WO2021089007A1 - 电池加热系统、电动汽车和车载系统 - Google Patents

电池加热系统、电动汽车和车载系统 Download PDF

Info

Publication number
WO2021089007A1
WO2021089007A1 PCT/CN2020/127227 CN2020127227W WO2021089007A1 WO 2021089007 A1 WO2021089007 A1 WO 2021089007A1 CN 2020127227 W CN2020127227 W CN 2020127227W WO 2021089007 A1 WO2021089007 A1 WO 2021089007A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heated
voltage
temperature
impedance
Prior art date
Application number
PCT/CN2020/127227
Other languages
English (en)
French (fr)
Inventor
谢杰
张光辉
刘伟
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20884492.8A priority Critical patent/EP4044320A4/en
Publication of WO2021089007A1 publication Critical patent/WO2021089007A1/zh
Priority to US17/738,679 priority patent/US20220263144A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • H02J7/007194Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature of the battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of electronic technology, in particular to battery heating systems, electric vehicles and vehicle-mounted systems.
  • a typical battery pack is formed by connecting multiple single cells in series or parallel configuration.
  • Many types of battery packs include rechargeable single cells.
  • the single cells that make up the rechargeable battery pack need to work in a suitable temperature range. Too high or low battery temperature is not conducive to the performance of the battery and is likely to cause safety risks. At lower temperatures, the available capacity of the battery is greatly attenuated, causing the battery to neither discharge nor charge under low temperature conditions, and the battery rate performance is severely degraded, which limits the performance of the battery.
  • lithium evolution reactions are prone to occur, causing internal short circuits in the battery, causing serious safety risks. Therefore, under low temperature conditions, the battery needs to be heated to a suitable temperature before use.
  • external heating methods such as wide-line metal film heating and electric heating wire heating are generally used to control the heater to increase the temperature, and then the battery is heated through contact conduction, air convection, and liquid heat transfer, which requires a large space and Higher cost.
  • external heating easily forms a temperature gradient in the battery pack, and most of the energy is dissipated, resulting in low energy utilization.
  • the present application provides a battery heating system, an electric vehicle, and a vehicle-mounted system, which can realize rapid and uniform heating of the battery.
  • a battery heating system including: a temperature monitoring unit for monitoring the temperature of the battery to be heated and outputting a temperature monitoring signal, the temperature monitoring signal being used to indicate the temperature of the battery to be heated;
  • the voltage conversion unit is respectively connected to the power source and the battery to be heated, and receives the first voltage input by the power source or the second voltage input from the battery to be heated;
  • the control unit is configured to receive the temperature monitoring signal, And output a control signal to the voltage conversion unit according to the temperature monitoring signal;
  • the voltage conversion unit is configured to perform step-up or step-down processing on the first voltage according to the control signal, or perform a step-up process on the second voltage
  • the voltage is boosted or stepped down, so that the battery to be heated receives the charging current from the power source through the voltage conversion unit in the first time period, and the battery to be heated is in the second time period
  • the discharge current is output to the power supply through the voltage conversion unit.
  • the battery heating system can be applied to a vehicle-mounted system, a mobile terminal or an outdoor energy storage system, etc.
  • the power source and the battery to be heated may be different batteries in the same power supply system.
  • the battery heating system may be applied to pure electric vehicles (pure electric vehicle/battery electric vehicle, pure EV/battery EV), hybrid electric vehicle (HEV), and range extended electric vehicle (range extended electric vehicle).
  • Pure electric vehicle/battery electric vehicle pure EV/battery EV
  • HEV hybrid electric vehicle
  • range extended electric vehicle range extended electric vehicle
  • Vehicle, REEV plug-in hybrid electric vehicle (PHEV), new energy vehicle (new energy vehicle, NEV) and other on-board systems.
  • the power source and the battery to be heated may be different battery modules in the same battery pack in an in-vehicle system.
  • the power source and the battery to be heated may be different battery packs in an in-vehicle system.
  • the first battery may include one or more battery modules
  • the second battery may include one or more battery modules.
  • the power source and the battery to be heated may also be different battery packs in different vehicle-mounted systems.
  • the power source and the battery to be heated may be different batteries or battery modules in the same mobile terminal.
  • the power source and the battery to be heated may be batteries or battery modules in different mobile terminals.
  • the power source and the battery to be heated may also be different batteries in an outdoor energy storage system.
  • the battery to be heated can alternately realize the charging process and the discharging process through the voltage conversion unit, so that the internal resistance of the battery to be heated can heat itself by the Joule heat generated during the charging and discharging process.
  • This heating method can achieve rapid and uniform heating of the battery. This heating method can improve the problems of uneven heating, low heating efficiency, space occupation and great impact on battery life when heating the battery outside.
  • control unit is specifically configured to output the temperature of the battery to be heated when the temperature monitoring signal indicates that the temperature of the battery to be heated is lower than a preset threshold.
  • the control signal the control unit is further configured to stop outputting the control signal when the temperature monitoring signal indicates that the temperature of the battery to be heated is higher than or equal to the preset threshold.
  • control unit is specifically configured to output the control signal indicating heating when the temperature monitoring signal indicates that the temperature of the battery to be heated is lower than a preset threshold.
  • control unit is further configured to: when the temperature monitoring signal indicates that the temperature of the battery to be heated is higher than or equal to the preset threshold, output the control signal indicating to stop heating; and voltage;
  • the conversion unit is configured to stop the step-up or step-down processing of the first voltage, and/or stop the step-up or step-down processing of the second voltage according to the control signal.
  • control signal is used to control the charging and discharging frequency of the battery to be heated, so that the charging and discharging frequency of the battery to be heated is in dynamic control. In the frequency range of the area.
  • control unit is configured to control the temperature of the battery to be heated according to the temperature monitoring signal and the preset battery temperature and the dynamic control The corresponding relationship between the frequency ranges of the regions determines the first frequency range of the dynamic control region corresponding to the temperature of the battery to be heated; the control unit is further configured to determine the temperature to be heated according to the first frequency range The frequency of battery charging and discharging.
  • the system further includes an impedance monitoring unit configured to monitor the impedance of the battery to be heated and output an impedance monitoring signal, so The impedance monitoring signal is used to indicate the impedance of the battery to be heated; the control unit is used to receive the impedance monitoring signal, and according to the impedance monitoring signal, determine the corresponding dynamics of the battery to be heated in the current state The second frequency range of the control area; the control unit is further configured to determine the charge and discharge frequency of the battery to be heated according to the second frequency range.
  • the voltage conversion unit is configured to perform a step-up or step-down process on the first voltage, or perform a step-up or step-up process on the second voltage.
  • the voltage reduction process makes the charging current received by the battery to be heated in the first time period less than the maximum charging current.
  • control unit is further configured to determine the current battery to be heated according to the temperature and state of charge of the battery to be heated indicated by the temperature monitoring signal The current value of the maximum charging current.
  • the system further includes an impedance monitoring unit configured to monitor the impedance of the battery to be heated and output an impedance monitoring signal, so The impedance monitoring signal is used to indicate the impedance of the battery to be heated; the control unit is used to receive the impedance monitoring signal, and determine the current value of the maximum charging current according to the impedance monitoring signal.
  • the voltage conversion unit is configured to perform a step-up or step-down process on the first voltage, or perform a step-up or step-up process on the second voltage.
  • the voltage reduction process is performed so that the discharge current output by the battery to be heated in the second time period is less than the maximum discharge current.
  • control unit is further configured to determine the current maximum discharge current of the battery to be heated according to the temperature and state of charge of the battery to be heated The magnitude of the current value.
  • the system further includes an impedance monitoring unit configured to monitor the impedance of the battery to be heated and output an impedance monitoring signal, so The impedance monitoring signal is used to indicate the impedance of the battery to be heated; the control unit is used to receive the impedance monitoring signal, and determine the current value of the maximum discharge current according to the impedance monitoring signal.
  • the power source includes a first battery module
  • the battery to be heated includes a second battery module.
  • a method for controlling a battery heating system includes a temperature monitoring unit for monitoring the temperature of the battery to be heated and outputting a temperature monitoring signal, the temperature monitoring signal being used to indicate The temperature of the battery to be heated; the voltage conversion unit is respectively connected to the power source and the battery to be heated, and receives the first voltage input from the power source or the second voltage input from the battery to be heated; the method includes: obtaining The temperature monitoring signal; the control signal is determined according to the temperature monitoring signal; the control signal is output to the voltage conversion unit, and the control signal is used to control the voltage conversion unit to boost the first voltage or Step-down processing, or perform step-up or step-down processing on the second voltage, so that: the battery to be heated receives the charging current from the power supply through the voltage conversion unit within the first time period, and The battery to be heated outputs a discharge current to the power supply through the voltage conversion unit in the second time period.
  • the battery to be heated can alternately realize the charging process and the discharging process through the voltage conversion unit, so that the internal resistance of the battery to be heated can heat itself by the Joule heat generated during the charging and discharging process.
  • This heating method can achieve rapid and uniform heating of the battery. This heating method can improve the problems of uneven heating, low heating efficiency, space occupation and great impact on battery life when heating the battery outside.
  • the outputting the control signal to the voltage conversion unit includes: indicating that the temperature of the battery to be heated is lower than the temperature of the battery to be heated by the temperature monitoring signal In the case of a preset threshold value, outputting the control signal; the method further includes: stopping the output of the control signal when the temperature monitoring signal indicates that the temperature of the battery to be heated is higher than or equal to the preset threshold value. control signal.
  • the outputting the control signal to the voltage conversion unit includes: when the temperature monitoring signal indicates that the temperature of the battery to be heated is lower than a preset threshold, outputting the control indicating heating signal.
  • the method further includes: when the temperature monitoring signal indicates that the temperature of the battery to be heated is higher than or equal to the preset threshold, outputting the control signal instructing to stop heating; a voltage conversion unit It is used to stop the step-up or step-down processing of the first voltage and/or stop the step-up or step-down processing of the second voltage according to the control signal.
  • control signal is used to control the charging and discharging frequency of the battery to be heated, so that the charging and discharging frequency of the battery to be heated is in dynamic control. In the frequency range of the area.
  • the method further includes: according to the temperature of the battery to be heated indicated by the temperature monitoring signal, and the preset battery temperature and the dynamic control The corresponding relationship between the frequency ranges of the regions determines the first frequency range of the dynamic control region corresponding to the temperature of the battery to be heated; and determines the charging and discharging frequency of the battery to be heated according to the first frequency range.
  • the battery heating system further includes an impedance monitoring unit configured to monitor the impedance of the battery to be heated and output an impedance monitoring signal ,
  • the impedance monitoring signal is used to indicate the impedance of the battery to be heated;
  • the method further includes: acquiring the impedance monitoring signal, and determining the corresponding impedance of the battery to be heated in the current state according to the impedance monitoring signal
  • the second frequency range of the dynamics control region; according to the second frequency range, the charge and discharge frequency of the battery to be heated is determined.
  • control signal is used to control the voltage conversion unit to perform step-up or step-down processing on the first voltage, or to perform a step-up or step-down process on the second voltage.
  • the voltage is boosted or reduced, so that the charging current received by the battery to be heated in the first time period is less than the maximum charging current.
  • the method further includes: determining the current battery to be heated according to the temperature and state of charge of the battery to be heated indicated by the temperature monitoring signal The current value of the maximum charging current.
  • the battery heating system further includes an impedance monitoring unit configured to monitor the impedance of the battery to be heated and output an impedance monitoring signal
  • the impedance monitoring signal is used to indicate the impedance of the battery to be heated; the method further includes: obtaining the impedance monitoring signal, and determining the current value of the maximum charging current according to the impedance monitoring signal.
  • control signal is used to control the voltage conversion unit to perform step-up or step-down processing on the first voltage, or to The second voltage is boosted or reduced, so that the discharge current output by the battery to be heated in the second time period is less than the maximum discharge current.
  • the method further includes: determining the current maximum discharge current of the battery to be heated according to the temperature and state of charge of the battery to be heated Value size.
  • the battery heating system further includes an impedance monitoring unit configured to monitor the impedance of the battery to be heated and output an impedance monitoring signal
  • the impedance monitoring signal is used to indicate the impedance of the battery to be heated; the method further includes: obtaining the impedance monitoring signal, and determining the current value of the maximum discharge current according to the impedance monitoring signal.
  • the power supply includes a first battery module, and the battery to be heated includes a second battery module.
  • a power supply system in a third aspect, includes the battery heating system described in the first aspect or any one of the possible implementations of the first aspect; the power supply and the The battery to be heated.
  • the power supply system may include a vehicle-mounted system, a mobile terminal, or an outdoor energy storage system.
  • the power source and the battery to be heated may be different batteries in the same power supply system.
  • the first battery may include one or more battery modules
  • the second battery may include one or more battery modules.
  • the power source and the battery to be heated may be different battery modules in the same battery pack in an in-vehicle system.
  • the power source and the battery to be heated may be different battery packs in an in-vehicle system.
  • the power source and the battery to be heated may also be different battery packs in different vehicle-mounted systems.
  • the power source and the battery to be heated may be different battery modules in the same mobile terminal.
  • the power source and the battery to be heated may be batteries or battery modules in different mobile terminals.
  • the power source and the battery to be heated may also be different batteries in an outdoor energy storage system.
  • the power supply includes a first battery module, and the battery to be heated includes a second battery module.
  • an in-vehicle system in a fourth aspect, includes the battery heating system described in the first aspect or any one of the possible implementations of the first aspect; the power supply and the battery to be heated.
  • the power supply includes a first battery module in a battery pack in the vehicle-mounted system, and the battery to be heated includes a battery pack in the battery pack.
  • the second battery module includes a first battery module in a battery pack in the vehicle-mounted system, and the battery to be heated includes a battery pack in the battery pack.
  • a control device including: a processor configured to execute the second aspect or the method in any one of the possible implementation manners of the second aspect. Further, the control device further includes a memory, the memory is coupled with a processor, the memory is used to store a computer program, and the processor is used to execute the computer program, so that the control device executes the second aspect or The method in any possible implementation of the second aspect.
  • a computer-readable medium including a computer program, which when executed on a computer, causes the computer to execute the second aspect, or the method in any one of the possible implementations of the second aspect .
  • a control device in a seventh aspect, includes a unit for executing the method described in the second aspect or any one of the possible implementation manners of the second aspect.
  • the functions of the above-mentioned units can be realized by hardware, or by hardware executing corresponding software. It should be understood that the term "unit" herein can refer to application-specific integrated circuits (ASICs), electronic circuits, processors for executing one or more software or firmware programs (such as shared processors, proprietary processing Processor or group processor, etc.) and memory, merged logic circuits, and/or other suitable components that support the described functions.
  • ASICs application-specific integrated circuits
  • processors for executing one or more software or firmware programs (such as shared processors, proprietary processing Processor or group processor, etc.) and memory, merged logic circuits, and/or other suitable components that support the described functions.
  • control unit may also be a chip or a chip system, for example, a system on chip (system on chip, SoC).
  • SoC system on chip
  • a chip is provided, the chip is provided with a processing circuit, and the processor circuit is configured to execute the second aspect or the method in any one of the possible implementation manners of the second aspect.
  • an electric vehicle including: a first battery and a second battery, and a voltage conversion unit, respectively connected to the first battery and the second battery of Su Sohu, and receives the first battery input from the first battery.
  • a voltage or a second voltage input from the second battery a temperature monitoring unit, used to monitor the temperature of the second battery, and output a temperature monitoring signal, the temperature monitoring signal is used to indicate the temperature of the second battery; control Unit for receiving the temperature monitoring signal, and outputting a control signal to the voltage conversion unit according to the temperature monitoring signal; the voltage conversion unit for boosting the first voltage according to the control signal Or step-down processing, or perform step-up or step-down processing on the second voltage, so that: the second battery receives the charging current from the first battery through the voltage conversion unit within the first time period , And the second battery outputs a discharge current to the first battery through the voltage conversion unit in the second time period.
  • electric vehicles may include: pure electric vehicle/battery electric vehicle (pure EV/battery EV), hybrid electric vehicle (HEV), range extended electric vehicle, REEV ), plug-in hybrid electric vehicle (PHEV), new energy vehicle (NEV), etc.
  • pure EV/battery EV pure electric vehicle/battery electric vehicle
  • HEV hybrid electric vehicle
  • REEV range extended electric vehicle
  • REEV plug-in hybrid electric vehicle
  • NEV new energy vehicle
  • the first battery and the second battery may be different battery modules in the same battery pack in an electric vehicle.
  • the first battery may include one or more battery modules
  • the second battery may include one or more battery modules.
  • the first battery and the second battery may be different battery packs in an electric vehicle.
  • the first battery and the second battery may also be different battery packs in different electric vehicles.
  • the second battery may be a battery pack in an electric vehicle in the first aspect
  • the first battery may be a battery pack in another electric vehicle.
  • the first battery may be an external power source, such as an external DC power source
  • the second battery may be a battery pack in an electric vehicle.
  • the first battery and the second battery can alternately realize the charging process and the discharging process through the voltage conversion unit, so that the internal resistance of the first battery and the second battery is generated during the charging and discharging process.
  • Joule heat heats itself and this heating method can achieve rapid and uniform heating of the battery. This heating method can improve the problems of uneven heating, low heating efficiency, space occupation and great impact on battery life when heating the battery outside.
  • control unit is specifically configured to output the Control signal; the control unit is further configured to stop outputting the control signal when the temperature monitoring signal indicates that the temperature of the second battery is higher than or equal to the preset threshold.
  • control signal is used to control the charging and discharging frequency of the second battery, so that the charging and discharging frequency of the second battery is located in the dynamics control region In the frequency range.
  • control unit is configured to monitor the temperature of the second battery according to the temperature monitoring signal, and the preset battery temperature and the dynamic control area The corresponding relationship between the frequency ranges of the second battery is determined to determine the first frequency range of the dynamics control region corresponding to the temperature of the second battery; the control unit is further configured to determine the second battery according to the first frequency range The frequency of charge and discharge.
  • the automobile further includes an impedance monitoring unit configured to monitor the impedance of the second battery and output an impedance monitoring signal.
  • the impedance monitoring signal is used to indicate the impedance of the second battery;
  • the control unit is used to receive the impedance monitoring signal, and according to the impedance monitoring signal, determine the corresponding dynamic control of the second battery in the current state The second frequency range of the area;
  • the control unit is further configured to determine the charge and discharge frequency of the second battery according to the second frequency range.
  • the voltage conversion unit is configured to perform a step-up or step-down process on the first voltage, or perform a step-up or step-down process on the second voltage. Pressure processing, so that the charging current received by the second battery in the first time period is less than the maximum charging current.
  • the voltage conversion unit is configured to perform a step-up or step-down process on the first voltage, or perform a step-up or step-down process on the second voltage. Pressure treatment, so that the discharge current output by the second battery in the second time period is less than the maximum discharge current.
  • a battery pack is further included, the first battery includes at least one first battery module in the battery pack, and the second battery includes the At least one second battery module in the battery pack.
