WO2021088779A1 - 控制信令传输方法、装置和存储介质 - Google Patents

控制信令传输方法、装置和存储介质 Download PDF

Info

Publication number
WO2021088779A1
WO2021088779A1 PCT/CN2020/126032 CN2020126032W WO2021088779A1 WO 2021088779 A1 WO2021088779 A1 WO 2021088779A1 CN 2020126032 W CN2020126032 W CN 2020126032W WO 2021088779 A1 WO2021088779 A1 WO 2021088779A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication node
cgi
iab
control signaling
uplink data
Prior art date
Application number
PCT/CN2020/126032
Other languages
English (en)
French (fr)
Inventor
陈琳
王丽萍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021088779A1 publication Critical patent/WO2021088779A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update

Definitions

  • This application relates to a wireless communication network, for example, to a control signaling transmission method, device, and storage medium.
  • the fifth generation mobile communication technology (5th Generation, 5G) being studied by the 3rd Generation Partnership Project (3rd Generation Partnership Project, 3GPP) will achieve greater throughput, more user connections, lower latency, and higher Reliability, and lower power consumption.
  • 3rd Generation Partnership Project 3rd Generation Partnership Project
  • IAB Integrated Access and Backhaul
  • IAB technology uses wireless backhaul links and relay links. Therefore, the use of IAB technology can more flexibly deploy dense New Radio (NR) cells without the need to increase transmissions accordingly. Intensive deployment of the network.
  • each IAB node includes a Distributed Unit (DU) functional part and a Mobile Terminal (MT) functional part.
  • DU is used to serve the terminal (User Equipment, UE) of the node and the MT of the next hop node, and establish a wireless backhaul link connection with the MT of the next hop node; and the function of the MT is equivalent to a UE. It connects to the parent node of the previous hop through the NR Uu interface of NR, and establishes a backhaul link connection with the parent node of the previous one.
  • the IAB Donor includes a Donor Centralized Unit (CU) and multiple Donor DUs. Each Donor DU is respectively connected to the Donor CU in a wired manner.
  • the Donor CU and the Donor DU, as well as the Donor CU and the DU of each IAB node are connected through the F1 interface.
  • an IAB node can be connected to multiple parent nodes. In this way, many IAB nodes are connected to each other to form a complex IAB network.
  • This application provides a control signaling transmission method, device and storage medium, which can realize the transmission of control signaling.
  • An embodiment of the application provides a control signaling transmission method, including: a first communication node sends next hop routing information for uplink data transmission to a second communication node; wherein the next hop routing information for uplink data transmission includes all The identification information of the third communication node that is the next hop of the second communication node is described.
  • the embodiment of the application provides a control signaling transmission method, including: a first communication node receives a handover NR CGI of the second communication node sent by a second communication node; wherein the handover NR CGI includes: a PLMN identifier , The base station identity of the first communication node and the cell identity of the source first communication node before the handover of the second communication node; the first communication node determines that the NR CGI after the handover and the first communication node have been When the NR and CGI of any communication node of the service conflict, the conflict resolution step is executed.
  • An embodiment of the application provides a control signaling transmission method, including: a second communication node sends a handover NR CGI of the second communication node to a first communication node; wherein the handover NR CGI includes: PLMN identification, The base station identity of the first communication node and the cell identity of the source first communication node before the handover of the second communication node.
  • An embodiment of the present application provides a control signaling transmission device, including a processor, which is configured to implement the control signaling transmission method of any of the foregoing embodiments when a computer program is executed.
  • the embodiment of the present application provides a storage medium storing a computer program, and when the computer program is executed by a processor, any one of the control signaling transmission methods in the embodiments of the present application is implemented.
  • Figure 1A is a diagram of the protocol stack structure of the data plane transmission in the IAB communication system
  • Figure 1B is a diagram of the protocol stack structure of the control plane transmission in the IAB communication system
  • FIG. 2A is a schematic diagram of an application scenario of a control signaling transmission method provided by an embodiment
  • FIG. 2B is a schematic diagram of another application scenario of a control signaling transmission method provided by an embodiment
  • FIG. 3 is a flowchart of a method for transmitting control signaling according to an embodiment
  • FIG. 4 is a schematic diagram of an application scenario of a control signaling transmission method provided by another embodiment
  • FIG. 5 is a flowchart of a control signaling transmission method provided by another embodiment
  • Figure 6 is a schematic structural diagram of NR CGI provided by an embodiment
  • FIG. 7 is a flowchart of a control signaling transmission method provided by another embodiment
  • FIG. 8 is a schematic structural diagram of a control signaling transmission device provided by an embodiment
  • FIG. 9 is a schematic structural diagram of a control signaling transmission apparatus provided by another embodiment.
  • FIG. 10 is a schematic structural diagram of a control signaling transmission device provided by another embodiment.
  • FIG. 11 is a schematic structural diagram of a control signaling transmission device provided by still another embodiment.
  • the control signaling transmission method provided in this embodiment can be applied to a communication system composed of a first communication node, a second communication node, and a third communication node.
  • the communication system can be the Global System for Mobile Communications (GSM), General Packet Radio Service (GPRS) system, Code Division Multiple Access (CDMA) system, CDMA2000 system, Wideband Code Division Multiple Access (WCDMA) system, Long Term Evolution (LTE) system, LTE-Advance (LTE-A) system, or World Interoperability (World Interoperability) for Microwave Access, WiMAX) system, etc.
  • GSM Global System for Mobile Communications
  • GPRS General Packet Radio Service
  • CDMA Code Division Multiple Access
  • CDMA2000 Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • LTE-A LTE-Advance
  • Worldwide Interoperability World Interoperability for Microwave Access, WiMAX
  • the communication system may be an IAB communication system.
  • FIG. 1A is a diagram of the protocol stack structure of the data plane transmission in the IAB communication system.
  • the following data transmission is taken as an example.
  • Data packets from the core network User Plane Function (UPF) through the Next Generation (NG) User Plane (NG-U) interface to the radio access network
  • the IAB Donor on the (Radio Access Network, RAN) side.
  • the CU in the IAB Donor consists of two parts: the CU control plane (gNB-CU-CP) and the CU user plane (gNB-CU-UP). Downlink data is transmitted from gNB-CU-UP in IAB Donor to gNB-DU.
  • UPF User Plane Function
  • NG-U Next Generation
  • NG-U Next Generation
  • NG-U Next Generation
  • the IAB Donor on the (Radio Access Network, RAN) side.
  • the CU in the IAB Donor consists of two parts: the CU control plane (gNB-CU-CP) and the CU user plane (gNB-
  • the gNB-DU forwards the data packet to each IAB node (node) by returning the radio link layer control channel (BH Radio Link Control Channel, BH RLC Channel), and finally reaches the air interface to access the UE's access IAB node (Access IAB node) , That is, IAB node2).
  • the Access IAB node sends it to the UE through the air interface NR-Uu port to complete the data transmission.
  • the Access IAB node and the gNB-CU-UP in the IAB Donor maintain the F1 interface user plane (F1-U) connection.
  • Figure 1B is a diagram of the protocol stack structure of the control plane transmission in the IAB communication system.
  • the core network is interconnected with the gNB-CU-CP of the IAB Donor through the NG control plane (NG-C), and the DU part of each IAB node is connected to the gNB-CU-CP of the IAB Donor to maintain the F1 interface control plane.
  • F1-C NG control plane
  • F1AP transfer F1 interface application protocol
  • Fig. 2A is a schematic diagram of an application scenario of a control signaling transmission method provided by an embodiment.
  • the first communication node in this application may be the IAB Donor CU in the IAB network
  • the second communication node may be the IAB node (IAB node) 3 in the IAB network
  • the third communication node may be the IAB network In the IAB node1.
  • the uplink data of UE1 is transmitted upwards to IAB node3 through Access IAB node, that is, IAB node4.
  • IAB node3 then submits it to its parent IAB node (Parent IAB node, that is, IAB node1 or IAB node2).
  • the Parent IAB node submits the data to the IAB Donor.
  • the IAB Donor is handed over to the UPF of the core network through the NG interface.
  • IP Internet Protocol
  • the intermediate transmission node IAB node3 has two Parent IAB nodes (IAB node1 or IAB node2), and there is no regulation on how IAB node3 selects a Parent IAB node for uplink data transmission.
  • Fig. 2B is a schematic diagram of another application scenario of a control signaling transmission method provided by an embodiment.
  • the first communication node in this application may be IAB Donor CU in the IAB network
  • the second communication node may be IAB node4 in the IAB network
  • the third communication node may be IAB node2 in the IAB network.
  • IAB node3 and IAB node4 are both Access IAB node.
  • UE1 accesses IAB node3, and UE2 accesses IAB node4.
  • the uplink data of UE2 is transmitted upwards to Parent IAB node through IAB node4, that is, IAB node1 or IAB node2.
  • the Parent IAB node then submits the data to the IAB Donor.
  • the IAB Donor is passed on to the UPF of the core network through the NG interface.
  • the core network processes the data, it is routed to the application layer via IP to complete the transmission of uplink data.
  • the access transmission node IAB node4 has two Parent IAB nodes (IAB node1 or IAB node2), and there is no regulation on how IAB node4 selects a Parent IAB node for uplink data transmission.
  • This application provides a control signaling transmission method, which enables a first communication node to configure its next hop routing information for a second communication node in advance, so that the second communication node can accurately transmit uplink data to the corresponding next hop, namely The third communication node.
  • IAB Donor CU can configure next-hop routing node information and corresponding cell information for IAB node3 in Figure 2A or IAB node4 in Figure 2B in advance, so that IAB node3 or IAB node4 can be accurate Locally transmit the uplink data to the corresponding Parent IAB node and the corresponding cell.
  • Fig. 3 is a flowchart of a control signaling transmission method provided by an embodiment. As shown in Figure 3, this embodiment includes the following steps.
  • Step 301 The first communication node sends the next hop routing information for uplink data transmission to the second communication node.
