WO2021093305A1 - 减速器、电动汽车的驱动系统及电动汽车 - Google Patents

减速器、电动汽车的驱动系统及电动汽车 Download PDF

Info

Publication number
WO2021093305A1
WO2021093305A1 PCT/CN2020/092242 CN2020092242W WO2021093305A1 WO 2021093305 A1 WO2021093305 A1 WO 2021093305A1 CN 2020092242 W CN2020092242 W CN 2020092242W WO 2021093305 A1 WO2021093305 A1 WO 2021093305A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
shaft
transmission
engine
intermediate shaft
Prior art date
Application number
PCT/CN2020/092242
Other languages
English (en)
French (fr)
Inventor
郑益红
刘峰宇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022528098A priority Critical patent/JP2023501661A/ja
Priority to EP20886476.9A priority patent/EP4046842A4/en
Priority to KR1020227019084A priority patent/KR20220097479A/ko
Publication of WO2021093305A1 publication Critical patent/WO2021093305A1/zh
Priority to US17/743,997 priority patent/US20220266676A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/79Drive shafts, output shafts or propeller shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/80Differentials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • This application relates to the technical field of electric vehicles, in particular to a reducer, a drive system of an electric vehicle, and an electric vehicle.
  • a pure electric vehicle (battery electric vehicle) is a vehicle that is completely powered by a rechargeable battery. At this stage, pure electric vehicles generally have problems such as short driving range, long charging time, heavy battery weight, and high cost. Range-extended electric vehicles can solve these problems of pure electric vehicles.
  • the power battery on the vehicle has electricity
  • the pure electric drive mode when the power battery on the vehicle is low, switch to the extended-range drive mode. Therefore, the extended-range electric vehicle is one of the mainstream solutions for new energy vehicles on the market.
  • the usual extended-range electric vehicle adopts a series drive scheme, that is, the engine and generator cannot directly drive the vehicle, but the engine drives the generator to generate electricity, and the power battery and drive motor are used to power the vehicle to extend the vehicle's driving range.
  • the disadvantage of this scheme is that the engine and generator cannot directly drive the vehicle, and the transmission path of the energy flow is long, resulting in poor economy of the entire vehicle.
  • the present application provides a reducer, a drive system for an electric vehicle, and an electric vehicle, which can solve the problem that the engine and generator in the existing series-extended range electric vehicle cannot directly drive the vehicle, thereby improving the power, economy, and efficiency of the entire vehicle. Manipulability.
  • a reducer in a first aspect, includes a motor input shaft, an engine input shaft, an intermediate shaft, a first output shaft, a second output shaft, and a differential. It also includes: a first transmission assembly for connecting the power transmission between the motor input shaft and the intermediate shaft; a second transmission assembly for connecting or disconnecting the power transmission between the engine input shaft and the intermediate shaft; The third transmission component is used to connect or disconnect the power transmission between the intermediate shaft and the differential.
  • the present application can control the power transmission path inside the reducer through the first transmission component, the second transmission component, and the third transmission component, which can be specifically divided into the following situations.
  • both the motor and the engine may not work at this time, and It is used as a backup auxiliary device for vehicle driving. At this time, the torque of the differential will not be transmitted to the intermediate shaft, motor input shaft and engine input shaft during the driving process, which will not cause additional mechanical rotational friction loss and improve Vehicle economy.
  • the reducer provided by the present application can enrich the functions of the motor and the engine, and enable the motor and the engine to directly drive the vehicle, shorten the energy transmission path and the number of conversions, thereby improving the dynamic performance of the vehicle , Economy and maneuverability.
  • the first transmission component includes: a motor input shaft gear, which is sleeved on the motor input shaft and is in transmission connection with the motor input shaft; an intermediate shaft large gear, which is sleeved on the intermediate shaft, and is in transmission with the intermediate shaft Connected and meshed with the motor input shaft gear.
  • the power transmission between the motor input shaft and the intermediate shaft can be communicated through the motor input shaft gear and the intermediate shaft large gear.
  • the power output by the motor on the motor input shaft can be transmitted to the intermediate shaft through the motor input shaft gear and the intermediate shaft large gear.
  • the power output from the engine on the intermediate shaft can be transmitted to the motor input shaft through the motor input shaft gear and the intermediate shaft large gear, so that the motor can generate electricity.
  • the first transmission assembly may include more gears.
  • the first transmission assembly may replace part or all of the current gears with other transmission components such as chains.
  • the first transmission assembly may further include at least one clutch.
  • the power transmission between the shaft and the shaft can be realized by a key (for example, spline) connection.
  • the second transmission assembly includes: a first clutch, including a first active part and a first passive part that cooperate with each other, the first active part is in driving connection with the engine input shaft; the engine input shaft gear, and the first A passive part is in transmission connection; an intermediate shaft pinion is sleeved on the intermediate shaft, is in transmission connection with the intermediate shaft, and meshes with the engine input shaft gear.
  • the second transmission assembly may include more gears.
  • the second transmission assembly may replace part or all of the current gears with other transmission components such as chains.
  • the second transmission assembly may also use components such as a synchronizer to replace the clutch in this embodiment, so as to realize the connection and disconnection of power transmission.
  • the power output by the engine passes through the engine input shaft gear, the intermediate shaft pinion, the intermediate shaft large gear, the motor input shaft gear, etc. Only after this gear can be transmitted to the motor to generate electricity by the power supply instead of directly connecting the motor input shaft to the engine input shaft gear. Because the maximum speed of the motor is usually greater than the maximum speed of the engine, this application passes the above Setting, the speed ratio can be adjusted reasonably according to the demand, the engine and the motor can work at different speeds to give full play to their respective speed and torque characteristics.
  • the third transmission assembly includes: an intermediate shaft pinion; an output shaft gear, which is sleeved on the differential and meshes with the intermediate shaft pinion; and the second clutch includes a second driving gear that cooperates with each other.
  • the second active part is connected with the output shaft in gear transmission, and the second passive part is connected with the differential in transmission.
  • the third transmission assembly includes an intermediate shaft pinion.
  • the intermediate shaft pinion is also part of the second transmission assembly, that is, the intermediate shaft pinion is the third transmission.
  • the component and the second transmission component are shared.
  • the output shaft gear is freely sleeved on the differential and meshes with the intermediate shaft pinion. Among them, the output shaft gear is sleeved on the differential. It can be understood that the output shaft gear is sleeved on the differential, but there is no direct power transmission between the output shaft gear and the differential.
  • the output shaft gear can be Set in the differential.
  • the second clutch includes a second active part and a second passive part that cooperate with each other.
  • the second active part is connected with the output shaft gear transmission
  • the second passive part is connected with the differential transmission
  • the second passive part can be regarded as the power input end of the differential.
  • the third transmission assembly may include more gears.
  • the third transmission assembly and the second transmission assembly do not share the intermediate shaft pinion.
  • a separate gear can be provided on the intermediate shaft to mesh with the output shaft gear to replace the intermediate shaft pinion in the third transmission assembly; or, the third transmission assembly can also share the intermediate shaft large gear with the first transmission assembly to output The shaft gear meshes with the intermediate shaft gear.
  • the third transmission assembly may replace part or all of the current gears with other transmission components such as chains.
  • the third transmission assembly may also use components such as a synchronizer to replace the clutch in this embodiment, so as to realize the connection and disconnection of power transmission.
  • a drive system for an electric vehicle including a first drive system, the first drive system including a first motor, an engine, and the reducer provided by any one of the designs in the first aspect; the motor input shaft and the first drive system; A motor drive connection, the engine input shaft and the engine drive connection, the first motor is a dual-purpose motor, which can convert mechanical energy into electrical energy, and can also convert electrical energy into mechanical energy.
  • the first drive system may be the front drive system of the vehicle or the rear drive system of the vehicle, which is not limited in this application.
  • the first driving system may be the only driving system of the vehicle, or may be one of multiple (for example, two) driving systems, which is not limited in this application.
  • a second drive system is further included.
  • the second drive system includes a second motor and a variable speed transmission device, and the second motor is drivingly connected to the variable speed transmission device.
  • the drive mode of the drive system includes a pure electric two-wheel drive mode.
  • the pure electric two-wheel drive mode the first motor and the engine are in a stopped state, and the power transmission between the intermediate shaft and the differential is interrupted.
  • the open state the power transmission between the engine input shaft and the intermediate shaft is in a connected or disconnected state; the second motor is in a driving state.
  • the drive mode of the drive system includes a pure electric four-wheel drive mode.
  • the first motor is in the driving state, the engine is in a stopped state, and the power between the intermediate shaft and the differential is The transmission is in a connected state, the power transmission between the engine input shaft and the intermediate shaft is in a disconnected state; the second motor is in a driving state.
  • the drive mode of the drive system includes an extended-range series drive mode.
  • the first motor is in the power generation state, the engine is in the driving state, and the power between the intermediate shaft and the differential is The transmission is in a disconnected state, the power transmission between the engine input shaft and the intermediate shaft is in a connected state; the second motor is in a driving state.
  • the drive mode of the drive system includes an extended-range parallel drive mode.
  • the first motor is in the driving or generating state
  • the engine is in the driving state
  • the intermediate shaft and the differential are in the driving state.
  • the power transmission of the engine is in a connected state, and the power transmission between the engine input shaft and the intermediate shaft is in a connected state; the second motor is in a driving state.
  • the first drive system is a front drive system and the second drive system is a rear drive system, or the first drive system is a rear drive system and the second drive system is a front drive system.
  • a vehicle controller for example, an electronic control unit (ECU)
  • ECU electronice control unit
  • first motor controller for example, a first motor controller
  • second motor controller for example, a second motor controller
  • engine controller for example, a power battery
  • Reducer controller for example, a third motor controller
  • the first motor controller is respectively electrically connected to the first motor and the vehicle controller
  • the second motor controller is respectively electrically connected to the second motor and the vehicle controller
  • the engine controller is respectively connected to the engine and the vehicle controller.
  • Electrically connected, the reducer controller, the variable speed transmission controller and the vehicle controller are electrically connected.
  • the power battery is respectively electrically connected with the first motor, the second motor and the vehicle controller.
  • an electric vehicle which includes wheels, a half shaft, and the drive system provided by any one of the designs of the second aspect mentioned above.
  • the drive system is connected to the wheels through the half shaft to drive the electric vehicle.
  • Figure 1 is a driving principle diagram of an existing series-extended range electric vehicle.
  • Fig. 2 is a schematic structural diagram of a reducer provided by an embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of an example of a drive system for an electric vehicle provided by an embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of another example of a drive system for an electric vehicle provided by an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of another example of the drive system of an electric vehicle provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the power transmission path of the drive system in the pure electric two-wheel drive mode.
  • Fig. 7 is a schematic diagram of the power transmission path of the drive system in the pure electric four-wheel drive mode.
  • Fig. 8 is a schematic diagram of the power transmission path of the drive system in the extended-range series drive mode.
  • Fig. 9 is a schematic diagram of the power transmission path of the drive system in the extended-range parallel drive mode.
  • Fig. 10 is a control principle diagram of the driving system of an electric vehicle provided by an embodiment of the present application.
  • the extended-range electric vehicle as an electric vehicle that can increase the driving range and has the advantages of hybrid electric vehicles and pure electric vehicles at the same time, can be a good transition model from internal combustion engine vehicles to pure electric vehicles.
  • the extended-range electric vehicle is equipped with an on-board power supply system on the original basis of pure electric vehicles.
  • the on-board power supply system can supply power to the battery, and the battery then supplies power to the drive system of the extended-range electric vehicle.
  • the power supply system can also directly supply power to the drive system, which can increase the mileage of the extended-range electric vehicle.
  • Fig. 1 is a driving principle diagram of the existing series-extended-range electric vehicle.