  • FIG. 1 is a schematic structural diagram of a battery heating system 100 according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a battery heating system 100 according to another embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a bidirectional DC/DC converter according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the working state of the voltage conversion unit 130 according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the working state of the voltage conversion unit 130 according to another embodiment of the present application.
  • Fig. 6 is a schematic diagram of charging and discharging currents of a battery according to another embodiment of the present application.
  • Fig. 7 is an equivalent circuit model of a battery according to an embodiment of the present application.
  • Fig. 8 is a schematic diagram of electrochemical impedance spectroscopy of a battery according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a battery heating system 100 according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a battery heating system 100 according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a battery heating system 100 according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of a battery heating system 100 according to another embodiment of the present application.
  • FIG. 13 is a schematic diagram of a battery heating system 100 according to another embodiment of the present application.
  • FIG. 14 is a schematic diagram of a battery heating system 100 according to another embodiment of the present application.
  • FIG. 15 is a schematic diagram of a control method 300 of a battery heating system according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a control device 400 according to an embodiment of the present application.
  • Lithium-ion battery refers to a device that relies on lithium ions to move between the positive electrode and the negative electrode to realize the mutual conversion of chemical energy and electrical energy.
  • the device includes electrodes, diaphragm, electrolyte, housing and terminals, etc., and is designed to be rechargeable.
  • the lithium electronic battery may also be referred to as a battery cell, a single battery, a single storage battery, etc.
  • Lithium-ion battery module refers to a combination of more than one battery cell in series, parallel or series-parallel, and used as a power source.
  • the lithium electronic battery module has only a pair of positive and negative output terminals, which may also be referred to as a lithium ion battery module, a battery module, etc. in the embodiments of the present application.
  • Battery management system Refers to a system for battery management, which usually includes a monitoring module and a computing control module.
  • the BMS mainly includes two parts: a battery monitor unit (BMU) and a battery control unit (BCU).
  • Lithium-ion battery pack refers to a unit that obtains electrical energy from the outside and can output electrical energy to the outside. It usually includes at least one lithium-ion battery module, a lithium-ion battery management module (excluding BCU), and a lithium-ion battery Box and corresponding accessories.
  • Lithium-ion battery system An energy storage device that usually includes one or more lithium-ion battery packs and corresponding accessories.
  • the above-mentioned accessories may include battery management systems, high-voltage circuits, low-voltage circuits, thermal management equipment, and Mechanical assembly, etc.
  • Faraday reaction also known as electrochemical reaction, it means that two processes occur at the same time on the electrode, one is charge transfer, the other is substance diffusion and transfer.
  • charge transfer can refer to the transfer of charge on the metal-solution interface
  • substance diffusion transfer can refer to the occurrence of oxidation or reduction reactions caused by electron transfer. Because these reactions obey Faraday's law, that is, the amount of chemical reaction caused by the passage of electric current is proportional to the amount of electricity passed, so it is called Faraday reaction.
  • Lithium evolution reaction During the charging process of lithium-ion batteries, lithium ions will be extracted from the positive electrode and inserted into the negative electrode. However, when some abnormal conditions occur and the lithium ions extracted from the positive electrode cannot be inserted into the negative electrode, the lithium ions can only be deposited on the surface of the negative electrode, which is called a lithium evolution reaction. For example, lithium ions may undergo a lithium evolution reaction when they are charged at low temperatures.
  • FIG. 1 is a schematic structural diagram of a battery heating system 100 according to an embodiment of the present application.
  • the system 100 is connected to a power source 20 and a battery 30 to be heated, and is used for low-temperature heating of the battery 30 to be heated.
  • the solutions of the embodiments of the present application can be widely applied to in-vehicle systems, mobile terminals, outdoor energy storage systems, and the like.
  • the battery heating system 100 of the embodiment of the present application can also be applied to other fields that require battery heating.
  • the outdoor energy storage system may include a base station backup power supply system and so on.
  • the power source 20 and the battery to be heated 30 may be different batteries in the same power supply system, and the power supply system may be a vehicle-mounted system, a mobile terminal, or an outdoor energy storage system.
  • the battery heating system can be applied to pure electric vehicles (pure electric vehicle/battery electric vehicle, pure EV/battery EV), hybrid electric vehicle (HEV), and range extended electric vehicle (range extended electric vehicle).
  • Electric vehicle, REEV plug-in hybrid electric vehicle (PHEV), new energy vehicle (NEV) and other fields of on-board systems.
  • the power source 20 and the battery to be heated 30 may be different battery modules in the same battery pack in an in-vehicle system.
  • the different battery modules can be charged and discharged by the battery heating system 100, and the battery can be heated at the same time.
  • the battery module may include the foregoing lithium electronic battery module
  • the battery pack may include the foregoing lithium ion battery pack.
  • the in-vehicle system may include the above-mentioned lithium ion battery system.
  • the power source 20 and the battery to be heated 30 may be different battery packs in an in-vehicle system.
  • different battery packs may correspond to a high-voltage power supply system and a low-voltage power supply system in the in-vehicle system.
  • the power source 20 and the battery to be heated 30 may also be different battery packs in different in-vehicle systems. That is, different vehicles can be charged and discharged through the battery heating system 100.
  • the power source 20 and the battery to be heated 30 may be different battery modules in the same mobile terminal.
  • the power source 20 and the battery to be heated 30 may be batteries or battery modules in different mobile terminals.
  • the power source 20 and the battery to be heated 30 may also be different batteries in an outdoor energy storage system.
  • FIG. 2 is a schematic structural diagram of a battery heating system 100 according to another embodiment of the present application.
  • the battery heating system 100 may include a temperature monitoring unit 110, a control unit 120 and a voltage conversion unit 130.
  • the temperature monitoring unit 110 is used to monitor the temperature of the battery 30 to be heated and output a temperature monitoring signal, which is used to indicate the temperature of the battery 30 to be heated.
  • the temperature detection signal output by the temperature monitoring unit 110 may be a digital signal or an analog signal.
  • the temperature monitoring unit 110 may include a temperature sensor, and the temperature sensor may include a thermocouple, a negative temperature coefficient (NTC) temperature sensor, an infrared sensor, or the like.
  • the temperature sensor may be arranged around the battery 30 to be heated.
  • the temperature detection signal may indicate the current temperature or real-time temperature of the battery 30 to be heated.
  • the current temperature or real-time temperature of the battery 30 to be heated may include the time interval of the battery 30 to be heated.
  • the internally monitored average temperature may refer to the temperature monitored by the battery 30 to be heated before the most recent period of time. The length of the most recent period of time can be determined according to practice.
  • the temperature monitoring unit may monitor the temperature of the battery 30 to be heated, and output a temperature monitoring signal every 5 seconds (s).
  • the temperature monitoring unit may also continuously output the temperature monitoring signal in the time domain.
  • the temperature monitoring unit 110 may be implemented by a temperature sensor, or the interface circuit of the control unit 120 and the temperature sensor may be implemented together.
  • the interface circuit is connected to the temperature sensor, receives the sensing signal from the temperature sensor, and determines the temperature of the battery 30 to be heated according to the sensing signal.
  • the control unit 120 is configured to receive the temperature monitoring signal, and output a control signal to the voltage conversion unit 130 according to the temperature monitoring signal.
  • control unit 120 may determine the operating mode of the battery heating system 100 according to the level of the temperature indicated by the received temperature monitoring signal. For example, if the temperature of the battery 30 to be heated meets the requirement of normal operation, the control signal may indicate that the voltage conversion unit 130 does not work. If the temperature of the battery 30 to be heated is lower than the normal operation requirement, the control signal may instruct the voltage conversion unit 130 to work. Optionally, the control unit 120 may instruct the voltage conversion unit 130 to work by sending a control signal, or instruct the voltage conversion unit 130 to not work by not sending a control signal.
  • the voltage conversion unit 130 is respectively connected to the power source 20 and the battery 30 to be heated, and receives the first voltage V 1 input by the power source 20 or the second voltage V 2 input from the battery 30 to be heated.
  • the voltage conversion unit is configured to perform step-up or step-down processing on the first voltage V 1 or perform step-up or step-down processing on the second voltage V 2 according to the control signal, so that :
  • the battery to be heated receives the charging current from the power source through the voltage conversion unit in the first time period, and the battery to be heated outputs to the power source through the voltage conversion unit in the second time period Discharge current.
  • the first voltage V 1 may be understood as the working voltage provided by the power supply 20
  • the second voltage V 2 may be understood as the working voltage provided by the battery 30 to be heated.
  • the power source 20 may include a direct current power source.
  • the power source 20 may include a storage battery, or the power source 20 may be a DC power source obtained after an AC power source undergoes AC/DC conversion.
  • a DC power supply can be obtained after AC/DC conversion is performed on the 50 Hz mains.
  • the voltage conversion unit 130 may include a first terminal A1, a second terminal A2, a third terminal A3, and a fourth terminal A4.
  • the first terminal A1 and the second terminal A2 are respectively used to connect the positive electrode and the negative electrode of the power source 20.
  • the third terminal A3 and the fourth terminal A4 may be used to connect the positive electrode and the negative electrode of the battery 30 to be heated, respectively.
  • the first terminal A1 and the second terminal A2 may be collectively referred to as the first end of the voltage conversion unit 130, and the third terminal A3 and the fourth terminal A4 may be collectively referred to as the second end of the voltage conversion unit 130.
  • the voltage conversion unit 130 may refer to a device capable of realizing bidirectional direct current flow between the first terminal and the second terminal.
  • the voltage conversion unit 130 can continuously charge and discharge the battery 30 to be heated and the power source 20 by performing step-up and down-boost processing on the first voltage V 1 or the second voltage V 2.
  • the battery can heat itself based on the Joule heat generated by the charging and discharging current. In other words, the Joule heat generated by the internal resistance of the battery is used to achieve rapid and uniform heating of the battery.
  • the voltage conversion unit 130 may control the battery to be heated 30 to be charged or discharged based on a certain charging and discharging frequency.
  • the first time period may refer to the time interval during which the battery to be heated is used for charging in one charge and discharge time period
  • the second time period may refer to the time period during which the battery to be heated is used for discharge during one charge and discharge time period. Time interval. In the first time period, the power source 20 is in a discharging state and the battery 30 to be heated is in a charging state; in the second time period, the battery 30 to be heated is in a discharging state, and the power source 20 is in a charging state.
  • the power source 20 charges the battery to be heated 30 through the voltage conversion unit 130 in the first time period
  • the battery to be heated 30 charges the power source 20 through the voltage conversion unit 130 in the second time period.
  • the power supply 20 and the battery 30 to be heated can be alternately charged and discharged until the battery to be heated is heated to the target temperature.
  • the voltage conversion unit 130 further includes a control terminal, the control terminal is used to receive a control signal, and the control signal is used to control the voltage conversion unit to perform step-up/down processing on an input voltage input from an input terminal , And output through another input terminal.
  • the method of AC charging and discharging the battery to be heated is adopted to directly heat the battery from the inside of the battery.
  • high current can be selected for heating, and the internal resistance of the battery is high under low temperature conditions, so that the heat generation is large, and the battery can be heated quickly.
  • the inside of the battery cell participates in heat generation, and the heat can be evenly distributed inside the battery, so the heating is uniform, which can improve the problem of uneven heating caused by single-sided heating in the traditional heating method.
  • the internal heating of the battery is adopted, and only the electric core is heated, and the external device is not heated, so the energy utilization rate is high.
  • the voltage conversion unit 130 may include a bidirectional direct current to direct current (DC/DC) converter.
  • DC/DC direct current to direct current
  • FIG. 3 is a schematic structural diagram of a bidirectional DC/DC converter according to an embodiment of the present application.
  • the bidirectional DC/DC converter includes two terminals, and the first terminal U1 includes a first terminal A1 and a second terminal A2.
  • the second end U2 may include a third terminal A3 and a fourth terminal A4. Among them, the first terminal A1 and the third terminal A3 are positive ends, and the second terminal A2 and the fourth terminal A4 are negative ends.
  • the output current at the U1 terminal is represented by the first current I 1
  • the output current at the U2 terminal is represented by the second current I 2 .
  • FIG. 4 is a schematic diagram of the working state of the voltage conversion unit 130 according to an embodiment of the present application.
  • the voltage conversion unit 130 performs step-up or step-down processing on the first voltage V 1 output by the power supply 20, and outputs a third voltage V 3 , and the third voltage V 3 is used for loading At both ends of the battery 30 to be heated. If the third voltage V 3 is greater than the second voltage V 2 , the power source 20 charges the battery to be heated 30 through the voltage conversion unit 130, and if the third voltage V 3 is less than the second voltage V 2 , the battery to be heated 30 is discharged to the power source 20 through the voltage conversion unit 130.
  • FIG. 5 is a schematic diagram of the working state of the voltage conversion unit 130 according to another embodiment of the present application.
  • the voltage conversion unit 130 may also perform step-up or step-down processing on the second voltage V 2 input from the battery to be heated 30 , and output a fourth voltage V 4 , and the fourth voltage V 4 is used to load the second voltage V 2 The two ends of the power supply 20. If the fourth voltage V 4 is greater than the first voltage V 1 , the battery to be heated 30 is discharged to the power source through the voltage conversion unit 130; if the fourth voltage V 4 is less than the first voltage V 1 , Then, the power source 20 charges the battery 30 to be heated through the voltage conversion unit 130.
  • the battery to be heated 30 can alternately realize the charging process and the discharging process through the voltage conversion unit 130, so that the internal resistance of the battery 30 to be heated can be used to generate Joule heat during the charging and discharging process.
  • Heating, using this heating method can achieve rapid and uniform heating of the battery. This heating method can improve the problems of uneven heating, low heating efficiency, space occupation and great impact on battery life when heating the battery outside.
  • the power supply 20 can also be charged and discharged through the voltage conversion unit 130. Therefore, the power supply 20 and the When the batteries 30 to be heated are all batteries, the power source 20 can also perform ohmic heating on itself through charging and discharging.
  • Fig. 6 is a schematic diagram of charging and discharging currents of a battery according to another embodiment of the present application.
  • the battery can be charged and discharged in a short period of time, and the battery’s own internal resistance generates Joule heat to achieve battery life Heat quickly and evenly.
  • the total power injected or outflowed during the heating process of the battery is approximately equal to zero, so the working performance of the battery will not be affected
  • the power that generates Joule heat when current flows through the battery can be expressed by the following formula (1).
  • Q represents the power of the battery
  • I represents the charging current or discharging current
  • R represents the internal resistance of the battery
  • t represents the length of time for charging or discharging.
  • control unit 120 is specifically configured to output the control signal when the temperature monitoring signal indicates that the temperature of the battery 30 to be heated is lower than a preset threshold; and/or If the temperature monitoring signal indicates that the temperature of the battery to be heated is higher than or equal to the preset threshold, stop outputting the control signal.
  • the above-mentioned preset threshold may be determined according to the critical temperature at which the battery to be heated can work normally. When the temperature of the battery to be heated is lower than the critical temperature, the performance of the battery to be heated will decline. For example, the available capacity of the battery to be heated is greatly reduced or the activity of the battery is reduced, or lithium evolution occurs during charging. reaction.
  • the preset threshold may be greater than or equal to the critical temperature. For example, the preset threshold may be set to 0°C, 5°C, 10°C, or may be set to any temperature between 0°C and 15°C.
  • the voltage conversion unit 130 performs charging and discharging processing on the battery to be heated according to the control signal.
  • the control unit stops outputting the control signal the voltage conversion unit 130 does not receive the control signal, so the voltage conversion unit 130 is in the idle state and does not charge and discharge the battery 30 to be heated, that is, the battery to be heated 30 is not charged or discharged.
  • the heating battery 30 does not need to be heated.
  • control signal is used to control the charging and discharging frequency of the battery 30 to be heated, so that the charging and discharging frequency of the battery 30 to be heated lies in the frequency range of the dynamics control region.
  • the charging and discharging frequency of the battery 30 to be heated is within the frequency range of the kinetic control region, only charge transfer occurs inside the battery 30 to be heated, and no substance diffusion transfer occurs, or no Faraday reaction occurs, Therefore, when the charge and discharge frequency of the battery is within the frequency range of the kinetic control region, the low-temperature lithium evolution reaction hardly occurs.
  • Fig. 7 is an equivalent circuit model of a battery according to an embodiment of the present application.
  • the equivalent circuit model of the battery includes battery internal resistance R ⁇ , electric double layer capacitance C d , charge transfer resistance R ct and diffusion impedance Z w .
  • the impedance Z of the battery can be expressed by formula (2).
  • represents the angular frequency of battery charging and discharging
  • j represents the imaginary part of impedance.
  • the battery internal resistance R ⁇ represents the internal resistance of the electrolyte and the electrodes inside the battery.
  • the electric double layer capacitance C d represents the equivalent capacitance formed by the active ions in the electrolyte, which only changes the charge distribution and does not cause a chemical reaction.
  • the charge transfer resistance R ct and the diffusion resistance Z w can be collectively referred to as the Faraday resistance, which is an equivalent resistance derived from the active ions in the electrolyte, which represents the resistance generated by the Faraday reaction.
  • the Faraday reaction includes two processes, one is charge transfer, the resulting resistance can be expressed as R ct , and the other is substance diffusion and transfer, and the resulting impedance is expressed as Z w.
  • the size can be impedance Z w (3) represented by the formula.
  • represents a factor related to material transfer
  • represents the angular frequency of battery charging and discharging
  • j represents the imaginary part of impedance
  • Fig. 8 is a schematic diagram of electrochemical impedance spectroscopy of a battery according to an embodiment of the present application.
  • the electrochemical impedance spectroscopy described above may also be referred to as a Nyquist diagram.
  • Figure 8 shows the impedance of the battery at different charging and discharging frequencies.
  • the horizontal axis represents the real impedance of the battery
  • the vertical axis represents the imaginary impedance of the battery.
  • the electrochemical impedance spectroscopy is divided into three regions: the dynamic control region, the hybrid control region and the diffusion control region.
  • the charge and discharge frequency of the battery is relatively high, and only the charge transfer occurs during the charge and discharge process of the battery, and no material diffusion transfer occurs.
  • the battery does not have a Faraday reaction in the kinetic control region.
  • the dynamics control area can include a high frequency area and an extremely high frequency area. In the high-frequency region, the charge and discharge time period is short, the time to occurrence of the mass transfer inside the battery, so since the mass transfer from diffusing impedance Z w disappears.
  • the hybrid control area refers to the stage where the battery changes from Faraday reaction to Faraday reaction.
  • the frequency of the hybrid control zone is lower than that of the dynamics control zone.
  • the frequency of charge and discharge is low, and both charge transfer and material diffusion transfer occur, that is, the Faraday reaction occurs during the battery charge and discharge process.
  • the frequency of the diffusion control area is lower than that of the mixing control area.
  • the frequency range corresponding to the dynamic control region is not fixed, but changes based on the current state of the battery.
  • the frequency range of the dynamics control region may vary based on changes in operating temperature.
  • Table 1 shows the correspondence between battery temperature and battery impedance. As shown in Table 1, when the operating temperature is -15°C, the frequency range of the dynamic control region can refer to a frequency region greater than 4 Hz.
  • the control unit can control the charging and discharging frequency of the battery within the frequency range of the dynamics control region, so that only charge transfer occurs inside the battery during the charging and discharging process, and no matter occurs. Diffusion transfer.
  • the lithium evolution reaction is prone to occur, and the lithium evolution reaction occurs in the process of diffusion and transfer of substances. Therefore, if there is no diffusion and transfer of substances inside the battery during charging and discharging, it is possible to prevent the lithium evolution reaction of the battery from affecting the battery performance.
  • an appropriate charging and discharging frequency can be selected to charge and discharge the battery within the frequency range of the kinetic control region, so that the battery can be quickly and evenly charged while avoiding the low-temperature lithium evolution reaction. heating.
  • the charging and discharging frequency is usually set close to the lower limit of the frequency range of the dynamics control region to reduce the difficulty of circuit implementation. For example, when the frequency range of the dynamics control area is 2 Hz, the charge and discharge frequency of the battery can be set between 2.5 Hz and 5 Hz.
  • control unit 120 may dynamically adjust the charging and discharging frequency of the battery to optimize the heating efficiency while ensuring the safety of the battery performance.