  • the next hop routing information of the uplink data transmission includes the identification information of the third communication node as the next hop of the second communication node.
  • the first communication node sends the next hop routing information of the uplink data transmission to the second communication node through F1AP.
  • the next hop routing information for uplink data transmission includes the following five implementation manners.
  • the next hop routing information of the uplink data transmission includes: the routing ID of the uplink data packet of the second communication node and the Backhaul Adaptation Protocol (BAP) of the third communication node ) The mapping relationship between addresses, and the mapping relationship between the BAP address of the third communication node and the cell group ID (CGI) of the third communication node.
  • BAP Backhaul Adaptation Protocol
  • the third communication node may send the CGI of the third communication node to the first communication node.
  • the first communication node receives the CGI of the third communication node sent by the third communication node.
  • the next hop routing information for uplink data transmission includes: the mapping relationship between the routing identifier of the uplink data packet of the second communication node and the BAP address of the third communication node, and the BAP address of the third communication node The mapping relationship with the new radio access global cell identity (NR Cell Global Identifier, NR CGI) of the third communication node.
  • NR Cell Global Identifier NR CGI
  • the next hop routing information for uplink data transmission includes: the mapping relationship between the routing identifier of the uplink data packet of the second communication node and the BAP address of the third communication node, and the BAP address of the third communication node The mapping relationship with the physical layer cell identifier (PCI) of the third communication node.
  • PCI physical layer cell identifier
  • the next hop routing information for uplink data transmission includes: the mapping relationship between the routing identifier of the uplink data packet of the second communication node and the BAP address of the third communication node, and the BAP address of the third communication node The mapping relationship with the secondary cell identifier (Secondary Cell Identifier, Scell ID) of the cell group where the third communication node is located.
  • Scell ID Secondary Cell Identifier
  • the next hop routing information for uplink data transmission includes: the mapping relationship between the routing identifier of the uplink data packet of the second communication node and the BAP address of the third communication node, and the BAP address of the third communication node Mapping relationship with the primary cell identifier (Pcell ID) of the cell group where the third communication node is located.
  • the third communication node is any one of the parent nodes of the second communication node.
  • the following takes the first implementation manner as an example to introduce in detail the interaction process of the first communication node, the second communication node, and the third communication node.
  • Step A1 The third communication node sends a UE context establishment request message to the first communication node through F1AP.
  • the UE context establishment request message includes the CGI of the third communication node.
  • Step A2 The first communication node receives the UE context establishment request message sent by the third communication node through the F1AP.
  • Step A3 The first communication node obtains the CGI of the third communication node from the UE context establishment request message, and responds to the UE context establishment request message, that is, sends a UE context establishment response message to the third communication node.
  • Step A4 The first communication node sends the next hop routing information of the uplink data transmission to the second communication node through F1AP.
  • the first communication node After the first communication node receives the CGI of the third communication node, it is based on the CGI of the third communication node, the BAP address of the third communication node, the routing identifier of the uplink data packet of the second communication node and the BAP address of the third communication node Generate the next hop routing information for the uplink data transmission of the second communication node and send it to the second communication node.
  • the first communication node may be IAB Donor CU in the IAB network
  • the second communication node may be IAB node3
  • the third communication node may be IAB node1.
  • the third communication node may also be IAB node2.
  • the following takes the third communication node as IAB node1 as an example for description.
  • the control signaling transmission method provided in this embodiment includes the following steps.
  • Step B1 IAB node1 sends a UE context establishment request message to IAB Donor CU through F1AP.
  • the UE context establishment request message includes the CGI of IAB node1.
  • Step B2 The IAB Donor CU receives the UE context establishment request message sent by the IAB node1.
  • Step B3 The IAB Donor CU requests a setup message from the UE context, obtains the CGI of the IAB node1, and responds, and sends a UE context setup response message to the IAB node1.
  • Step B4 The IAB Donor CU configures the next hop routing information for uplink data transmission to the IAB node3 through F1AP.
  • the next hop routing information of the uplink data transmission includes the mapping relationship between the route identifier of the uplink data packet of IAB node3 and the BAP address of IAB node1, and the mapping relationship between the BAP address of IAB node1 and the CGI of IAB node1.
  • the IAB Donor CU configures the mapping relationship between the route identifier of the uplink data packet of IAB node3 and the BAP address of IAB node1 to IAB node3 through F1AP.
  • Table 1 shows the mapping relationship between the routing identifier of the uplink data packet of IAB node3 and the BAP address of IAB node1.
  • IAB node3 After IAB node3 receives the upstream data packet, it enters the routing ID in the BAP subheader of the upstream data packet (including the destination BAP address and the path ID), Query Table 1 to get the BAP address information of the next hop Parent IAB node (IAB node1), and then deliver the data packet to the corresponding Parent IAB node (IAB node1).
  • Table 1 The mapping relationship between the routing identifier of the uplink data packet of IAB node3 and the BAP address of IAB node1
  • the IAB Donor CU also needs to configure the mapping relationship between the BAP address of the next hop Parent IAB node (IAB node1) and the corresponding CGI to the IAB node3 through F1AP.
  • Table 2 shows the mapping relationship between the BAP address of IAB node1 and the CGI of IAB node1.
  • IAB node3 when IAB node3 receives an uplink data packet, it can find the corresponding CGI according to the BAP address of the Parent IAB node (IAB node1) obtained by querying Table 1 and Table 2, and then find the corresponding cell group ( cell group), and then deliver the data packet to the corresponding Radio Link Control (RLC) entity and Medium Access Control (MAC) entity for uplink data transmission.
  • RLC Radio Link Control
  • MAC Medium Access Control
  • Table 2 The mapping relationship between the BAP address of IAB node1 and the CGI of IAB node1
  • the control signaling transmission method provided in this embodiment includes the following steps.
  • Step C1 IAB node1 sends a UE context establishment request message to IAB Donor CU through F1AP.
  • Step C2 The IAB Donor CU receives the UE context establishment request message sent by the IAB node1.
  • Step C3 IAB Donor CU sends a UE context establishment response message to IAB node1.
  • Step C4 The IAB Donor CU configures the next hop routing information for uplink data transmission to the IAB node3 through F1AP.
  • the next hop routing information of the uplink data transmission includes: the second implementation mode-the fifth implementation mode of the above-mentioned next hop routing information of the uplink data transmission.
  • the IAB Donor CU configures the mapping relationship between the route identifier of the uplink data packet of IAB node3 and the BAP address of IAB node1 to IAB node3 through F1AP.
  • IAB node3 After IAB node3 receives the uplink data packet, it enters the routing ID (including Destination BAP address and Path ID) in the BAP subheader of the uplink data packet, and then queries Table 1 to know the Parent IAB of the next hop The BAP address information of the node (IAB node1), and then deliver the data packet to the corresponding Parent IAB node (IAB node1).
  • routing ID including Destination BAP address and Path ID
  • IAB Donor CU also needs to configure the mapping relationship between the BAP address of the next hop Parent IAB node (IAB node1) and the cell identification information of the corresponding Parent IAB node (IAB node1) to IAB node3 through F1AP, for example, IAB node1
  • the mapping relationship between BAP address and NR CGI, or the mapping relationship between BAP address of IAB node1 and PCI as shown in Table 3.
  • the IAB Donor CU configures the mapping relationship between the BAP address of the next hop Parent IAB node (IAB node1) and the PCell ID or Scell ID of the cell group where the corresponding Parent IAB node (IAB node1) is located to the IAB node3 through F1AP. As shown in Table 4 and Table 5.
  • IAB node3 When IAB node3 receives an uplink data packet, it finds the corresponding cell according to the mapping table shown in Table 3, Table 4 or Table 5, and then delivers the data packet to the corresponding RLC/MAC entity for uplink data transmission .
  • Table 5 The mapping relationship between Parent IAB node's BAP address and Scell ID
  • the first communication node may be IAB Donor CU in the IAB network
  • the second communication node may be IAB node
  • the third communication node may be IAB node2.
  • the third communication node may also be IAB node1, and the following takes the third communication node as IAB node2 as an example for description.
  • the control signaling transmission method provided in this embodiment includes the following steps.
  • Step D1 IAB node2 sends a UE context establishment request message to IAB Donor CU through F1AP.
  • Step D2 The IAB Donor CU receives the UE context establishment request message of IAB node2.
  • Step D3 The IAB Donor CU sends a UE context establishment response message to the IAB node2.
  • Step D4 The IAB Donor CU configures the next hop routing information for uplink data transmission to the IAB node4 through F1AP.
  • step D1 the IAB node2 also carries the CGI of the IAB node2 in the UE context establishment request message.
  • step D3 the IAB Donor CU obtains the CGI of IAB node2 from the UE context establishment request message.
  • the next hop routing information of uplink data transmission is sent to the second communication node through the first communication node, and the next hop routing information of the uplink data transmission includes the next hop routing information as the second communication node.
  • the identification information of the hopped third communication node enables the first communication node to configure the next hop routing information for uplink data transmission for the second communication node in advance, so that the second communication node can accurately transmit the uplink data to the corresponding downlink One hop, the third communication node, improves the accuracy and reliability of data transmission.