  • the vehicle-mounted auxiliary power supply device can be turned on to provide energy for the power system to extend the electric vehicle's driving range.
  • the engine can be controlled to drive the generator to generate electricity and supply power to the power battery.
  • the power battery is supplying power to the motor, and the motor drives the wheels through a reducer or a transmission.
  • the engine drives the generator to generate power, it can also directly supply power to the motor, and the motor drives the wheels to travel through a reducer or a transmission.
  • the embodiment of the present application optimizes and improves the reducer of the drive system to solve the problem that the engine and generator in the existing series-extended range electric vehicle cannot directly drive the vehicle, thereby improving the power and economy of the vehicle. Sexuality and maneuverability.
  • the present application first provides a reducer, which can be applied to the drive system of an electric vehicle.
  • FIG. 2 is a schematic structural diagram of the reducer 100 provided by an embodiment of the present application.
  • the reducer 100 provided by the embodiment of the present application includes a motor input shaft 1a, an engine input shaft 1b, an intermediate shaft 2, a first output shaft 3a, a second output shaft 3b, a differential 4, a first Transmission component X1, second transmission component X2, and third transmission component X3.
  • the first output shaft 3a and the second output shaft 3b are drivingly connected with the differential 4 respectively.
  • the first transmission component X1 is used to communicate the power transmission between the motor input shaft 1a and the intermediate shaft 2.
  • the second transmission assembly X2 is used to connect or disconnect the power transmission between the engine input shaft 1b and the intermediate shaft 2.
  • the third transmission assembly X3 is used to connect or disconnect the power transmission between the intermediate shaft 2 and the differential 4.
  • the motor input shaft 1a of the reducer 100 is used for driving connection with the output shaft of the motor, for example, it may be connected with the output shaft of the motor through a spline.
  • the motor can be a dual-purpose motor that can convert mechanical energy into electrical energy, and can also convert electrical energy into mechanical energy, that is, the motor can be used as a drive motor and can output power under the action of electricity; it can also be used as a generator Use (the output shaft of the motor becomes the input shaft at this time) to generate electricity under the action of external power.
  • the motor is in transmission connection with the motor input shaft 1a.
  • the motor can transmit power to the reducer 100 through the motor input shaft 1a; when the motor is working in the power generation mode, the power of the reducer 100 can be passed through the motor
  • the input shaft 1a is transmitted to the motor so that the motor generates electricity.
  • the engine input shaft 1b of the reducer 100 is used for driving connection with the output shaft of the engine.
  • it may be connected with the output shaft of the engine through a spline.
  • the power output from the engine is transmitted to the speed reducer 100 through the engine input shaft 1b.
  • the first output shaft 3a and the second output shaft 3b are respectively used for transmission connection with wheels on the left and right sides of the vehicle, and transmit power to the wheels, thereby driving the vehicle to travel.
  • the first output shaft 3a and the second output shaft 3b may be connected to the wheels on both sides through a half shaft respectively.
  • the differential 4 can enable the left and right (or front and rear) driving wheels to rotate at different speeds. When the car is turning or driving on uneven roads, it can ensure the pure rolling motion of the driving wheels on both sides.
  • the differential 4 includes a power input terminal and two power output terminals.
  • the first output shaft 3a and the second output shaft 3b are drivingly connected to the two power output ends of the differential 4, respectively.
  • the power transmission path inside the reducer 100 can be controlled through the first transmission component X1, the second transmission component X2, and the third transmission component X3, which can be specifically divided into the following situations.
  • the reducer 100 provided by the embodiment of the present application can enrich the use functions of the motor and the engine, and enable the motor and the engine to directly drive the vehicle to travel, shorten the energy transmission path and the number of conversions, thereby increasing The power, economy and handling of the whole vehicle.
  • the first transmission component X1 is used to communicate the power transmission between the motor input shaft 1a and the intermediate shaft 2. As shown in FIG. 2, in the embodiment of the present application, the first transmission assembly X1 includes a motor input shaft gear 5 and an intermediate shaft gear 6.
  • the motor input shaft gear 5 is sleeved on the motor input shaft 1a and is in transmission connection with the motor input shaft 1a
  • the intermediate shaft large gear 6 is sleeved on the intermediate shaft 2
  • the motor input shaft gear 5 and the intermediate shaft large gear 6 can communicate the power transmission between the motor input shaft 1a and the intermediate shaft 2.
  • the power output by the motor on the motor input shaft 1a can be transmitted to the intermediate shaft 2 through the motor input shaft gear 5 and the intermediate shaft large gear 6.
  • the power output from the engine on the intermediate shaft 2 can be transmitted to the motor input shaft 1a through the motor input shaft gear 5 and the intermediate shaft large gear 6, so that the motor can generate electricity.
  • the first transmission assembly X1 may include more gears.
  • the first transmission assembly X1 may replace part or all of the current gears with other transmission components such as chains.
  • the first transmission component X1 may also include at least one clutch.
  • the power transmission between the shaft and the shaft can be realized through a key (for example, spline) connection.
  • the second transmission assembly X2 is used to connect or disconnect the power transmission between the engine input shaft 1b and the intermediate shaft 2. As shown in FIG. 2, in the embodiment of the present application, the second transmission assembly X2 includes a first clutch 7, an engine input shaft gear 8 and an intermediate shaft pinion 9.
  • the first clutch 7 includes a first active part and a first passive part that cooperate with each other, and the first active part is drivingly connected with the engine input shaft 1b;
  • the engine input shaft gear 8 is in transmission connection with the first passive part
  • the intermediate shaft pinion 9 is sleeved on the intermediate shaft 2, is in transmission connection with the intermediate shaft 2, and meshes with the engine input shaft gear 8.
  • the first active part and the first passive part of the first clutch 7 can be controlled to realize the power transmission communication between the engine input shaft 1b and the intermediate shaft 2, and by controlling the first active part and the first passive part In order to realize the power transmission between the engine input shaft 1b and the intermediate shaft 2 is disconnected.
  • the power output by the engine can be transmitted to the intermediate shaft 2 through the engine input shaft 1b, the first clutch 7, the engine input shaft gear 8 and the intermediate shaft pinion 9 in sequence.
  • the second transmission assembly X2 may include more gears.
  • the second transmission assembly X2 can replace part or all of the current gears with other transmission components such as chains.
  • the second transmission assembly X2 can also use components such as a synchronizer to replace the clutch in this embodiment, so as to realize the connection and disconnection of power transmission.
  • the power output by the engine passes through the engine input shaft gear 8, the intermediate shaft pinion 9, the intermediate shaft large gear 6, and the motor input shaft Gear 5 and other gears can be transmitted to the motor to generate electricity by the power supply instead of directly connecting the motor input shaft 1a with the engine input shaft gear 1b.
  • the maximum speed of the motor is usually greater than the maximum engine speed under normal circumstances Speed.
  • the third transmission assembly X3 is used to connect or disconnect the power transmission between the intermediate shaft 2 and the differential 4. As shown in FIG. 2, in the embodiment of the present application, the third transmission assembly X3 includes an intermediate shaft pinion 9, an output shaft gear 10 and a second clutch 11.
  • the third transmission assembly X3 includes an intermediate shaft pinion 9.
  • the intermediate shaft pinion 9 is also a part of the second transmission assembly X2, that is, the intermediate shaft pinion 9 is shared by the third transmission component X3 and the second transmission component X2.
  • the output shaft gear 10 is freely sleeved on the differential 4 and meshes with the intermediate shaft pinion 9.
  • the output shaft gear 10 is sleeved on the differential 4, which can be understood as the output shaft gear 10 is sleeved on the differential 4, but it cannot directly transmit power with the differential 4.
  • the bearing sets the output shaft gear 10 on the differential 4.
  • the second clutch 11 includes a second active part and a second passive part that cooperate with each other.
  • the second active part is in transmission connection with the output shaft gear 10
  • the second passive part is in transmission connection with the differential 4
  • the second passive part can be regarded as the power input end of the differential 4.
  • the power transmission communication between the intermediate shaft 2 and the differential 4 can be realized by controlling the engagement of the second active part and the second passive part of the second clutch 11, and by controlling the separation of the second active part and the second passive part. In order to realize the power transmission between the intermediate shaft 2 and the differential 4 is disconnected.
  • the power on the intermediate shaft 2 can be transmitted to the differential 4 through the intermediate shaft pinion 9, the output shaft gear 10 and the second clutch 11 in sequence.
  • the third transmission assembly X3 may include more gears.
  • the third transmission assembly X3 and the second transmission assembly X2 do not share the intermediate shaft pinion 9.
  • a separate gear can be provided on the intermediate shaft 2 to mesh with the output shaft gear 10 to replace the intermediate shaft pinion 9 in the third transmission assembly X3; or, the third transmission assembly X3 can also be shared with the first transmission assembly X1
  • the intermediate shaft gear 6 and the output shaft gear 10 mesh with the intermediate shaft gear 6.
  • the third transmission assembly X3 may replace part or all of the current gears with other transmission components such as chains.
  • the third transmission assembly X3 can also use components such as a synchronizer to replace the clutch in this embodiment, so as to realize the connection and disconnection of power transmission.
  • the reducer 100 provided in the embodiment of the present application may further include a housing 12.
  • the housing 12 is provided with through holes at positions corresponding to the motor input shaft 1a, the engine input shaft 1b, the first output shaft 3a, and the second output shaft 3b, so that the motor input shaft 1a and the engine input shaft 1b are connected to the motor and the engine, respectively. , And the connection of the first output shaft 3a and the second output shaft 3b to the wheels.
  • the intermediate shaft 2 is fixed to the inner wall of the housing 12 in a rotatable manner.
  • a bearing may also be provided in each through hole, and each of the above-mentioned shafts is fixed in the bearing, thereby improving the reliability of the connection between the shaft and the external component.
  • an embodiment of the present application also provides a drive system for an electric vehicle, which is described in detail below.
  • FIG. 3 is a schematic structural diagram of an example of a drive system for an electric vehicle provided by an embodiment of the present application.
  • the drive system includes a first drive system, and the first drive system includes a first motor M1, an engine E, and the foregoing The reducer 100.
  • the motor input shaft 1a of the speed reducer 100 is drivingly connected with the output shaft of the first motor M1
  • the engine input shaft 1b of the speed reducer 100 is drivingly connected with the output shaft of the engine E.
  • the motor input shaft 1a can be connected to the output shaft of the first motor M1 by means of keys (for example, splines), and the engine input shaft 1b can be connected by keys.
  • the connection (for example, spline) realizes the power transmission with the output shaft of the engine E.
  • the first motor M1 is a dual-purpose motor, which can convert mechanical energy into electrical energy, and can also convert electrical energy into mechanical energy. That is, the first motor M1 can be used as a power output device. Under the action, power is output to the reducer 100 through the motor input shaft 1a; in addition, the first motor M1 can also be used as a power generating device, and the reducer 100 can output power to the first motor M1 through the motor input shaft 1a, so that the first motor can generate electricity. .
  • the first output shaft 3a of the speed reducer 100 may be drivingly connected to the wheel T on the left side of the vehicle through the half shaft S, or may be drivingly connected to the wheel T on the right side of the vehicle through the half shaft S, which is not strictly limited in the embodiment of the present application.
  • the first output shaft 3a is connected to the wheel T on the left side of the vehicle
  • the second output shaft 3b is connected to the wheel T on the right side of the vehicle as examples.
  • the left and right sides of is divided based on the direction of the vehicle.
  • the drive system adopts the reducer 100 provided in the above embodiment, the drive system also has the technical effect corresponding to the reducer 100, which will not be repeated here.
  • the first drive system may be the front drive system of the vehicle or the rear drive system of the vehicle, which is not limited in this application.
  • the first driving system may be the only driving system of the vehicle, or may be one of multiple (for example, two) driving systems, which is not limited in this application.
  • Fig. 4 is a schematic structural diagram of another example of a drive system for an electric vehicle provided by an embodiment of the present application.
  • the drive system provided by this embodiment includes a second drive system in addition to the first drive system.
  • the second drive system can be any electric vehicle. Drive System.
  • the second drive system includes a second motor M2 and a variable speed transmission device 200.
  • the second motor M2 may be any drive motor, and the variable speed transmission device 200 may be a reducer or a multi-speed transmission device.
  • the second motor M2 transmits power to the variable speed transmission device 200 under the action of electric power, and the variable speed transmission device 200 transmits the power to the wheels T through the half shaft S to drive the vehicle to travel.