  • the control unit 120 may use various methods to determine the charge and discharge frequency of the battery 30 to be heated, and then use the control signal sent to the voltage conversion unit 130 to control the charge and discharge frequency of the battery 30 to be heated. Next, several methods for determining the charging and discharging frequency of the battery 30 to be heated are introduced.
  • the control unit 120 may be based on the temperature of the battery 30 to be heated indicated by the temperature monitoring signal, and the corresponding relationship between the preset battery temperature and the frequency range of the dynamic control region, The first frequency range corresponding to the temperature of the battery 30 to be heated is determined; the control unit 120 is further configured to determine the charge and discharge frequency of the battery 30 to be heated according to the first frequency range.
  • control unit 120 can determine the frequency range of the corresponding dynamic control area according to the monitored current temperature of the battery 30 to be heated.
  • the frequency range of the dynamic control region corresponding to the temperature is greater than 6 Hz, that is, the first frequency range is greater than 6 Hz. Therefore, the charge and discharge frequency of the battery 30 to be heated can be selected to be above 6 Hz, for example, 6.5 Hz.
  • the corresponding relationship between the preset battery temperature and the frequency range of the kinetic control region may be predetermined through multiple experiments. For example, researchers can test the electrochemical impedance spectroscopy of battery samples at different temperatures, and then perform electrochemical performance analysis based on the electrochemical impedance spectroscopy of the battery to determine the frequency range of the kinetic control region corresponding to different temperatures, that is, determine the battery Correspondence between the temperature and the frequency range of the dynamic control zone.
  • the corresponding relationship may be stored in the control unit 120, or stored in a storage device accessible by the control unit 120, so that the control unit 120 can determine the corresponding dynamic control area according to the currently monitored battery temperature The frequency range.
  • FIG. 9 is a schematic structural diagram of a battery heating system 100 according to another embodiment of the present application.
  • the battery heating system 100 further includes an impedance monitoring unit 140 for monitoring the impedance of the battery 30 to be heated, and outputting an impedance monitoring signal, which is used for Indicates the impedance of the battery 30 to be heated.
  • the impedance monitoring unit 140 may be used to monitor the current impedance of the battery 30 to be heated in real time.
  • the impedance monitoring unit 140 may input an alternating current for testing to the battery 30 to be heated. To detect the impedance of the battery in the current state.
  • the control unit 120 may obtain the electrochemical impedance spectrum of the battery 30 to be heated in the current state according to the impedance monitoring signal sent by the impedance monitoring unit 140.
  • the electrochemical impedance spectroscopy may be the electrochemical impedance spectroscopy as shown in FIG. 8.
  • the electrochemical impedance spectrum is used to indicate the corresponding relationship between the impedance of the battery to be heated 30 in the current state and the charge and discharge frequency.
  • the control unit 120 may determine the second frequency range of the dynamic control region corresponding to the battery 30 to be heated in the current state according to the electrochemical impedance spectrum.
  • the impedance monitoring unit 140 may detect impedances corresponding to alternating currents of different frequencies to obtain the impedances of the battery 30 to be heated at multiple frequencies, thereby obtaining the electrochemical impedance spectrum of the battery 30 to be heated .
  • the control unit 120 can use the impedance monitoring unit 140 to monitor the impedance monitoring signal of the battery 30 to be heated in real time to determine the frequency range of the dynamic control area corresponding to the battery 30 to be heated in the current state, and further The frequency of charging and discharging the battery 30 to be heated is determined.
  • the current state includes the current temperature of the battery 30 to be heated and other real-time conditions, such as dry humidity and other parameters. Therefore, the frequency range of the dynamic control region is obtained by real-time detection based on the current state of the battery 30 to be heated, rather than obtained in advance based on experimental data.
  • This measurement method can more accurately determine the dynamic control area of the battery 30 to be heated, thereby improving the accuracy of determining the charging and discharging frequency of the battery 30 to be heated, and avoiding the low-temperature lithium evolution reaction caused by the unreasonable setting of the charging and discharging frequency. And other phenomena, leading to affect the battery performance.
  • the voltage conversion unit is further configured to perform step-up or step-down processing on the first voltage, or perform step-up or step-down processing on the second voltage, so that the battery to be heated 30 is The charging current received in the first time period is less than the maximum charging current.
  • the charging current of the battery 30 to be heated should be less than a certain threshold.
  • the maximum allowable charging current of the battery is also different.
  • the working condition of the battery may include factors such as battery temperature, battery state of charge (SoC), and battery impedance. Therefore, the control unit 120 needs to dynamically determine the maximum charging current of the battery 30 to be heated according to the current working state of the battery 30 to be heated, so as to control the charging current of the battery 30 to be heated to be less than the maximum charging current .
  • control unit 120 may use multiple methods to determine the maximum charging current of the battery 30 to be heated in the current state. Next, several methods for determining the maximum charging current in the embodiments of the present application will be introduced.
  • control unit 120 may determine the current value of the current maximum charging current according to the temperature and the state of charge of the battery 30 to be heated indicated by the temperature monitoring signal.
  • control unit 120 may obtain in advance the first corresponding relationship between the battery temperature, the state of charge and the current value of the maximum charging current, and then according to the current temperature and the current state of charge of the battery to be heated and the first corresponding relationship. Relationship, determine the current value of the current maximum charging current of the battery to be heated.
  • control unit 120 may calculate and determine the state of charge of the battery 30 to be heated according to the electrical parameters of the battery 30 to be heated in the current state.
  • the foregoing electrical parameters may include but are not limited to: output voltage, output current, temperature and other parameters of the battery to be heated.
  • the first corresponding relationship between the battery temperature, the state of charge, and the current value of the maximum charging current may be predetermined through multiple experiments.
  • the first corresponding relationship may be stored in the control unit 120, or stored in a storage device accessible by the control unit 120, so that the control unit 120 can determine according to the currently monitored battery temperature and state of charge The current value corresponding to the maximum charging current.
  • the corresponding relationship between the preset battery temperature and the current value of the maximum charging current may also be provided by the battery manufacturer.
  • Table 2 shows the correspondence between the battery temperature, the state of charge, and the current value of the maximum charging current.
  • Table 2 shows the maximum charging current of the battery at different temperatures and different states of charge (SoC). For example, as shown in Table 2, when the operating temperature is -10°C and the state of charge is 80%, the maximum charging current of the battery is 128 amperes (ampere, A).
  • control unit 120 may receive the impedance monitoring signal sent by the impedance monitoring unit 140 to obtain the current impedance of the battery 30 to be heated, and determine the maximum charging current value according to the impedance monitoring signal.
  • the magnitude of the current value For example, the control unit 120 may determine the current value of the maximum charging current according to the following formula (4).
  • I ch represents the maximum charging current of the battery
  • V max represents the charge cut-off voltage of the battery
  • V ocv represents the open circuit voltage of the battery at a certain SoC point
  • R cn represents the internal resistance of the battery at a specified frequency.
  • control unit 120 may recalculate the current value of the maximum charging current according to the characteristics of the battery's internal resistance changing with temperature, and adjust the charging current of the battery 30 to be heated accordingly. For example, the control unit 120 may re-determine the current value of the maximum charging current every time the battery temperature rises by 2°C.
  • the voltage conversion unit can also be used for the first voltage V 1 is treated by boosting or bucking or the second voltage V 2 is raised or lowered, so as to be such that the The discharge current output by the heating battery 30 in the second time period is less than the maximum discharge current.
  • the control unit 120 needs to determine the maximum discharge current of the battery 30 to be heated according to the current working state of the battery 30 to be heated, so as to control the discharge current of the battery 30 to be heated to be less than the maximum discharge current.
  • control unit 120 may use multiple methods to determine the maximum discharge current of the battery 30 to be heated in the current state. Next, several methods for determining the maximum discharge current in the embodiments of the present application will be introduced.
  • control unit 120 may be used to determine the current value of the current maximum discharge current according to the temperature and the state of charge of the battery 30 to be heated indicated by the temperature monitoring signal.
  • control unit 120 may obtain in advance the second correspondence between the battery temperature, the state of charge and the current value of the maximum discharge current, and then according to the current temperature and the current state of charge of the battery to be heated, and the second correspondence described above. Relationship, determine the current value of the current maximum charging current of the battery to be heated.
  • the second corresponding relationship between the battery temperature, the state of charge, and the current value of the maximum discharge current may be predetermined through experiments.
  • the second correspondence relationship may be stored in the control unit 120, or stored in a storage device accessible by the control unit 120, so that the control unit 120 can determine the corresponding maximum discharge according to the currently monitored battery temperature.
  • the current value of the current may be predetermined through experiments.
  • the corresponding relationship between the preset battery temperature and the current value of the maximum discharge current may also be provided by the battery manufacturer.
  • Table 3 shows the correspondence between the battery temperature and the current value of the maximum discharge current.
  • Table 3 shows the maximum discharge current of the battery at different temperatures and different states of charge. For example, as shown in Table 3, when the operating temperature is -10°C and the state of charge is 80%, the maximum discharge current of the battery is 530A.
  • control unit 120 may receive the impedance monitoring signal sent by the impedance monitoring unit 140 to obtain the current impedance of the battery to be heated 30, and determine the maximum discharge current according to the impedance monitoring signal.
  • the magnitude of the current value For example, the control unit 120 may determine the current value of the maximum discharge current according to the following formula (5).
  • I dis represents the maximum discharge current of the battery
  • V min represents the discharge cut-off voltage of the battery
  • V ocv represents the open circuit voltage of the battery at a certain SoC point
  • R dis represents the internal resistance of the battery at a specified frequency.
  • control unit 120 may recalculate the current value of the maximum discharge current according to the characteristics of the battery internal resistance changing with temperature, and adjust the discharge current of the battery 30 to be heated accordingly. For example, the control unit 120 may re-determine the current value of the maximum discharge current every time the battery temperature rises by 2°C.
  • the voltage conversion unit can also be used for the first voltage V 1 is treated by boosting or bucking or the second voltage V 2 is raised or lowered, so as to be such that the The discharge current output by the heating battery 30 in the second time period is less than the maximum discharge current.
  • FIG. 10 is a schematic diagram of a battery heating system 100 according to another embodiment of the present application.
  • the solution in FIG. 10 can be applied to an in-vehicle system.
  • the above-mentioned battery 20 and the battery to be heated 30 may be the first battery module 210 and the second battery module 220 in FIG. 10, respectively.
  • the first battery module 210 and the second battery module 220 can be mutually heated by charging and discharging.
  • the above-mentioned voltage conversion unit 130 may be the bidirectional DC/DC converter in FIG. 10.
  • the above-mentioned control unit 120 may be integrated in the BMS of the vehicle-mounted system.
  • the above-mentioned temperature monitoring unit 110 may include the temperature sensor in FIG. 10
  • the positive electrode and the negative electrode of the first battery module 210 are respectively used for connecting the first input terminal A1 and the second input terminal A2 of the bidirectional DC/DC converter, and the positive electrode and the negative electrode of the second battery module 220 are respectively used for The third input terminal A3 and the fourth input terminal A4 of the bidirectional DC/DC converter are connected.
  • the BMS can be used to connect the control terminal of the bidirectional DC/DC converter and output a control signal to it.
  • a plurality of temperature sensors are respectively placed in the first battery module 210 and the second battery module 220, and are connected to the BMS, and output temperature monitoring signals to the BMS.
  • a switch circuit connected to the bidirectional DC/DC converter can be designed so that the bidirectional DC/DC converter can be connected to other circuits through the switch circuit.
  • the bidirectional DC/DC converter can be reused in other circuits, so as to achieve the purpose of saving circuit cost and simplifying design.
  • a first switch circuit M1 may be provided between the first battery module 210 and the bidirectional DC/DC converter.
  • a second switch circuit M2 may be provided between the second battery module 220 and the bidirectional DC/DC converter.
  • the first switching tube M1 and the second switching tube M2 are in an off state.
  • the first switch tube M1 and the second switch tube M2 are in a conducting state.
  • the bidirectional DC/DC converter of the energy storage module can realize heating, which has a simple structure and low implementation cost.
  • the BMS can control the bidirectional DC/DC converter to boost the first battery module 210 during the first half of a charging and discharging time period. 210 to charge the second battery module 220. At this time, the first battery module 210 is discharged, and the second battery module 220 is charged. In the second half of a charge and discharge time period, the BMS can control the bidirectional DC/DC converter to boost the second battery module 220, and the first battery module 220 charges the first battery module 210 . At this time, the first battery module 210 is charged and the second battery module 220 is discharged.
  • the above charging and discharging processes are performed alternately until the first battery module 210 and the second battery module 220 reach the target temperature.
  • the BMS can dynamically adjust the size of the charging and discharging current and the frequency of charging and discharging according to the change of the battery state to optimize the heating effect.
  • the battery heating system can realize mutual charging/discharging between batteries or modules through bidirectional DC/DC adjustment, and the electric charge is transferred between the two batteries/modules, using the resistance during the charging and discharging process.
  • the heat realizes self-heating of the battery, so that the batteries/modules in the same battery system can be self-heated without using an external power source for heating, which simplifies the heating system.
  • FIG. 11 shows a schematic diagram of a battery heating system 100 according to another embodiment of the present application.
  • the 16 battery modules can be divided into a first module set and a second module set.
  • Each module set includes 8 batteries.
  • the modules, the first module assembly and the second module assembly are mutually power sources and batteries to be heated.
  • the control unit 120 and the temperature monitoring unit 110 of the battery heating system 100 are not shown in FIGS. 11-15. Those skilled in the art can understand that if the battery heating system 100 in Figs.
  • control unit 120 in Figs. 11-15 can be implemented by the BMS in the on-board system, or can also be implemented by the on-board system Other processors in the implementation.
  • the temperature monitoring unit 110 may be implemented by a temperature sensor provided in the battery pack.
  • FIG. 12 is a schematic diagram of a battery heating system 100 according to another embodiment of the present application.
  • the power source 20 and the battery to be heated 30 may be different single batteries in the same battery module. Different single cells can be connected by two-way DC/DC, and the battery can be self-heated by charging and discharging. Therefore, the battery heating system can realize the mutual charging and discharging of different single batteries in the same module through two-way DC/DC adjustment to realize self-heating of the battery, so there is no need to use an external power supply for heating, which simplifies the heating system.
  • FIG. 13 is a schematic diagram of a battery heating system 100 according to another embodiment of the present application.
  • the power source 20 and the battery to be heated 30 may be multiple single batteries in the same battery module. That is, multiple single batteries are connected in series and/or in parallel to form the power source 20, and multiple single batteries are connected in series and/or in parallel to form the battery 30 to be heated. Therefore, the battery heating system can realize mutual charging and discharging between different batteries in the same module to realize self-heating. Therefore, there is no need to use an external power supply for heating, which simplifies the heating system.
  • FIG. 14 is a schematic diagram of a battery heating system 100 according to another embodiment of the present application.
  • the power source 20 may be an external power source, and the battery 30 to be heated may be a battery pack.
  • the external power supply means that the battery to be heated 30 and the power supply 20 belong to different battery systems.
  • the external power source may be a DC power source, a storage battery, or the like.
  • the external power source is a battery pack in an in-vehicle system
  • the power source 20 is a battery pack in another in-vehicle system.
  • FIG. 15 is a schematic diagram of a control method 300 of a battery heating system according to an embodiment of the present application.
  • the battery heating system includes: a temperature monitoring unit for monitoring the temperature of the battery to be heated, and outputting a temperature monitoring signal, the temperature monitoring signal is used to indicate the temperature of the battery to be heated; a voltage conversion unit, respectively, and a power supply and
  • the battery to be heated is connected and receives the first voltage input by the power source or the second voltage input by the battery to be heated;
  • the method 300 includes:
  • S303 Output the control signal to the voltage conversion unit, where the control signal is used to control the voltage conversion unit to boost or step down the first voltage, or boost the second voltage Or the voltage reduction process, so that: the battery to be heated receives the charging current from the power source through the voltage conversion unit in the first time period, and the battery to be heated passes the voltage in the second time period.
  • the conversion unit outputs a discharge current to the power supply.
  • the outputting the control signal to the voltage conversion unit includes: outputting the control signal when the temperature monitoring signal indicates that the temperature of the battery to be heated is lower than a preset threshold; The method further includes: stopping the output of the control signal when the temperature monitoring signal indicates that the temperature of the battery to be heated is higher than or equal to the preset threshold.
  • control signal is used to control the charging and discharging frequency of the battery to be heated, so that the charging and discharging frequency of the battery to be heated is within the frequency range of the dynamics control region.
  • the method further includes: determining the temperature of the battery to be heated indicated by the temperature monitoring signal and the correspondence between the preset battery temperature and the frequency range of the dynamic control region The first frequency range of the dynamics control area corresponding to the temperature of the battery to be heated; according to the first frequency range, the charge and discharge frequency of the battery to be heated is determined.
  • the battery heating system further includes an impedance monitoring unit for monitoring the impedance of the battery to be heated, and outputting an impedance monitoring signal, the impedance monitoring signal being used to indicate the battery to be heated
  • the impedance of the battery the method further includes: obtaining the impedance monitoring signal, and determining the second frequency range of the dynamic control region corresponding to the battery to be heated in the current state according to the impedance monitoring signal; according to the The second frequency range determines the charging and discharging frequency of the battery to be heated.
  • control signal is used to control the voltage conversion unit to perform step-up or step-down processing on the first voltage, or perform step-up or step-down processing on the second voltage, so that the waiting The charging current received by the heating battery in the first time period is less than the maximum charging current.
  • the method further includes: determining the current value of the current maximum charging current of the battery to be heated according to the temperature and the state of charge of the battery to be heated indicated by the temperature monitoring signal.
  • the battery heating system further includes an impedance monitoring unit for monitoring the impedance of the battery to be heated, and outputting an impedance monitoring signal, the impedance monitoring signal being used to indicate the battery to be heated
  • the impedance of the battery the method further includes: obtaining the impedance monitoring signal, and determining the current value of the maximum charging current according to the impedance monitoring signal.
  • control signal is used to control the voltage conversion unit to perform step-up or step-down processing on the first voltage, or perform step-up or step-down processing on the second voltage, so that The discharge current output by the battery to be heated in the second time period is less than the maximum discharge current.
  • the method further includes: determining the current value of the current maximum discharge current of the battery to be heated according to the temperature and the state of charge of the battery to be heated.
  • the battery heating system further includes an impedance monitoring unit for monitoring the impedance of the battery to be heated, and outputting an impedance monitoring signal, the impedance monitoring signal being used to indicate the battery to be heated
  • the impedance of the battery the method further includes: obtaining the impedance monitoring signal, and determining the current value of the maximum discharge current according to the impedance monitoring signal.
  • the power source includes a first battery module
  • the battery to be heated includes a second battery module
  • FIG. 16 is a schematic structural diagram of a control device 400 according to an embodiment of the present application.
  • the control device 400 includes a processor 410 and a communication interface 420.
  • the device 400 may further include a memory 430.
  • the memory 430 may be included in the processor 410.
  • the processor 410, the communication interface 420, and the memory 430 communicate with each other through an internal connection path, the memory 430 is used to store instructions, and the processor 410 is used to execute instructions stored in the memory 430 to implement the control method provided in the embodiments of the present application.
  • control device 400 may be used to perform the functions of the control unit 120 in FIG. 2 and FIG. 9 or perform the functions of the BMS in FIG. 10.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电池加热系统(100)、电动汽车和车载系统,可应用于电动汽车领域,能够实现对电池的快速均匀地加热。其中,电池加热系统(100)包括:温度监测单元(110),用于输出温度监测信号;电压转换单元(130),用于接收电源(20)输入的第一电压(V 1)或待加热电池(30)输入的第二电压(V 2);控制单元(120),用于接收温度监测信号,并输出控制信号;电压转换单元(130)用于根据控制信号,对第一电压(V 1)进行升压或降压处理,或者对第二电压(V 2)进行升压或降压处理,以使得:待加热电池(30)在第一时间段内通过电压转换单元(130)接收电源(20)的充电电流,以及待加热电池(30)在第二时间段内通过电压转换单元(130)对向电源(20)输出放电电流,待加热电池(30)通过交替充放电来对自身进行加热。