  • Fig. 4 is a schematic diagram of an application scenario of a control signaling transmission method provided by another embodiment.
  • the first communication node in this application may be IAB Donor CU2
  • the second communication node may be IAB node3
  • IAB Donor CU1 is the source first communication node before IAB node3 is switched.
  • the IAB scenario when the IAB node is handed over, that is, when the serving IAB Donor (gNB) changes, at present, how to synchronize the new wireless access global cell identity (NR Cell Global) with the handover IAB node and the IAB Donor after the handover Identifier, NR CGI) does not make provisions.
  • NR Cell Global new wireless access global cell identity
  • the present application provides a control signaling transmission method to implement NR CGI synchronization between the second communication node and the first communication node in a handover scenario.
  • Fig. 5 is a flowchart of a control signaling transmission method provided by another embodiment. As shown in FIG. 5, the control signaling transmission method provided in this embodiment includes the following steps.
  • Step 501 The first communication node receives the handover NR CGI of the second communication node sent by the second communication node.
  • the NR CGI after handover includes: Public Land Mobile Network (PLMN) identification, base station identification (gNB ID) of the first communication node, and intra-base station cell identification (Cell) of the source first communication node before handover. ID).
  • PLMN Public Land Mobile Network
  • gNB ID base station identification
  • Cell intra-base station cell identification
  • the first communication node in this application refers to a new first communication node after the second communication node is switched.
  • the NR CGI is composed of two parts, the PLMN ID and the NR cell ID (NR Cell ID), where the NR Cell ID is composed of the gNB ID and the Cell ID in the base station.
  • Fig. 6 is a schematic structural diagram of an NR CGI provided by an embodiment.
  • the second communication node when the second communication node switches from the source first communication node to the new first communication node, it may first obtain the gNB ID of the new first communication node from the source first communication node, and then according to the PLMN ID, The gNB ID of the new first communication node and the cell ID in the base station of the source first communication node generate the handover NR CGI.
  • the second communication node sends an F1 establishment request message to the first communication node through the F1AP, and the F1 establishment request message includes the handover NR CGI.
  • the first communication node receives the F1 establishment request message sent by the second communication node through the F1AP, and obtains the handover NR CGI of the second communication node from the F1 establishment request message.
  • Step 502 When the first communication node determines that the NR CGI after the handover conflicts with the NR CGI of any communication node that the first communication node has served, it executes a conflict resolution step.
  • the conflict resolution step is performed.
  • the conflict resolution step performed by the first communication node may be: the first communication node allocates a new NR CGI to the second communication node.
  • the newly allocated NR CGI does not conflict with the NR CGI of any communication node already served by the first communication node.
  • the first communication node sends an F1 establishment failure message to the second communication node through F1AP.
  • the F1 establishment failure message includes: the newly allocated NR CGI and the reason for the F1 establishment failure, and the reason for the F1 establishment failure is the NR CGI conflict.
  • the second communication node after receiving the F1 establishment failure message, the second communication node reads the reason for the establishment failure, obtains the newly allocated NR CGI, and uses the newly allocated NR CGI as its own NR CGI. After that, the second communication node uses the newly allocated NR CGI to resend the F1 establishment request message to the first communication node, and the F1 establishment request message carries the newly allocated NR CGI.
  • the first communication node replies to the second communication node an F1 establishment request response message. The second communication node receives the F1 establishment request response message, and completes the F1 connection establishment process with the first communication node.
  • the first communication node sends an F1 establishment response message to the second communication node through the F1AP; wherein, the F1 establishment response message includes the newly allocated NR CGI.
  • FIG. 4 takes FIG. 4 as an example to describe the above process in detail.
  • IAB node3 switches from the original serving base station IAB Donor1 (gNB1) to the new serving base station IAB Donor2 (gNB2), IAB node3 first obtains the target base station IAB Donor2(gNB2) from the original serving base station’s IAB Donor CU1 gNB ID (gNB ID2), and then establish an F1 connection with IAB Donor CU2. IAB node3 sends an F1 establishment request to IAB Donor CU2 through F1AP, and carries the newly allocated NR CGI in the request message.
  • the NR Cell ID in the newly allocated NR CGI is composed of gNB ID2 and the original cell ID in the base station.
  • control signaling transmission method provided in this embodiment includes the following steps.
  • Step E1 After switching to the new serving base station IAB Donor2 (gNB2), IAB node3 needs to establish an F1 connection with IAB Donor CU2.
  • IAB node3 sends an F1 establishment request message to IAB Donor CU2 through F1AP, and carries the handover NR CGI in the F1 establishment request message.
  • the NR Cell ID in the handover NRCGI is composed of gNB ID2 and the original cell ID in the base station. .
  • Step E2 The IAB Donor CU2 receives the F1 establishment request message of the IAB node3 through the F1AP, reads the NR CGI therein, and finds that the NR CGI is the same as the NR CGI of other IAB nodes connected to the IAB Donor CU2, and an NR CGI conflict occurs.
  • Step E3 The IAB Donor CU2 re-allocates a new cell ID in the base station for the IAB node3 to form a newly allocated NR CGI, and sends the newly allocated NR CGI to the IAB node3 through the F1 establishment response message.
  • Step E4 IAB node3 receives the F1 establishment response message, reads the NR CGI in it, and finds that the NR CGI is different from its original NR CGI. IAB node3 uses the newly allocated NR CGI of IAB Donor CU2 as its NR CGI. Complete F1 connection establishment with IAB Donor CU2, and use the newly allocated NR CGI and IAB Donor CU2 for subsequent F1AP message transmission.
  • control signaling transmission method provided in this embodiment includes the following steps.
  • Step F1 After IAB node3 switches to the new serving base station IAB Donor2 (gNB2), it needs to establish an F1 connection with IAB Donor CU2.
  • IAB Donor2 gNB2
  • IAB node3 sends an F1 establishment request message to IAB Donor CU2 through F1AP, and carries the NR CGI information after the handover in the message.
  • the NR Cell ID in the NR CGI after the handover is composed of gNB ID2 and the original cell ID in the base station.
  • Step F2 IAB Donor CU2 receives the F1 establishment request message of IAB node3 through F1AP, reads the NR CGI in it, and finds that the NR CGI is the same as the NR CGI of other IAB nodes connected to IAB Donor CU2, and an NR CGI conflict occurs.
  • Step F3 IAB Donor CU2 re-allocates a new base station cell ID for the IAB node3 to form a newly allocated NR CGI, and sends the newly allocated NR CGI to the IAB node3 through the F1 failure response message, and the F1 failure response message
  • the reason for the failure is set to Cell ID conflict (conflict).
  • Step F4 IAB node3 receives the F1 failure response message, and reads the failure reason as the Cell ID conflict. At the same time, IAB node3 reads the newly allocated NR CGI of IAB Donor CU2 from the F1 failure response message as its own NR CGI.
  • Step F5 IAB node3 uses the newly allocated NR CGI to send an F1 establishment request message to IAB Donor CU2.
  • Step F6 IAB Donor CU2 replies to IAB node3 with an F1 establishment request response message.
  • Step F7 IAB node3 receives the F1 establishment response message, and completes the F1 connection establishment process with IAB Donor CU2.
  • IAB Donor CU2 replies a failure response message to IAB node3, so that IAB node3 can more clearly learn the reason why IAB Donor CU2 changed the NRCGI, which improves the reliability of data transmission.
  • the first communication node receives the handover NR CGI of the second communication node sent by the second communication node, where the handover NR CGI includes: PLMN identification, first communication node
  • the conflict resolution step is executed to achieve
  • the first communication node and the second communication node synchronize NR CGI, which improves the reliability and accuracy of subsequent data transmission.
  • Fig. 7 is a flowchart of a control signaling transmission method provided by another embodiment. As shown in FIG. 7, the control signaling transmission method provided in this embodiment includes the following steps.
  • Step 701 The second communication node sends the handover NR CGI of the second communication node to the first communication node.
  • the NR CGI after the handover includes: the PLMN identity, the base station identity of the first communication node, and the intra-base station cell identity of the source first communication node before the handover.
  • the method further includes: the second communication node receives the NR newly allocated by the first communication node to the second communication node CGI.
  • the newly allocated NR CGI does not conflict with the NR CGI of any communication node that the first communication node has served.
  • the newly allocated NR CGI is the first communication node that determines the NR CGI after the handover and the NR CGI that the first communication node has served. It is determined when the NR and CGI of the communication node conflict.
  • the second communication node sending the handover NR CGI of the second communication node to the first communication node includes: the second communication node sends an F1 establishment request message to the first communication node through the F1AP.
  • the F1 establishment request message includes the handover NR CGI of the second communication node.
  • receiving the NR CGI newly allocated by the first communication node to the second communication node by the second communication node includes: the second communication node receives the F1 establishment failure message sent by the first communication node through the F1AP.
  • the F1 establishment failure message includes: the newly allocated NR CGI and the reason for the F1 establishment failure, and the reason for the F1 establishment failure is the NR CGI conflict.
  • receiving the NR CGI newly allocated by the first communication node to the second communication node by the second communication node includes: the second communication node receives the F1 establishment response message sent by the first communication node through F1AP; wherein, the F1 establishment response The message includes the newly allocated NR CGI.
  • the second communication node sends the handover NR CGI of the second communication node to the first communication node, so that in the scenario where the first communication node is switched, the first communication node Synchronizing NR CGI with the second communication node improves the reliability and accuracy of subsequent data transmission.