  • the first drive system is a front drive system
  • the second drive system is a rear drive system.
  • the first drive system is a drive system that is further forward along the front of the vehicle.
  • Fig. 5 is a schematic structural diagram of another example of the drive system of an electric vehicle provided by an embodiment of the present application. As shown in FIG. 5, in other embodiments, the first drive system may also be a rear drive system, and the second drive system is a front drive system.
  • the first motor M1 can be controlled to be in the driving, generating or stopping state, the engine E is in the driving or stopping state, and the power transmission between the engine input shaft 1b and the intermediate shaft 2 is connected or disconnected. State, the power transmission between the intermediate shaft 2 and the differential 4 is in a connected or disconnected state, so that the drive system has a pure electric two-wheel drive (rear drive) mode, a pure electric four-wheel drive mode, an extended range series drive mode, and an extended range Parallel drive mode and other drive modes, and can switch between different drive modes to meet the needs of different driving conditions.
  • the drive system has a pure electric two-wheel drive (rear drive) mode, a pure electric four-wheel drive mode, an extended range series drive mode, and an extended range Parallel drive mode and other drive modes, and can switch between different drive modes to meet the needs of different driving conditions.
  • the four drive modes mentioned above namely the pure electric two-wheel drive mode, the pure electric four-wheel drive mode, the extended-range series drive mode, and the extended-range parallel drive mode, are described in detail below.
  • the pure electric two-wheel drive mode refers to the two-wheel drive in pure electric mode. Its typical application scenario is that the vehicle power battery has sufficient power (for example: battery remaining power (state of charge, SOC) ⁇ 20%), and the vehicle drive torque demand Smaller.
  • the first drive system may not work, but the second drive system is used to drive the vehicle.
  • the first motor M1 and the engine E are in a stopped state, the power transmission between the intermediate shaft 2 and the differential 4 is in a disconnected state, and the power transmission between the engine input shaft 1b and the intermediate shaft 2 is in communication or Disconnected state.
  • the second motor M2 is in a driving state.
  • Fig. 6 is a schematic diagram of the power transmission path of the drive system in the pure electric two-wheel drive mode.
  • the first drive system when the drive system is in the pure electric two-wheel drive mode, the first drive system does not work, and the second drive system drives the vehicle.
  • the power output by the second motor M2 is transmitted to the wheels T at the rear of the vehicle after passing through the variable speed transmission device 200 and the half shaft S, thereby driving the vehicle to travel.
  • the second clutch 11 is in a disengaged state, so that the torque of the differential 4 will not be transmitted to the intermediate shaft 2, the motor input shaft 1a, and the engine input shaft 1b during the running of the vehicle, the first motor M1, the engine E, and the deceleration
  • the shafts and gears in the machine 100 are in a stopped state, which will not cause additional mechanical rotation friction loss, which improves the economy of the entire vehicle.
  • the pure electric four-wheel drive mode refers to the four-wheel drive in the pure electric mode. Its typical application scenario is that the vehicle power battery has sufficient power (for example: battery SOC ⁇ 20%), and the vehicle drive torque demand is large. In the pure electric four-wheel drive mode, the first drive system and the second drive system simultaneously drive the vehicle.
  • the first electric motor M1 is in a driving state
  • the engine E is in a stopped state
  • the power transmission between the intermediate shaft 2 and the differential 4 is in a communication state
  • the power transmission between the engine input shaft 1b and the intermediate shaft 2 is Disconnected state
  • the second motor M2 is in a driving state.
  • Fig. 7 is a schematic diagram of the power transmission path of the drive system in the pure electric four-wheel drive mode.
  • the second clutch 11 is in the engaged state
  • the first clutch 7 is in the disengaged state
  • the power output by the first motor M1 sequentially passes through the motor input shaft 1a, the intermediate shaft gear 6, the intermediate shaft 2, the intermediate shaft pinion 9, and the output
  • the shaft gear 10 and the second clutch 11 are transmitted to the differential 4, and then respectively transmitted to the first output shaft 3a and the second output shaft 3b, and then transmitted to the wheels T on the left and right sides of the front of the vehicle through the half shaft S, thereby driving The vehicle is moving.
  • the first clutch 7 since the first clutch 7 is in the disengaged state, the power output by the first electric motor M1 cannot be transmitted to the engine E.
  • the power output by the second motor M2 is transmitted to the wheels T on the left and right sides of the rear of the vehicle after passing through the transmission 200 and the half shaft S.
  • the driving force required for the vehicle to travel is provided by the front and rear motors, so it can achieve excellent vehicle dynamics and handling.
  • the typical application scenario of the extended-range series drive mode is that the power battery of the vehicle is insufficient (for example: battery SOC ⁇ 20%), and the vehicle speed is low.
  • the engine E in the first drive system drives the first motor M1 to generate electricity, and the second drive system drives the vehicle to travel.
  • the first electric motor M1 is in a power generation state
  • the engine E is in a driving state
  • the power transmission between the intermediate shaft 2 and the differential 4 is in a disconnected state
  • the power transmission between the engine input shaft 1b and the intermediate shaft 2 is In the connected state
  • the second motor M2 is in the driving state.
  • Fig. 8 is a schematic diagram of the power transmission path of the drive system in the extended-range series drive mode.
  • the first drive system drives the first motor M1 to generate electricity
  • the second drive system drives the vehicle to travel.
  • the first clutch 7 is in the engaged state
  • the second clutch 11 is in the disengaged state
  • the power output by the engine E sequentially passes through the engine input shaft 1b, the first clutch 7, the engine input shaft gear 8, the intermediate shaft pinion 9, and the intermediate shaft 2.
  • the intermediate shaft gear 6, the motor input shaft gear 5, and the motor input shaft 1a are transmitted to the first motor M1 to drive the first motor M1 to generate electricity.
  • the power output by the second motor M2 is transmitted to the wheels T on the left and right sides of the rear of the vehicle after passing through the transmission 200 and the half shaft S.
  • the electric energy generated by the first motor M1 charges the power battery of the vehicle or is directly provided to the second motor M2 to drive the vehicle, and the driving force required for the vehicle is provided by the second motor M2.
  • the engine E can run stably at the speed and torque with better fuel economy, so the vehicle can achieve better fuel economy under low-speed congestion conditions during the extended range phase.
  • the typical application scenario of the extended-range parallel driving mode is that the power battery of the vehicle is insufficient (for example: battery SOC ⁇ 20%), and the vehicle is at a medium-to-high speed.
  • the first motor M1 in the first drive system can be driven or generated according to the vehicle state and driving force requirements.
  • the first motor M1 and the engine E in the first drive system can drive the vehicle at the same time, or the engine E drives the vehicle while also driving the first motor M1 to generate electricity; the second drive system drives the vehicle Driving.
  • the first motor M1 is in a driving or generating state
  • the engine E is in a driving state
  • the power transmission between the intermediate shaft 2 and the differential 4 is in a communication state
  • the power between the engine input shaft 1b and the intermediate shaft 2 The transmission is in a connected state
  • the second motor M2 is in a driving state.
  • Fig. 9 is a schematic diagram of the power transmission path of the drive system in the extended-range parallel drive mode.
  • the power transmission path can be divided into There are two kinds.
  • the power output by the engine E is sequentially transmitted to the intermediate shaft pinion 9 through the engine input shaft 1b, the first clutch 7, and the engine input shaft gear 8; and the power output by the first motor M1 is sequentially After passing through the motor input shaft 1a, the intermediate shaft large gear 6, and the intermediate shaft 2, it is also transmitted to the intermediate shaft pinion 9.
  • the power of the two paths is merged and then transmitted to the differential 4 through the output shaft gear 10 and the second clutch 11 in turn. , And then respectively transmitted to the first output shaft 3a and the second output shaft 3b, and then transmitted to the wheels T on the left and right sides of the vehicle through the half shaft S, thereby driving the vehicle to travel.
  • the power output by the engine E is transmitted to the intermediate shaft pinion 9 through the engine input shaft 1b, the first clutch 7, and the engine input shaft gear 8 in turn.
  • the power is divided into two parts, one of which is in turn It is transmitted to the differential 4 through the output shaft gear 10 and the second clutch 11, and then respectively transmitted to the first output shaft 3a and the second output shaft 3b, and then transmitted to the wheels T on the left and right sides of the vehicle through the half shaft S, thereby driving The vehicle is running; the other part is transmitted to the first motor M1 through the intermediate shaft 2, the intermediate shaft large gear 6, the motor input shaft gear 5, and the motor input shaft 1a in order to drive the first motor M1 to generate electricity.
  • the power output by the second motor M2 is transmitted to the wheels T on the left and right sides after passing through the variable speed transmission device 200 and the half shaft S.
  • the first motor M1 can perform driving or generating control according to the state of the vehicle and the driving force demand for driving.
  • the power of the engine E can be directly output for driving the vehicle without multiple energy conversions such as power generation, charging, and discharging, thus improving the fuel economy of the vehicle at high speeds in the range extension phase.
  • Fig. 10 is a control principle diagram of the driving system of an electric vehicle provided by an embodiment of the present application.
  • the drive system in addition to the aforementioned first drive system and second drive system, also includes a vehicle controller 300 (for example, it may be an electronic control unit (ECU)), The first motor controller 400, the second motor controller 500, the engine controller 600, the power battery 700, the reducer controller 800, and the variable speed transmission controller 900.
  • vehicle controller 300 for example, it may be an electronic control unit (ECU)
  • the first motor controller 400, the second motor controller 500, the engine controller 600, the power battery 700, the reducer controller 800, and the variable speed transmission controller 900 for example, it may be an electronic control unit (ECU)
  • ECU electronice control unit
  • the first motor controller 400 is electrically connected to the first motor M1 and the vehicle controller 300, respectively
  • the second motor controller 500 is electrically connected to the second motor M2 and the vehicle controller 300
  • the engine controller 600 is respectively It is electrically connected with the engine E and the vehicle controller 300
  • the reducer controller 800, the variable transmission device controller 900 and the vehicle controller 300 are electrically connected.
  • the power battery 700 is electrically connected to the first motor M1, the second motor M2, and the vehicle controller 300, respectively.
  • the first motor controller 400 and the second motor controller 500 are used to control the first motor M1 and the second motor M2, respectively. On the one hand, it controls whether the first motor M1 and the second motor M2 are in a driving state or a stop state (the first motor controller 400 can also control the first motor M1 to be in a power generation state), on the other hand, the first motor M1 and the second motor M2 are When in the driving state, the torque output by the first motor M1 and the second motor M2 is controlled.
  • the power battery 700 outputs DC power
  • the first motor controller 400 and the second motor controller 500 are also used to convert the power output DC power into AC power that can be recognized by the first motor M1 and the second motor M2.
  • the first motor controller 400 can also convert the alternating current generated by the first motor M1 into direct current and store it in the power battery 700.
  • the engine controller 600 is used to control the engine E. For example, it can control whether the engine E is in a driving state or a stopped state. In addition, it can also control the torque output by the engine E.
  • the power battery 700 is used to provide electrical energy to the first motor M1 and the second motor M2. In addition, the power battery 700 can also store the electric energy generated by the first motor M1.
  • the reducer controller 800 is used to control the reducer 100. Specifically, the reducer controller 800 is used to control whether the power transmission between the engine input shaft 1b and the intermediate shaft 2 is connected or disconnected, and the power transmission between the intermediate shaft 2 and the differential 4 is connected or disconnected, for example
  • the above-mentioned purpose can be achieved by controlling the engagement or disengagement of the first clutch 7 and the second clutch 11.
  • variable speed transmission device controller 900 is used to control the variable speed transmission device 200.
  • the vehicle controller 300 is the coordinated control center of the vehicle, and is used to provide the first motor controller 400, the second motor controller 500, the engine controller 600, the power battery 700, the reducer controller 800, and the The variable speed transmission controller 900 issues a control command.
  • Table 1 is a summary of the states of the engine E, the first motor M1, the first clutch 7, the second clutch 11, and the second motor M2 in each drive mode of the drive system.
  • Table 1 Summary of the states of the four drive modes of the drive system
  • the drive system provided by the embodiments of the present application can take into account the performance requirements of the vehicle under various operating conditions, and improve the economy, power, and handling of the vehicle.
  • an embodiment of the present application also provides an electric vehicle, including the drive system provided in any of the foregoing embodiments. Further, the electric vehicle further includes wheels and half shafts, and the driving system is connected with the wheels through the half shafts to drive the electric vehicle.

