扫描线;根据所述治疗用超声波对应的各扫描线的起始深度和终止深度,确定所述病灶区域的轮廓边界。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:通过向所述病灶区域发射治疗用超声波,确定所述病灶区域轮廓边界内的超声空化强度信息;根据所述病灶区域轮廓边界内的空化强度信息,在所述病灶区域轮廓边界内确定等空化值曲线;根据所述病灶区域轮廓边界内的等空化值曲线,调整 所述治疗用超声波的发射参数。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:向所述病灶区域发射超声空化脉冲,并生成对应的超声图像;根据所述超声空化脉冲的射频信号以及生成的超声图像,确定所述病灶区域轮廓边界内的超声空化场分布。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:对所述超声空化脉冲引发的超声空化进行监测,得到原始超声图像;对所述原始超声图像进行对比度增强和高斯滤波处理,消除所述原始超声图像中的干涉条纹,得到所述超声图像;对所述超声图像中高亮区域的面积进行量化分析,确定所述病灶区域轮廓边界内的超声空化场分布。
在一个实施例中,所述发射参数包括脉冲宽度、发射频率、发射电压中任一个或者多个。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:在所述病灶区域轮廓边界内,在超声空化强度大的区域,减少所述治疗用超声波的发射参数;和/或在所述病灶区域轮廓边界内,在超声空化强度小的区域,增大所述治疗用超声波的发射参数。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特 征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种治疗用超声波的调整方法,其特征在于,所述方法包括:
    获取病灶区域的轮廓边界;
    通过向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布;
    根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数。
  2. 根据权利要求1所述的方法,其特征在于,所述获取病灶区域的轮廓边界,包括:
    向所述病灶区域发射治疗用超声波;所述治疗用超声波对应有扫描线;
    根据所述治疗用超声波对应的各扫描线的起始深度和终止深度,确定所述病灶区域的轮廓边界。
  3. 根据权利要求1所述的方法,其特征在于,所述通过向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布,包括:
    通过向所述病灶区域发射治疗用超声波,确定所述病灶区域轮廓边界内的超声空化强度信息;
    根据所述病灶区域轮廓边界内的空化强度信息,在所述病灶区域轮廓边界内确定等空化值曲线;
    所述根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数,包括:
    根据所述病灶区域轮廓边界内的等空化值曲线,调整所述治疗用超声波的发射参数。
  4. 根据权利要求1所述的方法,其特征在于,所述通过向所述病灶区域发射治疗用超声波,确定所述病灶区域的轮廓边界内的超声空化场分布,包括:
    向所述病灶区域发射超声空化脉冲,并生成对应的超声图像;
    根据所述超声空化脉冲的射频信号以及生成的超声图像,确定所述病灶区域轮廓边界内的超声空化场分布。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述超声空化脉冲的射频信号以及生成的超声图像,确定所述病灶区域轮廓边界内的超声空化场 分布,包括:
    对所述超声空化脉冲引发的超声空化进行监测,得到原始超声图像;
    对所述原始超声图像进行对比度增强和高斯滤波处理,消除所述原始超声图像中的干涉条纹,得到所述超声图像;
    对所述超声图像中高亮区域的面积进行量化分析,确定所述病灶区域轮廓边界内的超声空化场分布。
  6. 根据权利要求4所述的方法,其特征在于,所述发射参数包括脉冲宽度、发射频率、发射电压中任一个或者多个。
  7. 根据权利要求1至6任意一项所述的方法,所述根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数,包括:
    在所述病灶区域轮廓边界内,在超声空化强度大的区域,减少所述治疗用超声波的发射参数;和/或
    在所述病灶区域轮廓边界内,在超声空化强度小的区域,增大所述治疗用超声波的发射参数。
  8. 一种治疗用超声波的调整装置,其特征在于,所述装置包括:
    边界获取模块,用于获取病灶区域的轮廓边界;
    场分布确定模块,用于通过向所述病灶区域发射治疗用超声波,确定病灶区域轮廓边界内的超声空化场分布;
    参数调整模块,用于根据所述病灶区域轮廓边界内的超声空化场分布,调整所述治疗用超声波的发射参数。
  9. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至7中任一项所述的方法的步骤。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至7中任一项所述的方法的步骤。
PCT/CN2020/132863 2020-06-22 2020-11-30 治疗用超声波的调整方法、装置、计算机设备和存储介质 WO2021258645A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010572612.3A CN113893468B (zh) 2020-06-22 2020-06-22 治疗用超声波的调整方法、装置、计算机设备和存储介质
CN202010572612.3 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021258645A1 true WO2021258645A1 (zh) 2021-12-30

Family

ID=79186113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132863 WO2021258645A1 (zh) 2020-06-22 2020-11-30 治疗用超声波的调整方法、装置、计算机设备和存储介质

Country Status (2)