  • Fig. 8 is a schematic structural diagram of a control signaling transmission device provided by an embodiment.
  • the device can be arranged in the first communication node.
  • the control signaling transmission apparatus provided in this embodiment includes a sending module 81.
  • the sending module 81 is configured to send next hop routing information for uplink data transmission to the second communication node.
  • the next hop routing information of the uplink data transmission includes the identification information of the third communication node as the next hop of the second communication node.
  • the sending module 81 is configured to send next hop routing information for uplink data transmission to the second communication node through F1AP.
  • the device further includes a receiving module configured to receive the CGI of the third communication node sent by the third communication node.
  • the receiving module is configured to receive the terminal context establishment request message sent by the third communication node through the F1AP.
  • the terminal context establishment request message includes the CGI of the third communication node.
  • the sending module 81 is further configured to send a terminal context establishment response message to the third communication node.
  • the next hop routing information for uplink data transmission includes: the mapping relationship between the routing identifier of the uplink data packet of the second communication node and the BAP address of the third communication node, and the BAP address of the third communication node and The mapping relationship of the CGI of the third communication node.
  • the next hop routing information for uplink data transmission includes: the mapping relationship between the routing identifier of the uplink data packet of the second communication node and the BAP address of the third communication node, and the BAP address of the third communication node The mapping relationship with the NR CGI of the third communication node.
  • the next hop routing information for uplink data transmission includes: the mapping relationship between the routing identifier of the uplink data packet of the second communication node and the BAP address of the third communication node, and the BAP address of the third communication node The mapping relationship with the PCI of the third communication node.
  • the next hop routing information for uplink data transmission includes: the mapping relationship between the routing identifier of the uplink data packet of the second communication node and the BAP address of the third communication node, and the BAP address of the third communication node The mapping relationship with the secondary cell identifier of the cell group where the third communication node is located.
  • the next hop routing information for uplink data transmission includes: the mapping relationship between the routing identifier of the uplink data packet of the second communication node and the BAP address of the third communication node, and the BAP address of the third communication node The mapping relationship with the primary cell identity of the cell group where the third communication node is located.
  • control signaling transmission apparatus provided in this embodiment is used to implement the control signaling transmission method in the embodiment shown in FIG. 3, and the implementation principle of the control signaling transmission method in the embodiment shown in FIG. 3 is similar, and will not be repeated here.
  • Fig. 9 is a schematic structural diagram of a control signaling transmission device provided by another embodiment.
  • the device can be arranged in the first communication node.
  • the control signaling transmission device provided in this embodiment includes: a receiving module 91 and a conflict resolution step execution module 92.
  • the receiving module 91 is configured to receive the handover NR CGI of the second communication node sent by the second communication node.
  • the NR CGI after the handover includes: the PLMN identity, the base station identity of the first communication node, and the intra-base station cell identity of the source first communication node before the handover.
  • the conflict resolution step execution module 92 is configured to perform a conflict resolution step when it is determined that the NR CGI after the handover conflicts with the NR CGI of any communication node that the first communication node has served.
  • the conflict resolution step execution module 92 is configured to allocate a new NR CGI to the second communication node. Among them, the newly allocated NR CGI does not conflict with the NR CGI of any communication node already served by the first communication node.
  • the receiving module 91 is configured to: receive the F1 establishment request message sent by the second communication node through the F1AP; and obtain the handover NR CGI of the second communication node from the F1 establishment request message.
  • the conflict resolution step execution module 92 is configured to send an F1 establishment failure message to the second communication node through F1AP.
  • the F1 establishment failure message includes: the NR CGI newly allocated by the first communication node to the second communication node and the reason for the F1 establishment failure, where the reason for the F1 establishment failure is the NR CGI conflict.
  • the conflict resolution step execution module 92 is configured to send an F1 establishment response message to the second communication node through the F1AP.
  • the F1 establishment response message includes the NR CGI newly allocated by the first communication node to the second communication node.
  • control signaling transmission apparatus provided in this embodiment is used to implement the control signaling transmission method in the embodiment shown in FIG. 5, and the implementation principle of the control signaling transmission method in the embodiment shown in FIG. 5 is similar, and will not be repeated here.
  • FIG. 10 is a schematic structural diagram of a control signaling transmission device provided by another embodiment.
  • the control signaling transmission device may be arranged in the second communication node.
  • the control signaling transmission apparatus provided in this embodiment includes a sending module 93.
  • the sending module 93 is configured to send the handover NR CGI of the second communication node to the first communication node.
  • the NR CGI after the handover includes: the PLMN identity, the base station identity of the first communication node, and the intra-base station cell identity of the source first communication node before the handover.
  • the device further includes a receiving module configured to receive the NR CGI newly allocated by the first communication node to the second communication node.
  • the newly allocated NR CGI does not conflict with the NR CGI of any communication node that the first communication node has served.
  • the newly allocated NR CGI is for the first communication node to determine the NR CGI after the handover and the NR CGI that the first communication node has served. It is determined when the NR and CGI of a communication node conflict.
  • the sending module 93 is configured to send an F1 establishment request message to the first communication node through F1AP.
  • the F1 establishment request message includes the handover NR CGI of the second communication node.
  • the receiving module is configured to receive the F1 establishment failure message sent by the first communication node through the F1AP.
  • the F1 establishment failure message includes: the newly allocated NR CGI and the reason for the F1 establishment failure, and the reason for the F1 establishment failure is the NR CGI conflict.
  • the receiving module is configured to receive the F1 establishment response message sent by the first communication node through the F1AP.
  • the F1 establishment response message includes the newly allocated NR CGI.
  • control signaling transmission apparatus provided in this embodiment is used to implement the control signaling transmission method in the embodiment shown in FIG. 7, and the implementation principle of the control signaling transmission method in the embodiment shown in FIG. 7 is similar, and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of a control signaling transmission device provided by still another embodiment.
  • the control signaling transmission device includes a processor 94.
  • it further includes a memory 99, a power supply component 95, a receiver 96, a transmitter 97, and an antenna 98.
  • the number of processors 94 in the control signaling transmission device may be one or more.
  • one processor 94 is taken as an example; the processor 94, memory 99, power supply component 95, and receiver in the control signaling transmission device
  • the transmitter 96 and the transmitter 97 may be connected through a bus or other methods. In FIG. 11, the connection through a bus is taken as an example.
  • the receiver 96 and the transmitter 97 are connected to an antenna 98.
  • the memory 99 can be used to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the control signaling transmission method in the embodiments of FIG. 3, FIG. 5, and FIG. 7 of this application (For example, the sending module 81 in the control signaling transmission device, or the receiving module 91 and the conflict resolution step execution module 92 in the control signaling transmission device, or the sending module 93 in the control signaling transmission device).
  • the processor 94 executes various functional applications and data processing of the control signaling transmission device by running the software programs, instructions, and modules stored in the memory 99, that is, realizes the control signaling transmission method of FIG. 3 and various optional implementation modes. , Or, realize the control signaling transmission method of FIG. 5 and each optional implementation manner, or realize the control signaling transmission method of FIG. 7 and each optional implementation manner.
  • the memory 99 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the control signaling transmission device, etc. .
  • the memory 99 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the power supply component 95 provides power for each module of the control signaling transmission device.
  • the power supply component 95 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the control signaling transmission device.
  • the transmitter 97 is configured to transmit signals to other devices through the antenna 98
  • the receiver 96 is configured to receive signals from other devices through the antenna 98.
  • the embodiments of the present application also provide a storage medium containing computer-executable instructions, and the computer-executable instructions are used to execute the control signaling transmission method provided in any embodiment of the present application when the computer-executable instructions are executed by a computer processor.
  • user terminal encompasses any suitable type of wireless user equipment, such as mobile phones, portable data processing devices, portable web browsers, or vehicle-mounted mobile stations.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disc (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (ASICs) ), programmable logic devices (Field Programmable Gate Array, FGPA), and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASICs application specific integrated circuits
  • FGPA programmable logic devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种控制信令传输方法、装置和存储介质,一种控制信令传输方法包括:第一通信节点向第二通信节点发送上行数据传输的下一跳路由信息,该上行数据传输的下一跳路由信息包括作为第二通信节点下一跳的第三通信节点的标识信息。