Abstract

一种减速器(100)、电动汽车的驱动系统及电动汽车,该减速器(100)包括:电机输入轴(1a)、发动机输入轴(1b)、中间轴(2)、第一输出轴(3a)、第二输出轴(3b)以及差速器(4),第一输出轴(3a)和第二输出轴(3b)分别与差速器(4)传动连接;还包括:第一传动组件(X1),用于连通电机输入轴(1a)和中间轴(2)之间的动力传递;第二传动组件(X2),用于连通或者断开发动机输入轴(1a)和中间轴(2)之间的动力传递;第三传动组件(X3),用于连通或者断开中间轴(2)和差速器(4)之间的动力传递。该减速器能够解决现有串联增程式电动汽车中发动机和发电机无法直接驱动车辆的问题,由此提高了整车动力性、经济性和操控性。

Description

减速器、电动汽车的驱动系统及电动汽车
本申请要求于2019年11月15日提交中国专利局、申请号为201911116557.0、申请名称为“减速器、电动汽车的驱动系统及电动汽车”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电动汽车技术领域,特别涉及一种减速器、电动汽车的驱动系统及电动汽车。
背景技术
纯电动汽车(battery electric vehicle)是完全由可充电电池提供动力源的汽车。现阶段,纯电动汽车还普遍存在续驶里程短、充电时间长、电池重量大和成本高等问题,而增程式电动汽车可以很好的解决纯电动汽车存在的这些问题,当车上动力电池有电时采用纯电驱动模式,当车上动力电池电量较低时切换到增程驱动模式,因此增程式电动汽车是目前市场上新能源汽车的主流方案之一。
通常的增程式电动汽车采用串联式驱动方案,即发动机和发电机无法直接驱动车辆,而是通过发动机拖动发电机发电,给动力电池和驱动电机供电的方式来延长汽车续驶里程。这种方案的缺点是发动机和发电机无法直接驱动车辆,能量流的传递路径较长,造成整车的经济性较差。
发明内容
本申请提供一种减速器、电动汽车的驱动系统及电动汽车,能够解决现有串联增程式电动汽车中发动机和发电机无法直接驱动车辆的问题,由此提高了整车动力性、经济性和操控性。
第一方面,提供了一种减速器,包括电机输入轴、发动机输入轴、中间轴、第一输出轴、第二输出轴以及差速器,第一输出轴和第二输出轴分别与差速器传动连接;还包括:第一传动组件,用于连通电机输入轴和中间轴之间的动力传递;第二传动组件,用于连通或者断开发动机输入轴和中间轴之间的动力传递;第三传动组件,用于连通或者断开中间轴和所述差速器之间的动力传递。
本申请通过第一传动组件、第二传动组件以及第三传动组件可控制减速器内部的动力传递路径,具体可以分为以下几种情况。
情况(1),当发动机输入轴和中间轴之间的动力传递被断开、中间轴和差速器之间的动力传递被连通时,电机作为动力输出装置,输出的动力依次经过电机输入轴、中间轴、差速器之后传输至第一输出轴和第二输出轴,并且最终传输至车轮。
情况(2),当发动机输入轴和中间轴之间的动力传递被连通、中间轴和差速器之间 的动力传递被断开时,电机作为发电装置,发动机输出的动力依次经过发动机输入轴、中间轴、电机输入轴之后传输至电机,电机进行发电。
情况(3),当发动机输入轴和中间轴之间的动力传递被连通、中间轴和差速器之间的动力传递也被连通时,此时根据电机作为动力输出装置还是发电装置,可以分为两种情况。
情况(3a),当电机作为动力输出装置,电机输出的动力经过电机输入轴之后传递至中间轴,发动机输出的动力经过发动机输入轴之后也传递至中间轴,电机和发动机的动力进行汇合以后通过差速器传输至第一输出轴和第二输出轴,并且最终传输至车轮。
情况(3b),当电机作为发电装置,发动机输出的动力经过发动机输入轴之后传递至中间轴,此时该动力分成两部分,一部分通过电机输入轴之后传输至电机,电机进行发电,另一部分通过差速器传输至第一输出轴和第二输出轴,并且最终传输至车轮。
情况(4),当发动机输入轴和中间轴之间的动力传递被连通或者断开、中间轴和差速器之间的动力传递被断开时,此时电机和发动机可以均不工作,而是作为车辆驱动的备用辅助装置,这时车辆在行驶过程中差速器的扭矩不会传递至中间轴、电机输入轴以及发动机输入轴,由此不会造成额外的机械旋转摩擦损失,提高了整车经济性。
综上所述,本申请提供的减速器能够丰富电机和发动机的使用功能,并且使得电机和发动机能够直接驱动车辆行驶,缩短了能量传输的路径和转换的次数,由此提高了整车动力性、经济性和操控性。
在一种可能的设计中,第一传动组件包括:电机输入轴齿轮,套设在电机输入轴上且与电机输入轴传动连接;中间轴大齿轮,套设在中间轴上,与中间轴传动连接,且与电机输入轴齿轮啮合。
通过电机输入轴齿轮和中间轴大齿轮能够将电机输入轴和中间轴之间的动力传递连通。例如,可以通过电机输入轴齿轮和中间轴大齿轮将电机输入轴上由电机输出的动力传递至中间轴。
再例如,可以通过电机输入轴齿轮和中间轴大齿轮将中间轴上由发动机输出的动力传递至电机输入轴上,以使得电机能够进行发电。
应理解,上述以两个齿轮为例说明了第一传动组件的构成,但不能以此理解为对第一传动组件构成的限制。本申请对第一传动组件包含的部件数量以及形式等并不限定,只要能够实现上述动力传递功能的传动组件(或者单个部件)均应当在本申请的保护范围内。
例如,在其他实施例中,第一传动组件可以包括更多的齿轮。
再例如,在其他实施例中,第一传动组件可以通过链条等其他传动部件来取代当前的部分或者全部齿轮。
再例如,为了实现更好的传动控制,第一传动组件还可以包括至少一个离合器。
应理解,本申请实施例提供的减速器中,对于套设在轴上且与轴传动连接的部件来说,可以通过键(例如花键)连接的方式实现与轴之间的动力传递。
在一种可能的设计中,第二传动组件包括:第一离合器,包括相互配合的第一主动部分和第一被动部分,第一主动部分与发动机输入轴传动连接;发动机输入轴齿轮,与第一被动部分传动连接;中间轴小齿轮,套设在中间轴上,与中间轴传动连接,且与发动机输入轴齿轮啮合。
应理解,上述以两个齿轮和一个离合器为例说明了第二传动组件的构成,但不能以此理解为对第二传动组件构成的限制。本申请对第二传动组件包含的部件数量以及形式等并不限定,只要能够实现上述动力传递功能的传动组件(或者单个部件)均应当在本申请的保护范围内。
例如,在其他实施例中,第二传动组件可以包括更多的齿轮。
再例如,在其他实施例中,第二传动组件可以通过链条等其他传动部件来取代当前的部分或者全部齿轮。
再例如,在其他实施例中,第二传动组件还可以使用同步器等部件来取代本实施例中的离合器,以此来实现动力传递的连通与切断。
参考前文对动力传递路径中的情况(2)的相关介绍,在本申请实施例中,发动机输出的动力要经过发动机输入轴齿轮、中间轴小齿轮、中间轴大齿轮、电机输入轴齿轮等多个齿轮之后才能传递至电机,以供电机进行发电,而不是通过电机输入轴直接与发动机输入轴齿轮进行传动连接,由于通常情况下电机的最大转速通常要大于发动机的最大转速,本申请通过以上设置,可以根据需求合理的调整转速比,发动机和电机可以以不同的转速工作,充分发挥各自的转速和扭矩特性。
在一种可能的设计中,第三传动组件包括:中间轴小齿轮;输出轴齿轮,空套于差速器上,并且与中间轴小齿轮啮合;第二离合器,包括相互配合的第二主动部分和第二被动部分,第二主动部分与输出轴齿轮传动连接,第二被动部分与所述差速器传动连接。
具体地,在本实施例中,第三传动组件包括中间轴小齿轮,根据前述分析可知,该中间轴小齿轮同时也是第二传动组件的一部分,也就是说,中间轴小齿轮为第三传动组件和第二传动组件所共用。通过以上设置,能够简化减速器的结构,降低控制复杂度、节约生产成本。
输出轴齿轮空套于差速器上,并且与中间轴小齿轮啮合。其中,输出轴齿轮空套于差速器上,可以理解为输出轴齿轮套设于差速器上,但是与差速器之间并不能直接进行动力传递,例如,可以通过轴承将输出轴齿轮套设于差速器。
第二离合器包括相互配合的第二主动部分和第二被动部分。其中第二主动部分与输出轴齿轮传动连接,第二被动部分与差速器传动连接,第二被动部分可以看作差速器的动力输入端。
应理解,上述以两个齿轮和一个离合器为例说明了第三传动组件的构成,但不能以此理解为对第三传动组件构成的限制。本申请对第三传动组件包含的部件数量以及形式等并不限定,只要能够实现上述动力传递功能的传动组件(或者单个部件)均应当在本申请的保护范围内。
例如,在其他实施例中,第三传动组件可以包括更多的齿轮。
再例如,在其他实施例中,第三传动组件和第二传动组件不共用中间轴小齿轮。可以在中间轴上设置单独的齿轮来与输出轴齿轮相啮合,以替代第三传动组件中的中间轴小齿轮;或者,第三传动组件也可以和第一传动组件共用中间轴大齿轮,输出轴齿轮与中间轴大齿轮相啮合。
再例如,在其他实施例中,第三传动组件可以通过链条等其他传动部件来取代当前的部分或者全部齿轮。
再例如,在其他实施例中,第三传动组件还可以使用同步器等部件来取代本实施例中的离合器,以此来实现动力传递的连通与切断。
第二方面,提供了一种电动汽车的驱动系统,包括第一驱动系统,第一驱动系统包括第一电机、发动机以及前述第一方面中任一种设计提供的减速器;电机输入轴与第一电机传动连接,发动机输入轴与发动机传动连接,第一电机为两用电机,能够将机械能转换成电能,还能够将电能转换成机械能。
可选地,该第一驱动系统可以是车辆的前驱系统,也可以是车辆的后驱系统,本申请对此不做限定。
可选地,该第一驱动系统可以是车辆唯一的一套驱动系统,也可以是多套(例如两套)驱动系统中的一套,本申请对此不做限定。
在一种可能的设计中,还包括第二驱动系统,第二驱动系统包括第二电机和变速传动装置,第二电机与变速传动装置传动连接。
在一种可能的设计中,驱动系统的驱动模式包括纯电动两驱模式,在纯电动两驱模式中,第一电机和发动机处于停机状态,中间轴和差速器之间的动力传递处于断开状态,发动机输入轴和中间轴之间的动力传递处于连通或者断开状态;第二电机处于驱动状态。
在一种可能的设计中,驱动系统的驱动模式包括纯电动四驱模式,在纯电动四驱模式中,第一电机处于驱动状态,发动机处于停机状态,中间轴和差速器之间的动力传递处于连通状态,发动机输入轴和中间轴之间的动力传递处于断开状态;第二电机处于驱动状态。
在一种可能的设计中,驱动系统的驱动模式包括增程串联驱动模式,在增程串联驱动模式中,第一电机处于发电状态,发动机处于驱动状态,中间轴和差速器之间的动力传递处于断开状态,发动机输入轴和中间轴之间的动力传递处于连通状态;第二电机处于驱动状态。
在一种可能的设计中,驱动系统的驱动模式包括增程并联驱动模式,在增程并联驱动模式中,第一电机处于驱动或者发电状态,发动机处于驱动状态,中间轴和差速器之间的动力传递处于连通状态,发动机输入轴和中间轴之间的动力传递处于连通状态;第二电机处于驱动状态。
在一种可能的设计中,第一驱动系统为前驱系统,第二驱动系统为后驱系统,或者,第一驱动系统为后驱系统,第二驱动系统为前驱系统。
在一种可能的设计中,还包括整车控制器(例如,可以是电子控制单元(electronic control unit,ECU))、第一电机控制器、第二电机控制器、发动机控制器、动力电池、减速器控制器以及变速传动装置控制器。
其中,第一电机控制器分别分别与第一电机和整车控制器电连接,第二电机控制器分别与第二电机和整车控制器电连接,发动机控制器分别与发动机和整车控制器电连接,减速器控制器、变速传动装置控制器和整车控制器电连接。动力电池分别与第一电机、第二电机和整车控制器电连接。
第三方面,提供了一种电动汽车,包括车轮、半轴以及前述第二方面中任一种设计提供的驱动系统,驱动系统通过半轴与车轮传动连接,以驱动电动汽车行驶。
附图说明
图1是现有串联增程式电动汽车的驱动原理图。
图2是本申请实施例提供的减速器的结构示意图。
图3是本申请实施例提供的电动汽车的驱动系统的一例的结构示意图。
图4是本申请实施例提供的电动汽车的驱动系统的另一例的结构示意图。
图5是本申请实施例提供的电动汽车的驱动系统的再一例的结构示意图。
图6是驱动系统处于纯电动两驱模式下的动力传递路径的示意图。
图7是驱动系统处于纯电动四驱模式下的动力传递路径的示意图。
图8是驱动系统处于增程串联驱动模式下的动力传递路径的示意图。
图9是驱动系统处于增程并联驱动模式下的动力传递路径的示意图。
图10是本申请实施例提供的电动汽车的驱动系统的控制原理图。
具体实施方式
为使本申请的技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。除非另有定义,本申请实施例所用的所有技术术语均具有与本领域技术人员通常理解的相同的含义。