Country Link
CN (1) CN113893468B (zh)
WO (1) WO2021258645A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114631842A (zh) * 2022-02-14 2022-06-17 逸超医疗科技(武汉)有限公司 超声波的发射控制方法、装置、设备及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115518860B (zh) * 2022-09-30 2024-08-09 飞依诺科技股份有限公司 一种阵列换能器的激励方法、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215581A (zh) * 2014-07-30 2014-12-17 中国科学院声学研究所 一种检测超声空化强度的装置及方法
WO2015147357A1 (ko) * 2014-03-27 2015-10-01 알피니언메디칼시스템 주식회사 캐비테이션 검출을 위한 초음파 모니터링 장치 및 그 방법
CN105496455A (zh) * 2015-12-10 2016-04-20 飞依诺科技(苏州)有限公司 一种超声空化强度的调节方法和装置
CN109431536A (zh) * 2018-09-17 2019-03-08 西安交通大学 一种聚焦超声空化的实时高分辨时空分布成像方法与系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9050449B2 (en) * 2008-10-03 2015-06-09 Mirabilis Medica, Inc. System for treating a volume of tissue with high intensity focused ultrasound
CN102451525B (zh) * 2010-10-26 2016-05-11 北京汇福康医疗技术股份有限公司 一种超声波治疗设备
JP2012165893A (ja) * 2011-02-15 2012-09-06 Fujifilm Corp 超音波診断装置および超音波画像生成方法
CN103235041B (zh) * 2013-04-26 2016-03-02 西安交通大学 基于超声主动空化成像的空化起始阈值分布重建方法
CN103961808A (zh) * 2014-05-27 2014-08-06 南京大学 一种基于b超图像实现hifu治疗时声空化的时空量化监控系统及方法
CN104777485B (zh) * 2015-04-20 2016-10-26 西安交通大学 超声二维面阵的三维宽波束小区域快速空化成像方法
US10575816B2 (en) * 2017-01-25 2020-03-03 Insightec, Ltd. Cavitation localization
CN111184949B (zh) * 2019-07-09 2022-04-15 重庆医科大学 一种聚焦超声消融系统及其控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147357A1 (ko) * 2014-03-27 2015-10-01 알피니언메디칼시스템 주식회사 캐비테이션 검출을 위한 초음파 모니터링 장치 및 그 방법
CN104215581A (zh) * 2014-07-30 2014-12-17 中国科学院声学研究所 一种检测超声空化强度的装置及方法
CN105496455A (zh) * 2015-12-10 2016-04-20 飞依诺科技(苏州)有限公司 一种超声空化强度的调节方法和装置
CN109431536A (zh) * 2018-09-17 2019-03-08 西安交通大学 一种聚焦超声空化的实时高分辨时空分布成像方法与系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114631842A (zh) * 2022-02-14 2022-06-17 逸超医疗科技(武汉)有限公司 超声波的发射控制方法、装置、设备及存储介质
CN114631842B (zh) * 2022-02-14 2023-09-01 逸超科技(武汉)有限公司 超声波的发射控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN113893468B (zh) 2023-03-21
CN113893468A (zh) 2022-01-07

Similar Documents

Publication Publication Date Title
Roux et al. Experimental 3-D ultrasound imaging with 2-D sparse arrays using focused and diverging waves
Bouakaz et al. Super harmonic imaging: a new imaging technique for improved contrast detection
WO2021258645A1 (zh) 治疗用超声波的调整方法、装置、计算机设备和存储介质
Zhang et al. A high-frequency, high frame rate duplex ultrasound linear array imaging system for small animal imaging
CN108652672B (zh) 一种超声成像系统、方法及装置
JP6305718B2 (ja) 超音波診断装置及び制御プログラム
US20140187940A1 (en) Method of calculating displacement of shear wave, method of calculating mechanical modulus of body, and system using the methods
US8454515B2 (en) Ultrasonic diagnostic apparatus and ultrasonic diagnostic method
JP2017119094A (ja) 情報取得装置、情報取得方法、及びプログラム
CN109124687B (zh) 同时进行超声诊断和治疗的超声装置及医疗设备
WO2020113397A1 (zh) 一种超声成像方法以及超声成像系统
JP2018015556A (ja) 超音波診断装置及び計測プログラム
JP7363636B2 (ja) 超音波診断装置、及び超音波診断装置の制御方法
CN113040814B (zh) 超声微泡空化设备的成像处理方法及成像处理系统
JP2010148828A (ja) 超音波診断装置及び超音波診断装置の制御プログラム
Lu et al. Delay multiply and sum beamforming method applied to enhance linear‐array passive acoustic mapping of ultrasound cavitation
CN109259801B (zh) 一种剪切波弹性成像方法及装置
CN108351394A (zh) 用于避免对同时使用的rf系统的源自mri的干扰的系统和方法
JP2015116256A (ja) 超音波診断装置及び超音波プローブ
US20180049720A1 (en) Ultrasound beamforming system and method
Urban et al. A beamforming study for implementation of vibro-acoustography with a 1.75-D array transducer
Liu et al. Artifact suppression for passive cavitation imaging using U-Net CNNs with uncertainty quantification
Zhang et al. In Situ Measurement of Acoustic Attenuation for Focused Ultrasound Ablation Surgery Using a Boiling Bubble at the Focus
JP2022533590A (ja) 剪断波発生の方法及び装置
CN106163412A (zh) 利用非基频分析对声级进行原位估计

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941673

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20941673

Country of ref document: EP

Kind code of ref document: A1