Description

电池加热系统、电动汽车和车载系统
本申请要求于2019年11月8日提交中国专利局、申请号为201911089521.8、申请名称为“电池加热系统、电动汽车和车载系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子技术领域,尤其涉及电池加热系统、电动汽车和车载系统。
背景技术
典型的电池组通过多个单体电池的串联或并联配置连接而成,许多种类的电池组包括可重复充电单体电池。组成可重复充电电池组的单体电池需要工作在适宜的温度范围内,过高过低的电池温度都不利于电池性能的发挥,且容易造成安全风险。在较低的温度下,电池的可用容量大幅衰减,导致低温条件下电池既放不出电也充不进电,且电池倍率性能严重衰减,限制了电池性能的发挥。此外,在低温充电条件下,由于电池活性低,易出现析锂反应,导致电池发生内短路,造成严重的安全风险。因此在低温条件下,需要先将电池加热到适宜的温度再使用。
现有技术中通常采用宽线金属膜加热、电热丝加热等外部加热的方式来控制加热器升高温度,然后经过接触传导、空气对流、液体传热的方式加热电池,需要较大的空间和较高的成本。另外,外部加热在电池包中易形成温度梯度,而且大多数能量被耗散,能量利用率低。
发明内容
本申请提供一种电池加热系统、电动汽车和车载系统,能够实现对电池的快速均匀的加热。
第一方面,提供了一种电池加热系统,包括:温度监测单元,用于监测待加热电池的温度,并输出温度监测信号,所述温度监测信号用于指示所述待加热电池的温度;所述电压转换单元,分别与电源以及所述待加热电池相连,并接收所述电源输入的第一电压或所述待加热电池输入的第二电压;控制单元,用于接收所述温度监测信号,并根据所述温度监测信号向所述电压转换单元输出控制信号;所述电压转换单元用于根据所述控制信号,对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,以使得:所述待加热电池在第一时间段内通过所述电压转换单元接收来自所述电源的充电电流,以及所述待加热电池在第二时间段内通过所述电压转换单元向所述电源输出放电电流。
可选地,所述电池加热系统可以应用于车载系统、移动终端或户外储能系统等。所述电源和所述待加热电池可以为同一供电系统中的不同电池。
可选地,所述电池加热系统可以应用于纯电动汽车(pure electric vehicle/battery electric  vehicle,pure EV/battery EV)、混合动力汽车(hybrid electric vehicle,HEV)、增程式电动汽车(range extended electric vehicle,REEV)、插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)、新能源汽车(new energy vehicle,NEV)等领域中的车载系统。
例如,所述电源和所述待加热电池可以是车载系统中的同一电池包中的不同电池模组。
例如,所述电源和所述待加热电池可以是车载系统中的不同电池包。其中,所述第一电池可以包括一个或多个电池模组,所述第二电池可以包括一个或多个电池模组。
例如,所述电源和所述待加热电池也可以是不同车载系统中的不同电池包。
例如,所述电源和所述待加热电池可以是同一移动终端中的不同电池或电池模组。或者,所述电源和所述待加热电池可以为不同移动终端中的电池或电池模组。
例如,所述电源和所述待加热电池也可以分别为户外储能系统中的不同蓄电池。
在本申请实施例中,所述待加热电池可以通过所述电压转换单元交替地实现充电过程和放电过程,从而通过待加热电池的内阻在充放电过程产生的焦耳热对自身进行加热,采用这种加热方式可以实现对电池快速均匀的加热。这种加热方式能够改善对电池外部加热的时的加热不均匀、加热效率低、占用空间以及对电池寿命影响大的问题。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制单元具体用于在所述温度监测信号指示所述待加热电池的温度低于预设阈值的情况下,输出所述控制信号;所述控制单元还用于:在所述温度监测信号指示所述待加热电池的温度高于或等于所述预设阈值的情况下,停止输出所述控制信号。
可选地,所述控制单元具体用于:在所述温度监测信号指示所述待加热电池的温度低于预设阈值的情况下,输出指示加热的所述控制信号。
可选地,所述控制单元还用于:在所述温度监测信号指示所述待加热电池的温度高于或等于所述预设阈值的情况下,输出指示停止加热的所述控制信号;电压转换单元用于根据所述控制信号,停止对所述第一电压进行升压或降压处理,和/或停止对所述第二电压进行升压或降压处理。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制信号用于控制所述待加热电池的充放电频率,以使得所述待加热电池的充放电频率位于动力学控制区域的频率范围中。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制单元用于根据所述温度监测信号指示的待加热电池的温度,以及预设的电池温度与所述动力学控制区域的频率范围之间的对应关系,确定所述待加热电池的温度对应的动力学控制区域的第一频率范围;所述控制单元还用于根据所述第一频率范围,确定所述待加热电池的充放电频率。
结合第一方面,在第一方面的一种可能的实现方式中,所述系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;所述控制单元用于接收所述阻抗监测信号,并根据所述阻抗监测信号,确定所述待加热电池在当前状态下对应的动力学控制区域的第二频率范围;所述控制单元还用于根据所述第二频率范围,确定所述待加热电池的充放电频率。
结合第一方面,在第一方面的一种可能的实现方式中,所述电压转换单元用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,使得所述待加 热电池在所述第一时间段内接收的充电电流小于最大充电电流。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制单元还用于根据所述温度监测信号指示的待加热电池的温度和荷电状态,确定所述待加热电池当前的最大充电电流的电流值大小。
结合第一方面,在第一方面的一种可能的实现方式中,所述系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;所述控制单元用于接收所述阻抗监测信号,并根据所述阻抗监测信号确定所述最大充电电流的电流值大小。
结合第一方面,在第一方面的一种可能的实现方式中,所述电压转换单元用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,以使得所述待加热电池在所述第二时间段内输出的放电电流小于最大放电电流。
结合第一方面,在第一方面的一种可能的实现方式中,所述控制单元还用于根据所述待加热电池的温度和荷电状态,确定所述待加热电池当前的最大放电电流的电流值大小。
结合第一方面,在第一方面的一种可能的实现方式中,所述系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;所述控制单元用于接收所述阻抗监测信号,并根据所述阻抗监测信号确定所述最大放电电流的电流值大小。
结合第一方面,在第一方面的一种可能的实现方式中,所述电源包括第一电池模组,所述待加热电池包括第二电池模组。
第二方面,提供了一种电池加热系统的控制方法,所述电池加热系统包括:温度监测单元,用于监测待加热电池的温度,并输出温度监测信号,所述温度监测信号用于指示所述待加热电池的温度;电压转换单元,分别与电源以及所述待加热电池相连,并接收所述电源输入的第一电压或所述待加热电池输入的第二电压;所述方法包括:获取所述温度监测信号;根据所述温度监测信号确定控制信号;向所述电压转换单元输出所述控制信号,所述控制信号用于控制所述电压转换单元对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,以使得:所述待加热电池在第一时间段内通过所述电压转换单元接收来自所述电源的充电电流,以及所述待加热电池在第二时间段内通过所述电压转换单元向所述电源输出放电电流。
在本申请实施例中,所述待加热电池可以通过所述电压转换单元交替地实现充电过程和放电过程,从而通过待加热电池的内阻在充放电过程产生的焦耳热对自身进行加热,采用这种加热方式可以实现对电池快速均匀的加热。这种加热方式能够改善对电池外部加热的时的加热不均匀、加热效率低、占用空间以及对电池寿命影响大的问题。
结合第二方面,在第二方面的一种可能的实现方式中,所述向所述电压转换单元输出所述控制信号,包括:在所述温度监测信号指示所述待加热电池的温度低于预设阈值的情况下,输出所述控制信号;所述方法还包括:在所述温度监测信号指示所述待加热电池的温度高于或等于所述预设阈值的情况下,停止输出所述控制信号。
可选地,所述向所述电压转换单元输出所述控制信号,包括:在所述温度监测信号指示所述待加热电池的温度低于预设阈值的情况下,输出指示加热的所述控制信号。
可选地,所述方法还包括:在所述温度监测信号指示所述待加热电池的温度高于或等 于所述预设阈值的情况下,输出指示停止加热的所述控制信号;电压转换单元用于根据所述控制信号,停止对所述第一电压进行升压或降压处理,和/或停止对所述第二电压进行升压或降压处理。
结合第二方面,在第二方面的一种可能的实现方式中,所述控制信号用于控制所述待加热电池的充放电频率,以使得所述待加热电池的充放电频率位于动力学控制区域的频率范围中。
结合第二方面,在第二方面的一种可能的实现方式中,所述方法还包括:根据所述温度监测信号指示的待加热电池的温度,以及预设的电池温度与所述动力学控制区域的频率范围之间的对应关系,确定所述待加热电池的温度对应的动力学控制区域的第一频率范围;根据所述第一频率范围,确定所述待加热电池的充放电频率。
结合第二方面,在第二方面的一种可能的实现方式中,所述电池加热系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;所述方法还包括:获取所述阻抗监测信号,并根据所述阻抗监测信号,确定所述待加热电池在当前状态下对应的动力学控制区域的第二频率范围;根据所述第二频率范围,确定所述待加热电池的充放电频率。
结合第二方面,在第二方面的一种可能的实现方式中,所述控制信号用于控制所述电压转换单元对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,使得所述待加热电池在所述第一时间段内接收的充电电流小于最大充电电流。
结合第二方面,在第二方面的一种可能的实现方式中,所述方法还包括:根据所述温度监测信号指示的待加热电池的温度和荷电状态,确定所述待加热电池当前的最大充电电流的电流值大小。
结合第二方面,在第二方面的一种可能的实现方式中,所述电池加热系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;所述方法还包括:获取所述阻抗监测信号,并根据所述阻抗监测信号确定所述最大充电电流的电流值大小。
结合第二方面,在第二方面的一种可能的实现方式中,所述控制信号用于控制所述电压转换单元用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,以使得所述待加热电池在所述第二时间段内输出的放电电流小于最大放电电流。
结合第二方面,在第二方面的一种可能的实现方式中,所述方法还包括:根据所述待加热电池的温度和荷电状态,确定所述待加热电池当前的最大放电电流的电流值大小。
结合第二方面,在第二方面的一种可能的实现方式中,所述电池加热系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;所述方法还包括:获取所述阻抗监测信号,并根据所述阻抗监测信号确定所述最大放电电流的电流值大小。
结合第二方面,在第二方面的一种可能的实现方式中,所述电源包括第一电池模组,所述待加热电池包括第二电池模组。
第三方面,提供了一种供电系统,其特征在于,所述供电系统包括第一方面,或第一方面中任一项可能的实现方式中所述的电池加热系统;所述电源和所述待加热电池。
可选地,所述供电系统可以包括车载系统、移动终端或户外储能系统。所述电源和所 述待加热电池可以为同一供电系统中的不同电池。其中,所述第一电池可以包括一个或多个电池模组,所述第二电池可以包括一个或多个电池模组。
例如,所述电源和所述待加热电池可以是车载系统中的同一电池包中的不同电池模组。
例如,所述电源和所述待加热电池可以是车载系统中的不同电池包。
例如,所述电源和所述待加热电池也可以是不同车载系统中的不同电池包。
例如,所述电源和所述待加热电池可以是同一移动终端中的不同电池模组。或者,所述电源和所述待加热电池可以为不同移动终端中的电池或电池模组。
例如,所述电源和所述待加热电池也可以分别为户外储能系统中的不同蓄电池。
结合第三方面,在第三方面的一种可能的实现方式中,所述电源包括第一电池模组,所述待加热电池包括第二电池模组。
第四方面,提供了一种车载系统,所述车载系统包括第一方面,或第一方面中任一项可能的实现方式中所述的电池加热系统;所述电源和所述待加热电池。
结合第四方面,在第四方面的一种可能的实现方式中,所述电源包括所述车载系统中的电池包中的第一电池模组,所述待加热电池包括所述电池包中的第二电池模组。
第五方面,提供了一种控制设备,包括:处理器,所述处理器用于执行第二方面或第二方面中的任一项可能的实现方式中的方法。进一步地,所述控制设备还包括存储器,所述存储器和处理器耦合,所述存储器用于存储计算机程序,所述处理器用于执行所述计算机程序,以使得所述控制设备执行第二方面或第二方面中的任一项可能的实现方式中的方法。
第六方面,提供了一种计算机可读介质,包括计算机程序,当其在计算机上执行时,使得所述计算机执行第二方面,或第二方面中的任一项可能的实现方式中的方法。
第七方面,提供了一种控制设备,该控制设备包括用于执行第二方面或第二方面中的任一项可能的实现方式中所述的方法的单元。上述单元的功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。应理解,这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。
在本申请的实施例中,控制单元也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。
第八方面,提供了一种芯片,所述芯片上设置有处理电路,所述处理器电路用于执行第二方面或第二方面中的任一项可能的实现方式中的方法。
第九方面,提供了一种电动汽车,包括:第一电池和第二电池,电压转换单元,分别与所述第一电池以及苏搜狐第二电池相连,并接收所述第一电池输入的第一电压或所述第二电池输入的第二电压;温度监测单元,用于监测第二电池的温度,并输出温度监测信号,所述温度监测信号用于指示所述第二电池的温度;控制单元,用于接收所述温度监测信号,并根据所述温度监测信号向所述电压转换单元输出控制信号;所述电压转换单元用于根据所述控制信号,对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,以使得:所述第二电池在第一时间段内通过所述电压转换单元接收来自所述第一 电池的充电电流,以及所述第二电池在第二时间段内通过所述电压转换单元向所述第一电池输出放电电流。
可选地,电动汽车可以包括:纯电动汽车(pure electric vehicle/battery electric vehicle,pure EV/battery EV)、混合动力汽车(hybrid electric vehicle,HEV)、增程式电动汽车(range extended electric vehicle,REEV)、插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)、新能源汽车(new energy vehicle,NEV)等。
例如,所述第一电池和所述第二电池可以是电动汽车中的同一电池包中的不同电池模组。其中,所述第一电池可以包括一个或多个电池模组,所述第二电池可以包括一个或多个电池模组。
例如,所述第一电池和所述第二电池可以是电动汽车中的不同电池包。
可替代地,所述第一电池和所述第二电池也可以是不同电动汽车中的不同电池包。例如,所述第二电池可以是第一方面中的电动汽车中的电池包,所述第一电池可以是其它电动汽车中的电池包。
可替代地,所述第一电池可以是外部电源,例如外部直流电源,所述第二电池可以是电动汽车中的电池包。
在本申请实施例中,所述第一电池和第二电池可以通过所述电压转换单元交替地实现充电过程和放电过程,从而通过第一电池以及第二电池的内阻在充放电过程产生的焦耳热对自身进行加热,采用这种加热方式可以实现对电池快速均匀的加热。这种加热方式能够改善对电池外部加热的时的加热不均匀、加热效率低、占用空间以及对电池寿命影响大的问题。
结合第九方面,在第九方面的一些可能的实现方式中,所述控制单元具体用于在所述温度监测信号指示所述第二电池的温度低于预设阈值的情况下,输出所述控制信号;所述控制单元还用于:在所述温度监测信号指示所述第二电池的温度高于或等于所述预设阈值的情况下,停止输出所述控制信号。