随着地球环境的持续恶劣,人们对电动汽车的渴望越来越强烈。纯电动汽车具有零排放、零污染、高效率和不依赖石油等特点。但由于现阶段电动汽车所需的蓄电池的能量密度和行驶里程无法达到人们的要求,使其无法与传统内燃机相竞争。然而增程式电动汽车作为一款可增加续驶里程,又同时具备混合动力汽车和纯电动汽车优点的电动车,可以很好的作为内燃机汽车向纯电动汽车转型的过渡车型。
增程式电动汽车在纯电动汽车原有的基础上,增设车载供电系统,这样,当电池的电量不足时,车载供电系统可以向电池进行供电,电池再向增程式电动汽车的驱动系统供电,车载供电系统也可以直接向驱动系统供电,从而可以提升增程式电动汽车的行使里程。
现有的增程式电动汽车通常采用串联式驱动模式,图1是现有串联增程式电动汽车的驱动原理图。当车载可充电动力电池系统无法满足整车续驶里程要求时,可以打开车载辅助供电装置为动力系统提供能量,以延长电动汽车的续驶里程。具体地,如图1所示,此时可以控制发动机驱动发电机发电并且向动力电池进行供电,动力电池在向电机进行供电,电机通过减速器或者变速器驱动车轮行驶。或者,发动机驱动发电机发电之后也可以直接向电机进行供电,电机通过减速器或者变速器驱动车轮行驶。
然而,上述驱动方案中,发动机和发电机功能单一、无法直接驱动车辆,并且在增程模式串联驱动时整车经济性较差,其原因是能量流传递路径较长(即发动机拖动发电机发电→发电后给动力电池充电→动力电池放电给电机供电→电机驱动车辆行驶),能量在经过多次转换以后,损失较多。
基于上述分析,本申请实施例通过对驱动系统的减速器进行优化改进,以解决现有串联增程式电动汽车中发动机和发电机无法直接驱动车辆的问题,由此提高了整车动力性、经济性和操控性。
第一方面,本申请首先提供一种减速器,能够应用于电动汽车的驱动系统中,图2是本申请实施例提供的减速器100的结构示意图。
如图2所示,本申请实施例提供的减速器100包括包括电机输入轴1a、发动机输入轴 1b、中间轴2、第一输出轴3a、第二输出轴3b、差速器4、第一传动组件X1、第二传动组件X2以及第三传动组件X3。
其中,第一输出轴3a和第二输出轴3b分别与差速器4传动连接。
第一传动组件X1用于连通电机输入轴1a和中间轴2之间的动力传递。
第二传动组件X2用于连通或者断开发动机输入轴1b和中间轴2之间的动力传递。
第三传动组件X3用于连通或者断开中间轴2和差速器4之间的动力传递。
具体地,在本申请实施例中,减速器100的电机输入轴1a用于与电机的输出轴传动连接,例如,可以通过花键与电机的输出轴进行连接。
该电机可以为两用电机,能够将机械能转换成电能,还能够将电能转换成机械能,也就是说,该电机可以作为驱动电机进行使用,在电力作用下能够输出动力;也可以作为发电机进行使用(此时电机的输出轴变为输入轴),在外部动力的作用下进行发电。
电机与电机输入轴1a传动连接,当电机工作在驱动模式下时,电机可以通过电机输入轴1a将动力传递至减速器100;当电机工作在发电模式下时,减速器100的动力可以通过电机输入轴1a传递至电机,以使电机进行发电。
减速器100的发动机输入轴1b用于与发动机的输出轴传动连接,例如,可以通过花键与发动机的输出轴进行连接。发动机输出的动力通过发动机输入轴1b传递至减速器100。
第一输出轴3a和第二输出轴3b分别用于与车辆左右两侧的车轮传动连接,将动力传递至车轮,从而驱动车辆行驶。例如,第一输出轴3a和第二输出轴3b可以分别通过半轴与两侧的车轮传动连接。
差速器4能够使左、右(或前、后)驱动轮实现以不同转速转动,当汽车转弯行驶或在不平路面上行驶时,能够保证两侧驱动车轮作纯滚动运动。
差速器4包括一个动力输入端和两个动力输出端。第一输出轴3a、第二输出轴3b分别与差速器4的两个动力输出端传动连接。
通过第一传动组件X1、第二传动组件X2以及第三传动组件X3可控制减速器100内部的动力传递路径,具体可以分为以下几种情况。
情况(1),当发动机输入轴1b和中间轴2之间的动力传递被断开、中间轴2和差速器4之间的动力传递被连通时,电机作为动力输出装置,输出的动力依次经过电机输入轴1a、中间轴2、差速器4之后传输至第一输出轴3a和第二输出轴3b,并且最终传输至车轮。
情况(2),当发动机输入轴1b和中间轴2之间的动力传递被连通、中间轴2和差速器4之间的动力传递被断开时,电机作为发电装置,发动机输出的动力依次经过发动机输入轴1b、中间轴2、电机输入轴1a之后传输至电机,电机进行发电。
情况(3),当发动机输入轴1b和中间轴2之间的动力传递被连通、中间轴2和差速器4之间的动力传递也被连通时,此时根据电机作为动力输出装置还是发电装置,可以分为两种情况。
情况(3a),当电机作为动力输出装置,电机输出的动力经过电机输入轴1a之后传递至中间轴2,发动机输出的动力经过发动机输入轴1b之后也传递至中间轴2,电机和发动机的动力进行汇合以后通过差速器4传输至第一输出轴3a和第二输出轴3b,并且最终 传输至车轮。
情况(3b),当电机作为发电装置,发动机输出的动力经过发动机输入轴1b之后传递至中间轴2,此时该动力分成两部分,一部分通过电机输入轴1a之后传输至电机,电机进行发电,另一部分通过差速器4传输至第一输出轴3a和第二输出轴3b,并且最终传输至车轮。
情况(4),当发动机输入轴1b和中间轴2之间的动力传递被连通或者断开、中间轴2和差速器4之间的动力传递被断开时,此时电机和发动机可以均不工作,而是作为车辆驱动的备用辅助装置,这时车辆在行驶过程中差速器4的扭矩不会传递至中间轴2、电机输入轴1a以及发动机输入轴1b,由此不会造成额外的机械旋转摩擦损失,提高了整车经济性。
综上所述,本申请实施例提供的减速器100,能够丰富电机和发动机的使用功能,并且使得电机和发动机能够直接驱动车辆行驶,缩短了能量传输的路径和转换的次数,由此提高了整车动力性、经济性和操控性。
第一传动组件X1用于连通电机输入轴1a和中间轴2之间的动力传递。如图2所示,在本申请实施例中,第一传动组件X1包括电机输入轴齿轮5和中间轴大齿轮6。
具体地,电机输入轴齿轮5套设在电机输入轴1a上且与电机输入轴1a传动连接,中间轴大齿轮6套设在中间轴2上,与中间轴2传动连接,并且与电机输入轴齿轮5啮合。通过电机输入轴齿轮5和中间轴大齿轮6能够将电机输入轴1a和中间轴2之间的动力传递连通。
例如,可以通过电机输入轴齿轮5和中间轴大齿轮6将电机输入轴1a上由电机输出的动力传递至中间轴2。
再例如,可以通过电机输入轴齿轮5和中间轴大齿轮6将中间轴2上由发动机输出的动力传递至电机输入轴1a上,以使得电机能够进行发电。
应理解,上述以两个齿轮为例说明了第一传动组件X1的构成,但不能以此理解为对第一传动组件X1构成的限制。本申请对第一传动组件X1包含的部件数量以及形式等并不限定,只要能够实现上述动力传递功能的传动组件(或者单个部件)均应当在本申请的保护范围内。
例如,在其他实施例中,第一传动组件X1可以包括更多的齿轮。
再例如,在其他实施例中,第一传动组件X1可以通过链条等其他传动部件来取代当前的部分或者全部齿轮。
再例如,为了实现更好的传动控制,第一传动组件X1还可以包括至少一个离合器。
应理解,本申请实施例提供的减速器100中,对于套设在轴上且与轴传动连接的部件来说,可以通过键(例如花键)连接的方式实现与轴之间的动力传递。
第二传动组件X2用于连通或者断开发动机输入轴1b和中间轴2之间的动力传递。如图2所示,在本申请实施例中,第二传动组件X2包括第一离合器7、发动机输入轴齿轮8以及中间轴小齿轮9。
具体地,第一离合器7包括相互配合的第一主动部分和第一被动部分,第一主动部分与发动机输入轴1b传动连接;
发动机输入轴齿轮8与第一被动部分传动连接;
中间轴小齿轮9套设在中间轴2上,与中间轴2传动连接,并且与发动机输入轴齿轮8啮合。
其中,可以通过控制第一离合器7的第一主动部分和第一被动部分的接合以实现发动机输入轴1b和中间轴2之间的动力传递连通,并且通过控制第一主动部分和第一被动部分的分离以实现发动机输入轴1b和中间轴2之间的动力传递断开。
当第一主动部分和第一被动部分相互接合时,发动机输出的动力可以依次通过发动机输入轴1b、第一离合器7、发动机输入轴齿轮8以及中间轴小齿轮9传递至中间轴2上。
应理解,上述以两个齿轮和一个离合器为例说明了第二传动组件X2的构成,但不能以此理解为对第二传动组件X2构成的限制。本申请对第二传动组件X2包含的部件数量以及形式等并不限定,只要能够实现上述动力传递功能的传动组件(或者单个部件)均应当在本申请的保护范围内。
例如,在其他实施例中,第二传动组件X2可以包括更多的齿轮。
再例如,在其他实施例中,第二传动组件X2可以通过链条等其他传动部件来取代当前的部分或者全部齿轮。
再例如,在其他实施例中,第二传动组件X2还可以使用同步器等部件来取代本实施例中的离合器,以此来实现动力传递的连通与切断。
参考前文对动力传递路径中的情况(2)的相关介绍,在本申请实施例中,发动机输出的动力要经过发动机输入轴齿轮8、中间轴小齿轮9、中间轴大齿轮6、电机输入轴齿轮5等多个齿轮之后才能传递至电机,以供电机进行发电,而不是通过电机输入轴1a直接与发动机输入轴齿轮1b进行传动连接,由于通常情况下电机的最大转速通常要大于发动机的最大转速,本申请通过以上设置,可以根据需求合理的调整转速比,发动机和电机可以以不同的转速工作,充分发挥各自的转速和扭矩特性。
第三传动组件X3用于连通或者断开中间轴2和差速器4之间的动力传递。如图2所示,在本申请实施例中,第三传动组件X3包括中间轴小齿轮9、输出轴齿轮10以及第二离合器11。
具体地,在本实施例中,第三传动组件X3包括中间轴小齿轮9,根据前述分析可知,该中间轴小齿轮9同时也是第二传动组件X2的一部分,也就是说,中间轴小齿轮9为第三传动组件X3和第二传动组件X2所共用。通过以上设置,能够简化减速器100的结构,降低控制复杂度、节约生产成本。
输出轴齿轮10空套于差速器4上,并且与中间轴小齿轮9啮合。其中,输出轴齿轮10空套于差速器4上,可以理解为输出轴齿轮10套设于差速器4上,但是与差速器4之间并不能直接进行动力传递,例如,可以通过轴承将输出轴齿轮10套设于差速器4。
第二离合器11包括相互配合的第二主动部分和第二被动部分。其中第二主动部分与输出轴齿轮10传动连接,第二被动部分与差速器4传动连接,第二被动部分可以看作差速器4的动力输入端。
可以通过控制第二离合器11的第二主动部分和第二被动部分的接合以实现中间轴2和差速器4之间的动力传递连通,并且通过控制第二主动部分和第二被动部分的分离以实现中间轴2和差速器4之间的动力传递断开。
当第二主动部分和第二被动部分相互接合时,中间轴2上的动力可以依次通过中间轴 小齿轮9、输出轴齿轮10以及第二离合器11传递至差速器4上。
应理解,上述以两个齿轮和一个离合器为例说明了第三传动组件X3的构成,但不能以此理解为对第三传动组件X3构成的限制。本申请对第三传动组件X3包含的部件数量以及形式等并不限定,只要能够实现上述动力传递功能的传动组件(或者单个部件)均应当在本申请的保护范围内。
例如,在其他实施例中,第三传动组件X3可以包括更多的齿轮。
再例如,在其他实施例中,第三传动组件X3和第二传动组件X2不共用中间轴小齿轮9。可以在中间轴2上设置单独的齿轮来与输出轴齿轮10相啮合,以替代第三传动组件X3中的中间轴小齿轮9;或者,第三传动组件X3也可以和第一传动组件X1共用中间轴大齿轮6,输出轴齿轮10与中间轴大齿轮6相啮合。
再例如,在其他实施例中,第三传动组件X3可以通过链条等其他传动部件来取代当前的部分或者全部齿轮。
再例如,在其他实施例中,第三传动组件X3还可以使用同步器等部件来取代本实施例中的离合器,以此来实现动力传递的连通与切断。
进一步地,如图2所示,本申请实施例提供的减速器100还可以包括外壳12。外壳12上与电机输入轴1a、发动机输入轴1b、第一输出轴3a和第二输出轴3b对应的位置处设置有通孔,便于电机输入轴1a、发动机输入轴1b分别与电机、发动机连接,以及第一输出轴3a和第二输出轴3b与车轮的连接。中间轴2则以可转动的方式与外壳12的内壁固定。
可选地,在每个通孔内还可以设置轴承,上述各个轴固定于轴承内,从而提高轴与外部部件连接的可靠性。
另一方面,基于上述减速器100的结构,本申请实施例还提供了一种电动汽车的驱动系统,下面对该驱动系统做详细说明。
图3是本申请实施例提供的电动汽车的驱动系统的一例的结构示意图,如图3所示,该驱动系统包括第一驱动系统,该第一驱动系统包括第一电机M1、发动机E以及上述的减速器100。
其中,减速器100的电机输入轴1a与第一电机M1的输出轴传动连接,减速器100的发动机输入轴1b与发动机E的输出轴传动连接。