Description

控制信令传输方法、装置和存储介质
本申请要求在2019年11月7日提交中国专利局、申请号为201911083037.4的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信网络,例如涉及一种控制信令传输方法、装置和存储介质。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)正在研究的第五代移动通信技术(5th Generation,5G)将实现更大的吞吐量,更多的用户连接,更低时延,更高可靠性,和更低功耗。3GPP的讨论中,综合接入回传(Integrated Access and Backhaul,IAB)技术具有较多的技术优点。具体来说,IAB技术采用无线的回传链路和中继链路,因此,采用IAB技术能更灵活地部署密集的新无线电(New Radio,NR)小区,同时,却不需要相应地增加传输网络的密集部署。
3GPP的讨论中,每个IAB节点包含一个分布式单元(Distributed Unit,DU)功能部分和一个移动终端(Mobile Terminal,MT)功能部分。其中,DU用于服务本节点的终端(User Equipment,UE)和下一跳节点的MT,并和下一跳节点的MT建立无线回传链路连接;而MT的功能相当于一个UE,用于通过NR的NR Uu接口接入上一跳的母节点,并和上一条的母节点建立回传链路连接。所以,不同的IAB节点可以利用本地MT的无线接入能力接入到上一跳的母节点,该母节点又可以再连接到上一跳节点,直至最终连接到IAB宿主(IAB Donor)。IAB Donor包括一个Donor中心单元(Centralized Unit,CU)和多个Donor DU。各个Donor DU分别以有线方式连接到Donor CU。Donor CU和Donor DU,以及Donor CU和各个IAB节点的DU之间通过F1接口连接。为了提高可靠性,一个IAB节点可以连接到多个母节点。这样,许多个IAB节点相互连接后就形成了一个复杂的IAB网络。
在IAB网络中,针对部分控制面消息的传输,还没有可行的方案。
发明内容
本申请提供一种控制信令传输方法、装置和存储介质,可以实现控制信令的传输。
本申请实施例提供一种控制信令传输方法,包括:第一通信节点向第二通信节点发送上行数据传输的下一跳路由信息;其中,所述上行数据传输的下一跳路由信息包括所述作为第二通信节点下一跳的第三通信节点的标识信息。
本申请实施例提供一种控制信令传输方法,包括:第一通信节点接收第二通信节点发送的所述第二通信节点的切换后的NR CGI;其中,切换后的NR CGI包括:PLMN标识、所述第一通信节点的基站标识和第二通信节点的切换前的源第一通信节点内小区标识;所述第一通信节点确定所述切换后的NR CGI与所述第一通信节点已服务的任一通信节点的NR CGI冲突时,执行冲突解决步骤。
本申请实施例提供一种控制信令传输方法,包括:第二通信节点向第一通信节点发送所述第二通信节点的切换后的NR CGI;其中,切换后的NR CGI包括:PLMN标识、所述第一通信节点的基站标识和第二通信节点的切换前的源第一通信节点内小区标识。
本申请实施例提供一种控制信令传输装置,包括:处理器,所述处理器用于在执行计算机程序时实现上述任意实施例的控制信令传输方法。
本申请实施例提供了一种存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时实现本申请实施例中的任意一种控制信令传输方法。
附图说明
图1A为IAB通信系统中数据面传输的协议栈结构图;
图1B为IAB通信系统中控制面传输的协议栈结构图;
图2A为一实施例提供的一种控制信令传输方法的一种应用场景的示意图;
图2B为一实施例提供的一种控制信令传输方法的另一种应用场景的示意图;
图3为一实施例提供的一种控制信令传输方法的流程图;
图4为另一实施例提供的一种控制信令传输方法的一种应用场景的示意图;
图5为另一实施例提供的一种控制信令传输方法的流程图;
图6为一实施例提供的NR CGI的结构示意图;
图7为另一实施例提供的一种控制信令传输方法的流程图;
图8为一实施例提供的一种控制信令传输装置的结构示意图;
图9为另一实施例提供的一种控制信令传输装置的结构示意图;
图10为又一实施例提供的一种控制信令传输装置的结构示意图;
图11为再一实施例提供的一种控制信令传输装置的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行说明。
本实施例提供的控制信令传输方法可以应用于由第一通信节点、第二通信节点及第三通信节点构成的通信系统中。该通信系统可以是全球移动通信系统(Global System for Mobile Communications,GSM)、通用分组无线业务(General Packet Radio Service,GPRS)系统、码分多址(Code Division Multiple Access,CDMA)系统、CDMA2000系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、长期演进(Long Term Evolution,LTE)系统、演进LTE(LTE-Advance,LTE-A)系统或全球微波接入互操作性(World Interoperability for Microwave Access,WiMAX)系统等。示例性地,该通信系统可以是IAB通信系统。
图1A为IAB通信系统中数据面传输的协议栈结构图。如图1A所示,以下行数据传输为例,数据包从核心网用户面功能(User Plane Function,UPF)通过下一代(Next Generation,NG)用户面(NG-U)接口到达无线接入网(Radio Access Network,RAN)侧的IAB Donor。IAB Donor中的CU由CU控制面(gNB-CU-CP)和CU用户面(gNB-CU-UP)两个部分组成。下行数据由IAB Donor中的gNB-CU-UP传输至gNB-DU。gNB-DU通过回传无线链路层控制信道(BH Radio Link Control Channel,BH RLC Channel)将数据包转发至各IAB节点(node),最终到达空口接入UE的接入IAB node(Access IAB node,即,IAB node2)。Access IAB node通过空口NR-Uu口发送给UE,完成数据的传输。其中,Access IAB node与IAB Donor中的gNB-CU-UP维持F1接口用户面(F1-U)的连接。图1B为IAB通信系统中控制面传输的协议栈结构图。如图1B所示,核心网通过NG控制面(NG-C)与IAB Donor的gNB-CU-CP互连,各个IAB node的DU部分与IAB Donor中的gNB-CU-CP维持F1接口控制面(F1-C)的连接,传递F1接口应用协议(F1 Application Protocol,F1AP)消息。
图2A为一实施例提供的一种控制信令传输方法的一种应用场景的示意图。如图2A所示,本申请中的第一通信节点可以是IAB网络中的IAB Donor CU,第二通信节点可以是IAB网络中的IAB节点(IAB node)3,第三通信节点可以是IAB网络中的IAB node1。在IAB上行数据传输过程中,如图2A所示,UE1的上行数据通过Access IAB node,即IAB node4往上向IAB node3传输。IAB node3再往上递交给它的父IAB node(Parent IAB node,即IAB node1或IAB node2)。Parent IAB node将数据往上递交给IAB Donor。IAB Donor通过NG接 口上交给核心网的UPF。最后,核心网将数据处理后,通过互联网协议(Internet Protocol,IP)路由到应用层,完成上行数据的传输。在上述上行数据传输过程中,中间传输节点IAB node3有两个Parent IAB node(IAB node1或IAB node2),对IAB node3如何选择一个Parent IAB node进行上行数据传输没有做出规定。
图2B为一实施例提供的一种控制信令传输方法的另一种应用场景的示意图。如图2B所示,本申请中的第一通信节点可以是IAB网络中的IAB Donor CU,第二通信节点可以是IAB网络中的IAB node4,第三通信节点可以是IAB网络中的IAB node2。在该场景中,IAB node3与IAB node4均为Access IAB node。UE1接入IAB node3,UE2接入IAB node4。UE2的上行数据通过IAB node4往上向Parent IAB node,即IAB node1或IAB node2传输。再由Parent IAB node将数据往上递交给IAB Donor。IAB Donor通过NG接口上交给核心网的UPF。最后,核心网将数据处理后,通过IP路由到应用层,完成上行数据的传输。在上述上行数据传输过程中,接入传输节点IAB node4有两个Parent IAB node(IAB node1或IAB node2),对IAB node4如何选择一个Parent IAB node进行上行数据传输没有做出规定。
本申请提供一种控制信令传输方法,实现第一通信节点提前为第二通信节点配置其下一跳路由信息,以便第二通信节点能够准确地将上行数据传输到相应的下一跳,即第三通信节点。换句话说,本申请中,IAB Donor CU可以提前为图2A中的IAB node3或者图2B中的IAB node4配置好下一跳的路由节点信息和对应的小区信息,以便IAB node3或者IAB node4能够准确地将上行数据传输到相应的Parent IAB node以及对应的小区。
图3为一实施例提供的一种控制信令传输方法的流程图。如图3所示,该实施例包括如下步骤。
步骤301:第一通信节点向第二通信节点发送上行数据传输的下一跳路由信息。
上行数据传输的下一跳路由信息包括作为第二通信节点下一跳的第三通信节点的标识信息。
一实现方式中,第一通信节点通过F1AP向第二通信节点发送该上行数据传输的下一跳路由信息。
一实现方式中,上行数据传输的下一跳路由信息包括以下五种实现方式。
第一种实现方式中,上行数据传输的下一跳路由信息包括:第二通信节点的上行数据包的路由标识(routing ID)与第三通信节点的回传适配协议(Backhaul Adaptation Protocol,BAP)地址的映射关系,以及,第三通信节点 的BAP地址与第三通信节点的小区组标识(Cell Group ID,CGI)的映射关系。
在该实现方式中,第三通信节点可以将第三通信节点的CGI发送给第一通信节点。第一通信节点接收第三通信节点发送的第三通信节点的CGI。
第二种实现方式中,上行数据传输的下一跳路由信息包括:第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,第三通信节点的BAP地址与第三通信节点的新无线接入全球小区标识(NR Cell Global Identifier,NR CGI)的映射关系。
第三种实现方式中,上行数据传输的下一跳路由信息包括:第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,第三通信节点的BAP地址与第三通信节点的物理层小区标识(Physical Cell Identifier,PCI)的映射关系。
第四种实现方式中,上行数据传输的下一跳路由信息包括:第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,第三通信节点的BAP地址与第三通信节点所在小区组的辅小区标识(Secondary Cell Identifier,Scell ID)的映射关系。
第五种实现方式中,上行数据传输的下一跳路由信息包括:第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,第三通信节点的BAP地址与第三通信节点所在小区组的主小区标识(Primary Cell Identifier,Pcell ID)的映射关系。
一实现方式中,第三通信节点为第二通信节点的父节点中的任一个。
以下以第一种实现方式为例,详细介绍第一通信节点、第二通信节点以及第三通信节点的交互过程。
步骤A1:第三通信节点通过F1AP向第一通信节点发送UE上下文建立请求消息。
该UE上下文建立请求消息包括第三通信节点的CGI。
步骤A2:第一通信节点通过F1AP接收第三通信节点发送的UE上下文建立请求消息。
步骤A3:第一通信节点从UE上下文建立请求消息中获取第三通信节点的CGI,并响应该UE上下文建立请求消息,即,向第三通信节点发送UE上下文建立响应消息。
步骤A4:第一通信节点通过F1AP向第二通信节点发送该上行数据传输的下一跳路由信息。
第一通信节点在接收到第三通信节点的CGI后,基于第三通信节点的CGI、第三通信节点的BAP地址、第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址生成第二通信节点的上行数据传输的下一跳路由信息,并发送给第二通信节点。
以下以图2A所示的场景为例,详细介绍第一通信节点、第二通信节点以及第三通信节点的交互过程。其中,第一通信节点可以是IAB网络中的IAB Donor CU,第二通信节点可以是IAB node3,第三通信节点可以是IAB node1。当然,第三通信节点也可以是IAB node2,以下以第三通信节点为IAB node1为例进行说明。
当上行数据传输的下一跳路由信息为上述第一种实现方式时,本实施例提供的控制信令传输方法包括如下步骤。
步骤B1:IAB node1通过F1AP向IAB Donor CU发送UE上下文建立请求消息。
该UE上下文建立请求消息包括IAB node1的CGI。
步骤B2:IAB Donor CU接收IAB node1发送的UE上下文建立请求消息。
步骤B3:IAB Donor CU从UE上下文请求建立消息,获取IAB node1的CGI,并响应,向IAB node1发送UE上下文建立响应消息。
步骤B4:IAB Donor CU通过F1AP向IAB node3配置上行数据传输的下一跳路由信息。
该上行数据传输的下一跳路由信息包含IAB node3的上行数据包的路由标识与IAB node1的BAP地址的映射关系,以及,IAB node1的BAP地址与IAB node1的CGI的映射关系。
IAB Donor CU通过F1AP向IAB node3配置IAB node3的上行数据包的路由标识与IAB node1的BAP地址的映射关系。
表1示出了IAB node3的上行数据包的路由标识与IAB node1的BAP地址的映射关系。
如下表1所示,IAB node3在收到上行数据包后,输入上行数据包BAP子头中的路由标识(routing ID)(包含目的BAP地址(Destination BAP address)和路径标识(Path ID)),查询表1即可得知下一跳Parent IAB node(IAB node1)的BAP address信息,然后将该数据包投递给对应的Parent IAB node(IAB node1)。
表1 IAB node3的上行数据包的路由标识与IAB node1的BAP地址的映射关系
Figure PCTCN2020126032-appb-000001
与此同时,IAB Donor CU还需要通过F1AP向IAB node3配置下一跳Parent IAB node(IAB node1)的BAP address与对应的CGI的映射关系。表2示出了IAB node1的BAP address与IAB node1的CGI的映射关系。如下表2所示,IAB node3在收到上行数据包时,根据查询表1得到的该Parent IAB node(IAB node1)的BAP address以及表2,可以找到对应的CGI,进而找到对应的小区组(cell group),然后将该数据包投递给对应的无线链路层控制(Radio Link Control,RLC)实体和介质访问控制(Medium Access Control,MAC)实体,进行上行数据传输。
表2 IAB node1的BAP address与IAB node1的CGI的映射关系
映射列表 下一跳IAB node信息 下一跳IAB node对应的CGI
1 BAP address CGI
2 BAP address CGI
当上行数据传输的下一跳路由信息为上述第二种实现方式-第五种实现方式时,本实施例提供的控制信令传输方法包括如下步骤。
步骤C1:IAB node1通过F1AP向IAB Donor CU发送UE上下文建立请求消息。
步骤C2:IAB Donor CU接收IAB node1发送的UE上下文建立请求消息。
步骤C3:IAB Donor CU向IAB node1发送UE上下文建立响应消息。
步骤C4:IAB Donor CU通过F1AP向IAB node3配置上行数据传输的下一跳路由信息。
该上行数据传输的下一跳路由信息包含:上述上行数据传输的下一跳路由信息的第二种实现方式-第五种实现方式。
IAB Donor CU通过F1AP向IAB node3配置IAB node3的上行数据包的路由标识与IAB node1的BAP地址的映射关系。
如上表1所示,IAB node3在收到上行数据包后,输入上行数据包BAP子 头中的routing ID(包含Destination BAP address和Path ID),查询表1即可得知下一跳的Parent IAB node(IAB node1)的BAP address信息,然后将该数据包投递给对应的Parent IAB node(IAB node1)。
与此同时,IAB Donor CU还需要通过F1AP向IAB node3配置下一跳Parent IAB node(IAB node1)的BAP address与对应的Parent IAB node(IAB node1)的小区标识信息的映射关系,例如IAB node1的BAP address与NR CGI的映射关系,或者IAB node1的BAP address与PCI的映射关系。如表3所示。
或者,IAB Donor CU通过F1AP向IAB node3配置下一跳Parent IAB node(IAB node1)的BAP address与对应的Parent IAB node(IAB node1)所在小区组的Pcell ID或Scell ID的映射关系。如表4、表5所示。
IAB node3在收到上行数据包时,根据该表3、表4或者表5所示的映射关系表,找到对应的小区,然后将该数据包投递给对应的RLC/MAC实体,进行上行数据传输。
表3 Parent IAB node的BAP address与NR CGI/PCI的映射关系表
映射列表 下一跳IAB node信息 下一跳IAB node对应的NR CGI/PCI
1 BAP address NR CGI/PCI
2 BAP address NR CGI/PCI
   