结合第九方面,在第九方面的一些可能的实现方式中,所述控制信号用于控制所述第二电池的充放电频率,以使得所述第二电池的充放电频率位于动力学控制区域的频率范围中。
结合第九方面,在第九方面的一些可能的实现方式中,所述控制单元用于根据所述温度监测信号指示的第二电池的温度,以及预设的电池温度与所述动力学控制区域的频率范围之间的对应关系,确定所述第二电池的温度对应的动力学控制区域的第一频率范围;所述控制单元还用于根据所述第一频率范围,确定所述第二电池的充放电频率。
结合第九方面,在第九方面的一些可能的实现方式中,所述汽车还包括阻抗监测单元,所述阻抗监测单元用于监测所述第二电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述第二电池的阻抗;所述控制单元用于接收所述阻抗监测信号,并根据所述阻抗监测信号,确定所述第二电池在当前状态下对应的动力学控制区域的第二频率范围;所述控制单元还用于根据所述第二频率范围,确定所述第二电池的充放电频率。
结合第九方面,在第九方面的一些可能的实现方式中,所述电压转换单元用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,使得所述第二电池在所述第一时间段内接收的充电电流小于最大充电电流。
结合第九方面,在第九方面的一些可能的实现方式中,所述电压转换单元用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,以使得所述第二电池在所述第二时间段内输出的放电电流小于最大放电电流。
结合第九方面,在第九方面的一些可能的实现方式中,还包括电池包,所述第一电池包括所述电池包中的至少一个第一电池模组,所述第二电池包括所述电池包中的至少一个第二电池模组。
附图说明
图1是本申请实施例的电池加热系统100的结构示意图。
图2是本申请又一实施例的电池加热系统100的结构示意图。
图3是本申请一实施例的双向DC/DC变换器的结构示意图。
图4是本申请一实施例的电压转换单元130的工作状态示意图。
图5是本申请又一实施例的电压转换单元130的工作状态示意图。
图6是本申请又一实施例的电池的充放电电流示意图。
图7是本申请一实施例的电池的等效电路模型。
图8是本申请一实施例的电池的电化学阻抗谱的示意图。
图9是本申请又一实施例的电池加热系统100的结构示意图。
图10是本申请又一实施例的电池加热系统100的示意图。
图11是本申请又一实施例的电池加热系统100的示意图。
图12是本申请又一实施例的电池加热系统100的示意图。
图13是本申请又一实施例的电池加热系统100的示意图。
图14是本申请又一实施例的电池加热系统100的示意图。
图15是本申请实施例的电池加热系统的控制方法300的示意图。
图16是本申请一实施例的控制设备400的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于理解,接下来首先介绍本申请实施例涉及到的若干术语或概念。
锂离子电池(lithium-ion cell):是指依靠锂离子在正极和负极之间移动实现化学能与电能相互转化的装置。该装置包括电极、隔膜、电解质、外壳和端子等,并被设计成可充电。在本申请实施例中,锂电子电池也可以称为电芯、单体电池、单体蓄电池等。
锂离子电池模块(lithium-ion cell module):是指将一个以上单体蓄电池按照串联、并联或串并联方式组合,并作为电源使用的组合体。锂电子电池模块只有一对正负极输出端子,在本申请实施例中,也可以称为锂离子电池模组、电池模组等。
电池管理系统(battery management system,BMS):是指对电池进行管理的系统,通常包括监测模块与运算控制模块。BMS主要包含电池监控单元(battery monitor unit,BMU)和电池控制单元(battery control unit,BCU)两部分。
锂离子电池包(lithium-ion pack):是指具有从外部获得电能并可对外输出电能的单元,通常包括至少一个锂离子电池模组、锂离子电池管理模块(不包含BCU)、锂离子 电池箱以及相应附件。
锂离子电池系统(lithium-ion system):一种能量存储装置,通常包括一个或一个以上的锂离子电池包及相应附件,上述附件可以包括电池管理系统、高压电路、低压电路、热管理设备以及机械总成等。
法拉第反应:也称为电化学反应,是指在电极上同时发生两种过程,一种为电荷转移,一种为物质扩散转移。其中电荷转移可以指电荷在金属-溶液界面上转移,物质扩散转移可以指电子转移引起氧化或还原反应发生。由于这些反应遵守法拉第定律,即因电流通过引起的化学反应的量与所通过的电量成正比,所以称为法拉第反应。
析锂反应:锂离子电池在充电过程中,锂离子会从正极脱嵌并嵌入负极。但是当一些异常状况发生,并造成从正极脱嵌的锂离子无法嵌入负极时,锂离子只能析出在负极表面,这称为析锂反应。例如,锂离子在低温情况下充电时有可能发生析锂反应。
图1是本申请实施例的电池加热系统100的结构示意图。如图1所示,该系统100与电源20以及待加热电池30相连,并用于给待加热电池30进行低温加热。需要说明的是,本申请实施例的方案可以广泛地应用于车载系统、移动终端、户外储能系统等。或者,本申请实施例的电池加热系统100还可以应用于其它需要进行电池加热的领域。其中,户外储能系统可以包括基站备用电源系统等。
在一些示例中,所述电源20和所述待加热电池30可以为同一供电系统中的不同电池,所述供电系统可以为车载系统、移动终端或户外储能系统。
在一些示例中,所述电池加热系统可以应用于纯电动汽车(pure electric vehicle/battery electric vehicle,pure EV/battery EV)、混合动力汽车(hybrid electric vehicle,HEV)、增程式电动汽车(range extended electric vehicle,REEV)、插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)、新能源汽车(new energy vehicle,NEV)等领域中的车载系统。
在一些示例中,所述电源20和所述待加热电池30可以是车载系统中的同一电池包中的不同电池模组。所述不同电池模组之间可以通过电池加热系统100进行充放电,并同时实现电池加热。其中,所述电池模组可以包括上述锂电子电池模组,所述电池包可以包括上述锂离子电池包。所述车载系统可以包括上述锂离子电池系统。
在一些示例中,所述电源20和所述待加热电池30可以是车载系统中的不同电池包,例如,不同电池包可以对应车载系统中的高电压供电系统和低电压供电系统。
在一些示例中,所述电源20和所述待加热电池30也可以是不同车载系统中的不同电池包。即不同的车辆之间可以通过电池加热系统100进行充放电。
在一些示例中,所述电源20和所述待加热电池30可以是同一移动终端中的不同电池模组。或者,所述电源20和所述待加热电池30可以为不同移动终端中的电池或电池模组。
在一些示例中,所述电源20和所述待加热电池30也可以分别为户外储能系统中的不同蓄电池。
图2是本申请又一实施例的电池加热系统100的结构示意图。如图2所示,电池加热系统100可以包括温度监测单元110、控制单元120以及电压转换单元130。
温度监测单元110用于监测待加热电池30的温度,并输出温度监测信号,所述温度监测信号用于指示所述待加热电池30的温度。
作为示例,所述温度监测单元110输出的温度检测信号可以是数字信号,也可以是模 拟信号。所述温度监测单元110可以包括温度传感器,所述温度传感器可以包括热电偶、负温度系数(negative temperature coefficient,NTC)温度传感器或者红外感应器等。所述温度传感器可以设置在所述待加热电池30的周围。
可选地,所述温度检测信号指示的可以是所述待加热电池30的当前温度或实时温度。本领域人员能够理解,在一些情景下,取决于所述温度监测单元110检测温度的具体方式,所述待加热电池30的当前温度或实时温度可以包括所述待加热电池30在最近一段时间区间内监测的平均温度,或者指所述待加热电池30在最近一段时间区间之前监测到的温度。所述最近一段时间区间的长度可以根据实践确定。例如,所述温度监测单元可以监测所述待加热电池30的温度,并且每隔5秒(s)输出一次温度监测信号。或者,所述温度监测单元也可以在时域上连续地输出所述温度监测信号。
在一些具体示例中,温度监测单元110可以由温度传感器实现,也可以是控制单元120的接口电路和温度传感器共同实现。该接口电路连接于温度传感器,接收来自温度传感器的传感信号,并根据该传感信号确定待加热电池30的温度。
控制单元120用于接收所述温度监测信号,并根据所述温度监测信号向电压转换单元130输出控制信号。
可选地,所述控制单元120可以根据接收到的温度监测信号所指示的温度的高低,确定所述电池加热系统100的工作模式。例如,若待加热电池30的温度满足正常工作需求,则所述控制信号可以指示所述电压转换单元130不工作。若所述待加热电池30的温度低于正常工作需求,则所述控制信号可以指示所述电压转换单元130工作。可选地,所述控制单元120可以通过发送控制信号的方式指示所述电压转换单元130工作,或者通过不发送控制信号的方式指示所述电压转换单元130不工作。
电压转换单元130分别与电源20以及所述待加热电池30相连,并接收所述电源20输入的第一电压V 1或所述待加热电池30输入的第二电压V 2。其中,所述电压转换单元用于根据所述控制信号,对所述第一电压V 1进行升压或降压处理,或者对所述第二电压V 2进行升压或降压处理,以使得:所述待加热电池在第一时间段内通过所述电压转换单元接收来自所述电源的充电电流,以及所述待加热电池在第二时间段内通过所述电压转换单元向所述电源输出放电电流。
可选地,所述第一电压V 1可以理解为所述电源20提供的工作电压,所述第二电压V 2可以理解为所述待加热电池30提供的工作电压。
可选地,所述电源20可以包括直流电源。例如,所述电源20可以包括蓄电池,或者所述电源20可以是交流电源经过交流/直流变换之后得到的直流电源。例如,可以对50Hz市电进行交流/直流变换之后,得到直流电源。
如图2所示,电压转换单元130可以包括第一端子A1、第二端子A2、第三端子A3以及第四端子A4。其中,第一端子A1和第二端子A2分别用于连接电源20的正极和负极。第三端子A3和第四端子A4可以分别用于连接待加热电池30的正极和负极。第一端子A1和第二端子A2可以合称为电压转换单元130的第一端,所述第三端子A3以及第四端子A4可以合称为电压转换单元130的第二端。所述电压转换单元130可以指能够在第一端和第二端之间实现双向的直流电流动的装置。
所述电压转换单元130可以通过对第一电压V 1或第二电压V 2进行升降压处理,使得 所述待加热电池30和所述电源20之间不断地进行充放电,所述待加热电池可以基于所述充放电电流产生的焦耳热而对自身进行加热。或者说,利用电池自身的内阻产生的焦耳热实现电池的快速均匀加热。
在一些示例中,所述电压转换单元130可以控制所述待加热电池30基于一定的充放电频率进行充电或放电。所述第一时间段可以指所述待加热电池在一个充放电时间周期中用于充电的时间区间,所述第二时间段可以指所述待加热电池在一个充放电时间周期中用于放电的时间区间。在第一时间段,电源20处于放电状态,待加热电池30处于充电状态;在第二时间段,待加热电池30处于放电状态,电源20处于充电状态。或者说,电源20在第一时间段通过电压转换单元130对待加热电池30充电,以及待加热电池30在第二时间段内通过电压转换单元130对电源20充电。电源20和待加热电池30之间可以交替进行充放电,直到待加热电池被加热到目标温度。
可选地,所述电压转换单元130还包括控制端,所述控制端用于接收控制信号,所述控制信号用于控制所述电压转换单元对一个输入端输入的输入电压进行升降压处理,并通过另一个输入端输出。
在本申请实施例中,采用对待加热电池进行交流充放电的方法,从电池内部直接加热电池。该方法可以选择大电流进行加热,并且在低温条件下电池的内阻高,从而发热量大,能够实现电池的快速升温。
另外,本申请实施例的方案中,电池的电芯内部参与产热,热量能够均匀地散布在整个电池内部,故而加热均匀,能够改善传统加热方法中单面加热导致的加热不均匀的问题。
另外,在本申请实施例的方案中,采用电池内部加热的方式,仅加热电芯,不加热外部器件,因此能量利用率高。
可选地,所述电压转换单元130可以包括双向直流转直流(direct current to direct current,DC/DC)变换器。双向DC/DC可以实现直流电双向流动,或者说可以实现能量的双向传输。例如,图3是本申请一实施例的双向DC/DC变换器的结构示意图。如图3所示,双向DC/DC变换器包括两个端,第一端U1包括第一端子A1和第二端子A2。第二端U2可以包括第三端子A3和第四端子A4。其中,第一端子A1和第三端子A3为正端,第二端子A2和第四端子A4为负端。U1端的输出电流用第一电流I 1表示,U2端的输出电流用第二电流I 2表示。当能量从U1端传递到U2端时,能量为正向传输,电流方向为I 1<0,I 2>0;当能量从U2端传递到U1端时,能量为反向传输,电流方向为I 1>0,I 2<0。
图4是本申请一实施例的电压转换单元130的工作状态示意图。如图4所示,所述电压转换单元130对所述电源20输出的第一电压V 1进行升压或降压处理,并输出第三电压V 3,所述第三电压V 3用于加载在所述待加热电池30的两端。若所述第三电压V 3大于第二电压V 2,则所述电源20通过所述电压转换单元130向所述待加热电池30进行充电,若所述第三电压V 3小于第二电压V 2,则所述待加热电池30通过所述电压转换单元130向所述电源20进行放电。
例如,若V 1=18V,V 2=18V,V 3=19.5V,则V 3大于V 2,所述电源20通过所述电源转换电路130向所述待加热电池20进行充电。若V 1=18V,V 2=18V,V 3=16.5V,则V 3小于V 2,所述待加热电池30通过所述电压转换单元130向所述电源20进行放电。
图5是本申请又一实施例的电压转换单元130的工作状态示意图。所述电压转换单元 130还可以对所述待加热电池30输入的第二电压V 2进行升压或降压处理,并输出第四电压V 4,所述第四电压V 4用于加载在所述电源20的两端。若所述第四电压V 4大于第一电压V 1,则所述待加热电池30通过所述电压转换单元130向所述电源放电;若所述第四电压V 4小于第一电压V 1,则所述电源20通过所述电压转换单元130向所述待加热电池30进行充电。
例如,若V 1=18V,V 2=18V,V 4=19.5V,则V 4大于V 1,所述待加热电池30通过所述电压转换单元130向所述电源放电。若V 1=18V,V 2=18V,V 4=16.5V,则V 4小于V 1,所述电源20通过所述电压转换单元130向所述待加热电池30进行充电。
在本申请实施例中,所述待加热电池30可以通过所述电压转换单元130交替地实现充电过程和放电过程,从而通过待加热电池30的内阻在充放电过程产生的焦耳热对自身进行加热,采用这种加热方式可以实现对电池快速均匀的加热。这种加热方式能够改善对电池外部加热的时的加热不均匀、加热效率低、占用空间以及对电池寿命影响大的问题。
另外需要说明的是,在所述待加热电池30通过电压转换单元130进行充放电的同时,所述电源20也可以通过所述电压转换单元130进行充放电,因此在所述电源20和所述待加热电池30均为电池的情况下,电源20也可以通过充放电对自身进行欧姆加热。
图6是本申请又一实施例的电池的充放电电流示意图。如图6所示,通过给电池施加一定频率的交流脉冲电流进行充放电,所述电池可以在短暂的时间周期内实现充电和放电,并利用电池自身的内阻产生的焦耳热,实现电池的快速均匀加热。并且由于采用交流脉冲的方式,电池在加热过程中的注入或流出的总电量约等于零,因此不会影响所述电池的工作性能
其中,电流流过电池时产生焦耳热的功率可以由如下公式(1)表示。
Q=I 2Rt               (1)
其中,Q表示电池的功率,I表示充电电流或放电电流,R表示电池的内阻,t表示充电或放电的时间长度。
可选地,所述控制单元120具体用于:在所述温度监测信号指示所述待加热电池30的温度低于预设阈值的情况下,输出所述控制信号;和/或,在所述温度监测信号指示所述待加热电池的温度高于或等于所述预设阈值的情况下,停止输出所述控制信号。
其中,上述预设阈值可以根据所述待加热电池能够正常工作的临界温度确定。当待加热电池的温度低于所述临界温度时,所述待加热电池的性能将发生衰退,例如,所述待加热电池的可用容量大幅衰减或者电池的活性降低,或者在充电时发生析锂反应。所述预设阈值可以大于或等于所述临界温度。例如,所述预设阈值可以设置为0℃、5℃、10℃,或者也可以设置为0~15℃之间的任意温度。
可选地,在所述控制单元120输出所述控制信号时,所述电压转换单元130根据所述控制信号,对待加热电池进行充放电处理。在控制单元停止输出所述控制信号时,所述电压转换单元130未接收到所述控制信号,因此电压转换单元130处于休闲状态,不对所述待加热电池30进行充放电处理,即所述待加热电池30无需进行加热。