在本申请实施例提供的第一驱动系统中,电机输入轴1a可通过键(例如花键)连接的方式实现与第一电机M1的输出轴之间的动力传递,发动机输入轴1b可通过键(例如花键)连接的方式实现与发动机E的输出轴之间的动力传递。
进一步地,在本实施例中,第一电机M1为两用电机,能够将机械能转换成电能,还能够将电能转换成机械能,也就是说,第一电机M1既可以作为动力输出装置,在电力作用下通过电机输入轴1a向减速器100输出动力;此外,第一电机M1也可以作为发电装置,减速器100可以通过电机输入轴1a向第一电机M1输出动力,以使第一电机进行发电。
减速器100的第一输出轴3a可以通过半轴S与车辆左侧的车轮T传动连接,也可以通过半轴S与车辆右侧的车轮T传动连接,本申请实施例不作严格限定。下文中,为了便于描述,如无特殊说明,均以第一输出轴3a与车辆左侧的车轮T传动连接、第二输出轴 3b与车辆右侧的车轮T传动连接为例进行说明,并且车辆的左侧和右侧是以车辆行驶方向为基准划分的。
由于驱动系统采用了上述实施例提供的减速器100,因此使得驱动系统也具有与减速器100相应的技术效果,在此不再赘述。
可选地,该第一驱动系统可以是车辆的前驱系统,也可以是车辆的后驱系统,本申请对此不做限定。
可选地,该第一驱动系统可以是车辆唯一的一套驱动系统,也可以是多套(例如两套)驱动系统中的一套,本申请对此不做限定。
图4是本申请实施例提供的电动汽车的驱动系统的另一例的结构示意图。如图4所示,相对于前述图3所示的驱动系统,本实施例提供的驱动系统除了包括第一驱动系统以外,还包括第二驱动系统,该第二驱动系统可以是任意的电动汽车驱动系统。
如图4所示,在本申请实施例中,第二驱动系统包括第二电机M2和变速传动装置200,第二电机M2可以是任意的驱动电机,该变速传动装置200可以是减速器或者多档变速器,第二电机M2在电力作用下向变速传动装置200传递动力,变速传动装置200通过半轴S将动力传递至车轮T,以驱动车辆行驶。
如图4所示,在本申请实施例中,第一驱动系统为前驱系统,第二驱动系统为后驱系统。也就是说,第一驱动系统为沿着车头方向更靠前的驱动系统。
图5是本申请实施例提供的电动汽车的驱动系统的再一例的结构示意图。如图5所示,在其他实施例中,第一驱动系统也可以为后驱系统,第二驱动系统为前驱系统。
本实施例提供的驱动系统中,可以通过控制第一电机M1处于驱动、发电或者停机状态,发动机E处于驱动或者停机状态,发动机输入轴1b和中间轴2之间的动力传递处于连通或者断开状态,中间轴2和差速器4之间的动力传递处于连通或者断开状态,使驱动系统具有纯电动两驱(后驱)模式、纯电动四驱模式、增程串联驱动模式、增程并联驱动模式等驱动模式,并且能够在不同的驱动模式之间进行切换使用,以满足不同行驶工况的需求。
下面对上述纯电动两驱模式、纯电动四驱模式、增程串联驱动模式、增程并联驱动模式这四种驱动模式做详细说明。
(一)纯电动两驱模式
纯电动两驱模式是指在纯电动模式下进行两轮驱动,其典型应用场景是车辆动力电池电量充足(例如:电池剩余电量(state of charge,SOC)≥20%),且车辆驱动扭矩需求较小。在纯电动两驱模式中,第一驱动系统可以不工作,而通过第二驱动系统来驱动车辆行驶。
具体地,此时第一电机M1和发动机E处于停机状态,中间轴2和差速器4之间的动力传递处于断开状态,发动机输入轴1b和中间轴2之间的动力传递处于连通或者断开状态。第二电机M2处于驱动状态。
下面结合附图,对驱动系统处于纯电动两驱模式下的动力传递路径做进一步说明。
图6是驱动系统处于纯电动两驱模式下的动力传递路径的示意图。
如图6所示,当驱动系统处于纯电动两驱模式下时,第一驱动系统不工作,通过第二驱动系统来驱动车辆行驶。第二电机M2输出的动力通过变速传动装置200、半轴S之后, 传输至车辆后部的车轮T,以此来驱动车辆行驶。
此时,第二离合器11处于分离状态,这样车辆在行驶过程中差速器4的扭矩不会传递至中间轴2、电机输入轴1a以及发动机输入轴1b,第一电机M1、发动机E以及减速器100内的轴和齿轮均处于停止状态,由此不会造成额外的机械旋转摩擦损失,提高了整车经济性。
值得一提的是,由于第二离合器11处于分离状态,差速器4与中间轴2之间的动力传递被断开,此时可以不对第一离合器7的状态进行限制。
(二)纯电动四驱模式
纯电动四驱模式是指在纯电动模式下进行四轮驱动,其典型应用场景是车辆动力电池电量充足(例如:电池SOC≥20%),且车辆驱动扭矩需求较大。在纯电动四驱模式中,第一驱动系统和第二驱动系统同时来驱动车辆行驶。
具体地,此时第一电机M1处于驱动状态,发动机E处于停机状态,中间轴2和差速器4之间的动力传递处于连通状态,发动机输入轴1b和中间轴2之间的动力传递处于断开状态;第二电机M2处于驱动状态。
下面结合附图,对驱动系统处于纯电动四驱模式下的动力传递路径做进一步说明。
图7是驱动系统处于纯电动四驱模式下的动力传递路径的示意图。
如图7所示,当驱动系统处于纯电动四驱模式下时,第一驱动系统和第二驱动系统共同来驱动车辆行驶。
此时,第二离合器11处于接合状态,第一离合器7处于分离状态,第一电机M1输出的动力依次通过电机输入轴1a、中间轴大齿轮6、中间轴2、中间轴小齿轮9、输出轴齿轮10、第二离合器11传递至差速器4,再分别传递至第一输出轴3a和第二输出轴3b,之后通过半轴S传递至车辆前部左右两侧的车轮T,从而驱动车辆行驶。此时,由于第一离合器7处于分离状态,因此第一电机M1输出的动力无法传递至发动机E。
第二电机M2输出的动力通过变速传动装置200、半轴S之后,传输至车辆后部左右两侧的车轮T。
在纯电动四驱模式,车辆行驶所需的驱动力由前后两电机共同来提供,因此可实现优异的整车动力性和操控性。
(三)增程串联驱动模式
增程串联驱动模式的典型应用场景是车辆动力电池电量不足(例如:电池SOC<20%),且车辆车速较低。在增程串联驱动模式中,第一驱动系统中的发动机E驱动第一电机M1进行发电,第二驱动系统驱动车辆行驶。
具体地,此时第一电机M1处于发电状态,发动机E处于驱动状态,中间轴2和差速器4之间的动力传递处于断开状态,发动机输入轴1b和中间轴2之间的动力传递处于连通状态;第二电机M2处于驱动状态。
下面结合附图,对驱动系统处于增程串联驱动模式下的动力传递路径做进一步说明。
图8是驱动系统处于增程串联驱动模式下的动力传递路径的示意图。
如图8所示,当驱动系统处于增程串联驱动模式下时,第一驱动系统驱动第一电机M1进行发电,第二驱动系统驱动车辆行驶。
此时,第一离合器7处于接合状态,第二离合器11处于分离状态,发动机E输出的 动力依次通过发动机输入轴1b、第一离合器7、发动机输入轴齿轮8、中间轴小齿轮9、中间轴2、中间轴大齿轮6、电机输入轴齿轮5、电机输入轴1a传递至第一电机M1,以驱动第一电机M1进行发电。
第二电机M2输出的动力通过变速传动装置200、半轴S之后,传输至车辆后部左右两侧的车轮T。
第一电机M1产生的电能给整车动力电池充电或直接提供给第二电机M2来驱动车辆行驶,车辆行驶所需的驱动力由第二电机M2来提供。由于在该模式下,发动机E可稳定的运行在燃油经济性较好的转速和扭矩下,因此可实现车辆在增程阶段低速拥堵工况下较好的燃油经济性。
(四)增程并联驱动模式
增程并联驱动模式的典型应用场景是车辆动力电池电量不足(例如:电池SOC<20%),且车辆处于中高车速。在增程并联驱动模式中,第一驱动系统中的第一电机M1可根据车辆状态和行驶驱动力需求进行驱动或发电控制。
在增程并联驱动模式中,第一驱动系统中的第一电机M1和发动机E可以同时驱动车辆行驶,或者,发动机E驱动车辆行驶的同时还驱动第一电机M1发电;第二驱动系统驱动车辆行驶。
具体地,此时第一电机M1处于驱动或者发电状态,发动机E处于驱动状态,中间轴2和差速器4之间的动力传递处于连通状态,发动机输入轴1b和中间轴2之间的动力传递处于连通状态;第二电机M2处于驱动状态。
下面结合附图,对驱动系统处于增程并联驱动模式下的动力传递路径做进一步说明。
图9是驱动系统处于增程并联驱动模式下的动力传递路径的示意图。
如图9所示,当驱动系统处于增程并联驱动模式下时,第一离合器7处于接合状态,第二离合器11也处于接合状态,根据第一电机M1运行状态的不同,动力传递路径可以分为两种。
当第一电机M1处于驱动状态时,发动机E输出的动力依次通过发动机输入轴1b、第一离合器7、发动机输入轴齿轮8之后传递至中间轴小齿轮9;而第一电机M1输出的动力依次通过电机输入轴1a、中间轴大齿轮6、中间轴2之后也传输至中间轴小齿轮9,两股路径的动力经过汇合后依次通过输出轴齿轮10、第二离合器11传递至差速器4,再分别传递至第一输出轴3a和第二输出轴3b,之后通过半轴S传递至车辆左右两侧的车轮T,从而驱动车辆行驶。
当第一电机M1处于发电状态时,发动机E输出的动力依次通过发动机输入轴1b、第一离合器7、发动机输入轴齿轮8之后传递至中间轴小齿轮9,之后动力分成两部分,其中一部分依次通过输出轴齿轮10、第二离合器11传递至差速器4,再分别传递至第一输出轴3a和第二输出轴3b,之后通过半轴S传递至车辆左右两侧的车轮T,从而驱动车辆行驶;另一部分依次通过中间轴2、中间轴大齿轮6、电机输入轴齿轮5、电机输入轴1a传递至第一电机M1,以驱动第一电机M1进行发电。
第二电机M2输出的动力通过变速传动装置200、半轴S之后,传输至左右两侧的车轮T。
第一电机M1可根据车辆状态和行驶驱动力需求进行驱动或发电控制。由于在该模式 下,发动机E的动力可直接输出用于驱动车辆行驶,而无需进行发电、充电、放电等多次能量转换,因此提高了车辆在增程阶段中高车速下的燃油经济性。
图10是本申请实施例提供的电动汽车的驱动系统的控制原理图。如图10所示,该驱动系统中,除了包括前述的第一驱动系统和第二驱动系统以外,还包括整车控制器300(例如,可以是电子控制单元(electronic control unit,ECU))、第一电机控制器400、第二电机控制器500、发动机控制器600、动力电池700、减速器控制器800以及变速传动装置控制器900。
其中,第一电机控制器400分别分别与第一电机M1和整车控制器300电连接,第二电机控制器500分别与第二电机M2和整车控制器300电连接,发动机控制器600分别与发动机E和整车控制器300电连接,减速器控制器800、变速传动装置控制器900和整车控制器300电连接。动力电池700分别与第一电机M1、第二电机M2和整车控制器300电连接。
第一电机控制器400和第二电机控制器500分别用于控制第一电机M1和第二电机M2。一方面控制第一电机M1和第二电机M2处于驱动状态还是停机状态(第一电机控制器400还可以控制第一电机M1处于发电状态),另一方面在第一电机M1和第二电机M2处于驱动状态时控制第一电机M1和第二电机M2输出的扭矩。动力电池700输出直流电,第一电机控制器400和第二电机控制器500还用于将动力输出的直流电转换为第一电机M1和第二电机M2能够识别的交流电。此外,当第一电机M1处于发电状态时,第一电机控制器400还能够将第一电机M1产生的交流电转换为直流电之后,储存至动力电池700内。
发动机控制器600用于对发动机E进行控制,例如,可以控制发动机E处于驱动状态还是停机状态,此外,还可以控制发动机E输出的扭矩。
动力电池700用于向第一电机M1和第二电机M2提供电能。此外,动力电池700还可以储存第一电机M1产生的电能。
减速器控制器800用于对减速器100进行控制。具体地,减速器控制器800用于控制发动机输入轴1b和中间轴2之间动力传递否连通或者断开,以及中间轴2和差速器4之间的动力传递的连通或者断开,例如,可以通过控制第一离合器7和第二离合器11的接合或者分离以实现上述目的。
变速传动装置控制器900用于对变速传动装置200进行控制。
整车控制器300是车辆的协调控制中心,用于根据车辆的行驶工况向第一电机控制器400、第二电机控制器500、发动机控制器600、动力电池700、减速器控制器800以及变速传动装置控制器900发出控制指令。
表1为驱动系统在各个驱动模式下,发动机E、第一电机M1、第一离合器7、第二离合器11、第二电机M2的状态汇总。
表1:驱动系统的四种驱动模式下的状态汇总
Figure PCTCN2020092242-appb-000001
综上所述,本申请实施例提供的驱动系统能够兼顾车辆在各种工况下的性能需求,提高了车辆的经济性、动力性和操控性。
再一方面,本申请实施例还提供了一种电动汽车,包括前述任一实施例提供的驱动系统。进一步地,该电动汽车还包括车轮和半轴,驱动系统通过半轴与车轮传动连接,以驱动电动汽车行驶。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (12)