表4 Parent IAB node的BAP address与Pcell ID的映射关系表
映射列表 下一跳IAB node信息 下一跳IAB node对应的Pcell ID
1 BAP address Pcell ID
2 BAP address Pcell ID
   
表5 Parent IAB node的BAP address与Scell ID的映射关系表
映射列表 下一跳IAB node信息 下一跳IAB node对应的Scell ID
1 BAP address Scell ID
2 BAP address Scell ID
   
针对图2B所示的场景,第一通信节点可以是IAB网络中的IAB Donor CU,第二通信节点可以是IAB node4,第三通信节点可以是IAB node2。当然,第三通信节点也可以是IAB node1,以下以第三通信节点为IAB node2为例进行说明。本实施例提供的控制信令传输方法包括如下步骤。
步骤D1:IAB node2通过F1AP向IAB Donor CU发送UE上下文建立请求消息。
步骤D2:IAB Donor CU接收IAB node2的UE上下文建立请求消息。
步骤D3:IAB Donor CU向IAB node2发送UE上下文建立响应消息。
步骤D4:IAB Donor CU通过F1AP向IAB node4配置上行数据传输的下一跳路由信息。
当上行数据传输的下一跳路由信息为上述第一种实现方式时,在步骤D1中,IAB node2同时在UE上下文建立请求消息中携带IAB node2的CGI。在步骤D3中,IAB Donor CU从UE上下文建立请求消息获取IAB node2的CGI。
本实施例提供的控制信令传输方法,通过第一通信节点向第二通信节点发送上行数据传输的下一跳路由信息,该上行数据传输的下一跳路由信息包括作为第二通信节点下一跳的第三通信节点的标识信息,实现了第一通信节点提前为第二通信节点配置其上行数据传输的下一跳路由信息,以便第二通信节点能够准确地将上行数据传输到相应的下一跳,即第三通信节点,提高了数据传输的准确性及可靠性。
图4为另一实施例提供的一种控制信令传输方法的一种应用场景的示意图。如图4所示,本申请中的第一通信节点可以为IAB Donor CU2,第二通信节点可以为IAB node3,IAB Donor CU1为IAB node3切换前的源第一通信节点。在IAB场景中,当IAB node发生切换,即服务的IAB Donor(gNB)发生变更时,目前,对发生切换的IAB node如何与切换后的IAB Donor同步新无线接入全球小区标识(NR Cell Global Identifier,NR CGI)没有做出规定。
本申请提供一种控制信令传输方法,以在发生切换的场景中,实现第二通信节点与第一通信节点同步NR CGI。
图5为另一实施例提供的一种控制信令传输方法的流程图。如图5所示,本实施例提供的控制信令传输方法包括如下步骤。
步骤501:第一通信节点接收第二通信节点发送的第二通信节点的切换后的NR CGI。
切换后的NR CGI包括:陆上公用移动通信网(Public Land Mobile Network, PLMN)标识、第一通信节点的基站标识(gNB ID)和切换前的源第一通信节点的基站内小区标识(Cell ID)。
一实现方式中,本申请中的第一通信节点指的是第二通信节点切换后的新的第一通信节点。
一实施例中,NR CGI由PLMN ID和NR小区标识(NR Cell ID)两个部分构成,其中NR Cell ID由gNB ID和基站内Cell ID组成。图6为一实施例提供的NR CGI的结构示意图。
一实现方式中,当第二通信节点从源第一通信节点切换至新的第一通信节点时,可以先从源第一通信节点获取新的第一通信节点的gNB ID,再根据PLMN ID、该新的第一通信节点的gNB ID以及源第一通信节点的基站内Cell ID生成切换后的NR CGI。
一实现方式中,第二通信节点通过F1AP向第一通信节点发送F1建立请求消息,该F1建立请求消息中包括该切换后的NR CGI。相应地,第一通信节点通过F1AP接收第二通信节点发送的F1建立请求消息,从该F1建立请求消息中,获取第二通信节点的切换后的NR CGI。
步骤502:第一通信节点确定切换后的NR CGI与第一通信节点已服务的任一通信节点的NR CGI冲突时,执行冲突解决步骤。
一实施例中,第一通信节点确定切换后的NR CGI中的基站内Cell ID与第一通信节点已服务的任一通信节点的基站内Cell ID冲突时,执行冲突解决步骤。
一实现方式中,第一通信节点执行冲突解决步骤可以为:第一通信节点为第二通信节点分配新的NR CGI。
新分配的NR CGI与第一通信节点已服务的任一通信节点的NR CGI均不冲突。
一实现方式中,第一通信节点通过F1AP向第二通信节点发送F1建立失败消息。其中,F1建立失败消息中包括:新分配的NR CGI和F1建立失败原因,其中F1建立失败原因为NR CGI冲突。
在该实现方式中,第二通信节点在接收到F1建立失败消息后,读取建立失败原因,并获取新分配的NR CGI,并将该新分配的NR CGI作为自己的NR CGI。之后,第二通信节点使用该新分配的NR CGI向第一通信节点重新发送F1建立请求消息,该F1建立请求消息携带该新分配的NR CGI。第一通信节点接收到F1建立请求消息后,向第二通信节点回复F1建立请求响应消息。第二通信节点接收F1建立请求响应消息,完成与第一通信节点的F1连接建立流程。
另一实现方式中,第一通信节点通过F1AP向第二通信节点发送F1建立响应消息;其中,F1建立响应消息中包括新分配的NR CGI。
以下以图4为例,详细说明上述过程。
请继续参照图4,当IAB node3从原服务基站IAB Donor1(gNB1)切换至新服务基站IAB Donor2(gNB2)时,IAB node3先从原服务基站的IAB Donor CU1获取目标基站IAB Donor2(gNB2)的gNB ID(gNB ID2),然后再与IAB Donor CU2建立F1连接。IAB node3通过F1AP向IAB Donor CU2发送F1建立请求,并在请求消息中携带新分配的NR CGI,新分配的NR CGI中的NR Cell ID由gNB ID2和原有的基站内Cell ID组成。在这种情况下,若IAB Donor CU2所服务的其它IAB node的基站内小区ID正好和IAB node3上报的原有的小区ID相同,就会出现IAB node3的NR CGI与IAB Donor CU2所服务的其它IAB node的NR CGI相同的情况,从而导致NR CGI冲突。
在图4所示场景中,一实现方式中,本实施例提供的控制信令传输方法包括如下步骤。
步骤E1:IAB node3在切换到新的服务基站IAB Donor2(gNB2)后,需要与IAB Donor CU2建立F1连接。
IAB node3通过F1AP向IAB Donor CU2发送F1建立请求消息,并在F1建立请求消息中携带切换后的NR CGI,切换后的NR CGI中的NR Cell ID由gNB ID2和原有的基站内小区ID组成。
步骤E2:IAB Donor CU2通过F1AP接收IAB node3的F1建立请求消息,读取其中的NR CGI,发现该NR CGI与IAB Donor CU2连接的其它IAB node的NR CGI相同,发生NR CGI冲突。
步骤E3:IAB Donor CU2重新为该IAB node3分配新的基站内小区ID,组成新分配的NR CGI,并通过F1建立响应消息将新分配的NR CGI发送给IAB node3。
步骤E4:IAB node3接收F1建立响应消息,读取其中的NR CGI,发现其中的NR CGI与自己原有的NR CGI不相同,IAB node3将IAB Donor CU2新分配的NR CGI作为自己的NR CGI,完成与IAB Donor CU2的F1连接建立,并用新分配的NR CGI与IAB Donor CU2进行后续的F1AP消息传递。
在图4所示场景中,另一实现方式中,本实施例提供的控制信令传输方法包括如下步骤。
步骤F1:IAB node3在切换到新的服务基站IAB Donor2(gNB2)后,需要与IAB Donor CU2建立F1连接。
IAB node3通过F1AP向IAB Donor CU2发送F1建立请求消息,并在消息中携带切换后的NR CGI信息,切换后的NR CGI的中的NR Cell ID由gNB ID2和原有的基站内小区ID组成。
步骤F2:IAB Donor CU2通过F1AP接收IAB node3的F1建立请求消息,读取其中的NR CGI,发现该NR CGI与IAB Donor CU2连接的其它IAB node的NR CGI相同,发生NR CGI冲突。
步骤F3:IAB Donor CU2重新为该IAB node3分配新的基站内小区ID,组成新分配的NR CGI,并通过F1失败响应消息将新分配的NR CGI发送给IAB node3,在F1失败响应消息中将失败的原因设置为Cell ID冲突(conflict)。
步骤F4:IAB node3接收F1失败响应消息,读取其中的失败原因为Cell ID conflict。同时,IAB node3从F1失败响应消息中读取IAB Donor CU2新分配的NR CGI作为自己的NR CGI。
步骤F5:IAB node3使用新分配的NR CGI向IAB Donor CU2发送F1建立请求消息。
步骤F6:IAB Donor CU2向IAB node3回复F1建立请求响应消息。
步骤F7:IAB node3接收F1建立响应消息,完成与IAB Donor CU2的F1连接建立流程。
在该实现方式中,IAB Donor CU2向IAB node3回复失败响应消息,可以使IAB node3更清楚地获知IAB Donor CU2更改NR CGI的原因,提高了数据传输的可靠性。
本实施例提供的控制信令传输方法,通过第一通信节点接收第二通信节点发送的第二通信节点的切换后的NR CGI,其中,切换后的NR CGI包括:PLMN标识、第一通信节点的基站标识和切换前的源第一通信节点的基站内小区标识,第一通信节点确定切换后的NR CGI与第一通信节点已服务的通信节点的NR CGI冲突时,执行冲突解决步骤,实现了在第一通信节点发生切换的场景中,第一通信节点与第二通信节点同步NR CGI,提高了后续数据传输的可靠性与准确性。
图7为另一实施例提供的一种控制信令传输方法的流程图。如图7所示,本实施例提供的控制信令传输方法包括如下步骤。
步骤701:第二通信节点向第一通信节点发送第二通信节点的切换后的NR CGI。
切换后的NR CGI包括:PLMN标识、第一通信节点的基站标识和切换前的 源第一通信节点的基站内小区标识。
一实施例中,第二通信节点向第一通信节点发送第二通信节点的切换后的NR CGI之后,该方法还包括:第二通信节点接收第一通信节点为第二通信节点新分配的NR CGI。其中,新分配的NR CGI与第一通信节点已服务任一的通信节点的NR CGI均不冲突,新分配的NR CGI为第一通信节点确定切换后的NR CGI与第一通信节点已服务的通信节点的NR CGI冲突时确定的。
一实施例中,第二通信节点向第一通信节点发送第二通信节点的切换后的NR CGI,包括:第二通信节点通过F1AP向第一通信节点发送F1建立请求消息。其中,F1建立请求消息包括第二通信节点的切换后的NR CGI。
一实施例中,第二通信节点接收第一通信节点为第二通信节点新分配的NR CGI,包括:第二通信节点接收第一通信节点通过F1AP发送的F1建立失败消息。其中,F1建立失败消息中包括:新分配的NR CGI和F1建立失败原因,其中F1建立失败原因为NR CGI冲突。
一实施例中,第二通信节点接收第一通信节点为第二通信节点新分配的NR CGI,包括:第二通信节点接收第一通信节点通过F1AP发送的F1建立响应消息;其中,F1建立响应消息中包括新分配的NR CGI。
本实施例提供的控制信令传输方法,通过第二通信节点向第一通信节点发送第二通信节点的切换后的NR CGI,实现了在第一通信节点发生切换的场景中,第一通信节点与第二通信节点同步NR CGI,提高了后续数据传输的可靠性与准确性。
图8为一实施例提供的一种控制信令传输装置的结构示意图。该装置可以设置于第一通信节点中。如图8所示,本实施例提供的控制信令传输装置包括发送模块81。
发送模块81,被配置为向第二通信节点发送上行数据传输的下一跳路由信息。
上行数据传输的下一跳路由信息包括作为第二通信节点下一跳的第三通信节点的标识信息。
一实施例中,发送模块81被配置为通过F1AP向第二通信节点发送上行数据传输的下一跳路由信息。
一实施例中,该装置还包括接收模块,被配置为接收第三通信节点发送的第三通信节点的CGI。
一实施例中,接收模块被配置为通过F1AP接收第三通信节点发送的终端上 下文建立请求消息。其中,终端上下文建立请求消息中包含第三通信节点的CGI。
一实施例中,发送模块81还被配置为向第三通信节点发送终端上下文建立响应消息。
一实现方式中,上行数据传输的下一跳路由信息,包括:第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,第三通信节点的BAP地址与第三通信节点的CGI的映射关系。
另一实现方式中,上行数据传输的下一跳路由信息,包括:第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,第三通信节点的BAP地址与第三通信节点的NR CGI的映射关系。
又一实现方式中,上行数据传输的下一跳路由信息,包括:第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,第三通信节点的BAP地址与第三通信节点的PCI的映射关系。
再一实现方式中,上行数据传输的下一跳路由信息,包括:第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,第三通信节点的BAP地址与第三通信节点所在小区组的辅小区标识的映射关系。
另一实现方式中,上行数据传输的下一跳路由信息,包括:第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,第三通信节点的BAP地址与第三通信节点所在小区组的主小区标识的映射关系。
本实施例提供的控制信令传输装置用于实现图3所示实施例的控制信令传输方法,与图3所示实施例的控制信令传输方法的实现原理类似,此处不再赘述。
图9为另一实施例提供的一种控制信令传输装置的结构示意图。该装置可以设置于第一通信节点中。如图9所示,本实施例提供的控制信令传输装置包括:接收模块91和冲突解决步骤执行模块92。
接收模块91,被配置为接收第二通信节点发送的第二通信节点的切换后的NR CGI。
切换后的NR CGI包括:PLMN标识、第一通信节点的基站标识和切换前的源第一通信节点的基站内小区标识。
冲突解决步骤执行模块92,被配置为确定切换后的NR CGI与第一通信节点已服务的任一通信节点的NR CGI冲突时,执行冲突解决步骤。
一实施例中,冲突解决步骤执行模块92设置为:为第二通信节点分配新的NR CGI。其中,新分配的NR CGI与第一通信节点已服务的任一通信节点的NR  CGI均不冲突。
一实施例中,接收模块91设置为:通过F1AP接收第二通信节点发送的F1建立请求消息;从F1建立请求消息中,获取第二通信节点的切换后的NR CGI。
一实施例中,冲突解决步骤执行模块92设置为:通过F1AP向第二通信节点发送F1建立失败消息。其中,F1建立失败消息中包括:第一通信节点为第二通信节点新分配的NR CGI和F1建立失败原因,其中F1建立失败原因为NR CGI冲突。
一实施例中,冲突解决步骤执行模块92设置为:通过F1AP向第二通信节点发送F1建立响应消息。其中,F1建立响应消息中包括第一通信节点为第二通信节点新分配的NR CGI。
本实施例提供的控制信令传输装置用于实现图5所示实施例的控制信令传输方法,与图5所示实施例的控制信令传输方法的实现原理类似,此处不再赘述。
图10为又一实施例提供的一种控制信令传输装置的结构示意图。该控制信令传输装置可以设置于第二通信节点中。如图10所示,本实施例提供的控制信令传输装置包括发送模块93。
发送模块93被配置为向第一通信节点发送第二通信节点的切换后的NR CGI。
切换后的NR CGI包括:PLMN标识、第一通信节点的基站标识和切换前的源第一通信节点的基站内小区标识。
一实施例中,该装置还包括接收模块,被配置为接收第一通信节点为第二通信节点新分配的NR CGI。其中,新分配的NR CGI与第一通信节点已服务的任一通信节点的NR CGI均不冲突,新分配的NR CGI为第一通信节点确定切换后的NR CGI与第一通信节点已服务任一的通信节点的NR CGI冲突时确定的。
一实施例中,发送模块93设置为:通过F1AP向第一通信节点发送F1建立请求消息。其中,F1建立请求消息包括第二通信节点的切换后的NR CGI。
一实施例中,接收模块是设置为:接收第一通信节点通过F1AP发送的F1建立失败消息。其中,F1建立失败消息中包括:新分配的NR CGI和F1建立失败原因,其中F1建立失败原因为NR CGI冲突。
一实施例中,接收模块是设置为:接收第一通信节点通过F1AP发送的F1建立响应消息。其中,F1建立响应消息中包括新分配的NR CGI。
本实施例提供的控制信令传输装置用于实现图7所示实施例的控制信令传 输方法,与图7所示实施例的控制信令传输方法的实现原理类似,此处不再赘述。
图11为再一实施例提供的一种控制信令传输装置的结构示意图。如图11所示,该控制信令传输装置包括处理器94。可选地,还包括存储器99、电源组件95、接收器96、发送器97以及天线98。该控制信令传输装置中处理器94的数量可以是一个或多个,图11中以一个处理器94为例;该控制信令传输装置中的处理器94与存储器99、电源组件95、接收器96以及发送器97可以通过总线或其他方式连接,图11中以通过总线连接为例。接收器96与发送器97与天线98连接。
存储器99作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图3、图5及图7实施例中的控制信令传输方法对应的程序指令/模块(例如,控制信令传输装置中的发送模块81,或者,控制信令传输装置中的接收模块91和冲突解决步骤执行模块92,或者,控制信令传输装置中的发送模块93)。处理器94通过运行存储在存储器99中的软件程序、指令以及模块,从而执行控制信令传输装置的各种功能应用以及数据处理,即实现图3及各可选实现方式的控制信令传输方法,或者,实现图5及各可选实现方式的控制信令传输方法,或者,实现图7及各可选实现方式的控制信令传输方法。
存储器99可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据控制信令传输装置的使用所创建的数据等。此外,存储器99可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
电源组件95为控制信令传输装置的各模块提供电力。电源组件95可以包括电源管理系统,一个或多个电源,及其他为控制信令传输装置生成、管理和分配电力相关联的组件。发送器97被配置通过天线98向其他装置发送信号,接收器96被配置为通过天线98从其他装置接收信号。
本申请实施例还提供一种包含计算机可执行指令的存储介质,计算机可执行指令在由计算机处理器执行时用于执行本申请任意实施例所提供的控制信令传输方法。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户 设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disc,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (17)

  1. 一种控制信令传输方法,包括:
    第一通信节点向第二通信节点发送上行数据传输的下一跳路由信息;其中,所述上行数据传输的下一跳路由信息包括作为所述第二通信节点下一跳的第三通信节点的标识信息。
  2. 根据权利要求1所述的方法,在所述第一通信节点向第二通信节点发送上行数据传输的下一跳路由信息之前,还包括:
    所述第一通信节点接收所述第三通信节点发送的所述第三通信节点的小区组标识CGI。
  3. 根据权利要求2所述的方法,其中,所述第一通信节点接收所述第三通信节点发送的所述第三通信节点的CGI,包括:
    所述第一通信节点通过F1接口应用协议F1AP接收所述第三通信节点发送的终端上下文建立请求消息;其中,所述终端上下文建立请求消息中包含所述第三通信节点的CGI。
  4. 根据权利要求1所述的方法,其中,所述第一通信节点向第二通信节点发送上行数据传输的下一跳路由信息,包括:
    所述第一通信节点通过F1AP向所述第二通信节点发送所述上行数据传输的下一跳路由信息。
  5. 根据权利要求1所述的方法,其中,所述上行数据传输的下一跳路由信息,包括:
    所述第二通信节点的上行数据包的路由标识与第三通信节点的回传适配协议BAP地址的映射关系,以及,所述第三通信节点的BAP地址与所述第三通信节点的CGI的映射关系;或者,
    所述第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,所述第三通信节点的BAP地址与所述第三通信节点的新无线接入全球小区标识NR CGI的映射关系;或者,
    所述第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,所述第三通信节点的BAP地址与所述第三通信节点的物理层小区标识PCI的映射关系;或者,
    所述第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的映射关系,以及,所述第三通信节点的BAP地址与所述第三通信节点所在小区组的辅小区标识的映射关系;或者,
    所述第二通信节点的上行数据包的路由标识与第三通信节点的BAP地址的 映射关系,以及,所述第三通信节点的BAP地址与所述第三通信节点所在小区组的主小区标识的映射关系。
  6. 一种控制信令传输方法,包括:
    第一通信节点接收第二通信节点发送的所述第二通信节点的切换后的新无线接入全球小区标识NR CGI;其中,所述切换后的NR CGI包括:公用陆地移动通信网PLMN标识、所述第一通信节点的基站标识和第二通信节点的切换前的源第一通信节点内小区标识;
    在所述第一通信节点确定所述切换后的NR CGI与所述第一通信节点已服务的任一通信节点的NR CGI冲突的情况下,执行冲突解决步骤。
  7. 根据权利要求6所述的方法,其中,所述执行冲突解决步骤,包括:
    所述第一通信节点为所述第二通信节点分配新的NR CGI;其中,新分配的NR CGI与所述第一通信节点已服务的任一通信节点的NR CGI均不冲突。
  8. 根据权利要求7所述的方法,其中,所述第一通信节点接收第二通信节点发送的所述第二通信节点的切换后的NR CGI,包括:
    所述第一通信节点通过F1接口应用协议F1AP接收所述第二通信节点发送的F1建立请求消息;
    所述第一通信节点从所述F1建立请求消息中,获取所述第二通信节点的切换后的NR CGI。
  9. 根据权利要求8所述的方法,其中,所述第一通信节点为所述第二通信节点分配新的NR CGI,包括:
    所述第一通信节点通过F1AP向所述第二通信节点发送F1建立失败消息;其中,所述F1建立失败消息中包括:所述第一通信节点为所述第二通信节点新分配的NR CGI和F1建立失败原因,其中所述F1建立失败原因为NR CGI冲突。
  10. 根据权利要求8所述的方法,其中,所述第一通信节点为所述第二通信节点分配新的NR CGI,包括:
    所述第一通信节点通过F1AP向所述第二通信节点发送F1建立响应消息;其中,所述F1建立响应消息中包括所述第一通信节点为所述第二通信节点新分配的NR CGI。
  11. 一种控制信令传输方法,包括:
    第二通信节点向第一通信节点发送所述第二通信节点的切换后的新无线接入小区组标识NR CGI;其中,切换后的NR CGI包括:公用陆地移动通信网PLMN标识、所述第一通信节点的基站标识和第二通信节点的切换前的源第一 通信节点内小区标识。
  12. 根据权利要求11所述的方法,所述第二通信节点向第一通信节点发送所述第二通信节点的切换后的NR CGI之后,还包括:
    所述第二通信节点接收所述第一通信节点为所述第二通信节点新分配的NR CGI;其中,所述新分配的NR CGI与所述第一通信节点已服务的任一通信节点的NR CGI均不冲突,所述新分配的NR CGI为所述第一通信节点确定所述切换后的NR CGI与所述第一通信节点已服务任一的通信节点的NR CGI冲突的情况下确定的。
  13. 根据权利要求12所述的方法,其中,所述第二通信节点向第一通信节点发送所述第二通信节点的切换后的NR CGI,包括:
    所述第二通信节点通过F1接口应用协议F1AP向所述第一通信节点发送F1建立请求消息;其中,所述F1建立请求消息包括所述第二通信节点的切换后的NR CGI。
  14. 根据权利要求13所述的方法,其中,所述第二通信节点接收所述第一通信节点为所述第二通信节点新分配的NR CGI,包括:
    所述第二通信节点接收所述第一通信节点通过F1AP发送的F1建立失败消息;其中,所述F1建立失败消息中包括:所述新分配的NR CGI和F1建立失败原因,其中所述F1建立失败原因为NR CGI冲突。
  15. 根据权利要求13所述的方法,其中,所述第二通信节点接收所述第一通信节点为所述第二通信节点新分配的NR CGI,包括:
    所述第二通信节点接收所述第一通信节点通过F1AP发送的F1建立响应消息;其中,所述F1建立响应消息中包括所述新分配的NR CGI。
  16. 一种控制信令传输装置,包括:处理器;
    所述处理器设置为在执行计算机程序时实现如权利要求1-5中任一所述的控制信令传输方法;或者,
    所述处理器设置为在执行计算机程序时实现如权利要求6-10中任一所述的控制信令传输方法;或者,
    所述处理器设置为在执行计算机程序时实现如权利要求11-15中任一所述的控制信令传输方法。
  17. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-5中任一所述的控制信令传输方法,或者实现如权利要求6-10中任一项所述的控制信令传输方法,或者实现如权利要求 11-15中任一所述的控制信令传输方法。
PCT/CN2020/126032 2019-11-07 2020-11-03 控制信令传输方法、装置和存储介质 WO2021088779A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911083037.4 2019-11-07
CN201911083037.4A CN111093211A (zh) 2019-11-07 2019-11-07 一种控制信令传输方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2021088779A1 true WO2021088779A1 (zh) 2021-05-14

Family

ID=70393938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/126032 WO2021088779A1 (zh) 2019-11-07 2020-11-03 控制信令传输方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN111093211A (zh)
WO (1) WO2021088779A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111093211A (zh) * 2019-11-07 2020-05-01 中兴通讯股份有限公司 一种控制信令传输方法、装置和存储介质
US20230292191A1 (en) * 2020-08-05 2023-09-14 Nokia Solutions And Networks Oy Mechanism for cell identity management
CN114071608A (zh) * 2020-08-06 2022-02-18 大唐移动通信设备有限公司 一种信息传输方法及装置
WO2022085758A1 (ja) * 2020-10-22 2022-04-28 京セラ株式会社 通信制御方法
CN117280850A (zh) * 2021-04-01 2023-12-22 中兴通讯股份有限公司 无线通信中的流量传输方案
WO2023011111A1 (zh) * 2021-08-04 2023-02-09 华为技术有限公司 路由方法和通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998388A (zh) * 2009-08-21 2011-03-30 中兴通讯股份有限公司 安全信息的交互方法和装置
CN105323788A (zh) * 2014-08-01 2016-02-10 中国移动通信集团公司 微基站的物理小区号pci确定方法、装置、微基站及宏基站
WO2019214709A1 (zh) * 2018-05-10 2019-11-14 中兴通讯股份有限公司 信息传输方法及装置
CN111093211A (zh) * 2019-11-07 2020-05-01 中兴通讯股份有限公司 一种控制信令传输方法、装置和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101998388A (zh) * 2009-08-21 2011-03-30 中兴通讯股份有限公司 安全信息的交互方法和装置
CN105323788A (zh) * 2014-08-01 2016-02-10 中国移动通信集团公司 微基站的物理小区号pci确定方法、装置、微基站及宏基站
WO2019214709A1 (zh) * 2018-05-10 2019-11-14 中兴通讯股份有限公司 信息传输方法及装置
CN111093211A (zh) * 2019-11-07 2020-05-01 中兴通讯股份有限公司 一种控制信令传输方法、装置和存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Cells information from gNB-DU to gNB-CU", 3GPP DRAFT; R3-174783 CELLS INFORMATION FROM GNB-DU TO GNB-CU, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Reno, Nevada, USA; 20171127 - 20171201, 18 November 2017 (2017-11-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051373509 *
HUAWEI, HISILICON, OMESH: "Routing function and configuration", 3GPP DRAFT; R2-1906064 ROUTING FUNCTION AND CONFIGURATION, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051729541 *

Also Published As

Publication number Publication date
CN111093211A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
WO2021088779A1 (zh) 控制信令传输方法、装置和存储介质
US20220217575A1 (en) Sidelink communication method and apparatus, and storage medium
JP7013498B2 (ja) データスケジューリング方法、基地局およびシステム
US20190223154A1 (en) Message Sending Method And Apparatus
US9374704B2 (en) Method and apparatus for device-to-device communication
WO2019185062A1 (zh) 一种通信方法及装置
US11356294B2 (en) Packet processing method and device
AU2018370721A1 (en) Session processing method, device, and system
WO2017024909A1 (zh) 一种进行数据传输的方法和设备
WO2020098747A1 (zh) 传输路径的配置方法及装置
WO2021057864A1 (zh) 一种消息传输方法和装置
US9585052B2 (en) Determining a traffic bearer for data traffic between a terminal and a content data source of a content data network
US20220338088A1 (en) Communication Method and Apparatus
US20230156833A1 (en) Packet Forwarding Method, Apparatus, and System
WO2021218938A1 (zh) 一种资源协调方法及装置
CN110719611B (zh) 一种报文发送方法和装置
WO2022067818A1 (zh) 一种数据传输方法及装置
CN116368933A (zh) 一种通信方法及装置
JP2022551395A (ja) データ伝送方法並びにその装置、コンピュータプログラム、制御装置及びアプリケーションサーバ
WO2022228162A1 (zh) 一种通信方法、装置及系统
WO2022033393A1 (zh) 业务流量分流的方法和装置
US20220182910A1 (en) Data Processing Method, Apparatus, And System
WO2018054336A1 (zh) 消息的发送方法和装置
US20240040438A1 (en) Qos splitting and carrying methods, object side qos determination method, and ue
CN114586449A (zh) (ng)en-dc中的过热配置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20884887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20884887

Country of ref document: EP

Kind code of ref document: A1