可选地,所述控制信号用于控制所述待加热电池30的充放电频率,以使得所述待加 热电池30的充放电频率位于动力学控制区域的频率范围。其中,待加热电池30的充放电频率在所述动力学控制区域的频率范围中的情况下,所述待加热电池30内部仅发生电荷转移,而没有物质扩散转移,或者说未发生法拉第反应,因此,当电池的充放电频率在动力学控制区域的频率范围内时,几乎不会发生低温析锂反应。
其中,为了便于说明动力学控制区域的概念,接下来结合附图,介绍本申请实施例的电池的电化学实现原理。图7是本申请一实施例的电池的等效电路模型。如图7所示,电池的等效电路模型包括电池内阻R Ω、双电层电容C d、电荷转移电阻R ct和扩散阻抗Z w。电池的阻抗Z可以用公式(2)表示。
[根据细则91更正 01.12.2020] 
Figure WO-DOC-FIGURE-1
(2)
其中,ω表示电池充放电的角频率,j表示阻抗的虚部。电池内阻R Ω表示电池内部的电解液和电极的内阻。双电层电容C d表示源自电解液中的活性离子所形成的等效电容,其仅改变电荷分布,而不发生化学反应。电荷转移电阻R ct和扩散阻抗Z w可以合称为法拉第阻抗,是源自电解液中的活性离子形成的等效阻抗,其表示法拉第反应所产生的电阻。法拉第反应包括两个过程,一个为电荷转移,产生的电阻可以表示为R ct,另一个物质扩散转移,其产生的阻抗用于Z w表示。Z w的阻抗大小可以用公式(3)表示。
Z w=σω -1/2(1-j)                 (3)
其中,σ表示与物质转移有关的因子,ω表示电池充放电的角频率,j表示阻抗的虚部。
图8是本申请一实施例的电池的电化学阻抗谱的示意图。其中,上述电化学阻抗谱也可以称为奈奎斯特(Nyquist)图。图8示出了电池在不同充放电频率下的阻抗。其中,横轴表示电池的实部阻抗,纵轴表示电池的虚部阻抗。如图8所示,根据电池的阻抗类型不同,电化学阻抗谱被划分为动力学控制区域、混合控制区域和扩散控制区域三个区域。
在动力学控制区域内,电池的充放电频率较高,电池在充放电过程中仅发生电荷转移,并没有产生物质扩散转移。换句话说,电池在动力学控制区域内并未发生法拉第反应。其中,动力学控制区域可以包括高频区和极高频区。在高频区内,充放电的时间周期较短,因此电池内部来不及发生物质转移,因此由于物质转移产生的扩散阻抗Z w消失。在极高频区域内,双电层电容C d将电荷转移电阻R ct和扩散阻抗Z w短路,电池表现为纯电阻特征,因此电池阻抗可以表示为Z=R Ω
在混合控制区域内,是指由电池由非法拉第反应向法拉第反应过度的阶段。混合控制区域的频率低于动力学控制区域。
在扩散控制区域内,充放电频率较低,电荷转移和物质扩散转移均发生,即电池在充放电过程中发生法拉第反应。扩散控制区域的频率低于混合控制区域。
需要说明的是,所述动力学控制区域对应的频率范围并不是固定不变的,而是基于电池的当前状态的不同而变化。例如,动力学控制区域的频率范围可以基于工作温度的变化而变化。作为示例,表1示出了电池温度与电池阻抗之间的对应关系。如表1所示,在工 作温度为-15℃时,所述动力学控制区域的频率范围可以指大于4Hz的频率区域。
表1
温度(℃) 动力学控制区域(Hz) 混合控制区域(Hz) 扩散控制区域(Hz)
-30 >1 0.02~1 <0.02
-25 >2 0.04~2 <0.04
-20 >3 0.07~3 <0.07
-15 >4 0.11~4 <0.11
-10 >6 0.15~6 <0.15
-5 >8 0.21~8 <0.21
0 >10 0.25~10 <0.25
5 >12 0.34~12 <0.34
10 >15 0.52~15 <0.52
15 >20 0.78~20 <0.78
在本申请实施例中,所述控制单元可以将电池的充放电频率控制在在动力学控制区域的频率范围内,从而使得所述电池内部在充放电过程中只发生电荷转移,而不发生物质扩散转移。电池在低温充电的情况下容易发生析锂反应,析锂反应是在物质扩散转移的过程中发生的。因此若充放电时电池内部不发生物质扩散转移,就能够避免电池发生析锂反应而影响电池性能。
因此,在本申请实施例中,可以在动力学控制区域的频率范围内选择合适的充放电频率对电池进行充放电,从而可以在避免发生低温析锂反应的前提下,实现对电池的快速均匀加热。
需要说明的是,从理论上讲,在动力学控制区域内,充放电频率越高,发生法拉第反应的可能性就越低,因此充放电频率设置在较高的频率上能够更有效地保证电池的充电性能。但是在实践中,由于电压转换单元130在充电过程和放电过程之间需要进行开关切换,而开关切换所占用的时长使得更快速切换充放电变得困难。因此,在实践中,通常将充放电频率设置在靠近动力学控制区域的频率范围的下限的位置,以减少电路实现的困难程度。例如,当动力学控制区域的频率范围为2Hz时,可以将电池的充放电频率设置为2.5Hz到5Hz之间。
可选地,随着温度的变化,控制单元120可以动态地调节电池的充放电频率,以在保证电池性能安全的情况下优化加热效率。控制单元120可以采用多种方式来确定待加热电池30的充放电频率,然后利用向电压转换单元130发送的控制信号控制所述待加热电池30的充放电频率。接下来介绍几种用于确定待加热电池30的充放电频率的方法。
在第一种方式中,所述控制单元120可以根据所述温度监测信号指示的待加热电池30的温度,以及预设的电池温度与所述动力学控制区域的频率范围之间的对应关系,确定所述待加热电池30的温度对应的第一频率范围;所述控制单元120还用于根据所述第一频率范围,确定所述待加热电池30的充放电频率。
应理解,不同的电池温度对应的动力学控制区域的频率范围不同,因此,所述控制单 元120可以根据监测到的待加热电池30的当前温度,确定对应的动力学控制区域的频率范围。
例如,可以参见上表1,若温度检测信号指示待加热电池30的温度为-10℃,则该温度对应的动力学控制区域的频率范围为大于6Hz,即第一频率范围为大于6Hz。因此可以将所述待加热电池30的充放电频率选择在6Hz以上,例如,6.5Hz。
在一些示例中,所述预设的电池温度与动力学控制区域的频率范围之间的对应关系是可以通过多次实验预先确定的。例如,研究人员可以测试电池样品在不同温度下的电化学阻抗谱,然后依据电池的电化学阻抗谱,进行电化学性能分析,以确定不同温度对应的动力学控制区域的频率范围,即确定电池温度与动力学控制区域的频率范围之间的对应关系。所述对应关系可以存储在所述控制单元120中,或者存储在所述控制单元120能够访问的存储设备中,以便于所述控制单元120根据当前监测的电池温度,确定对应的动力学控制区域的频率范围。
图9是本申请又一实施例的电池加热系统100的结构示意图。如图9所示,所述电池加热系统100还包括阻抗监测单元140,所述阻抗监测单元140用于监测所述待加热电池30的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池30的阻抗。其中,所述阻抗监测单元140可以用于实时地监测待加热电池30当前的阻抗,在一些示例中,所述阻抗监测单元140可以通过向所述待加热电池30输入用于测试的交流电流,以检测电池在当前状态的阻抗。
在确定待加热电池30的充放电频率的第二种方式中,控制单元120可以根据阻抗监测单元140发送的阻抗监测信号,获取待加热电池30在当前状态下的电化学阻抗谱。所述电化学阻抗谱可以是如图8所示的电化学阻抗谱。该电化学阻抗谱用于指示所述待加热电池30在当前状态下的阻抗与充放电频率的对应关系。控制单元120可以根据所述电化学阻抗谱确定所述待加热电池30在当前状态下对应的动力学控制区域的第二频率范围。在一些示例中,所述阻抗监测单元140可以检测不同频率的交流电流对应的阻抗,以获取所述待加热电池30在多个频率下对应的阻抗,从而得到待加热电池30的电化学阻抗谱。
在本申请实施例中,控制单元120可以利用阻抗监测单元140对待加热电池30的进行实时监测的阻抗监测信号,确定待加热电池30在当前状态下对应的动力学控制区域的频率范围,并进一步确定待加热电池30的充放电频率。所述当前状态包括所述待加热电池30的当前温度以及其它实时条件,例如,干湿度等参数。因此所述动力学控制区域的频率范围是根据所述待加热电池30的当前状态实时检测得到的,而不是根据实验数据预先获取的。这种测量方式能够更准确地确定待加热电池30的动力学控制区域,从而提高确定所述待加热电池30的充放电频率的准确性,避免由于充放电频率设置不合理而产生低温析锂反应等现象,导致影响电池性能。
可选地,所述电压转换单元还用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,使得所述待加热电池30在所述第一时间段内接收的充电电流小于最大充电电流。
应理解,在充电阶段,为了避免充电电流过大而对待加热电池30的性能造成影响,所述待加热电池30的充电电流应小于一定阈值。当电池的工作状态不同时,电池的允许通过的最大充电电流也不同,例如,电池的工作条件可以包括电池温度、电池荷电状态 (state of charge,SoC)、电池阻抗等因素。因此,所述控制单元120需要根据所述待加热电池30的当前工作状态,动态地确定待加热电池30的最大充电电流,以便于控制所述待加热电池30的充电电流小于所述最大充电电流。
可选地,所述控制单元120可以采用多种方式来确定待加热电池30在当前状态下的最大充电电流,接下来介绍本申请实施例中的几种用于确定最大充电电流的方式。
在第一种方式中,所述控制单元120可以根据所述温度监测信号指示的待加热电池30的温度和荷电状态,确定当前的最大充电电流的电流值大小。
具体地,所述控制单元120可以预先获取电池温度、荷电状态与最大充电电流的电流值之间的第一对应关系,然后根据待加热电池的当前温度和当前荷电状态以及上述第一对应关系,确定所述待加热电池当前的最大充电电流的电流值大小。
作为示例,所述控制单元120可以通过根据待加热电池30的当前状态下的电学参数,计算并确定待加热电池30的荷电状态。例如,上述电学参数可以包括但不限于:待加热电池的输出电压、输出电流、温度等参数。
在一些示例中,所述电池温度、荷电状态与最大充电电流的电流值之间的第一对应关系是可以通过多次实验预先确定的。所述第一对应关系可以存储在所述控制单元120中,或者存储在所述控制单元120能够访问的存储设备中,以便于所述控制单元120根据当前监测的电池温度以及荷电状态,确定对应的最大充电电流的电流值。
在另一些示例中,所述预设的电池温度与最大充电电流的电流值之间的对应关系也可以由电池的生产厂家提供。
例如,表2示出了电池温度、荷电状态与最大充电电流的电流值之间的对应关系。其中,表2中以容量为50安时(ampere hour,Ah)的电池为例进行说明。表2中示出了电池在不同温度以及不同荷电状态(state of charge,SoC)下的最大充电电流。例如,如表2所示,在工作温度为-10℃、荷电状态为80%时,所述电池的最大充电电流的大小为128安培(ampere,A)。
表2
Figure PCTCN2020127227-appb-000002
在第二种方式中,所述控制单元120可以接收阻抗监测单元140发送的阻抗监测信号,以获取所述待加热电池30的当前阻抗,并根据所述阻抗监测信号确定所述最大充电电流的电流值大小。例如,所述控制单元120可以根据以下公式(4)确定最大充电电流的电流值。
Figure PCTCN2020127227-appb-000003
其中,I ch表示电池的最大充电电流,V max表示电池的充电截止电压,V ocv表示电池在某一个SoC点下的开路电压,R cn表示电池在指定频率下的内阻。
可选地,每隔一段时间,控制单元120可以根据电池内阻随温度变化的特性,重新计算最大充电电流的电流值,并据此调整待加热电池30的充电电流。例如,控制单元120可以在电池温度每上升2℃,便重新确定最大充电电流的电流值。
类似地,所述电压转换单元还可以用于对所述第一电压V 1进行升压或降压处理,或者对所述第二电压V 2进行升压或降压处理,以使得所述待加热电池30在所述第二时间段内输出的放电电流小于最大放电电流。
应理解,与充电阶段类似,在放电阶段,为了避免放电电流过大而对待加热电池30的性能造成影响,所述待加热电池30的放电电流应小于一定阈值。因此,所述控制单元120需要根据所述待加热电池30的当前工作状态,确定待加热电池30的最大放电电流,以便于控制所述待加热电池30的放电电流小于所述最大放电电流。
可选地,所述控制单元120可以采用多种方式来确定待加热电池30在当前状态下的最大放电电流,接下来介绍本申请实施例中的几种用于确定最大放电电流的方式。
在第一种方式中,所述控制单元120可以用于根据所述温度监测信号指示的待加热电池30的温度和荷电状态,确定当前的最大放电电流的电流值大小。
具体地,所述控制单元120可以预先获取电池温度、荷电状态与最大放电电流的电流值之间的第二对应关系,然后根据待加热电池的当前温度和当前荷电状态以及上述第二对应关系,确定所述待加热电池当前的最大充电电流的电流值大小。
在一些示例中,所述电池温度、荷电状态与最大放电电流的电流值之间的第二对应关系可以通过实验预先确定。所述第二对应关系可以存储在所述控制单元120中,或者存储在所述控制单元120能够访问的存储设备中,以便于所述控制单元120根据当前监测的电池温度,确定对应的最大放电电流的电流值。
在另一些示例中,所述预设的电池温度与最大放电电流的电流值之间的对应关系也可以由电池的生产厂家提供。
例如,表3示出了电池温度与最大放电电流的电流值之间的对应关系。其中,表3中以容量为50Ah的电池为例进行说明。表3中示出了电池在不同温度以及不同荷电状态下的最大放电电流。例如,如表3所示,在工作温度为-10℃、荷电状态为80%时,所述电池的最大放电电流的大小为530A。
表3
Figure PCTCN2020127227-appb-000004
Figure PCTCN2020127227-appb-000005
在第二种方式中,所述控制单元120可以接收阻抗监测单元140发送的阻抗监测信号,以获取所述待加热电池30的当前阻抗,并根据所述阻抗监测信号确定所述最大放电电流的电流值大小。例如,所述控制单元120可以根据以下公式(5)确定最大放电电流的电流值。
Figure PCTCN2020127227-appb-000006
其中,I dis表示电池的最大放电电流,V min表示电池的放电截止电压,V ocv表示电池在某一个SoC点下的开路电压,R dis表示电池在指定频率下的内阻。
可选地,每隔一段时间,控制单元120可以根据电池内阻随温度变化的特性,重新计算最大放电电流的电流值,并据此调整待加热电池30的放电电流。例如,控制单元120可以在电池温度每上升2℃,便重新确定最大放电电流的电流值。
类似地,所述电压转换单元还可以用于对所述第一电压V 1进行升压或降压处理,或者对所述第二电压V 2进行升压或降压处理,以使得所述待加热电池30在所述第二时间段内输出的放电电流小于最大放电电流。
图10是本申请又一实施例的电池加热系统100的示意图。图10的方案可以应用于车载系统,如图10所示,上述电池20和待加热电池30可以分别为图10中的第一电池模组210和第二电池模组220。其中,第一电池模组210和第二电池模组220可以通过充放电相互进行加热。上述电压转换单元130可以为图10中的双向DC/DC变换器。上述控制单元120可以集成在所述车载系统的BMS中。上述温度监测单元110可以包括图10中的温度传感器
其中,第一电池模组210的正极和负极分别用于连接双向DC/DC变换器的第一输入端A1和第二输入端A2,所述第二电池模组220的正极和负极分别用于连接双向DC/DC变换器的第三输入端A3和第四输入端A4。所述BMS可以用于连接双向DC/DC变换器的控制端,并向其输出控制信号。多个温度传感器分别置于第一电池模组210和第二电池模组220,并与BMS连接,向BMS输出温度监测信号。
可选地,可以通过设计与所述双向DC/DC变换器相连的开关线路,使得所述双向DC/DC变换器可以通过开关线路与其它电路相连。在不对所述待加热电池30加热的时间段内,所述双向DC/DC变换器可以复用于其它电路中,从而达到节约电路成本和简化设计的目的。例如,所述第一电池模组210与所述双向DC/DC变换器之间可以设置有第一开关电路M1。所述第二电池模组220与所述双向DC/DC变换器之间可以设置有第二开关电路M2。当所述电池加热系统100不工作时,所述第一开关管M1和第二开关管M2处于断开状态。当需要对第一电池模组210和第二电池220加热时,所述第一开关管M1和第二开关管M2处于导通状态。
本申请实施例中的电池加热方案中,不需要外置加热器件,仅需改变电路结构,例如储能模块自带的双向DC/DC变换器实现加热,结构简单,实现成本低。
当所述电池加热系统100工作时,在一个充放电时间周期中的上半个周期,BMS可以控制所述双向DC/DC变换器对第一电池模组210进行升压,第一电池模组210对第二 电池模组220进行充电。此时,第一电池模组210放电,第二电池模组220充电。在一个充放电时间周期中的下半个周期,BMS可以控制所述双向DC/DC变换器对第二电池模组220进行升压,第一电池模组220对第一电池模组210进行充电。此时,第一电池模组210充电,第二电池模组220放电。上述充放电过程交替进行,直至第一电池模组210和第二电池模组220达到目标温度。可选地,在加热过程中,BMS可以根据电池状态变化,动态地调整充放电电流的大小以及充放电的频率,以优化加热效果。