  1. 一种减速器,其特征在于,包括电机输入轴、发动机输入轴、中间轴、第一输出轴、第二输出轴以及差速器,所述第一输出轴和所述第二输出轴分别与所述差速器传动连接;还包括:
    第一传动组件,用于连通所述电机输入轴和所述中间轴之间的动力传递;
    第二传动组件,用于连通或者断开所述发动机输入轴和所述中间轴之间的动力传递;
    第三传动组件,用于连通或者断开所述中间轴和所述差速器之间的动力传递。
  2. 根据权利要求1所述的减速器,其特征在于,所述第一传动组件包括:
    电机输入轴齿轮,套设在所述电机输入轴上且与所述电机输入轴传动连接;
    中间轴大齿轮,套设在所述中间轴上,与所述中间轴传动连接,且与所述电机输入轴齿轮啮合。
  3. 根据权利要求1或2所述的减速器,其特征在于,所述第二传动组件包括:
    第一离合器,包括相互配合的第一主动部分和第一被动部分,所述第一主动部分与所述发动机输入轴传动连接;
    发动机输入轴齿轮,与所述第一被动部分传动连接;
    中间轴小齿轮,套设在所述中间轴上,与所述中间轴传动连接,且与所述发动机输入轴齿轮啮合。
  4. 根据权利要求3所述的减速器,其特征在于,所述第三传动组件包括:
    所述中间轴小齿轮;
    输出轴齿轮,空套于所述差速器上,并且与所述中间轴小齿轮啮合;
    第二离合器,包括相互配合的第二主动部分和第二被动部分,所述第二主动部分与所述输出轴齿轮传动连接,所述第二被动部分与所述差速器传动连接。
  5. 一种电动汽车的驱动系统,其特征在于,包括第一驱动系统,所述第一驱动系统包括第一电机、发动机以及权利要求1-4中任一项所述的减速器;
    所述电机输入轴与所述第一电机传动连接,所述发动机输入轴与所述发动机传动连接,所述第一电机为两用电机,能够将机械能转换成电能,还能够将电能转换成机械能。
  6. 根据权利要求5所述的驱动系统,其特征在于,还包括第二驱动系统,所述第二驱动系统包括第二电机和变速传动装置,所述第二电机与所述变速传动装置传动连接。
  7. 根据权利要求6所述的驱动系统,其特征在于,所述驱动系统的驱动模式包括纯电动两驱模式,在所述纯电动两驱模式中,
    所述第一电机和所述发动机处于停机状态,所述中间轴和所述差速器之间的动力传递处于断开状态,所述发动机输入轴和所述中间轴之间的动力传递处于连通或者断开状态;
    所述第二电机处于驱动状态。
  8. 根据权利要求6所述的驱动系统,其特征在于,所述驱动系统的驱动模式包括纯电动四驱模式,在所述纯电动四驱模式中,
    所述第一电机处于驱动状态,所述发动机处于停机状态,所述中间轴和所述差速器之间的动力传递处于连通状态,所述发动机输入轴和所述中间轴之间的动力传递处于断开状 态;
    所述第二电机处于驱动状态。
  9. 根据权利要求6所述的驱动系统,其特征在于,所述驱动系统的驱动模式包括增程串联驱动模式,在所述增程串联驱动模式中,
    所述第一电机处于发电状态,所述发动机处于驱动状态,所述中间轴和所述差速器之间的动力传递处于断开状态,所述发动机输入轴和所述中间轴之间的动力传递处于连通状态;
    所述第二电机处于驱动状态。
  10. 根据权利要求6所述的驱动系统,其特征在于,所述驱动系统的驱动模式包括增程并联驱动模式,在所述增程并联驱动模式中,
    所述第一电机处于驱动或者发电状态,所述发动机处于驱动状态,所述中间轴和所述差速器之间的动力传递处于连通状态,所述发动机输入轴和所述中间轴之间的动力传递处于连通状态;
    所述第二电机处于驱动状态。
  11. 根据权利要求6-10中任一项所述的驱动系统,其特征在于,所述第一驱动系统为前驱系统,所述第二驱动系统为后驱系统,或者,
    所述第一驱动系统为后驱系统,所述第二驱动系统为前驱系统。
  12. 一种电动汽车,其特征在于,包括车轮、半轴以及权利要求5-11中任一项所述的驱动系统,所述驱动系统通过所述半轴与所述车轮传动连接,以驱动所述电动汽车行驶。
PCT/CN2020/092242 2019-11-15 2020-05-26 减速器、电动汽车的驱动系统及电动汽车 WO2021093305A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022528098A JP2023501661A (ja) 2019-11-15 2020-05-26 減速ギヤボックス、電気自動車駆動システム、および電気自動車
EP20886476.9A EP4046842A4 (en) 2019-11-15 2020-05-26 REDUCTION GEAR, DRIVE SYSTEM FOR AN ELECTRIC VEHICLE AND ELECTRIC VEHICLE
KR1020227019084A KR20220097479A (ko) 2019-11-15 2020-05-26 감속 기어박스, 전기 차량 구동 시스템, 및 전기 차량
US17/743,997 US20220266676A1 (en) 2019-11-15 2022-05-13 Reduction gearbox, electric vehicle drive system, and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911116557.0A CN110949114A (zh) 2019-11-15 2019-11-15 减速器、电动汽车的驱动系统及电动汽车
CN201911116557.0 2019-11-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/743,997 Continuation US20220266676A1 (en) 2019-11-15 2022-05-13 Reduction gearbox, electric vehicle drive system, and electric vehicle