在本申请实施例中,电池加热系统可以通过双向DC/DC调节实现电池或者模组之间的相互充/放电,电荷在两个电池/模组之间相互传递,利用充放电过程中的电阻热实现自加热电池,因此同一电池系统内部的电池/模组之间可以实现自加热,无需利用外部电源进行加热,简化了加热系统。
在一些示例中,可以将同一电池包的多个电池模组分为两部分,分别作为电源和待加热电池。图11示出了本申请又一实施例的电池加热系统100的示意图。如图11所示,对于一个由16个电池模组组成的电池包,可以将16个电池模组分为第一模组集合和第二模组集合,每个模组集合包括由8个电池模组,第一模组集合和第二模组集合互为电源和待加热电池。需要说明的是,图11-图15中未示出电池加热系统100的控制单元120、温度监测单元110。本领域技术人员能够理解,若图11至图15中的电池加热系统100应用于车载系统,则图11-图15中的控制单元120可以由车载系统中的BMS实现,或者也可以由车载系统中的其它处理器实现。温度监测单元110可以由设置在电池包中的温度传感器实现。
图12是本申请又一实施例的电池加热系统100的示意图。如图12所示,电源20和待加热电池30可以为同一电池模组中的不同单体电池。不同单体电池之间可以通过双向DC/DC连接,并利用充放电实现电池自加热。从而电池加热系统可以通过双向DC/DC调节实现同一模组内部的不同单体电池的相互充放电,以实现自加热电池,因此无需利用外部电源进行加热,简化了加热系统。
图13是本申请又一实施例的电池加热系统100的示意图。如图13所示,电源20和待加热电池30可以分别为同一电池模组中的多个单体电池。即多个单体电池串联和/或并联组成电源20,多个单体电池串联和/或并联组成待加热电池30。从而电池加热系统可实现同一模组内部的不同电池之间的相互充放电,以实现自加热。因此无需利用外部电源进行加热,简化了加热系统。
图14是本申请又一实施例的电池加热系统100的示意图。如图14所示,电源20可以为外部电源,待加热电池30可以为电池包。其中,所述外部电源是指所述待加热电池30和所述电源20属于不同的电池系统。例如,所述外部电源可以为直流电源、蓄电池等。或者,所述外部电源为一个车载系统中的电池包,所述电源20为另一个车载系统中的电池包。
应理解,以上电池加热系统100的各种应用场景仅仅作为例示,本申请实施例的方案可以适用于其它需要电池加热的场景。
图15是本申请实施例的电池加热系统的控制方法300的示意图。所述电池加热系统包括:温度监测单元,用于监测待加热电池的温度,并输出温度监测信号,所述温度监测信号用于指示所述待加热电池的温度;电压转换单元,分别与电源以及所述待加热电池相 连,并接收所述电源输入的第一电压或所述待加热电池输入的第二电压;
所述方法300包括:
S301、获取所述温度监测信号。
S302、根据所述温度监测信号确定控制信号。
S303、向所述电压转换单元输出所述控制信号,所述控制信号用于控制所述电压转换单元对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,以使得:所述待加热电池在第一时间段内通过所述电压转换单元接收来自所述电源的充电电流,以及所述待加热电池在第二时间段内通过所述电压转换单元向所述电源输出放电电流。
在一些示例中,所述向所述电压转换单元输出所述控制信号,包括:在所述温度监测信号指示所述待加热电池的温度低于预设阈值的情况下,输出所述控制信号;所述方法还包括:在所述温度监测信号指示所述待加热电池的温度高于或等于所述预设阈值的情况下,停止输出所述控制信号。
在一些示例中,所述控制信号用于控制所述待加热电池的充放电频率,以使得所述待加热电池的充放电频率位于动力学控制区域的频率范围中。
在一些示例中,所述方法还包括:根据所述温度监测信号指示的待加热电池的温度,以及预设的电池温度与所述动力学控制区域的频率范围之间的对应关系,确定所述待加热电池的温度对应的动力学控制区域的第一频率范围;根据所述第一频率范围,确定所述待加热电池的充放电频率。
在一些示例中,所述电池加热系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;所述方法还包括:获取所述阻抗监测信号,并根据所述阻抗监测信号,确定所述待加热电池在当前状态下对应的动力学控制区域的第二频率范围;根据所述第二频率范围,确定所述待加热电池的充放电频率。
在一些示例中,所述控制信号用于控制所述电压转换单元对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,使得所述待加热电池在所述第一时间段内接收的充电电流小于最大充电电流。
在一些示例中,所述方法还包括:根据所述温度监测信号指示的待加热电池的温度和荷电状态,确定所述待加热电池当前的最大充电电流的电流值大小。
在一些示例中,所述电池加热系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;所述方法还包括:获取所述阻抗监测信号,并根据所述阻抗监测信号确定所述最大充电电流的电流值大小。
在一些示例中,所述控制信号用于控制所述电压转换单元用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,以使得所述待加热电池在所述第二时间段内输出的放电电流小于最大放电电流。
在一些示例中,所述方法还包括:根据所述待加热电池的温度和荷电状态,确定所述待加热电池当前的最大放电电流的电流值大小。
在一些示例中,所述电池加热系统还包括阻抗监测单元,所述阻抗监测单元用于监测 所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;所述方法还包括:获取所述阻抗监测信号,并根据所述阻抗监测信号确定所述最大放电电流的电流值大小。
在一些示例中,所述电源包括第一电池模组,所述待加热电池包括第二电池模组。
图16是本申请一实施例的控制设备400的结构示意图。如图16所示,该控制设备400包括处理器410、通信接口420。可选地,该装置400还可以包括存储器430。可选地,存储器430可以包括与处理器410中。其中,处理器410、通信接口420和存储器430通过内部连接通路互相通信,存储器430用于存储指令,处理器410用于执行存储器430存储的指令,以实现本申请实施例提供的控制方法。
可选地,所述控制设备400可以用于执行图2、图9中的控制单元120的功能,或者执行图10中的BMS的功能。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖 在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种电池加热系统,其特征在于,包括:
    温度监测单元,用于监测待加热电池的温度,并输出温度监测信号,所述温度监测信号用于指示所述待加热电池的温度;
    电压转换单元,分别与电源以及所述待加热电池相连,并接收所述电源输入的第一电压或所述待加热电池输入的第二电压;
    控制单元,用于接收所述温度监测信号,并根据所述温度监测信号向所述电压转换单元输出控制信号;
    所述电压转换单元用于根据所述控制信号,对所述第一电压和/或所述第二电压进行升压或降压处理,以使得:所述电源向所述待加热电池输出正负的脉冲信号,所述电源和所述待加热电池基于所述脉冲信号进行相互交替的充电和放电。
  2. 如权利要求1所述的系统,其特征在于,所述电源包括电池包中的一部分电池模组,所述待加热电池包括所述电池包中的另一部分电池模组。
  3. 如权利要求1或2所述的系统,其特征在于,所述控制单元具体用于在所述温度监测信号指示所述待加热电池的温度低于预设阈值的情况下,输出所述控制信号;
    所述控制单元还用于:在所述温度监测信号指示所述待加热电池的温度高于或等于所述预设阈值的情况下,停止输出所述控制信号。
  4. 如权利要求1至3中任一项所述的系统,其特征在于,所述控制信号用于通过调节所述第一电压和所述第二电压的相对电压的幅值,以调节所述脉冲信号的幅度大小。
  5. 如权利要求1至4中任一项所述的系统,其特征在于,所述控制信号用于通过调节所述第一电压和所述第二电压的相对电压的切换速度,以调节所述电源和所述待加热电池之间的充放电频率。
  6. 如权利要求1至5中任一项所述的系统,其特征在于,所述控制信号用于控制所述电源和所述待加热电池之间的充放电频率,以使得所述待加热电池的充放电频率位于动力学控制区域的频率范围中。
  7. 如权利要求6所述的系统,其特征在于,所述控制单元用于根据所述温度监测信号指示的待加热电池的温度,以及预设的电池温度与所述动力学控制区域的频率范围之间的对应关系,确定所述待加热电池的温度对应的动力学控制区域的第一频率范围;
    所述控制单元还用于根据所述第一频率范围,确定所述待加热电池的充放电频率。
  8. 如权利要求6所述的系统,其特征在于,所述系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;
    所述控制单元用于接收所述阻抗监测信号,并根据所述阻抗监测信号,确定所述待加热电池在当前状态下对应的动力学控制区域的第二频率范围;
    所述控制单元还用于根据所述第二频率范围,确定所述待加热电池的充放电频率。
  9. 如权利要求1至8中任一项所述的系统,其特征在于,所述电压转换单元用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,使得所述 待加热电池在第一时间段内接收的充电电流小于最大充电电流,所述第一时间段是所述待加热电池在一个充放电时间周期中用于充电的时间区间。
  10. 如权利要求9所述的系统,其特征在于,所述控制单元还用于根据所述温度监测信号指示的待加热电池的温度和荷电状态,确定所述待加热电池当前的最大充电电流的电流值大小。
  11. 如权利要求9所述的系统,其特征在于,所述系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;
    所述控制单元用于接收所述阻抗监测信号,并根据所述阻抗监测信号确定所述最大充电电流的电流值大小。
  12. 如权利要求1至11中任一项所述的系统,其特征在于,所述电压转换单元用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,以使得所述待加热电池在第二时间段内输出的放电电流小于最大放电电流,所述第二时间段是所述待加热电池在一个充放电时间周期中用于放电的时间区间。
  13. 如权利要求12所述的系统,其特征在于,所述控制单元还用于根据所述待加热电池的温度和荷电状态,确定所述待加热电池当前的最大放电电流的电流值大小。
  14. 如权利要求12所述的系统,其特征在于,所述系统还包括阻抗监测单元,所述阻抗监测单元用于监测所述待加热电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述待加热电池的阻抗;
    所述控制单元用于接收所述阻抗监测信号,并根据所述阻抗监测信号确定所述最大放电电流的电流值大小。
  15. 一种电动汽车,其特征在于,包括:
    第一电池、第二电池;
    电压转换单元,分别与所述第一电池以及所述第二电池相连,并接收所述第一电池输入的第一电压或所述第二电池输入的第二电压;
    温度监测单元,用于监测第二电池的温度,并输出温度监测信号,所述温度监测信号用于指示所述第二电池的温度;
    控制单元,用于接收所述温度监测信号,并根据所述温度监测信号向所述电压转换单元输出控制信号;
    所述电压转换单元用于根据所述控制信号,对所述第一电压和/或所述第二电压进行升压或降压处理,以使得:所述第一电池向所述第二电池输出正负的脉冲信号,所述第一电池和所述第二电池基于所述脉冲信号进行相互交替的充电和放电。
  16. 如权利要求15所述的汽车,其特征在于,还包括电池包,所述第一电池包括所述电池包中的一部分电池模组,所述第二电池包括所述电池包中的另一部分电池模组。
  17. 如权利要求15或16所述的汽车,其特征在于,所述控制单元具体用于在所述温度监测信号指示所述第二电池的温度低于预设阈值的情况下,输出所述控制信号;
    所述控制单元还用于:在所述温度监测信号指示所述第二电池的温度高于或等于所述预设阈值的情况下,停止输出所述控制信号。
  18. 如权利要求15至17中任一项所述的汽车,其特征在于,所述控制信号用于通过 调节所述第一电压和所述第二电压的相对电压的幅值,以调节所述脉冲信号的幅度大小。
  19. 如权利要求15至18中任一项所述的汽车,其特征在于,所述控制信号用于通过调节所述第一电压和所述第二电压的相对电压的切换速度,以调节所述第一电池和所述第二电池之间的充放电频率。
  20. 如权利要求15至19中任一项所述的汽车,其特征在于,所述控制信号用于控制所述第一电池和所述第二电池之间的充放电频率,以使得所述第二电池的充放电频率位于动力学控制区域的频率范围中。
  21. 如权利要求20所述的汽车,其特征在于,所述控制单元用于根据所述温度监测信号指示的第二电池的温度,以及预设的电池温度与所述动力学控制区域的频率范围之间的对应关系,确定所述第二电池的温度对应的动力学控制区域的第一频率范围;
    所述控制单元还用于根据所述第一频率范围,确定所述第二电池的充放电频率。
  22. 如权利要求20所述的汽车,其特征在于,所述汽车还包括阻抗监测单元,所述阻抗监测单元用于监测所述第二电池的阻抗,并输出阻抗监测信号,所述阻抗监测信号用于指示所述第二电池的阻抗;
    所述控制单元用于接收所述阻抗监测信号,并根据所述阻抗监测信号,确定所述第二电池在当前状态下对应的动力学控制区域的第二频率范围;
    所述控制单元还用于根据所述第二频率范围,确定所述第二电池的充放电频率。
  23. 如权利要求15至22中任一项所述的汽车,其特征在于,所述电压转换单元用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,使得所述第二电池在第一时间段内接收的充电电流小于最大充电电流,所述第一时间段是所述待加热电池在一个充放电时间周期中用于充电的时间区间。
  24. 如权利要求15至22中任一项所述的汽车,其特征在于,所述电压转换单元用于对所述第一电压进行升压或降压处理,或者对所述第二电压进行升压或降压处理,以使得所述第二电池在第二时间段内输出的放电电流小于最大放电电流,所述第二时间段是所述待加热电池在一个充放电时间周期中用于放电的时间区间。
  25. 一种供电系统,其特征在于,所述供电系统包括如权利要求1至14中任一项所述的电池加热系统;以及所述电源和所述待加热电池。
  26. 如权利要求25所述的供电系统,其特征在于,所述电源包括电池包中的一部分电池模组,所述待加热电池包括所述电池包中的另一部分电池模组。
  27. 一种车载系统,其特征在于,所述车载系统包括:如权利要求1至14中任一项所述的电池加热系统;以及
    所述电源和所述待加热电池。
  28. 如权利要求27所述的车载系统,其特征在于,所述电源包括所述车载系统中的电池包中的一部分电池模组,所述待加热电池包括所述电池包中的另一部分电池模组。
PCT/CN2020/127227 2019-11-08 2020-11-06 电池加热系统、电动汽车和车载系统 WO2021089007A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20884492.8A EP4044320A4 (en) 2019-11-08 2020-11-06 BATTERY HEATER SYSTEM, ELECTRIC VEHICLE AND VEHICLE-MOUNTED SYSTEM
US17/738,679 US20220263144A1 (en) 2019-11-08 2022-05-06 Battery Heating System, Electric Vehicle, and In-Vehicle System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911089521.8A CN111029667B (zh) 2019-11-08 2019-11-08 电池加热系统、电动汽车和车载系统
CN201911089521.8 2019-11-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/738,679 Continuation US20220263144A1 (en) 2019-11-08 2022-05-06 Battery Heating System, Electric Vehicle, and In-Vehicle System

Publications (1)

Publication Number Publication Date
WO2021089007A1 true WO2021089007A1 (zh) 2021-05-14

Family

ID=70205187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127227 WO2021089007A1 (zh) 2019-11-08 2020-11-06 电池加热系统、电动汽车和车载系统

Country Status (4)

Country Link
US (1) US20220263144A1 (zh)
EP (1) EP4044320A4 (zh)
CN (1) CN111029667B (zh)
WO (1) WO2021089007A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571810A (zh) * 2021-07-23 2021-10-29 经纬恒润(天津)研究开发有限公司 电池加热系统
CN113650529A (zh) * 2021-07-02 2021-11-16 北京新能源汽车股份有限公司蓝谷动力系统分公司 加热电池包的方法、装置、电路以及电池包
CN115832525A (zh) * 2021-09-28 2023-03-21 宁德时代新能源科技股份有限公司 一种加热系统、加热方法及装置、用电设备
DE102022209872A1 (de) 2022-09-20 2024-03-21 Volkswagen Aktiengesellschaft Verfahren zum Betrieb eines Bordnetzes, Bordnetz und elektrisch angetriebenes Kraftfahrzeug mit einem Solchen

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111029667B (zh) * 2019-11-08 2021-05-18 华为技术有限公司 电池加热系统、电动汽车和车载系统
CN114069102A (zh) * 2020-07-31 2022-02-18 比亚迪股份有限公司 一种动力电池的自加热方法、装置、系统及电动车辆
CN112550064A (zh) * 2020-11-12 2021-03-26 华为技术有限公司 一种dc/dc变换器、动力电池组的加热方法及电动车辆
CN114851918B (zh) * 2021-01-20 2024-01-23 宁德时代新能源科技股份有限公司 充电加热装置、充电加热装置的控制方法及装置
CN115675182A (zh) * 2021-07-26 2023-02-03 蔚来汽车科技(安徽)有限公司 动力电池的控制方法、装置、车辆、介质及设备
CN113809438A (zh) * 2021-08-06 2021-12-17 华为数字能源技术有限公司 电池系统及供电系统
CN113823854A (zh) * 2021-08-06 2021-12-21 华为数字能源技术有限公司 电池系统及供电系统
CN114050330A (zh) * 2021-10-11 2022-02-15 华为数字能源技术有限公司 电池系统及供电系统
CN114094235A (zh) * 2021-11-13 2022-02-25 上海前晨汽车科技有限公司 储电装置的加热方法及其加热系统、存储介质
DE102021214617B4 (de) * 2021-12-17 2023-09-07 Vitesco Technologies GmbH Verfahren und Vorrichtung zum Betreiben einer Batterieeinheit eines Elektrofahrzeugs
CN115366750A (zh) * 2021-12-27 2022-11-22 宁德时代新能源科技股份有限公司 一种电池加热控制方法、装置和电子设备
KR20230127304A (ko) * 2021-12-31 2023-08-31 컨템포러리 엠퍼렉스 테크놀로지 씨오., 리미티드 배터리 가열 시스템, 방법, 전력 공급 시스템과 전기기기
CN114883693A (zh) * 2022-04-22 2022-08-09 华为数字能源技术有限公司 一种电池加热方法、电池系统及储能系统
CN114633654B (zh) * 2022-04-29 2024-03-08 东软睿驰汽车技术(沈阳)有限公司 适用于直流充电桩的电池预加热的控制方法和装置
CN115241953A (zh) * 2022-08-12 2022-10-25 肇庆小鹏汽车有限公司 电池变换电路、方法及车辆
CN115566323A (zh) * 2022-10-13 2023-01-03 深圳市正浩创新科技股份有限公司 电池包及其加热控制方法、电子设备
CN116505139B (zh) * 2023-06-30 2024-03-29 宁德时代新能源科技股份有限公司 电池加热控制方法、装置、电子设备及电池加热电路

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104064836A (zh) * 2014-06-17 2014-09-24 北京交通大学 一种锂离子电池的低温自加热方法
JP2015002108A (ja) * 2013-06-17 2015-01-05 住友電気工業株式会社 二次電池システム
CN206878144U (zh) * 2017-04-01 2018-01-12 上海汽车集团股份有限公司 动力电池交流充放电低温加热系统
CN109301366A (zh) * 2018-09-30 2019-02-01 深圳市格瑞普智能电子有限公司 电池组电路及电池组加热方法
CN109950660A (zh) * 2019-03-25 2019-06-28 清华大学 三元锂离子动力电池利用自身储能激励预热的方法
CN111029667A (zh) * 2019-11-08 2020-04-17 华为技术有限公司 电池加热系统、电动汽车和车载系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453514B1 (en) * 2009-07-08 2017-11-22 Toyota Jidosha Kabushiki Kaisha Secondary-battery temperature-raising apparatus and vehicle having same
CN107394294B (zh) * 2017-07-20 2018-09-04 浙江谷神能源科技股份有限公司 用于锂离子电池充放电的系统、控制装置以及相关方法
CN107994299A (zh) * 2017-12-07 2018-05-04 山东大学 车载动力电池低温全时间交错并联加热拓扑电路及其应用
CN110085947B (zh) * 2019-03-21 2021-03-23 北京理工大学 一种电池单体快速自加热方法、系统及装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002108A (ja) * 2013-06-17 2015-01-05 住友電気工業株式会社 二次電池システム
CN104064836A (zh) * 2014-06-17 2014-09-24 北京交通大学 一种锂离子电池的低温自加热方法
CN206878144U (zh) * 2017-04-01 2018-01-12 上海汽车集团股份有限公司 动力电池交流充放电低温加热系统
CN109301366A (zh) * 2018-09-30 2019-02-01 深圳市格瑞普智能电子有限公司 电池组电路及电池组加热方法
CN109950660A (zh) * 2019-03-25 2019-06-28 清华大学 三元锂离子动力电池利用自身储能激励预热的方法
CN111029667A (zh) * 2019-11-08 2020-04-17 华为技术有限公司 电池加热系统、电动汽车和车载系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113650529A (zh) * 2021-07-02 2021-11-16 北京新能源汽车股份有限公司蓝谷动力系统分公司 加热电池包的方法、装置、电路以及电池包
CN113650529B (zh) * 2021-07-02 2024-05-14 北京新能源汽车股份有限公司蓝谷动力系统分公司 加热电池包的方法、装置、电路以及电池包
CN113571810A (zh) * 2021-07-23 2021-10-29 经纬恒润(天津)研究开发有限公司 电池加热系统
CN113571810B (zh) * 2021-07-23 2023-01-24 经纬恒润(天津)研究开发有限公司 电池加热系统
CN115832525A (zh) * 2021-09-28 2023-03-21 宁德时代新能源科技股份有限公司 一种加热系统、加热方法及装置、用电设备
US11876160B2 (en) 2021-09-28 2024-01-16 Contemporary Amperex Technology Co., Limited Heating system, heating method and apparatus, and electric device
CN115832525B (zh) * 2021-09-28 2024-05-14 宁德时代新能源科技股份有限公司 一种加热系统、加热方法及装置、用电设备
DE102022209872A1 (de) 2022-09-20 2024-03-21 Volkswagen Aktiengesellschaft Verfahren zum Betrieb eines Bordnetzes, Bordnetz und elektrisch angetriebenes Kraftfahrzeug mit einem Solchen

Also Published As

Publication number Publication date
EP4044320A1 (en) 2022-08-17
EP4044320A4 (en) 2023-02-15
US20220263144A1 (en) 2022-08-18
CN111029667B (zh) 2021-05-18
CN111029667A (zh) 2020-04-17

Similar Documents

Publication Publication Date Title
WO2021089007A1 (zh) 电池加热系统、电动汽车和车载系统
CN109786878B (zh) 一种电动汽车动力电池充电/加热控制方法
CN105048021B (zh) 电池温度估计系统
CN111293739B (zh) 一种充电方法及装置
JP5819443B2 (ja) 電池制御装置、電池システム
US9231282B2 (en) Method of receiving a potential value of a negative electrode to charge a lithium-ion cell
CN108777339B (zh) 一种锂离子电池脉冲放电自加热方法及装置
TW201727990A (zh) 鋰鍍覆的偵測方法,用於充電二次電池組的方法與設備,以及利用彼等的二次電池組系統
Panchal et al. Uneven temperature and voltage distributions due to rapid discharge rates and different boundary conditions for series-connected LiFePO4 batteries
CN109950661B (zh) 一种动力电池组的内外部同时加热的装置及方法
US20160020618A1 (en) Fast Charge Algorithms for Lithium-Ion Batteries
CN113782811B (zh) 用电设备及电化学装置的加热方法
US20170113565A1 (en) Adaptive Identification of the Wiring Resistance in a Traction Battery
EP4064413A1 (en) Charging method, battery management system for traction battery, and charging pile
WO2012147121A1 (ja) 電池パック
CN109950659B (zh) 一种适用于动力电池组的内部加热方法
WO2019230131A1 (ja) 充電制御装置、輸送機器、及びプログラム
EP4210151A1 (en) Battery heating system, battery pack, and electric apparatus
US11685289B2 (en) Charging and discharging device, methods of battery charging and discharging, and charging and discharging system
Yang et al. Preheating performance by heating film for the safe application of cylindrical lithium-ion battery at low temperature
CN109193863A (zh) 电池组电压均衡控制方法及电路
WO2023213120A1 (zh) 一种充电控制方法、控制装置、充电桩和充电系统
JP7174327B2 (ja) 二次電池の状態判定方法
Wang et al. Design and experiment of a novel stepwise preheating system for battery packs coupled with non-dissipative balancing function based on supercapacitors
EP4202464A1 (en) Battery management system, battery pack, electric vehicle, and battery management method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884492

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020884492

Country of ref document: EP

Effective date: 20220513

NENP Non-entry into the national phase

Ref country code: DE