Publications (1)

Publication Number Publication Date
WO2021093305A1 true WO2021093305A1 (zh) 2021-05-20

Family

ID=69977463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092242 WO2021093305A1 (zh) 2019-11-15 2020-05-26 减速器、电动汽车的驱动系统及电动汽车

Country Status (6)

Country Link
US (1) US20220266676A1 (zh)
EP (1) EP4046842A4 (zh)
JP (1) JP2023501661A (zh)
KR (1) KR20220097479A (zh)
CN (1) CN110949114A (zh)
WO (1) WO2021093305A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114228474A (zh) * 2021-12-08 2022-03-25 东风汽车集团股份有限公司 一种混合动力变速箱、混合动力驱动系统及车辆
EP4140789A1 (en) * 2021-08-25 2023-03-01 Huawei Digital Power Technologies Co., Ltd. Automotive propulsion system and automobile

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110949114A (zh) * 2019-11-15 2020-04-03 华为技术有限公司 减速器、电动汽车的驱动系统及电动汽车
CN113928105B (zh) * 2021-11-16 2023-07-25 上海大学 一种单电机增程式动力偏轴传动装置
CN113928106B (zh) * 2021-11-16 2023-10-03 上海大学 一种单电机增程式动力总成结构及控制方法
FR3140022A1 (fr) * 2022-09-27 2024-03-29 Psa Automobiles Sa Procede de repartition d’un couple entre une première et une deuxième boites de vitesses d’un vehicule

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204526794U (zh) * 2015-04-07 2015-08-05 傅忠华 插电、混动、电动三位一体汽车变速箱
CN107444098A (zh) * 2017-07-06 2017-12-08 北京理工大学 乘用车串并联混合动力传动装置
CN108128137A (zh) * 2017-12-29 2018-06-08 苏州凯博易控驱动技术有限公司 变速系统、变速方法及相应的车辆
CN108248367A (zh) * 2018-01-03 2018-07-06 北京汽车股份有限公司 混合动力汽车的动力系统
DE102019105998A1 (de) * 2019-03-08 2019-05-16 FEV Europe GmbH Antriebseinrichtung für ein Kraftfahrzeug
CN110077220A (zh) * 2019-04-28 2019-08-02 中国第一汽车股份有限公司 一种双电机混合动力驱动系统及其驱动方法
CN110239334A (zh) * 2019-06-28 2019-09-17 浙江吉利控股集团有限公司 一种混合动力传动系统
CN110949114A (zh) * 2019-11-15 2020-04-03 华为技术有限公司 减速器、电动汽车的驱动系统及电动汽车

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004123060A (ja) * 2002-10-07 2004-04-22 Fuji Heavy Ind Ltd 電気自動車の駆動装置
JP2004222435A (ja) * 2003-01-16 2004-08-05 Fuji Heavy Ind Ltd 電気自動車の駆動装置
CN201777126U (zh) * 2010-05-31 2011-03-30 比亚迪股份有限公司 一种混合动力驱动系统及包含该驱动系统的车辆
KR101500205B1 (ko) * 2013-11-25 2015-03-06 현대자동차주식회사 차량의 하이브리드 파워트레인
CN204222631U (zh) * 2014-09-30 2015-03-25 比亚迪股份有限公司 动力传动系统及具有其的车辆
CN204488473U (zh) * 2014-11-26 2015-07-22 比亚迪股份有限公司 动力传动系统及具有该动力传动系统的车辆
EP3245092B1 (en) * 2015-01-16 2022-05-04 BYD Company Limited Power transmission system and vehicle comprising the same
CN104589998B (zh) * 2015-01-23 2017-03-15 吉林大学 四驱油电混合动力系统
CN106004406B (zh) * 2016-06-20 2018-04-20 广州汽车集团股份有限公司 混合动力耦合系统及混合动力汽车
JP6491167B2 (ja) * 2016-10-25 2019-03-27 株式会社Subaru ハイブリッド車両の制御装置
CN108725181A (zh) * 2017-04-19 2018-11-02 舍弗勒技术股份两合公司 双电机混动驱动系统
JP7073077B2 (ja) * 2017-11-14 2022-05-23 ダイハツ工業株式会社 ハイブリッドシステム
CN108544916B (zh) * 2018-03-23 2021-07-30 上汽通用汽车有限公司 多模式混合动力电动四驱系统及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204526794U (zh) * 2015-04-07 2015-08-05 傅忠华 插电、混动、电动三位一体汽车变速箱
CN107444098A (zh) * 2017-07-06 2017-12-08 北京理工大学 乘用车串并联混合动力传动装置
CN108128137A (zh) * 2017-12-29 2018-06-08 苏州凯博易控驱动技术有限公司 变速系统、变速方法及相应的车辆
CN108248367A (zh) * 2018-01-03 2018-07-06 北京汽车股份有限公司 混合动力汽车的动力系统
DE102019105998A1 (de) * 2019-03-08 2019-05-16 FEV Europe GmbH Antriebseinrichtung für ein Kraftfahrzeug
CN110077220A (zh) * 2019-04-28 2019-08-02 中国第一汽车股份有限公司 一种双电机混合动力驱动系统及其驱动方法
CN110239334A (zh) * 2019-06-28 2019-09-17 浙江吉利控股集团有限公司 一种混合动力传动系统
CN110949114A (zh) * 2019-11-15 2020-04-03 华为技术有限公司 减速器、电动汽车的驱动系统及电动汽车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4046842A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4140789A1 (en) * 2021-08-25 2023-03-01 Huawei Digital Power Technologies Co., Ltd. Automotive propulsion system and automobile
CN114228474A (zh) * 2021-12-08 2022-03-25 东风汽车集团股份有限公司 一种混合动力变速箱、混合动力驱动系统及车辆
CN114228474B (zh) * 2021-12-08 2023-06-27 东风汽车集团股份有限公司 一种混合动力变速箱、混合动力驱动系统及车辆

Also Published As

Publication number Publication date
EP4046842A4 (en) 2023-03-29
US20220266676A1 (en) 2022-08-25
KR20220097479A (ko) 2022-07-07
EP4046842A1 (en) 2022-08-24
CN110949114A (zh) 2020-04-03
JP2023501661A (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021093305A1 (zh) 减速器、电动汽车的驱动系统及电动汽车
WO2022116787A2 (zh) 一种双电机混合动力驱动装置及具有其的车辆
CN109733178B (zh) 一种多电机混合动力系统及其控制方法
CN210526287U (zh) 两档混合动力耦合系统及车辆
CN207809032U (zh) 混合动力驱动系统及车辆
WO2019128968A1 (zh) 混合动力驱动系统及车辆
WO2019154077A1 (zh) 混合动力驱动系统及车辆
CN102848913A (zh) 一种采用行星齿轮变速器的增程式电动汽车动力系统
CN111055672B (zh) 两挡混合动力耦合系统及车辆
CN108528185A (zh) 一种纵置多档位电驱动动力总成
CN109228892A (zh) 一种电动汽车双电机增程驱动系统
WO2019128980A1 (zh) 混合动力驱动系统及车辆
CN207809042U (zh) 动力驱动系统及车辆
CN211166413U (zh) 混合动力驱动系统
CN110901368A (zh) 混合动力驱动系统及方法
WO2023035389A1 (zh) 一种双电机混合动力系统、车辆、驱动控制方法和装置
WO2023029340A1 (zh) 电动动力传递系统及车辆
CN109986948A (zh) 混合动力驱动系统及车辆
CN109986954A (zh) 动力驱动系统及车辆
KR100911569B1 (ko) 듀얼 클러치를 이용한 직렬 및 병렬 하이브리드 시스템
CN209208473U (zh) 混合动力耦合机构、混合动力耦合控制系统
CN111114279B (zh) 混合动力驱动系统及车辆
CN205601594U (zh) 一种并联式混合动力系统
CN111688470A (zh) 一种串并联构型插电式混合动力系统及其控制方法
CN112277619A (zh) 两档混合动力耦合系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886476

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528098

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020886476

Country of ref document: EP

Effective date: 20220519

ENP Entry into the national phase

Ref document number: 20227019084

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE