WO2021057864A1 - 一种消息传输方法和装置 - Google Patents

一种消息传输方法和装置 Download PDF

Info

Publication number
WO2021057864A1
WO2021057864A1 PCT/CN2020/117530 CN2020117530W WO2021057864A1 WO 2021057864 A1 WO2021057864 A1 WO 2021057864A1 CN 2020117530 W CN2020117530 W CN 2020117530W WO 2021057864 A1 WO2021057864 A1 WO 2021057864A1
Authority
WO
WIPO (PCT)
Prior art keywords
tsn
network device
information
terminal
tunnel
Prior art date
Application number
PCT/CN2020/117530
Other languages
English (en)
French (fr)
Inventor
范强
娄崇
黄曲芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20869761.5A priority Critical patent/EP4044485A4/en
Publication of WO2021057864A1 publication Critical patent/WO2021057864A1/zh
Priority to US17/702,229 priority patent/US20220217505A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/28Flow control; Congestion control in relation to timing considerations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/12Arrangements providing for calling or supervisory signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • H04J3/0667Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a message transmission method and device.
  • 5G fifth-generation mobile communication
  • TSN time sensitive networking
  • the UPF network element Because some network elements in the 5G network, such as user plane function (UPF) network elements, do not support multicast or multicast or broadcast data transmission, in the downlink transmission, when the UPF network element receives the data from the TSN network In the case of a multicast message, the UPF network element forwards the multicast message to all connected terminals, and the terminal forwards the multicast message to all TSN devices connected to the terminal.
  • the 5G network A large number of wireless resources are occupied, resulting in a large wireless resource overhead, and wireless resources that can be used in other scenarios in the 5G network are reduced, which in turn affects the normal operation of other scenarios.
  • the embodiments of the present application provide a message transmission method and device, so as to reduce wireless resource overhead, improve wireless resource utilization, and ensure the normal operation of other scenarios when the wireless network forwards the multicast message of the TSN network.
  • the embodiments of this application provide a message transmission method, which can be applied to a core network device, or can also be applied to a chip inside a core network device.
  • the core network device executes the method. Take the description as an example.
  • the core network device obtains the first correspondence, the first correspondence includes the correspondence between the target device information and the first TSN domain information, the target device information is used to identify the target device, and the first TSN domain information is used to identify the first TSN domain information.
  • the core network device receives a multicast message from a second TSN device, the multicast message includes second TSN domain information, and the second TSN domain information is used to identify the TSN domain to which the second TSN device belongs, When it is determined according to the second TSN domain information and the first correspondence that the second TSN device and the first TSN device belong to the same TSN domain, the core network device sends the multicast message to the target device.
  • the embodiments of the present application provide a message transmission method, which can be applied to a terminal, or can also be applied to a chip inside the terminal.
  • the method executed by the terminal is described as an example.
  • the terminal sends TSN domain information, which is used to identify the TSN domain to which the first TSN device to which the terminal is connected belongs, and the terminal receives a multicast message, which comes from the TSN domain to which the second TSN device belongs.
  • the TSN domain information is used to determine whether the first TSN device and the second TSN device belong to the same TSN domain, and when they belong to the same TSN domain, the multicast message is transmitted to the terminal.
  • the embodiments of the present application provide a message transmission method, which can be applied to an access network device, or can also be applied to a chip inside the access network device.
  • the access network device receives a multicast message from the core network device through a tunnel between the access network device and the core network device.
  • the tunnel is dedicated to the multicast message.
  • the multicast message belongs to the TSN domain.
  • the terminal sends the multicast message, and the terminal connects to the TSN device in the TSN domain.
  • the tunnel dedicated to the multicast message can also be described as the tunnel dedicated to the TSN domain to which the multicast message belongs.
  • the present application provides a message transmission device, which includes units or means for executing each step of the first aspect, the second aspect, or the third aspect.
  • the present application provides a message transmission device, including at least one processor, the at least one processor is configured to connect to a memory, and the at least one processor is configured to call a program stored in the memory to execute the first Aspect or the method provided by the second or third aspect.
  • the memory may be a memory inside the device or a memory outside the device.
  • the present application provides a message transmission device, including at least one processor and an interface circuit, and the at least one processor is configured to execute the method provided in the above first aspect, second aspect, or third aspect.
  • this application provides a program, which when executed by a processor is used to execute the method of the above first aspect or the second aspect or the third aspect.
  • An eighth aspect provides a program product, such as a computer-readable storage medium, including the program of the seventh aspect.
  • the target device information in this application is used to identify the target device, which may mean that the target device information is used to determine the target device.
  • the target device information can be the identification information of the target device or the parameters related to the target device.
  • the identification information of the target device can be, for example, the identification or address or name of the target device, and the parameters related to the target device can be, for example, Session information corresponding to the target device or tunnel information corresponding to the target device.
  • the session information may be, for example, a session identifier or a tunnel end point identifier of the session, and the tunnel information may be, for example, a tunnel identifier or a tunnel end point identifier, etc. .
  • the first TSN domain information includes but is not limited to the domain number (domain number) or domain ID (domain ID) of the TSN domain to which the first TSN device belongs.
  • the second TSN domain information includes but is not limited to the domain number or domain identifier of the TSN domain to which the second TSN device belongs.
  • the second TSN device and the first TSN device can be the same type of device or different types of devices, for example, they can both be TSN end stations or slaves, or the second TSN device and the first TSN device One of the TSN devices is a TSN operation node/station, and the other is a TSN control node/master.
  • a multicast message refers to a message that carries a multicast address and allows a group of recipients who wish to receive data from the multicast address to receive and process the message.
  • the core network device after the core network device receives the multicast message from the TSN domain, it can determine the relationship with the multicast message according to the TSN domain information included in the multicast message and the corresponding relationship between the TSN domain information and the target device information.
  • the target device information corresponding to the TSN domain information included in the target device information can then send the multicast message to the target device identified by the target device information.
  • the core network device can send the multicast message to eligible target devices without sending the multicast message to all target devices connected to it, which can reduce wireless resource overhead, thereby improving resource utilization and transmission efficiency.
  • the multicast message may include, but is not limited to, a timing message.
  • the timing message is used to time the device in the domain or network to which the timing message belongs, or the timing message is used to synchronize the time of the device in the domain or network to which the timing message belongs.
  • the timing message includes time information, and the time information is used for timing a device in the domain or network to which the timing message belongs, or the time information is used for the domain or network to which the timing message belongs The devices in the system synchronize their time.
  • the type of the target device is not limited.
  • the target device may be a terminal, or an access network device, and of course, it may also be other network devices.
  • the target device may be a terminal connected to the first TSN device, and correspondingly, the target device information may be first terminal information used to identify the terminal.
  • the first terminal information used to identify the terminal may mean that the first terminal information is used to determine the terminal.
  • the first terminal information can be the identification information of the terminal or the parameters related to the terminal.
  • the identification information of the terminal can be, for example, the identification or address or name of the terminal, and the parameters related to the terminal can be, for example, corresponding to the terminal.
  • protocol data unit protocol data unit
  • the session information of the PDU session may include, for example, the identifier of the PDU session or the identifier of the tunnel endpoint of the PDU session.
  • the information may include, for example, the identifier of the tunnel or the identifier of the tunnel end point.
  • the core network device may, but is not limited to, obtain the first correspondence relationship in the following manner.
  • Manner 1 The core network device obtains the first correspondence from the terminal.
  • the core network device obtains the first terminal information and the first TSN domain information from the terminal, and the core network device stores the first terminal information and the first TSN domain information, that is, stores the first correspondence relationship, which can be understood as the core network
  • the device directly obtains the first correspondence from the terminal.
  • the core network device obtains the first corresponding relationship from other core network devices.
  • the core network device obtains the first terminal information and the first TSN domain information from other core network devices, and the core network device stores the first terminal information and the first TSN domain information, that is, stores the first correspondence relationship, which can be understood as The core network device directly obtains the first correspondence from other core network devices.
  • the core network device obtains a second corresponding relationship from the terminal or other core network devices.
  • the second corresponding relationship includes the corresponding relationship between the first TSN domain information and the second terminal information of the terminal, and the core network device determines the second terminal information
  • the first corresponding relationship is determined according to the first terminal information and the second corresponding relationship.
  • the second terminal information of the terminal may be used to identify or determine the terminal.
  • the second terminal information may be identification information of the terminal, or may be a parameter related to the terminal.
  • the second terminal information and the first terminal information have a corresponding relationship, which may mean that both the first terminal information and the second terminal information have a corresponding relationship with the same terminal.
  • the first terminal information and the second terminal information can be used to identify or Identify the same terminal.
  • the core network device obtains the second correspondence from the terminal or other core network equipment, and the second correspondence includes the terminal’s
  • the corresponding relationship between the identifier and the first TSN domain information the core network device may determine the first corresponding relationship based on the session identifier of the terminal and the second corresponding relationship when determining that there is a corresponding relationship between the terminal identifier and the session identifier of the terminal. Correspondence.
  • Manner 4 The core network device obtains the first corresponding relationship locally.
  • the core network device may send a multicast message to the terminal through the first PDU session.
  • the first PDU session may be a PDU session between the core network device and the terminal.
  • the target device may be an access network device, and the terminal connected to the access network device is connected to the first TSN device.
  • the target device information may be an access network device related to the access network device. Network equipment information.
  • the core network device may send a multicast message to the access network device through the second PDU session.
  • the second PDU session may be a PDU session between the terminal connected to the first TSN device and the core network device among the terminals connected to the access network device.
  • the core network device may also send a multicast message to the access network device through a tunnel established between the core network device and the access network device and dedicated to transmitting messages belonging to a specific TSN domain.
  • the core network device can use the dedicated tunnel to send one or more TSN domain multicast messages to the access network device.
  • the core network device does not need to send multiple multicast messages to the access network device connected to the multiple terminals, but only needs to send the multicast message once to the access network device, which can save wireless resources and improve transmission efficiency.
  • the access network device information may be access network device identification information or tunnel information between the core network device and the access network device, and the access network device identification information is used to identify the access network device,
  • the tunnel information is used to identify the tunnel between the core network device and the access network device.
  • the first correspondence may include a one-to-one correspondence between the tunnel information and the first TSN domain information, or may include the tunnel information Correspondence with a plurality of said first TSN domain information.
  • the core network device may, but is not limited to, obtain the first correspondence in the following manner.
  • the core network device acquires the correspondence between the terminal information of the terminal accessing the access network device and the first TSN domain information, and acquires the correspondence between the terminal information and the access network device information Relationship, and the core network device may determine the first correspondence relationship according to the correspondence relationship between the terminal information and the first TSN domain information and the correspondence relationship between the terminal information and the access network device information.
  • the core network device receives the first correspondence from the access network device.
  • the core network device obtains the access network device information and the first TSN domain information from the access network device, the core network device stores the access network device information and the first TSN domain information, that is, stores the first correspondence, It can be understood that the core network device directly obtains the first correspondence from the access network device.
  • the core network device may first establish the tunnel before sending a multicast message to the access network device through the tunnel.
  • the tunnel may be established in advance, or may be established in real time before sending the multicast message, which is not limited in this application.
  • the tunnel may be a bidirectional tunnel or a unidirectional tunnel.
  • the tunnel when the tunnel is a two-way tunnel, the tunnel may be established in the following manner.
  • Manner a The core network device allocates a first endpoint identifier to the tunnel, and sends the first endpoint identifier to the access network device, the core network device receives the second endpoint identifier from the access network device, and the second endpoint identifier is The access network equipment is allocated for the tunnel.
  • Manner b The core network device receives the first endpoint identifier from the access network device, the first endpoint identifier is allocated by the access network device for the tunnel, and the core network device allocates the second endpoint identifier for the tunnel, and Send the second endpoint identifier to the access network device.
  • the tunnel when the tunnel is a one-way tunnel, the tunnel can be established in the following manner: The core network device receives the first endpoint identifier from the access network device, and the first endpoint identifier is the connection The network access equipment is allocated for the tunnel. When the access network device successfully allocates the tunnel endpoint identifier to a tunnel and sends the allocated endpoint identifier to the core network device, it can be considered that the unidirectional tunnel has been established.
  • the access network device may send the multicast message to the terminal in the following manner.
  • Manner 1 The access network device sends the multicast message to the terminal in a broadcast manner, and correspondingly, the terminal receives the multicast message sent in the broadcast manner from the access network device.
  • Manner 2 The access network device sends the multicast message to the terminal in a multicast manner, and correspondingly, the terminal receives the multicast message sent in the multicast manner from the access network device.
  • Manner 3 The access network device sends the multicast message to the terminal in a unicast manner, and correspondingly, the terminal receives the multicast message sent in a unicast manner from the access network device.
  • the terminal when the access network device sends a multicast message to the terminal in a multicast or broadcast manner, the terminal can also be configured with a radio network temporary identifier (RNTI) for the multicast message. And/or time-frequency resources, based on this design, the terminal can receive the multicast message sent by broadcast or multicast from the access network device according to the RNTI and/or time-frequency resource used for the multicast message.
  • the RNTI may be pre-defined or allocated by the access network device, and the time-frequency resource may be a time-frequency resource pre-allocated by the access network device or a dynamically scheduled time-frequency resource.
  • the corresponding relationship between the terminal and the TSN domain can also be obtained, and the corresponding relationship and the first Second, the domain to which the TSN device belongs, determining the terminal corresponding to the domain to which the second TSN device belongs, and then the access network device sends a multicast message to the terminal corresponding to the domain to which the second TSN device belongs.
  • FIG. 1 is a schematic diagram of a network architecture to which an embodiment of this application is applicable;
  • FIG. 2 is a schematic diagram of a clock node relationship provided by an embodiment of the application.
  • Figure 3 is a PTP message format provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a 5GS as a TSN network transparent clock provided by an embodiment of this application;
  • FIG. 5 is a schematic flowchart of a message transmission method provided by an embodiment of this application.
  • Figure 6a is a schematic diagram of a UE registration process provided by an embodiment of the application.
  • FIG. 6b is a schematic diagram of a UE initiating a service request process according to an embodiment of this application.
  • FIG. 6c is a schematic diagram of a process of establishing a PDU session initiated by a UE according to an embodiment of the application
  • FIG. 7 is an implementation flowchart of another message transmission method provided by an embodiment of the application.
  • FIG. 8 is an implementation flowchart of yet another message transmission method provided by an embodiment of this application.
  • FIG. 9 is an implementation flowchart of yet another message transmission method provided by an embodiment of the application.
  • FIG. 10 is an implementation flowchart of yet another message transmission method provided by an embodiment of this application.
  • FIG. 11 is an implementation flowchart of yet another message transmission method provided by an embodiment of this application.
  • FIG. 12 is a schematic structural diagram of a message transmission apparatus provided by an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of another message transmission device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of another message transmission apparatus provided by an embodiment of the application.
  • FIG. 15 is a schematic structural diagram of a terminal provided by an embodiment of this application.
  • FIG. 16 is a schematic structural diagram of an access network device provided by an embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a core network device provided by an embodiment of this application.
  • Terminals also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminals are devices that provide users with voice and/or data connectivity.
  • handheld devices with wireless connectivity vehicle-mounted devices, etc.
  • some examples of terminals are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, and augmented reality.
  • augmented reality, AR equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids
  • Access network equipment refers to a radio access network (RAN) node (or device) that connects a terminal to a wireless network, and may also be called a base station or an access point (AP).
  • RAN radio access network
  • access network equipment are: continuously evolving Node B (gNB), transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network) controller, RNC), Node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • the access network device may be a RAN device including a centralized unit (CU) node, a distributed unit (DU) node, or a CU node and a DU node.
  • the RAN equipment including the CU node and the DU node splits the protocol layer of the eNB in the long term evolution (LTE) system. Some of the protocol layer functions are placed under the centralized control of the CU, and some or all of the protocol layer functions are left. Distributed in DU, DU is centrally controlled by CU.
  • Core network equipment refers to equipment in the core network that provides service support for terminals. Currently, some examples of core network equipment are: mobile management entity (MME), gateway (gateway), access and mobility management function (AMF) entity, session management function (session management) Function, SMF) entities, user plane function (UPF) entities, etc., which are not listed here.
  • MME mobile management entity
  • gateway gateway
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the AMF entity may be responsible for terminal access management and mobility management; the SMF entity may be responsible for session management, such as user session establishment, etc.; the UPF entity may be a functional entity of the user plane, mainly responsible for connecting to external The internet.
  • the entity in this application can also be referred to as a network element or a functional entity.
  • an AMF entity can also be referred to as an AMF network element or an AMF functional entity.
  • an SMF entity can also be referred to as an SMF network element or an SMF function. Entities, etc.
  • a multicast message can refer to a message sent in a multicast manner, which can carry a multicast address and allow a group of recipients who wish to receive data from the multicast address to receive and process messages.
  • the timing message is a type of multicast message, used to time the device in the domain or network to which the timing message belongs, or to synchronize the time of the device in the domain or network to which the timing message belongs.
  • the timing message may include time information, which is used to time devices in the domain or network to which the timing message belongs, or the time information is used in the domain or network to which the timing message belongs Time synchronization of the device.
  • the timing message can include a multicast address, and the device that receives the timing message forwards it to other devices through the corresponding port.
  • PDU session can be understood as a dedicated data channel between UE and UPF, including the data radio bearer (DRB) on the air interface side (UE to gNB) and the tunnel (gNB to UPF) on the core network side ( GPRS tunneling protocol-U, GTP-U), a PDU session can be considered as a unicast transmission channel between UPF and UE.
  • DRB data radio bearer
  • gNB tunneling protocol-U
  • GTP-U GPRS tunneling protocol-U
  • the 5GS does not support multicast/multicast/broadcast data transmission, and the user plane data of the UE is transmitted through the PDU session established between the UE and the corresponding UPF.
  • first and second are only used for the purpose of distinguishing description, and cannot be understood as indicating or implying relative importance, nor shall they be understood as indicating or implying. order.
  • first TSN device and the second TSN device are only used to distinguish between different TSN devices, and it does not mean that the priority or importance of the two TSN devices is different.
  • Fig. 1 is a schematic diagram of a network architecture to which the embodiments of this application are applicable.
  • Fig. 1 shows a network architecture of a wireless system supporting TSN.
  • the network architecture integrates the wireless network and the TSN network.
  • the wireless network is virtualized as a logical switching node (also called a virtual switching node) in the TSN network, that is, the TSN network can regard the wireless network as a TSN bridge device (also called a TSN switching device).
  • the wireless system takes the 5G system (5G system, 5GS) as an example.
  • the devices/network elements in the TSN network can forward data through the TSN bridge device virtualized by the 5G network.
  • the network-side and terminal-side adaptation functions are added between the TSN network and the 5G network.
  • an application function (AF) network element is added to the network.
  • the user plane (UP) of the TSN adaptation function on the network side is added to the user plane function (UPF) network element.
  • the user equipment (UE) adds the terminal-side TSN adaptation function as an example.
  • the terminal-side TSN adaptation function may be deployed on the UE.
  • the terminal-side TSN adaptation function may be an internal functional module of the UE.
  • the CP of the network-side TSN adaptation function, the UP of the network-side TSN adaptation function, and the terminal-side TSN adaptation function are used to adapt the characteristics and information of the 5G network to the information required by the TSN, and communicate with the TSN through the interface defined by the TSN. Communication in the network element.
  • the downlink transmission path of the message can be: TSN system->UPF->RAN->UE->terminal-side TSN adaptation function-> TSN switching equipment/TSN terminal equipment
  • the uplink transmission path of the message can be: TSN switching equipment/TSN terminal equipment->terminal-side TSN adaptation function->UE->RAN->UPF->TSN system.
  • the TSN adaptation function is also called a TSN adaptation unit or a TSN adaptation entity or a TSN adapter, which can realize the adaptation from the wireless network to the TSN network or the adaptation from the TSN network to the wireless network in the form of software or hardware.
  • the TSN switching equipment/TSN terminal equipment and the TSN system belong to the TSN network, and all other nodes belong to the 5G network.
  • the integration of the 5G network and the TSN network is taken as an example in Figure 1 for schematic illustration.
  • the 5G network in Figure 1 can also be replaced with other wireless networks, for example, it can be replaced with a 4.5G network, a 4G network, a 3G network,
  • the method provided in the embodiments of the present application can be applied to a network architecture that integrates any wireless network with a TSN network.
  • the method provided in the embodiments of the present application is not limited to the network architecture shown in FIG. 1.
  • RAN can refer to the above explanation 2).
  • UPF network element is a functional network element of the user plane, which is mainly responsible for connecting to external networks. Compared with LTE, it includes a serving gateway (SGW) similar to LTE and a public data network gateway (PDN-GW) The related functions are mainly responsible for the forwarding of packet data packets and accounting information statistics.
  • SGW serving gateway
  • PDN-GW public data network gateway
  • the AMF network element is responsible for terminal access management and mobility management. Compared with LTE, it includes mobility management functions similar to mobility management entities (MME) in the LTE network, and adds access management functions.
  • MME mobility management entities
  • the SMF network element is responsible for session management, such as the establishment, maintenance, and deletion of the terminal's PDU session.
  • a unified data management (UDM) network element is used to manage user subscription information and implement a backend similar to a home subscriber server (HSS) in LTE.
  • HSS home subscriber server
  • PCF policy control function
  • PCRF policy and charging rules function
  • the network exposure function (NEF) network element is used to provide the framework, authentication and interface related to network capability opening, and to transfer information between the 5G system network function and other network functions.
  • the AF network element can be a third-party application control platform or the operator’s own equipment.
  • the AF network element can provide services for multiple application servers.
  • the AF network element is a functional network that can provide various business services. Element, can interact with the core network through NEF network elements, and can interact with the policy management framework for policy management.
  • Logical switching nodes ie, TSN bridging devices virtualized by 5G networks
  • Logical switching nodes are mainly used for data or message forwarding.
  • TSN switching equipment is mainly used for data or message forwarding. It can also have other functions, such as topology discovery function, determine switch identification and switch port identification, support link layer discovery protocol (link layer discovery protocol, LLDP) and other protocols, for example, can determine the transmission delay, and when the switch is detected After the internal transmission delay of the node, the detected transmission delay is reported to the configuration network element.
  • topology discovery function determine switch identification and switch port identification
  • support link layer discovery protocol link layer discovery protocol (link layer discovery protocol, LLDP) and other protocols, for example, can determine the transmission delay, and when the switch is detected After the internal transmission delay of the node, the detected transmission delay is reported to the configuration network element.
  • LLDP link layer discovery protocol
  • TSN terminal equipment is similar to the terminal in the 3GPP network, and can receive and process messages sent to it by the TSN system, and can also actively send messages to the TSN system, such as sending request messages.
  • the TSN system may include configuration network elements to implement TSN configuration.
  • it may include centralized network configuration (CNC) network elements and centralized user configuration (centralized). user configuration, CUC) network elements, etc.
  • the TSN system may also include TSN switching equipment, TSN terminal equipment, TSN processing equipment, or TSN control equipment.
  • the TSN network requires precise time synchronization between TSN devices.
  • the precision time protocol (PTP) protocol can be used in the TSN network for precise time synchronization between TSN devices.
  • the timing signaling or timing message used for time synchronization between TSN devices in the PTP protocol can be called a PTP message /PTP message, the PTP message can contain the multicast Ethernet media access control (MAC) address.
  • MAC multicast Ethernet media access control
  • FIG 2 is a schematic diagram of a clock node relationship based on the PTP protocol provided in this embodiment of the application.
  • the following three clocks are defined in the PTP protocol: ordinary clock (OC), boundary Boundary clock (BC) and transparent clock (TC).
  • OC ordinary clock
  • BC boundary Boundary clock
  • TC transparent clock
  • the ordinary clock has only one clock port to communicate with the network.
  • the ordinary clock can be a master clock (grandmaster clock, GM) or a slave clock (slave clock). When the clock is the master clock, it can release time to downstream devices.
  • GM grandmaster clock
  • slave clock slave clock
  • the boundary clock has multiple clock ports. One of the clock ports can synchronize time from the upstream device, and the other clock ports can publish time information to downstream devices.
  • the boundary clock can synchronize the clock based on the PTP message. Without forwarding the PTP message, a new PTP message can be generated after the boundary clock performs clock synchronization, and then the new PTP message can be sent to the downstream device through the M clock port shown in FIG. 2 to continue time synchronization.
  • Both ordinary clocks and boundary clocks need to be synchronized with other devices in the same network.
  • the transparent clock does not need to be synchronized with other devices in the network. In other words, the transparent clock only needs to forward the received PTP message without performing time synchronization according to the PTP message.
  • the transparent clock can have multiple clock ports. PTP messages are forwarded between clock ports, and the PTP message can be forwarded delay correction.
  • This application mainly relates to a transparent clock, and the working principle of the transparent clock is briefly introduced below.
  • the transparent clock forwards the PTP message with a certain processing delay.
  • the PTP message will stay on the transparent clock, which is the processing
  • the delay is added to the correction field (correctionField) field of the PTP message.
  • the correctionField field is included in the PTP message header.
  • the correction value in nanoseconds is multiplied by 2 16 , and the length is 8 bytes.
  • the PTP The message header also contains a domain number field, which indicates the domain to which the PTP message belongs or indicates the domain to which the node that sends the PTP message belongs.
  • the length is 1 byte. It can be seen from Figure 3 that the PTP message also includes Other fields, such as reserved fields, message type fields, etc. The contents of other fields are irrelevant to this application and will not be detailed here.
  • the wireless system is integrated into the TSN switching equipment in the TSN network, that is, the wireless system belongs to the equipment in the TSN network. Therefore, in order to support the PTP protocol, the TSN network needs the wireless system to also adapt to PTP. Protocol, a possible adaptation method is to use the wireless system as one of the clock nodes, and one current implementation method is to use the wireless system as a transparent clock in the TSN network.
  • Fig. 4 is a schematic diagram of 5GS as a TSN network transparent clock provided by the embodiment of this application. From the working principle of the above transparent clock, it can be seen that 5GS is used as a TSN network transparent clock and only needs to forward TSN. The network timing message does not need to be time synchronized with the TSN network. When 5GS is used as a transparent clock to forward the TSN network timing message, it needs to notify the receiving device of the time that the timing message is in 5GS, so that the receiving device can be based on the timing in the timing message Time and stay time determine the accurate TSN time.
  • 5GS can modify the correctionField field of the PTP message when forwarding the PTP message, and add the stay time of the PTP message in 5GS to this field. So that the receiving device can learn the stay time of the PTP message in 5GS according to the correctionField field.
  • 5GS In order for 5GS to accurately obtain the stay time of the timing message (referring to the time interval from entering from the UPF side to sending it from the UE side), it is necessary to ensure that the time between the UPF and the UE is synchronized.
  • the UE and the UPF are from the same
  • the synchronization source (5G GM) obtains the time to ensure time synchronization as an example.
  • the time on each network element in 5GS is called 5G time.
  • the time of the TSN network is described as TSN time.
  • the timing message is a downlink message as an example.
  • the TSN adaptation function on the UPF side records the 5G time when the timing message enters the 5GS, and this time is recorded as t in .
  • the TSN adaptation function on the UE side records the 5G time when the timing message is sent, and this time is recorded as t out
  • the TSN adaptation function on the UE side can determine the time according to t in and t out
  • 5GS as the transparent clock of the TSN network, needs to forward the timing message to the TSN device connected to it after receiving the timing message from the TSN network.
  • the timing message is a multicast message, and the 5GS does not support multicast or multicast or broadcast data transmission
  • the 5GS can only forward the timing message through the PDU session established between the terminal and the corresponding UPF .
  • the timing message in the TSN network reaches the UPF network element in the 5GS, the UPF network element unicasts the timing message to all connected terminals through the PDU session established with each terminal.
  • the timing message After receiving the timing message, it is forwarded to all connected TSN devices through the TSN adaptation function on the terminal side, so as to implement timing for TSN devices that need to perform time synchronization according to the timing message.
  • the core network and air interface resources are largely occupied.
  • the transmission overhead of the timing message will increase proportionally, resulting in a large wireless resource overhead, which can be used in 5G networks In other scenarios, the wireless resources are reduced, which may affect the normal operation of other scenarios. It should be noted that not only the above-mentioned problems exist when the 5GS forwards the timing message, but also the above-mentioned problems exist as long as the multicast message is forwarded through the wireless system.
  • this application provides a message transmission method.
  • the wireless system can compare the TSN domain information and TSN domain information included in the multicast message with the The corresponding relationship of the target device information determines the target device information corresponding to the TSN domain information included in the multicast message, and then the multicast message can be sent to the target device corresponding to the target device information.
  • the wireless system can selectively send the multicast message to target devices in need, without sending the multicast message to all target devices connected to it, which can reduce wireless resource overhead, thereby improving resource utilization and transmission. effectiveness.
  • NR systems including NR vehicle to everything (V2X) systems, industrial control systems
  • LTE systems including LTE vehicle to everything, V2X) systems, industrial control systems
  • IAB integrated access backhaul
  • FIG. 5 is an implementation flowchart of a message transmission method provided by an embodiment of the application.
  • This method can be applied to the network architecture shown in Figure 1.
  • the core network device involved in the method may be the UPF in FIG. 1
  • the access network device may be the RAN in FIG. 1
  • the terminal may be the ⁇ UE.
  • the method provided in this application is not limited to be applied to the network architecture shown in FIG. 1, and can also be applied to other network architectures.
  • the method includes:
  • Step 101 The core network device acquires a first correspondence, the first correspondence includes the correspondence between the target device information and the first TSN domain information, the target device information is used to identify the target device, and the first TSN domain information is used to identify the first TSN TSN domain to which the device belongs.
  • the target device and the first TSN device may have a connection relationship.
  • the connection relationship between the terminal and the first TSN device means that the first TSN device is a TSN device connected to the terminal.
  • the connection relationship between the access network device and the first TSN device means that the first TSN device is a TSN device connected to a terminal connected to the access network device, where:
  • An access network device connection terminal refers to a wireless connection. The terminal accesses the access network device, or the access network device provides services for the terminal.
  • first correspondence in this application can be a one-to-one correspondence between target device information and first TSN domain information, or it can be a correspondence between one target device information and multiple first TSN domain information, of course. It can be other corresponding relationships, which are not limited.
  • the target device information is used to identify the target device, which may mean that the target device information is used to determine the target device.
  • the target device information can be the identification information of the target device or the parameters related to the target device.
  • the identification information of the target device can be, for example, the identification or address or name of the target device, and the parameters related to the target device can be, for example, It is the session information of the session corresponding to the target device or the tunnel information of the tunnel.
  • the session information may be, for example, the identifier of the session or the tunnel endpoint of the session.
  • the tunnel information may be, for example, the identifier of the tunnel or the identifier of the tunnel endpoint.
  • the first TSN domain information may include the domain number (domain number) or domain ID (domain ID) or Ethernet port number (port number) or port number of the TSN domain to which the first TSN device belongs.
  • the Ethernet port number can be the ingress Ethernet port number on the TSN adaptation function of the wireless system entrance.
  • the Ethernet port number can be the ingress Ethernet port number on the TSN adaptation function on the UPF side.
  • the Ethernet port number may be the ingress Ethernet port number on the TSN adaptation function on the UE side.
  • the first correspondence relationship may be in the form of a list or in other forms, which is not limited.
  • this application does not limit the number of target devices and first TSN devices, for example, there may be one or more.
  • the number of the target device and the first TSN device is 3, and the target device information is the identification information of the target device, and the first TSN domain information is the domain number of the TSN domain to which the first TSN device belongs, and,
  • the first correspondence is in the form of a list as an example.
  • the three target devices are respectively marked as target device 1, target device 2 and target device 3.
  • the identification information of target device 1, target device 2 and target device 3 are respectively marked as identification 1, identification 2. Identification 3.
  • the three first TSN devices are respectively marked as the first TSN device 1, the first TSN device 2, and the first TSN device 3.
  • the first TSN device 1, the first TSN device 2, and the first TSN device 3 belong to
  • the domain numbers of the TSN domains are respectively marked as domain number 1, domain number 2, and domain number 3.
  • the first correspondence relationship can be as shown in Table 1. .
  • Target device information First TSN domain information Logo 1 Domain number 1 Logo 2 Domain number 2 Logo 3 Domain number 3
  • Step 102 The core network device receives a multicast message from a second TSN device.
  • the multicast message includes second TSN domain information, and the second TSN domain information is used to identify the TSN domain to which the second TSN device belongs.
  • the multicast message may include, but is not limited to, a timing message.
  • the timing message is used to time the device in the domain or network to which the timing message belongs, or the timing message is used to synchronize the time of the device in the domain or network to which the timing message belongs.
  • the timing message includes time information, and the time information is used for timing a device in the domain or network to which the timing message belongs, or the time information is used for the domain or network to which the timing message belongs The devices in the system synchronize their time.
  • the time service message can be used to time a device in the TSN domain or to synchronize time of a device in the TSN domain.
  • the timing message can be used to time a device in the TSN network or to synchronize time of a device in the TSN network.
  • the second TSN domain information may include the domain number or domain identifier or Ethernet port number or port number of the TSN domain to which the second TSN device belongs.
  • the second TSN device and the first TSN device can be the same type of device, for example, they can both be TSN end stations or slaves, or they can be different types of devices, such as the second TSN device and the first TSN device.
  • One of the TSN devices can be a TSN operation node/station, and the other can be a TSN control node/master.
  • first TSN domain information and the second TSN domain information may be the same type of information or different types of information.
  • first TSN domain information and the second TSN domain information may both be domain numbers.
  • first TSN domain information may be a domain number
  • the second TSN domain information may be a domain identifier.
  • Step 103 The core network device determines that the second TSN device and the first TSN device belong to the same TSN domain according to the second TSN domain information and the first correspondence.
  • the core network device determines that the second TSN domain information is the same as certain first TSN domain information included in the first correspondence, it may determine that the second TSN device corresponds to the first TSN domain information.
  • the first TSN device belongs to the same TSN domain. Based on the first possible example, for example, taking the first correspondence relationship as shown in Table 1 and the second TSN domain information being domain number 3 as an example, the core network device is determining that the second TSN domain information corresponds to the first correspondence relationship.
  • the core network device determines that the TSN domain identified by the first TSN domain information included in the first correspondence relationship includes the TSN domain identified by the second TSN domain information, it may determine that the second TSN device and The first TSN device belongs to the same TSN domain.
  • the core network device determines that the domain ID 3 is the same as the domain ID 3 In the case of the TSN domain, it can be determined that the second TSN device and the first TSN device belong to the same TSN domain.
  • Step 104 When it is determined that the second TSN device and the first TSN device belong to the same TSN domain, the core network device sends a multicast message to the target device. For example, continuing the example in step 103, when the core network device determines the TSN domain with the same domain ID 3 and domain ID 3, it sends a multicast message to the target device 3.
  • the core network device or the target device may perform some or all of the steps in the above-mentioned embodiments, and these steps or operations are only examples, and the embodiments of the present application may also perform other operations or variations of various operations.
  • each step may be executed in a different order presented in the foregoing embodiment, and it may not be necessary to perform all operations in the foregoing embodiment.
  • the core network device when it is determined that the second TSN device and the first TSN device do not belong to the same TSN domain, the core network device does not send a multicast message to the target device. In this way, the core network device only needs to send multicast messages to eligible target devices, and does not need to send multicast messages to all target devices connected to the core network device, which can reduce wireless resource overhead.
  • the core network device After the core network device receives the multicast message from the second TSN device, it can be based on the second TSN domain information included in the multicast message and the first TSN domain information and the target device information. A correspondence relationship determines whether the second TSN device and the first TSN device belong to the same TSN domain. If it is determined that the second TSN device and the first TSN device belong to the same TSN domain, the core network device sends a multicast message to the target device.
  • the core network device when the core network device receives the multicast message of the TSN domain to which the second TSN device belongs, it only needs to send the multicast message to the target device connected to the first TSN device belonging to the TSN domain, instead of sending the multicast message to all target devices. Sending the multicast message can reduce wireless resource overhead, thereby improving resource utilization and transmission efficiency.
  • the type of the target device is not limited.
  • the target device can be a terminal, an access network device, or of course other network devices, no matter what type of device the target device is in this application.
  • the target device may be a terminal connected to the first TSN device, and correspondingly, the target device information may be first terminal information used to identify the terminal.
  • the terminal may be a terminal that has a session or tunnel with the core network device.
  • the first terminal information used to identify the terminal may mean that the first terminal information is used to determine the terminal.
  • the first terminal information can be the identification information of the terminal or the parameters related to the terminal.
  • the identification information of the terminal can be, for example, the identification or address or name of the terminal.
  • the identification of the terminal can be, for example, the temporary status of the terminal under the 5G system.
  • the parameters related to the terminal may be, for example, the session information of the protocol data unit (PDU) session established or about to be established between the terminal and the UPF.
  • the session information of the PDU session may include, for example, the identifier of the PDU session or the tunnel endpoint identifier included in the PDU session.
  • the tunnel information may include, for example, the identifier of the tunnel or the identifier of the tunnel endpoint.
  • the core network device may, but is not limited to, obtain the first correspondence relationship in the following manner.
  • Manner 1 The core network device obtains the first correspondence from the terminal.
  • the core network device obtains the first terminal information and the first TSN domain information from the terminal, and the core network device stores the first terminal information and the first TSN domain information, that is, stores the first correspondence relationship, which can be understood as the core network
  • the device directly obtains the first correspondence from the terminal.
  • the core network device obtains the first corresponding relationship from other core network devices.
  • the core network device obtains the first terminal information and the first TSN domain information from other core network devices, and the core network device stores the first terminal information and the first TSN domain information, that is, stores the first correspondence relationship, which can be understood as The core network device directly obtains the first correspondence from other core network devices. It is worth noting that the core network device may obtain the first terminal information and the first TSN domain information from the same other core network device, or may obtain the first terminal information and the first TSN domain information from different other core network devices.
  • the UE can perform the registration process/service request process/PDU session
  • the first TSN domain information of the TSN domain to which the first TSN device connected to the UE belongs is sent or indicated to the AMF.
  • the AMF can send the message to the UPF during the establishment/update of the PDU session between the UE and the UPF or the service request process. Send or indicate the first TSN domain information and the corresponding first terminal information.
  • the AMF may send or indicate the first TSN domain information and the corresponding first terminal information to the UPF through the SMF.
  • the first TSN domain information may be a list of domain numbers/domain identifiers/Ethernet port identifiers/port identifiers.
  • the UE may send or indicate the first TSN domain information of the TSN domain to which the first TSN device connected to the UE belongs to the AMF in the following manner:
  • the UE may send or indicate the first TSN domain information of the TSN domain to which the first TSN device connected to the UE belongs to the AMF during the registration process.
  • the UE may carry the first TSN domain information in the registration request (registration request) sent to the RAN in step 1, and the RAN may request the registration request Forward to AMF, so that AMF obtains the first TSN domain information from the UE.
  • the UE may carry the identity response (identity response) sent to AMF in step 7 or the identity response sent to AMF in step 11 or the registration complete message sent to AMF in step 22 The first TSN domain information.
  • the UE may send or indicate the first TSN domain information of the TSN domain to which the first TSN device connected to the UE belongs to the AMF.
  • the UE may send a service request to the RAN in step 1.
  • the request carries the first TSN domain information, and the RAN may forward the service request to the AMF, so that the AMF can obtain the first TSN domain information from the UE.
  • the UE may send or indicate the first TSN domain information of the TSN domain to which the first TSN device connected to the UE belongs to the AMF during the PDU session establishment process.
  • the UE may carry the first TSN domain information in the PDU session establishment request (PDU session establishment request) sent to the AMF in step 1.
  • the UE may carry the first TSN domain information in the PDU session establishment accept sent to the RAN in step 13, and the RAN may carry the first TSN domain information in the PDU sent to the AMF.
  • PDU session response PDU session response
  • the AMF can send or indicate the first TSN domain information and the corresponding first terminal information to the UPF in the following manner:
  • Method a AMF can send or indicate the first TSN domain information and corresponding first terminal information to the SMF through the PDU session establishment/update request message sent to the SMF during the PDU session establishment/update process, and the SMF can send to the UPF
  • the session establishment/modification request (session establishment/modification request) message forwards the first TSN domain information and the corresponding first terminal information to the UPF.
  • the AMF may send the first TSN domain information and the corresponding first terminal information in the SM Context Request (Nsmf_PDUSession_CreateSMContext Request) sent to the SMF in step 3, and the SMF may be in Step 10a
  • the session establishment/modification request message sent to the UPF carries the first TSN domain information and the corresponding first terminal information, so that the SMF can obtain the first TSN domain information and the corresponding information from the AMF.
  • the first terminal information For another example, still taking the PDU session establishment process shown in FIG.
  • the AMF may send the Update SM Context Request (Nsmf_PDUSession_UpdateSMContext Request) message to the SMF in step 15 to carry the first TSN domain information and the corresponding first terminal information
  • the SMF may carry the first TSN domain information and the corresponding first terminal information in the session modification request (session modification request) message sent to the UPF in step 16a.
  • the AMF may send or indicate the first TSN domain information and the corresponding first terminal information to the UPF during the service request process.
  • the AMF and SMF can carry the first TSN domain information and the corresponding first terminal information in the messages of step 4 and step 6c, so that the AMF can send or send to the UPF through the SMF.
  • the UPF sends or indicates the first TSN domain information and the corresponding first terminal information.
  • the UPF may store the first TSN domain information and the corresponding first terminal information as a first correspondence.
  • the terminal is the UE
  • the core network device is the UPF
  • the first terminal information and the corresponding first TSN domain information are stored in other core network devices as an example.
  • the other core network device is an AMF network element
  • the AMF may directly send the first terminal information and the corresponding first TSN domain information to the UPF during the PDU session establishment process, or send to the UPF through SMF.
  • the AMF can send the PDU session establishment SM context request (Nsmf_PDUSession_CreateSMContext Request) to the SMF in step 3 to carry the first terminal information and Corresponding to the first TSN domain information, the SMF may carry the first terminal information and the corresponding first TSN domain information in the session establishment/modification request message sent to the UPF in step 10a; or, the AMF may be in Step 15
  • the PDU Session Update SM Context Request (Nsmf_PDUSession_UpdateSMContext Request) sent to the SMF carries the first terminal information and the corresponding first TSN domain information, and the SMF can be in the session modification request (session modification request) message sent to the UPF in step 16a Carry first terminal information and corresponding first TSN domain information.
  • the SMF may send the first terminal information and the corresponding first TSN domain information to the UPF during the establishment of the PDU session.
  • the SMF may carry the first terminal information and the corresponding first TSN field in the session establishment/modification request message sent to the UPF in step 10a.
  • Information; or, the SMF may carry the first terminal information and the corresponding first TSN domain information in the session modification request (session modification request) message sent to the UPF in step 16a.
  • the AMF may obtain the first terminal information and the corresponding first terminal information from the network element such as UDM, NEF, or PCF during the establishment of the PDU session. TSN domain information, and sent to UPF or forwarded to UPF through SMF; or SMF obtains first terminal information and corresponding first TSN domain information from UDM, NEF, or PCF and other network elements, and sends it to UPF; or UPF Obtain the first terminal information and the corresponding first TSN domain information directly from network elements such as UDM, NEF, or PCF.
  • AMF taking the AMF acquiring first terminal information and corresponding first TSN domain information from network elements such as UDM, NEF, or PCF as an example, AMF can send a request message to network elements such as UDM, NEF, or PCF.
  • the first terminal information can be carried in the request message, and the response message fed back by the corresponding network element can be received after the request message is sent.
  • the response message can only carry the first TSN domain information or carry the first TSN domain information and the corresponding first terminal information.
  • the core network device obtains a second corresponding relationship from the terminal or other core network devices.
  • the second corresponding relationship includes the corresponding relationship between the first TSN domain information and the second terminal information of the terminal, and the core network device determines the second terminal information
  • the first corresponding relationship is determined according to the first terminal information and the second corresponding relationship.
  • the second terminal information of the terminal may be used to identify or determine the terminal.
  • the second terminal information may be identification information of the terminal, or may be a parameter related to the terminal.
  • the second terminal information and the first terminal information have a corresponding relationship, which may mean that both the first terminal information and the second terminal information have a corresponding relationship with the same terminal.
  • the first terminal information and the second terminal information can be used to identify or Identify the same terminal.
  • the core network device obtains the second correspondence from the terminal or other core network equipment, and the second correspondence includes the terminal’s
  • the corresponding relationship between the identifier and the first TSN domain information the core network device may determine the first corresponding relationship based on the session identifier of the terminal and the second corresponding relationship when determining that there is a corresponding relationship between the terminal identifier and the session identifier of the terminal.
  • the correspondence relationship can be understood as replacing the terminal identifier in the second correspondence relationship with the session identifier of the terminal to obtain the first correspondence relationship.
  • the core network device obtains the first corresponding relationship locally.
  • the core network device may store the first corresponding relationship in a local storage unit, and obtain it from the local storage unit when needed.
  • the core network device may send a multicast message to the terminal through the first PDU session.
  • the first PDU session may be a PDU session between the core network device and the terminal.
  • the terminal includes UE1 and UE2, the access network device is gNB1, the core network device is UPF, other core network devices are AMF, and the multicast message is a PTP message as an example.
  • the UPF adopts the second method to obtain the first correspondence relationship. It is assumed that one or more first TSN devices connected to UE1 belong to TSN domain 1 and TSN domain 2, and one or more first TSN devices connected to UE2 belong to TSN domain 2 and TSN domain 3.
  • the method includes:
  • Step 201a UE1 sends or indicates the first TSN domain information 1 to the AMF.
  • the first TSN domain information 1 includes the domain number 1 of the TSN domain 1 and the domain number 2 of the TSN domain 2.
  • Step 201b UE2 sends or indicates the first TSN domain information 2 to the AMF.
  • the first TSN domain information 2 includes the domain number 2 of the TSN domain 2 and the domain number 3 of the TSN domain 3.
  • Step 202a The AMF sends or instructs the UE1 information and the corresponding first TSN domain information 1 to the UPF.
  • the information of UE1 may be the identity of UE1 or the identity of the PDU session established between UE1 and UPF.
  • Step 202b The AMF sends or instructs the UE2 information and the corresponding first TSN domain information 2 to the UPF.
  • the information of UE2 may be the identity of UE2 or the identity of the PDU session established between UE2 and UPF.
  • Step 203a The UPF stores the UE1 information and the corresponding first TSN domain information 1, that is, stores the first correspondence 1.
  • the first correspondence 1 can be recorded as ⁇ UE1 information, first TSN domain information 1 ⁇ .
  • Step 203b The UPF stores the UE2 information and the corresponding first TSN domain information 2, that is, stores the first correspondence relationship 2, and the first correspondence relationship 2 can be denoted as ⁇ UE2 information, first TSN domain information 2 ⁇ .
  • the first correspondence relationship 1 and the first correspondence relationship 2 may constitute the above first correspondence relationship, that is, the first correspondence relationship 1 and the first correspondence relationship 2 are stored, that is, the first correspondence relationship is stored.
  • Table 2 it is a possible form of the first correspondence in this example.
  • Step 204 UPF receives the PTP message from the second TSN device.
  • the domain number indicated by the domain number field in the PTP message is 1, indicating that the TSN domain to which the message belongs is TSN domain 1, that is, the message is a message from TSN domain 1.
  • the second TSN device may be a device that carries the TSN master clock.
  • Step 205 UPF determines that the second TSN device and the first TSN device connected to UE1 belong to the same TSN domain according to the domain number 1 indicated by the domain number field carried in the PTP message and the stored first correspondence.
  • Step 206 UPF sends the PTP message to UE1.
  • the UPF may send the PTP message through the PDU session established with the UE1.
  • the PTP message is sent by unicast on the core network side (gNB ⁇ ->UPF) and RAN side (UE ⁇ ->gNB).
  • the UPF can also send the PTP message to the UE1 to enter the 5G time of the UPF.
  • the UPF may send the PTP message and the 5G time when the PTP message enters the UPF to the UE1 through the same message.
  • the UPF before forwarding the PTP message of the TSN network, the UPF can first determine the UEs connected to the TSN device that belongs to the same TSN domain as the message, and only unicast the PTP message to this part of the UE, rather than to all The UE sends the PTP message, so using this method can save core network and air interface resources.
  • the target device may be an access network device, and the terminal connected to the access network device is connected to the first TSN device.
  • the target device information may be an access network device related to the access network device. Network equipment information.
  • the core network device may send a multicast message to the access network device through the second PDU session.
  • the second PDU session may be a PDU session between the terminal connected to the first TSN device and the core network device among the terminals connected to the access network device.
  • the core network device may also send a multicast message to the access network device through a dedicated tunnel established between the core network device and the access network device.
  • the dedicated tunnel may be dedicated to a specific TSN domain, or dedicated to some TSN domains, or dedicated to all TSN domains.
  • the tunnel may be a bidirectional tunnel or a unidirectional tunnel.
  • the tunnel is dedicated to the TSN domain, and it can also be described as the tunnel dedicated to the transmission of messages belonging to the TSN domain. These two descriptions have the same meaning in this application.
  • the core network device can use the dedicated tunnel established between the core network device and the access network device to send one or more TSN domain multicast messages to the access network device.
  • the core network device When multiple terminals connected to the device are connected to the first TSN device, the core network device does not need to send multiple multicast messages to the access network device connected to the multiple terminals, but only needs to send a multicast message to the access network device once , Which can save wireless resources and improve transmission efficiency.
  • the access network device information may be access network device identification information or tunnel information between the core network device and the access network device, and the access network device identification information is used to identify the access network device,
  • the tunnel information is used to identify the tunnel between the core network device and the access network device, and the number of tunnels may be one or more.
  • the tunnel information may include a tunnel identifier or an endpoint identifier of the tunnel, and so on.
  • the tunnel may be dedicated to transmitting messages belonging to a specific TSN domain.
  • the tunnel may be dedicated to transmitting messages belonging to a certain TSN domain, or it may be dedicated to transmitting messages belonging to multiple TSN domains.
  • the first correspondence may include the access network device identification information and the first TSN domain information The corresponding relationship. For example, assuming that the number of access network devices and first TSN devices is three, and the first TSN domain information is the domain number of the TSN domain to which the first TSN device belongs, and the first correspondence is in the form of a list as an example,
  • the three access network devices are respectively denoted as access network equipment 1, access network equipment 2, and access network equipment 3.
  • the identification information of access network equipment 1, access network equipment 2 and access network equipment 3 are respectively denoted as Identification 11, identification 22, identification 33, the three first TSN devices are respectively marked as the first TSN device a, the first TSN device b, and the first TSN device c, the first TSN device a, the first TSN device b, and the first TSN device
  • the domain numbers of the TSN domain to which TSN device c belongs are respectively marked as domain number a, domain number b, and domain number c.
  • the terminal connected/served by access network device 1 is connected to the first TSN device a
  • the access network device 2 is The connected/served terminal is connected to the first TSN device b
  • the connected/served terminal of the access network device 3 is connected to the first TSN device c
  • the first corresponding relationship may be as shown in Table 3.
  • the first correspondence may include the one between the tunnel information and the first TSN domain information.
  • the first TSN domain information is the domain number of the TSN domain to which the first TSN device belongs, and the first correspondence is in the form of a list as an example, the access network device is recorded as the access network device 1, the third A TSN device is respectively denoted as the first TSN device a, the first TSN device b, and the first TSN device c, the first TSN device a, the first TSN device b, and the TSN domain a and TSN domain b to which the first TSN device c belongs And the domain numbers of the TSN domain c are respectively marked as domain number a, domain number b, and domain number c.
  • the corresponding relationship between the tunnel information and the first TSN domain information is a one-to-one correspondence, and the access network device
  • the tunnel dedicated to TSN domain a between 1 and the core network equipment is recorded as tunnel 1
  • the identifier of tunnel 1 is recorded as tunnel ID1
  • the tunnel dedicated to TSN domain b between access network equipment 1 and the core network equipment is recorded as tunnel 2.
  • the identifier of tunnel 2 is recorded as tunnel ID2
  • the tunnel dedicated to TSN domain c between access network device 1 and core network device is recorded as tunnel 3
  • the identifier of tunnel 3 is recorded as tunnel ID3.
  • the first The corresponding relationship may be shown in Table 4.
  • the corresponding relationship between the tunnel information and the first TSN domain information is the corresponding relationship between one tunnel information and multiple first TSN domain information, and the access network device 1 and
  • the tunnels between core network devices dedicated to TSN domain a, TSN domain b, and TSN domain c are denoted as tunnel x, and the identifier of tunnel x is denoted as tunnel ID x.
  • the first correspondence relationship may be as shown in Table 5.
  • Tunnel information First TSN domain information Tunnel ID1 Domain number a Tunnel ID2 Domain number b Tunnel ID3 Domain number c
  • the core network device may, but is not limited to, obtain the first correspondence in the following manner.
  • the core network device acquires the correspondence between the terminal information of the terminal accessing the access network device and the first TSN domain information, and acquires the correspondence between the terminal information and the access network device information Relationship, and the core network device may determine the first correspondence relationship according to the correspondence relationship between the terminal information and the first TSN domain information and the correspondence relationship between the terminal information and the access network device information.
  • the manner in which the core network device obtains the corresponding relationship between the terminal information and the first TSN domain information may refer to the manner in which the core network device obtains the first corresponding relationship in the first possible implementation manner above.
  • the access network device is a gNB
  • the terminals connected to the access network device include UE1 and UE2
  • the first TSN device connected to UE1 includes TSN device 1 and TSN device 2
  • the first TSN device connected to UE2 includes TSN device 2.
  • the terminal information is the terminal identifier
  • the first TSN domain information is the domain number
  • the access network device information is the tunnel information between the access network device and the core network device
  • the tunnel information is the tunnel identifier
  • the first correspondence is in the form of a list as an example.
  • the tunnel between the gNB and the core network device is recorded as tunnel y
  • the identifier of tunnel y is recorded as tunnel IDy
  • the identifiers of UE1 and UE2 are recorded as UE ID1 and UE ID2 respectively
  • TSN device 1 , TSN device 2 and the first TSN domain information corresponding to TSN device 3 are respectively marked as TSN domain number 1, TSN domain number 2, and TSN domain number 3, then the terminal information of the terminal accessing the gNB obtained by the core network device and the first
  • the corresponding relationship between a TSN domain information can be shown in Table 6, and the corresponding relationship between terminal information and access network device information can be shown in Table 7, and the core network device can be based on the corresponding relationship shown in Table 6 and The correspondence relationship shown in Table 7 determines the first correspondence relationship shown in Table 8.
  • the core network device can obtain the corresponding relationship between the terminal information and the access network device information by receiving the access network device information and terminal information carried in the PDU session establishment request/registration request/service request message .
  • the core network device receives the first correspondence from the access network device.
  • the core network device obtains the access network device information and the first TSN domain information from the access network device, the core network device stores the access network device information and the first TSN domain information, that is, stores the first correspondence, It can be understood that the core network device directly obtains the first correspondence from the access network device.
  • the core network device may first establish the dedicated tunnel before sending a multicast message to the access network device through the dedicated tunnel between the core network device and the access network device.
  • the tunnel may be pre-established, or it may be established in real time before sending the multicast message, which is not limited in this application. The following describes the tunnel establishment process in detail.
  • the tunnel when the tunnel is a two-way tunnel, the tunnel can be established in the following manner.
  • Manner a The core network device allocates a first endpoint identifier to the tunnel, and sends the first endpoint identifier to the access network device, the core network device receives the second endpoint identifier from the access network device, and the second endpoint identifier is The access network equipment is allocated for the tunnel.
  • Manner b The core network device receives the first endpoint identifier from the access network device, the first endpoint identifier is allocated by the access network device for the tunnel, and the core network device allocates the second endpoint identifier for the tunnel, and Send the second endpoint identifier to the access network device.
  • the tunnel when the tunnel is a unidirectional tunnel, the tunnel can be established in the following manner.
  • Manner 1 The core network device receives an endpoint identifier from the access network device, where the endpoint identifier is allocated by the access network device for the tunnel. It can be understood that when the access network device successfully allocates the tunnel endpoint identifier to a tunnel and sends the allocated endpoint identifier to the core network device, it can be considered that the unidirectional tunnel has been established.
  • Manner 2 The core network device allocates an endpoint identifier to the tunnel, and sends the endpoint identifier to the access network device. It can be understood that when the core network device successfully allocates the tunnel endpoint identifier to a tunnel and sends the allocated endpoint identifier to the access network device, it can be considered that the unidirectional tunnel has been established.
  • the access network device may send the multicast message to the terminal in the following manner.
  • Manner 1 The access network device sends the multicast message to the terminal in a broadcast manner, and correspondingly, the terminal receives the multicast message sent in the broadcast manner from the access network device.
  • Manner 2 The access network device sends the multicast message to the terminal in a multicast manner, and correspondingly, the terminal receives the multicast message sent in the multicast manner from the access network device.
  • Manner 3 The access network device sends the multicast message to the terminal in a unicast manner, and correspondingly, the terminal receives the multicast message sent in a unicast manner from the access network device.
  • the terminal when the access network device sends a multicast message to the terminal in a multicast or broadcast manner, the terminal can also be configured with a radio network temporary identifier (RNTI) and/or radio network temporary identifier (RNTI) for the multicast message. Or time-frequency resources.
  • RNTI radio network temporary identifier
  • RNTI radio network temporary identifier
  • the terminal receives a multicast message sent by broadcast or multicast from the access network device, including: the terminal receives from the access network device according to the RNTI and/or time-frequency resource used for the multicast message.
  • Network equipment receives multicast messages sent by broadcast or multicast.
  • the RNTI may be pre-defined or allocated by the access network device, and the time-frequency resource may be a time-frequency resource pre-allocated by the access network device or a dynamically scheduled time-frequency resource.
  • the access network device may also obtain the correspondence between the terminal and the TSN domain, and may also obtain the correspondence between the terminal and the TSN domain according to the correspondence and the second TSN.
  • the domain to which the device belongs is determined, and the terminal corresponding to the domain to which the second TSN device belongs is determined, and then the access network device sends a multicast message to the terminal corresponding to the domain to which the second TSN device belongs.
  • the correspondence between the terminal and the TSN domain may be the correspondence between the terminal information and the TSN domain information.
  • the terminal information may be, for example, the identification information of the terminal or the parameters related to the terminal that can determine the terminal, etc.
  • the TSN domain information may be the number or identification of the TSN domain.
  • the terminal includes UE1 and UE2, the access network equipment is gNB1, the core network equipment is UPF, other core network equipment is AMF, and the access network equipment information is the identifier of the tunnel established between gNB1 and UPF and the multicast message Take the PTP message as an example.
  • UPF is used to send PTP messages to gNB1 through a dedicated tunnel
  • tunnel 1 established between gNB1 and UPF is dedicated to TSN domain 1
  • the identifier of tunnel 1 is tunnel ID z1, which is established between gNB1 and UPF
  • the tunnel 2 is dedicated to TSN domain 2 and the identifier of tunnel 2 is tunnel ID z2
  • the tunnel 3 established between gNB1 and UPF is dedicated to TSN domain 3 and the identifier of tunnel 3 is tunnel ID z3, as an example.
  • the method includes:
  • step 301a to step 303a are the same as step 201a to step 203a
  • step 301b to step 303b are the same as step 201b to step 203b.
  • the UPF After performing steps 301a to 303a and steps 301b to 303b, the UPF obtains the first correspondence as shown in Table 2, that is, obtains the correspondence between the terminal information and the first TSN domain information.
  • Step 304 UPF obtains the corresponding relationship between the terminal information and the gNB1 information.
  • the corresponding relationship may be shown in Table 9.
  • Step 305 UPF determines the gNB1 information and the first TSN domain according to the correspondence between the terminal information and the first TSN domain information shown in Table 2, and the correspondence between the terminal information and the gNB1 information shown in Table 9 The correspondence between the information, the correspondence is shown in Table 10.
  • Step 306 UPF receives the PTP message from the second TSN device, and the domain number indicated by the domain number field in the PTP message is 1.
  • the second TSN device may be a device that carries the TSN master clock.
  • Step 307 UPF determines that the second TSN device and the first TSN device connected to gNB1 belong to the same TSN domain according to the domain number 1 in the PTP message and the correspondence between the gNB1 information shown in Table 9 and the first TSN domain information Or, the UPF determines the dedicated tunnel 1 maintained for the TSN domain 1.
  • the connection of the gNB1 to the first TSN device may mean that the UE connected to the gNB1 is connected to the first TSN device, and it may be understood that the gNB1 is indirectly connected to the first TSN device.
  • Step 308 UPF sends the PTP message to gNB1 through tunnel 1 dedicated to TSN domain 1 established with gNB1.
  • the UPF can also send the PTP message to gNB1 to enter the 5G time of the UPF.
  • the PTP message and the 5G time when the PTP message enters the UPF can be sent through the same message or different messages.
  • the tunnel may be established in the following manner.
  • the TEID on the gNB1 side can be allocated by the gNB1 itself, and the TEID on the UPF side can be allocated by the UPF itself.
  • UPF Before UPF sends a PTP message to gNB1 through a tunnel, it can determine whether a dedicated tunnel for TSN domain 1 has been established with the gNB1. If a tunnel has been established in advance, the tunnel will be used directly to transmit PTP messages. If no TSN domain 1 is established A dedicated tunnel can be triggered by UPF to establish a tunnel dedicated to TSN domain 1 with gNB1, which is used to transmit PTP messages in TSN domain 1 between UPF and gNB1.
  • the process of establishing a dedicated tunnel between UPF and gNB1 may include: UPF may allocate a TEID x for the dedicated tunnel, and forward the TEID to the corresponding gNB1 through SMF and AMF.
  • UPF may also The corresponding relationship between the dedicated tunnel and TSN domain 1 is indicated to gNB1; after receiving the TEID, gNB1 allocates a TEID y to the dedicated tunnel, and forwards it to the corresponding UPF through AMF and SMF.
  • the process of establishing a dedicated tunnel between UPF and gNB1 may include: gNB1 may indicate to AMF the TEID value y allocated for the dedicated tunnel, and further AMF may indicate to UPF directly or through SMF to UPF that gNB1 is a dedicated tunnel Assigned TEID value y, for example, when AMF can establish/update a PDU session between UE and UPF, it will indicate to UPF the TEID value y assigned by gNB1 for the dedicated tunnel through SMF, and UPF will receive the TEID value y assigned by gNB1 for the dedicated tunnel. Later, a TEID x can be assigned to the dedicated tunnel, and the TEID x can be forwarded to the gNB1 through SMF and AMF.
  • a unidirectional tunnel can be established between UPF and gNB1. Only gNB1 is required to allocate a TEID for the tunnel, and UPF does not need to allocate a TEID.
  • the above-mentioned two-way tunnel establishment procedure is taken as an example to illustrate the tunnel establishment procedure, and the unidirectional tunnel establishment procedure is similar.
  • Method 1 The TEID value allocated by gNB1 to each tunnel can be predefined by the protocol, refer to the above method a).
  • Manner 2 The TEID value allocated by the gNB1 to each tunnel may also be allocated by the gNB itself. In this case, the tunnel establishment process can refer to the foregoing Manner b). Based on the second method, since the unidirectional tunnel does not require the UPF to allocate TEID, if the UPF instructs gNB1 to establish the unidirectional tunnel through an indication message, the instruction message does not need to carry the TEID allocated by the UPF for the tunnel.
  • Step 309 After the gNB1 receives the PTP message sent by the UPF from the tunnel, it can send it to the UE in any of the following ways.
  • the UE1 corresponding to the TSN domain 1 is determined, and the PTP message is sent to the UE1 in a unicast manner.
  • the PTP message is sent to all UEs connected to gNB1 through broadcast on the air interface, and all UEs can receive and parse the PTP message.
  • the RNTI and/or time-frequency domain resources used by the UE to receive the PTP message may be predefined by the protocol or indicated by the network equipment to the UE through a system message/dedicated RRC message.
  • the group of UEs are UEs corresponding to TSN domain 1, that is, the TSN devices connected to the group of UEs belong to TSN domain 1.
  • each UE connected to gNB1 can indicate to gNB1 the TSN domain information of the TSN domain to which the connected TSN device belongs in the registration process/service request process/PDU session establishment process, and gNB1 will connect to the same TSN.
  • the UEs of the TSN equipment of the domain are allocated to a multicast group, and dedicated RNTI and/or time-frequency resources are allocated to the multicast group.
  • the UEs in the multicast group use the allocated RNTI and/or time-frequency resources to receive and analyze PTP message.
  • gNB1 since a dedicated tunnel between gNB1 and UPF is only used to transmit a PTP message in a specific TSN domain, in one case, gNB1 receives a PTP message from the dedicated tunnel, but the air interface resources are affected. However, when the PTP message can be sent to a certain UE or some UEs in the future, the next PTP message has already arrived at gNB1. At this time, gNB1 can cancel the sending of the previous PTP message and only send the received PTP message.
  • the UPF when the TSN devices connected to the N UEs connected to a gNB belong to the same TSN domain, in the prior art, after the UPF receives the PTP message belonging to the TSN domain, it needs to send the PTP message to the N UEs.
  • the PTP message is equivalent to the UPF sending N times to the gNB, and the air interface side also sending N times.
  • the UPF sends the PTP message of the TSN domain to the gNB through a dedicated tunnel, and the UPF only needs to send 1 to the gNB.
  • the gNB sends a PTP message to these UEs through multicast/broadcast, it only needs to send it once on the air interface.
  • the solution of this application can greatly save the resource occupation of the core network and the air interface side to send PTP messages, especially in the scenario where the number of UEs is large, the TSN domain is large, and the TSN devices connected to a UE may belong to multiple TSN domains. Can greatly improve resource utilization.
  • the dedicated tunnel established between gNB1 and UPF is dedicated to a specific TSN domain.
  • the TSN device connected to the UE connected to gNB1 belongs to multiple TSN domains, in order to transmit messages from multiple TSN domains, gNB1 and Multiple dedicated tunnels need to be established between UPFs.
  • this application provides the solution of Example 2 to realize that only one dedicated tunnel is established between the gNB1 and the UPF for the transmission of messages in all TSN domains.
  • the terminal includes UE1 and UE2, the access network equipment is gNB1, the core network equipment is UPF, other core network equipment is AMF, and the access network equipment information is the identifier of the tunnel established between gNB1 and UPF and the multicast message Take the PTP message as an example.
  • the UPF sends a PTP message to the gNB1 through a dedicated tunnel, and the dedicated tunnel established between the gNB1 and the UPF is dedicated to each TSN domain to which the TSN device connected to the UE connected to the gNB1 belongs as an example.
  • the method includes:
  • step 401a-step 403a are the same as step 201a-step 203a
  • step 401b-step 403b are the same as step 201b-step 203b, and the repetition will not be repeated, and the details are described above.
  • Step 404-Step 405 are the same as Step 304-Step 305, and the repetition will not be repeated here.
  • Step 404-Step 405 are the same as Step 304-Step 305, and the repetition will not be repeated here.
  • Step 406a The UPF receives the PTP message 1 from the second TSN device, and the domain number indicated by the domain number field in the PTP message 1 is 1.
  • the second TSN device may be a device that carries the TSN master clock.
  • Step 407a The UPF determines that the second TSN device and the first TSN device connected to the gNB1 belong to the same TSN domain according to the domain number 1 in the PTP message 1 and the correspondence between the gNB1 information and the first TSN domain information.
  • Step 408a UPF sends the PTP message 1 to gNB1 through the dedicated tunnel established with gNB1.
  • the UPF can also send the 5G time when the PTP message 1 enters the UPF to gNB1.
  • the PTP message 1 and the 5G time when the PTP message 1 enters the UPF may be sent through the same message or different messages.
  • the dedicated tunnel can be a two-way tunnel or a one-way tunnel.
  • the way of establishing the dedicated tunnel is similar to that of Example 1. For details, see Example 1 for the way of establishing a tunnel.
  • Step 409a After the gNB1 receives the PTP message 1 sent by the UPF from the tunnel, it can send it to the UE1 in any of the methods 1) to 4) in Example 1. In addition, in this example, gNB1 can also send a PTP message 1 to the 5G time when the UE1 enters the UPF.
  • Step 406b The UPF receives the PTP message 2 from the second TSN device, and the domain number indicated by the dombin number field in the PTP message 2 is 2.
  • Step 407b The UPF determines that the second TSN device and the first TSN device connected to the gNB1 belong to the same TSN domain according to the domain number 1 in the PTP message 2 and the correspondence between the gNB1 information and the first TSN domain information.
  • Step 408b UPF sends the PTP message 2 to gNB1 through the dedicated tunnel established with gNB1.
  • the UPF can also send the 5G time when the PTP message 2 enters the UPF to gNB1.
  • the PTP message 2 and the 5G time when the PTP message 2 enters the UPF may be sent through the same message or different messages.
  • Step 409b After the gNB1 receives the PTP message 2 sent by the UPF from the tunnel, it can send it to the UE1 and UE2 in any of the methods 1) to 4) in Example 1. In addition, in this example, gNB1 can also send the 5G time when the PTP message 2 enters the UPF to the UE.
  • gNB1 when gNB1 receives a PTP message from the dedicated tunnel, but due to the limited air interface resources, the PTP message cannot be sent to a certain UE or some UEs in the future, the next PTP message has already arrived at gNB1. If gNB1 determines that these two PTP messages are from the same TSN domain, gNB1 can cancel the sending of the previous PTP message and only send the PTP message received afterwards.
  • gNB1 since the dedicated tunnel between gNB1 and UPF can be used to transmit PTP messages in multiple TSN domains, gNB1 cannot determine whether two PTP messages come from the same TSN domain through the tunnel information.
  • gNB1 can analyze each PTP message. For example, deep packet inspection (DPI) can be used to detect the domain number field in the PTP message to determine the TSN domain to which each PTP message belongs. Determine whether two PTP messages belong to the same TSN domain.
  • DPI deep packet inspection
  • a dedicated two-way/one-way tunnel is established and maintained between gNB1 and UPF to transmit PTP messages of the TSN domain to which the TSN device connected to the UE connected to the gNB1 belongs.
  • the gNB1 can broadcast on the air interface side. Or send PTP messages in unicast or multicast, which can greatly save the resource occupation of the core network and air interface side to send PTP messages, and compared to Example 1, there is no need to maintain a dedicated tunnel for each TSN domain between UPF and gNB1 , Only need to establish and maintain a tunnel, which can save transmission resources.
  • the UPF after the UPF receives the PTP message from the second TSN device, in addition to sending the PTP message to gNB1 through the dedicated tunnel, it can also send the PTP message to gNB1 through the PDU session, where the PDU session It may be a PDU session between the UE connected to the first TSN device and the UPF among the UEs connected to the gNB1, and the first TSN device and the second TSN device belong to the same TSN domain.
  • one of the UEs connected to the first TSN device may be selected randomly, or may be selected based on certain conditions, which is not limited in this application.
  • the second TSN device and the access network device can be directly connected by Ethernet.
  • the second TSN device can directly send multicast messages to the access network.
  • the network access device after receiving the multicast message, the access network device can send it to the UE through one of the methods 2) to 4) in Example 1. In this way, it is possible to prevent the access network device from sending a multicast message to each terminal once on the air interface, thereby saving air interface resource overhead.
  • the terminal includes UE1, UE2, and UE3 as an example, the access network device is a gNB, and the multicast message is a PTP message.
  • the access network device is a gNB
  • the multicast message is a PTP message.
  • the number of TSN domain 1 is recorded as domain number 1
  • one or more first TSN devices connected to UE2 belong to TSN domain 1 and TSN domain 2.
  • the number of TSN domain 2 is recorded as domain number 2
  • one or more first TSN devices connected to UE3 belong to TSN domain 3
  • the number of TSN domain 3 is recorded as domain number 3.
  • the method includes:
  • Step 501a UE1 sends UE1 information and the corresponding domain number 1 to gNB.
  • Step 501b UE2 sends UE2 information and the corresponding domain number 1 and domain number 2 to the gNB.
  • Step 501c UE3 sends UE3 information and the corresponding domain number 3 to gNB.
  • Step 502 The gNB stores the correspondence between multiple UE information and multiple domain numbers.
  • the correspondence in this example may be as shown in Table 11.
  • the UE information in this example may be the identity of the UE, or parameters related to the UE, and so on.
  • Step 503 The gNB receives the PTP message from the second TSN device, and the domain number indicated by the domain number field in the PTP message is 1.
  • Step 504 The gNB can determine that the second TSN device and the first TSN device connected to UE1 and UE2 belong to the same TSN domain according to the domain number 1 in the PTP message and the correspondence shown in Table 11.
  • Step 505a The gNB can send the PTP message to UE1 in one of the manners 2) to 4) in Example 1.
  • Step 505b The gNB can send the PTP message to UE2 in one of the manners 2) to 4) in Example 1.
  • the transmission of a downlink multicast message is taken as an example, and the method provided in the embodiment of the present application can also be used in a scenario of transmitting an uplink multicast message.
  • the following takes the multicast message as the timing message as an example to describe the process of transmitting the uplink timing message.
  • a TSN device connected to the UE serves as the master clock of a TSN domain, and the master clock provides timing to other TSN devices.
  • FIG. 11 is an implementation flowchart of another message transmission method provided by an embodiment of this application.
  • TSN device 1 is used as the master clock of a TSN domain, and TSN device 1 and TSN device 2 belong to the same
  • the uplink timing process is as follows:
  • Step 601 TSN device 1 sends a PTP message to UE, and the domain number indicated by the domain number field in the PTP message is 1.
  • Step 602 After receiving the PTP message, the UE sends the PTP message and the entry 5G time of the PTP message to the UPF through the PDU session with the UPF.
  • the inlet 5G time may be referred to as t in, can be sent via a separate message may be transmitted in a field carrying PTP message.
  • Step 603a After the UPF receives the PTP message and the ingress 5G time (t in ), after the adaptation function is processed, the PTP message is sent to the TSN device 2 in the TSN network outside the 5GS in a multicast mode.
  • the adaptation function can correct the correctionField field in the PTP message, and the correction method is detailed above.
  • Step 603b After the UPF receives the PTP message and the ingress 5G time (t in ), it can directly send the PTP message and the ingress 5G time (t in ) downlink to each UE connected to the TSN device 1, or,
  • the PTP message can be processed by the UPF adaptation function and then sent downstream.
  • the UPF adaptation function can record the current time (t out ), and can use the current time (t out ) to correct the correctionField in the PTP message.
  • the fields are modified, and the modified PTP message and the new entry 5G time (t out ) are sent to each UE connected to the TSN device 1.
  • the specific sending method can be the method provided by the above example 1 and example 1 and example 2.
  • the PTP message and the entry 5G time (t in ) can also be sent to the PDU sessions of all UEs.
  • the entry 5G time (t in ) may refer to the time when the PTP message enters the 5GS from the adaptation function of the UE.
  • Step 604 After the UE receives the PTP message, it is processed by the adaptation function of the UE and sends the PTP message to the TSN device in the TSN network other than 5GS in a multicast mode.
  • the adaptation function of the UE can The correctionField field is corrected.
  • a TSN device connected to the UE can be supported, for example, the TSN end station is used as a TSN GM, so that the deployment of the TSN network can be more flexible, and there is no need to restrict the TSN GM to be deployed on the UPF side.
  • the core network device, terminal, and access network device include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiments of the present application can divide the core network equipment, the terminal, and the access network equipment into functional units according to the foregoing method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated in One processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • a device for implementing any of the above methods.
  • a device is provided that includes a unit for implementing each step performed by the core network device in any of the above methods ( Or means).
  • another device is also provided, including a unit (or means) for implementing each step executed by the terminal in any of the above methods.
  • another device is also provided, including units (or means) for implementing each step performed by the access network device in any of the above methods.
  • FIG. 12 is a schematic structural diagram of a device 100 provided by an embodiment of the application.
  • the device 100 may include a processing unit 110, a receiving unit 120, and a sending unit 130.
  • the processing unit 110 may be configured to obtain a first corresponding relationship, the first corresponding relationship includes a corresponding relationship between target device information and TSN domain information of the first delay-sensitive network, and the target device information is used to identify the target device.
  • the first TSN domain information is used to identify the TSN domain to which the first TSN device belongs; the receiving unit 120 may be used to receive a multicast message from a second TSN device, and the multicast message includes the second TSN domain information.
  • the TSN domain information is used to identify the TSN domain to which the second TSN device belongs; the sending unit 130 may be used when the processing unit 110 determines that the second TSN device and the second TSN device belong to the corresponding relationship according to the second TSN domain information and the first correspondence.
  • sending the multicast message to the target device.
  • an embodiment of the present application provides an apparatus 200.
  • the device 200 can be applied to a terminal.
  • FIG. 13 is a schematic structural diagram of an apparatus 200 provided by an embodiment of the application. Referring to FIG. 13, the apparatus 200 may include a sending unit 210, a receiving unit 220, and a processing unit 230.
  • the sending unit 210 may be used to send TSN domain information, which is used to identify the TSN domain to which the first TSN device connected to the apparatus 200 belongs; and the receiving unit 220 may be used to receive multicast messages from The TSN domain to which the second TSN device belongs, the TSN domain information is used to determine whether the first TSN device and the second TSN device belong to the same TSN domain, and when they belong to the same TSN domain, the multicast The message is transmitted to the device 200, where the processing unit 230 is used to generate a data packet including TSN domain information, and to control the sending of the sending unit 210.
  • an embodiment of the present application provides an apparatus 300.
  • the apparatus 300 can be applied to access network equipment.
  • FIG. 14 is a schematic structural diagram of an apparatus 300 provided by an embodiment of this application.
  • the apparatus 300 may include a receiving unit 310 and a sending unit 320.
  • the device 300 may further include a processing unit 330.
  • the receiving unit 310 may be configured to receive a multicast message from the core network device through a tunnel between the core network device, and the tunnel is dedicated to the multicast message, and the multicast message belongs to the delay-sensitive network TSN. Domain; the sending unit 320 may be used to send the multicast message to the terminal, and the terminal is connected to the TSN device in the TSN domain.
  • the device 100 When the device 100 is applied to a core network device, the device 200 is applied to a terminal, and the device 300 is applied to an access network device, the following operations may also be performed:
  • the multicast message includes a timing message.
  • the target device includes a terminal
  • the target device information includes first terminal information
  • the first terminal information is used to identify the terminal
  • the terminal is connected to the first TSN device.
  • the processing unit 110 may acquire the first correspondence relationship in the following manner: acquire the first correspondence relationship from the terminal and/or other core network equipment.
  • the processing unit 110 may acquire the first correspondence relationship in the following manner: acquire a second correspondence relationship from the terminal or other core network equipment, and the second correspondence relationship includes the first TSN The corresponding relationship between the domain information and the second terminal information of the terminal; determining that the second terminal information has a corresponding relationship with the pre-stored first terminal information, based on the first terminal information and the second corresponding relationship, Determine the first correspondence.
  • the sending unit 130 may be configured to send the multicast message to the terminal through a first PDU session.
  • the target device includes an access network device
  • the target device information includes access network device information
  • the access network device information is related to the access network device.
  • the sending unit 130 may be configured to send the multicast message to the access network device through a second PDU session.
  • the sending unit 130 may be configured to send the multicast message to the access network device through a tunnel, where the tunnel is between the core network device and the access network device. tunnel.
  • the access network device information includes access network device identification information or tunnel information
  • the access network device identification information is used to identify the access network device
  • the tunnel information is used to Identify the tunnel between the core network device and the access network device.
  • the first correspondence includes a one-to-one correspondence between the tunnel information and the first TSN domain information, or the relationship between the tunnel information and multiple first TSN domain information Correspondence.
  • the processing unit 110 may acquire the first correspondence in the following manner: acquire the correspondence between the terminal information of the terminal accessing the access network device and the first TSN domain information Obtain the corresponding relationship between the terminal information and the access network equipment information; According to the corresponding relationship between the terminal information and the first TSN domain information and the terminal information and the access network equipment The corresponding relationship between the information determines the first corresponding relationship.
  • the receiving unit 120 may also be configured to receive the first correspondence from the access network device.
  • the processing unit 110 may also be used to establish the tunnel.
  • the tunnel is a two-way tunnel
  • the processing unit 110 may establish the tunnel in the following manner: assign a first endpoint identifier to the tunnel, and send the tunnel to the tunnel through the sending unit 130
  • the access network device sends the first endpoint identifier;
  • the receiving unit 120 receives a second endpoint identifier from the access network device, where the second endpoint identifier is that the access network device is the tunnel distributed.
  • the tunnel is a two-way tunnel
  • the processing unit 110 may establish the tunnel in the following manner: receiving the first endpoint identifier from the access network device through the receiving unit 120, The first endpoint identifier is assigned by the access network device for the tunnel; the second endpoint identifier is assigned to the tunnel, and the second endpoint identifier is sent to the access network device through the sending unit 130 Endpoint ID.
  • the tunnel is a one-way tunnel
  • the processing unit 110 may establish the tunnel in the following manner: receiving the first endpoint identifier from the access network device through the receiving unit 120 , The first endpoint identifier is allocated by the access network device for the tunnel.
  • the sending unit 320 may send the multicast message to the terminal in the following manner: send the multicast message to the terminal in a broadcast manner; or, send the multicast message to the terminal in a multicast manner.
  • the terminal sends the multicast message; or, sends the multicast message to the terminal in a unicast manner; correspondingly, the receiving unit 220 may also be used to receive broadcast, multicast, or The multicast message sent in unicast mode.
  • the processing unit 330 may also be configured to configure the wireless network temporary identification RNTI and/or time-frequency resource used for the multicast message for the terminal.
  • the receiving unit 220 may also be configured to receive from the access network device through broadcast or multicast according to the radio network temporary identification RNTI and/or time-frequency resource used for the multicast message.
  • the multicast message sent in the same way.
  • the processing unit 330 may be further configured to: obtain the correspondence between the terminal and the TSN domain, and The terminal corresponding to the domain to which the second TSN device belongs can be determined according to the correspondence and the domain to which the second TSN device belongs.
  • each unit in the device can be all implemented in the form of software called by processing elements; they can also be all implemented in the form of hardware; part of the units can also be implemented in the form of software called by the processing elements, and some of the units can be implemented in the form of hardware.
  • each unit can be a separate processing element, or it can be integrated in a certain chip of the device for implementation.
  • it can also be stored in the memory in the form of a program, which is called and executed by a certain processing element of the device.
  • each step of the above method or each of the above units may be implemented by an integrated logic circuit of hardware in a processor element or implemented in a form of being called by software through a processing element.
  • the unit in any of the above devices may be one or more integrated circuits configured to implement the above method, for example: one or more application specific integrated circuits (ASIC), or, one or Multiple microprocessors (digital singnal processors, DSP), or, one or more field programmable gate arrays (FPGA), or a combination of at least two of these integrated circuits.
  • ASIC application specific integrated circuits
  • DSP digital singnal processors
  • FPGA field programmable gate arrays
  • the unit in the device can be implemented in the form of a processing element scheduler
  • the processing element can be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call programs.
  • CPU central processing unit
  • these units can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the above receiving unit is an interface circuit of the device for receiving signals from other devices.
  • the receiving unit is an interface circuit used by the chip to receive signals from other chips or devices.
  • the above unit for sending is an interface circuit of the device for sending signals to other devices.
  • the sending unit is an interface circuit used by the chip to send signals to other chips or devices.
  • the core network device exchanges information with the terminal or the access network device through the interface protocol with the terminal or the access network device, for example, sends the multicast message; the core network device communicates with the terminal or the access network device through wireless communication When connected, the core network device exchanges information with the terminal or the access network device through the wireless interface, for example, sends the multicast message.
  • FIG. 15 is a schematic structural diagram of a terminal provided in an embodiment of the application. It may be the terminal in the above embodiment, and is used to implement the operation of the terminal in the above embodiment.
  • the terminal includes: an antenna 1501, a radio frequency part 1502, and a signal processing part 1503.
  • the antenna 1501 is connected to the radio frequency part 1502.
  • the radio frequency part 1502 receives the information sent by the network device through the antenna 1501, and sends the information sent by the network device to the signal processing part 1503 for processing.
  • the signal processing part 1503 processes the terminal information and sends it to the radio frequency part 1502, and the radio frequency part 1502 processes the terminal information and sends it to the network device via the antenna 1501.
  • the signal processing part 1503 may include a modem subsystem, which is used to process the various communication protocol layers of the data; it may also include a central processing subsystem, which is used to process the terminal operating system and the application layer; in addition, it may also include Other subsystems, such as multimedia subsystem, peripheral subsystem, etc., where the multimedia subsystem is used to control the terminal camera, screen display, etc., and the peripheral subsystem is used to realize the connection with other devices.
  • the modem subsystem can be a separate chip.
  • the above apparatus for the terminal may be located in the modem subsystem.
  • the modem subsystem may include one or more processing elements 15031, for example, including a main control CPU and other integrated circuits.
  • the modem subsystem may also include a storage element 15032 and an interface circuit 15033.
  • the storage element 15032 is used to store data and programs, but the program used to execute the method executed by the terminal in the above method may not be stored in the storage element 15032, but is stored in a memory outside the modem subsystem, and used When the modem subsystem is loaded and used.
  • the interface circuit 15033 is used to communicate with other subsystems.
  • the above device for the terminal may be located in the modem subsystem, which may be implemented by a chip, the chip includes at least one processing element and an interface circuit, wherein the processing element is used to execute any of the methods performed by the above terminal In each step, the interface circuit is used to communicate with other devices.
  • the unit for the terminal to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • a device applied to the terminal includes a processing element and a storage element, and the processing element calls the program stored by the storage element to execute the above The method executed by the terminal in the method embodiment.
  • the storage element may be a storage element whose processing element is on the same chip, that is, an on-chip storage element.
  • the program used to execute the method executed by the terminal in the above method may be a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the processing element calls or loads a program from the off-chip storage element on the on-chip storage element to call and execute the method executed by the terminal in the above method embodiment.
  • the unit applied to the terminal device for implementing each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the modem subsystem, where the processing elements may be Integrated circuits, such as: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the terminal to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC), and the SOC chip is used to implement the above method.
  • SOC system-on-a-chip
  • At least one processing element and storage element can be integrated in the chip, and the above terminal execution method can be implemented by the processing element calling the stored program of the storage element; or, at least one integrated circuit can be integrated in the chip for realizing the above terminal execution Or, it can be combined with the above implementations.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus applied to a terminal may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method executed by the terminal provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the terminal in the first way: calling the program stored in the storage element; or in the second way: combining instructions through the integrated logic circuit of the hardware in the processor element Part or all of the steps executed by the terminal are executed in a manner; of course, part or all of the steps executed by the terminal may be executed in combination with the first manner and the second manner.
  • the processing element here is the same as the above description, and it may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 16 is a schematic structural diagram of an access network device provided by an embodiment of this application. It is used to implement the operation of the access network device in the above embodiment.
  • the access network equipment includes: an antenna 1601, a radio frequency device 1602, and a baseband device 1603.
  • the antenna 1601 is connected to the radio frequency device 1602.
  • the radio frequency device 1602 receives the information sent by the terminal through the antenna 1601, and sends the information sent by the terminal to the baseband device 1603 for processing.
  • the baseband device 1603 processes the terminal information and sends it to the radio frequency device 1602, and the radio frequency device 1602 processes the terminal information and sends it to the terminal via the antenna 1601.
  • the baseband device 1603 may include one or more processing elements 16031, for example, a main control CPU and other integrated circuits.
  • the baseband device 1603 may also include a storage element 16032 and an interface circuit 16033.
  • the storage element 16032 is used to store programs and data; the interface circuit 16033 is used to exchange information with the radio frequency device 1602.
  • the interface circuit is, for example, a common public radio interface, CPRI).
  • the above device applied to the access network device may be located in the baseband device 1603.
  • the above device applied to the access network device may be a chip on the baseband device 1603.
  • the chip includes at least one processing element and an interface circuit. In performing each step of any method performed by the above access network equipment, the interface circuit is used to communicate with other devices.
  • the unit for the access network equipment to implement each step in the above method can be implemented in the form of a processing element scheduler.
  • the device applied to the access network equipment includes a processing element and a storage element, and the processing element calls the storage element to store To execute the method executed by the access network device in the above method embodiment.
  • the storage element may be a storage element with the processing element on the same chip, that is, an on-chip storage element, or a storage element on a different chip from the processing element, that is, an off-chip storage element.
  • the unit applied to the access network device to implement each step in the above method may be configured as one or more processing elements, and these processing elements are provided on the baseband device, where the processing elements may be Integrated circuits, such as: one or more ASICs, or, one or more DSPs, or, one or more FPGAs, or a combination of these types of integrated circuits. These integrated circuits can be integrated together to form a chip.
  • the units for the access network equipment to implement each step in the above method can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • the baseband device includes the SOC chip for implementing the above method.
  • At least one processing element and storage element can be integrated in the chip, and the processing element can call the stored program of the storage element to implement the method executed by the above access network device; or, at least one integrated circuit can be integrated in the chip to implement The method executed by the above access network device; or, it can be combined with the above implementation.
  • the functions of some units are implemented in the form of calling programs by processing elements, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus applied to an access network device may include at least one processing element and an interface circuit, wherein at least one processing element is used to execute any method executed by the access network device provided in the above method embodiments.
  • the processing element can execute part or all of the steps executed by the access network device in the first way: calling the program stored in the storage element; or in the second way: through the integrated logic circuit of the hardware in the processor element Part or all of the steps executed by the access network device are executed in a manner of combining instructions; of course, part or all of the steps executed by the above access network device can also be executed in combination with the first method and the second manner.
  • the processing element here is the same as the above description, and it may be a general-purpose processor, such as a CPU, or one or more integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • a general-purpose processor such as a CPU
  • integrated circuits configured to implement the above method, such as: one or more ASICs, or, one or more micro-processing DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms.
  • the storage element can be a memory or a collective term for multiple storage elements.
  • FIG. 17 is a schematic structural diagram of a core network device provided by an embodiment of this application. It may be the core network device in the above embodiment, and is used to implement the operation of the core network device in the above embodiment.
  • the core network device includes: a processor 1710, a memory 1720, and an interface 1730, and the processor 1710, a memory 1720, and an interface 1730 are connected in signal.
  • the above devices are located in the core network equipment, and the functions of each unit can be implemented by the processor 1710 calling a program stored in the memory 1720. That is, the above device includes a memory and a processor, and the memory is used to store a program, and the program is called by the processor to execute the method in the above method embodiment.
  • the processor here may be an integrated circuit with signal processing capability, such as a CPU. Or the functions of the above units may be realized by one or more integrated circuits configured to implement the above methods. For example: one or more ASICs, or, one or more microprocessors DSP, or, one or more FPGAs, etc., or a combination of at least two of these integrated circuit forms. Or, the above implementations can be combined.
  • this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种消息传输方法和装置,以期在无线网络转发TSN网络的多播消息时,减少无线资源占用,提升资源利用率。该方法包括:核心网设备获取第一对应关系,第一对应关系包括目标设备信息与第一TSN域信息的对应关系,目标设备信息用于标识目标设备,第一TSN域信息用于标识第一TSN设备所属的TSN域,接收来自第二TSN设备的多播消息,多播消息中包括第二TSN域信息,第二TSN域信息用于标识第二TSN设备所属的TSN域,核心网设备根据第二TSN域信息和第一对应关系确定第二TSN设备和第一TSN设备属于相同的TSN域时,核心网设备向目标设备发送该多播消息。

Description

一种消息传输方法和装置
相关申请的交叉引用
本申请要求在2019年09月24日提交中国专利局、申请号为201910906646.9、申请名称为“一种消息传输方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种消息传输方法和装置。
背景技术
目前,为了借助第三代合作伙伴项目(3rd generation partnership project,3GPP),例如第五代移动通信(5 th generation,5G)网络,实现时延敏感网络(time sensitive networking,TSN)端到端的可靠性传输,提出将5G网络与TSN网络融合,将5G网络虚拟为TSN网络中的交换节点,当TSN网络中的消息到达5G网络时,5G网络中的网元可以转发该消息,下面以下行传输为例说明。
由于5G网络中某些网元,例如用户面功能(user plane function,UPF)网元,不支持多播或组播或广播数据传输,在下行传输中,当UPF网元接收到来自TSN网络的多播消息时,UPF网元向其连接的全部终端转发该多播消息,进而由终端将该多播消息转发至终端连接的全部TSN设备,在该多播消息的转发过程中,5G网络的无线资源被大量占用,导致无线资源开销较大,可用于5G网络中其它场景的无线资源减少,进而影响其它场景的正常运行。
发明内容
本申请实施例提供一种消息传输方法和装置,以期实现在无线网络转发TSN网络的多播消息时,减小无线资源开销,提升无线资源利用率,进而保证其它场景的正常运行。
第一方面,本申请实施例提供了一种消息传输方法,该方法可以应用于核心网设备,或者也可以应用于核心网设备内部的芯片,在本申请中,以由核心网设备执行该方法为例进行描述。在该方法中,核心网设备获取第一对应关系,第一对应关系包括目标设备信息与第一TSN域信息的对应关系,目标设备信息用于标识目标设备,第一TSN域信息用于标识第一TSN设备所属的TSN域,核心网设备接收来自第二TSN设备的多播消息,多播消息中包括第二TSN域信息,第二TSN域信息用于标识第二TSN设备所属的TSN域,当根据第二TSN域信息和第一对应关系确定第二TSN设备和第一TSN设备属于相同的TSN域时,核心网设备向目标设备发送该多播消息。
第二方面,本申请实施例提供了一种消息传输方法,该方法可以应用于终端,或者也可以应用于终端内部的芯片,在本申请中,以由终端执行该方法为例进行描述。在该方法中,终端发送TSN域信息,TSN域信息用于标识终端所连接的第一TSN设备所属的TSN域,终端接收多播消息,多播消息来自第二TSN设备所属的TSN域,所述TSN域信息用 于确定第一TSN设备和第二TSN设备是否属于相同的TSN域,且在属于相同的TSN域时,该多播消息被传输给终端。
第三方面,本申请实施例提供了一种消息传输方法,该方法可以应用于接入网设备,或者也可以应用于接入网设备内部的芯片,在本申请中,以由接入网设备执行该方法为例进行描述。在该方法中,接入网设备通过与核心网设备之间的隧道接收来自核心网设备的多播消息,该隧道专用于该多播消息,该多播消息属于TSN域,接入网设备向终端发送该多播消息,该终端连接该TSN域中的TSN设备。可以理解,该隧道专用于该多播消息也可描述为该隧道专用于该多播消息所属的TSN域。
第四方面,本申请提供一种消息传输装置,包括用于执行以上第一方面或第二方面或第三方面各个步骤的单元或手段(means)。
第五方面,本申请提供一种消息传输装置,包括至少一个处理器,所述至少一个处理器用于与存储器连接,所述至少一个处理器用于调用所述存储器中存储的程序以执行以上第一方面或第二方面或第三方面提供的方法。可选的,该存储器可以为该装置内的存储器,也可以为该装置外的存储器。
第六方面,本申请提供一种消息传输装置,包括至少一个处理器和接口电路,所述至少一个处理器用于执行以上第一方面或第二方面或第三方面提供的方法。
第七方面,本申请提供一种程序,该程序在被处理器执行时用于执行以上第一方面或第二方面或第三方面的方法。
第八方面,提供一种程序产品,例如计算机可读存储介质,包括第七方面的程序。
其中,本申请中目标设备信息用于标识目标设备,可以是指目标设备信息用于确定目标设备。目标设备信息可以为目标设备的标识信息,也可以为与该目标设备相关的参数,目标设备的标识信息例如可以为目标设备的标识或地址或名称等,与目标设备相关的参数例如可以为与该目标设备对应的会话信息或与该目标设备对应的隧道信息,所述会话信息例如可以为会话的标识或会话的隧道端点标识,所述隧道信息例如可以为隧道的标识或隧道端点的标识等。本申请中,第一TSN域信息包括但不限于第一TSN设备所属的TSN域的域编号(domain number)或域标识(domain ID)。第二TSN域信息包括但不限于第二TSN设备所属的TSN域的域编号或域标识。第二TSN设备和第一TSN设备可以是相同类型的设备或不同类型的设备,例如可以都是TSN终端设备(TSN end station)或从站(slave),或者第二TSN设备和第一TSN设备其中一个TSN设备是TSN操作节点/设备(station),另一个是TSN控制节点/主站(master)。
本申请中,多播消息是指携带多播地址,并允许一组希望接收来自该多播地址的数据的接收者进行接收并处理的消息。
可见,在以上各个方面,核心网设备在接收到来自TSN域的多播消息后,可以根据多播消息中包括的TSN域信息以及TSN域信息与目标设备信息的对应关系,确定与多播消息中包括的TSN域信息对应的目标设备信息,进而可向该目标设备信息标识的目标设备发送该多播消息。这样,核心网设备可以向符合条件的目标设备发送该多播消息,而无需向其连接的全部目标设备发送该多播消息,可减小无线资源开销,进而提升资源利用率和传输效率。
在一种可能的设计中,多播消息可以包括但不限于授时消息。授时消息用于对该授时消息所属的域或网络中的设备授时,或者,授时消息用于该授时消息所属的域或网络中的 设备进行时间同步。一个可能的示例中,授时消息中包括时间信息,该时间信息用于对该授时消息所属的域或所属的网络中的设备授时,或该时间信息用于该授时消息所属的域或所属的网络中的设备进行时间同步。
本申请实施例中,对目标设备的类型不做限定,例如目标设备可以为终端,也可以为接入网设备,当然也可以为其它网络设备。
第一种可能的实现方式中,目标设备可以为连接第一TSN设备的终端,相应的,目标设备信息可以为用于标识该终端的第一终端信息。其中,第一终端信息用于标识该终端可以是指第一终端信息用于确定该终端。第一终端信息可以为终端的标识信息,也可以为与该终端相关的参数,终端的标识信息例如可以为终端的标识或地址或名称等,与终端相关的参数例如可以为与该终端对应的协议数据单元(protocol data unit,PDU)会话的会话信息或与该终端对应的隧道的隧道信息,所述PDU会话的会话信息例如可以包括PDU会话的标识或PDU会话的隧道端点标识,所述隧道信息例如可以包括隧道的标识或隧道端点的标识等。
基于上述第一种可能的实现方式,核心网设备可以但不限于采用如下方式获取第一对应关系。
方式一:核心网设备从该终端获取第一对应关系。示例性地,核心网设备从该终端获取第一终端信息以及第一TSN域信息,核心网设备存储第一终端信息以及第一TSN域信息,即存储了第一对应关系,可以理解为核心网设备直接从该终端获取第一对应关系。
方式二:核心网设备从其它核心网设备获取第一对应关系。示例性地,核心网设备从其它核心网设备获取第一终端信息以及第一TSN域信息,核心网设备存储第一终端信息以及第一TSN域信息,即存储了第一对应关系,可以理解为核心网设备直接从其它核心网设备获取第一对应关系。
方式三:核心网设备从该终端或其它核心网设备获取第二对应关系,第二对应关系包括第一TSN域信息与该终端的第二终端信息的对应关系,核心网设备确定第二终端信息与预存的第一终端信息存在对应关系时,根据第一终端信息以及第二对应关系,确定第一对应关系。其中,该终端的第二终端信息可以用于标识或确定该终端。第二终端信息可以为该终端的标识信息,也可以为与该终端相关的参数。第二终端信息与第一终端信息存在对应关系,可以是指第一终端信息与第二终端信息均与相同的终端存在对应关系,例如,第一终端信息与第二终端信息可以用于标识或确定相同的终端。示例性地,以第二终端信息为终端的标识、第一终端信息为终端的会话标识为例,核心网设备从终端或其它核心网设备获取到第二对应关系,第二对应关系包括终端的标识以及第一TSN域信息的对应关系,核心网设备可以在确定所述终端的标识与所述终端的会话标识存在对应关系时,根据所述终端的会话标识以及第二对应关系,确定第一对应关系。
方式四:核心网设备从本地获取第一对应关系。
基于上述第一种可能的实现方式,核心网设备可以通过第一PDU会话向该终端发送多播消息。例如,第一PDU会话可以为所述核心网设备与所述终端之间的PDU会话。采用该方法,核心网设备可以利用已有的传输通道向终端发送多播消息,无需建立新的传输通道,节省资源的同时提升传输效率。
第二种可能的实现方式中,目标设备可以为接入网设备,该接入网设备连接的终端连接第一TSN设备,相应的,目标设备信息可以为与该接入网设备相关的接入网设备信息。
基于第二种可能的实现方式,核心网设备可以通过第二PDU会话向该接入网设备发送多播消息。可选的,第二PDU会话可以为该接入网设备所连接的终端中连接第一TSN设备的终端与所述核心网设备之间的PDU会话。采用该方法,核心网设备可以利用已有的传输通道向该接入网设备发送多播消息,无需建立新的传输通道,节省资源的同时提升传输效率。
基于第二种可能的实现方式,核心网设备还可以通过核心网设备与该接入网设备之间建立的专用于传输属于特定TSN域的消息的隧道向该接入网设备发送多播消息。采用该方法,核心网设备可以利用该专用隧道,向该接入网设备发送一个或多个TSN域的多播消息,当接入网设备连接的多个终端均连接第一TSN设备时,核心网设备不需要向连接该多个终端的接入网设备发送多次多播消息,仅需要向该接入网设备发送一次多播消息,可节省无线资源,并可提升传输效率。
一个可能的示例中,接入网设备信息可以为接入网设备标识信息或核心网设备与该接入网设备之间的隧道信息,接入网设备标识信息用于标识该接入网设备,所述隧道信息用于标识所述核心网设备与所述接入网设备之间的隧道。示例性地,当接入网设备信息为所述隧道信息时,所述第一对应关系可以包括所述隧道信息与所述第一TSN域信息的一一对应关系,或者,包括所述隧道信息与多个所述第一TSN域信息的对应关系。
基于第二种可能的实现方式,核心网设备可以但不限于采用如下方式获取第一对应关系。
方式1:核心网设备获取接入所述接入网设备的终端的终端信息与第一TSN域信息之间的对应关系,并获取所述终端信息与所述接入网设备信息之间的对应关系,进而核心网设备可根据所述终端信息与第一TSN域信息之间的对应关系以及所述终端信息与所述接入网设备信息之间的对应关系,确定第一对应关系。
方式2:核心网设备从接入网设备接收第一对应关系。示例性地,核心网设备从该接入网设备获取接入网设备信息以及第一TSN域信息,核心网设备存储接入网设备信息以及第一TSN域信息,即存储了第一对应关系,可以理解为核心网设备直接从该接入网设备获取第一对应关系。
基于第二种可能的实现方式,核心网设备在通过所述隧道向接入网设备发送多播消息之前,可以先建立所述隧道。所述隧道可以是预先建立好的,也可以是在发送多播消息之前实时建立的,本申请对此不做限定。
可选的,所述隧道可以是双向隧道也可以是单向隧道。
在一种可能的设计中,所述隧道为双向隧道时,可以采用如下方式建立所述隧道。
方式a:核心网设备为所述隧道分配第一端点标识,并向接入网设备发送第一端点标识,核心网设备接收来自接入网设备的第二端点标识,第二端点标识为接入网设备为所述隧道分配的。
方式b:核心网设备接收来自接入网设备的第一端点标识,第一端点标识为接入网设备为所述隧道分配的,核心网设备为所述隧道分配第二端点标识,并向接入网设备发送第二端点标识。
针对方式a和方式b,当核心网设备与接入网设备成功为一隧道分配了隧道的端点标识并将分配的端点标识发送至对端后,即可认为该双向隧道已建立完成。
在另一种可能的设计中,所述隧道为单向隧道时,可以采用如下方式建立所述隧道: 核心网设备接收来自接入网设备的第一端点标识,第一端点标识为接入网设备为隧道分配的。当接入网设备成功为一隧道分配了隧道的端点标识并将分配的端点标识发送至核心网设备后,即可认为该单向隧道已建立完成。
基于第二种可能的实现方式,接入网设备接收到来自核心网设备的多播消息后,可以采用如下方式向终端发送所述多播消息。
方式1:接入网设备以广播的方式向所述终端发送所述多播消息,相应的,终端从接入网设备接收通过广播方式发送的所述多播消息。
方式2:接入网设备以组播的方式向所述终端发送所述多播消息,相应的,终端从接入网设备接收通过组播方式发送的所述多播消息。
方式3:接入网设备以单播的方式向所述终端发送所述多播消息,相应的,终端从接入网设备接收通过单播方式发送的所述多播消息。
在一种可能的设计中,接入网设备以组播或广播的方式向终端发送多播消息时,还可以为终端配置用于多播消息的无线网络临时标识(radio network temporary identifier,RNTI)和/或时频资源,基于该种设计,终端可以根据用于多播消息的RNTI和/或时频资源,从接入网设备接收通过广播或组播方式发送的多播消息。其中,RNTI可以为预定义的或接入网设备分配的,时频资源可以为接入网设备预分配的时频资源或动态调度的时频资源。
在一种可能的设计中,接入网设备以组播或单播的方式向终端发送多播消息之前,还可以获取终端与TSN域之间的对应关系,并可根据所述对应关系以及第二TSN设备所属的域,确定与所述第二TSN设备所属的域对应的终端,进而接入网设备向与所述第二TSN设备所属的域对应的终端发送多播消息。
附图说明
图1为本申请实施例所适用的一种网络架构示意图;
图2为本申请实施例提供的一种时钟节点关系示意图;
图3为本申请实施例提供的一种PTP消息格式;
图4为本申请实施例提供的一种5GS作为TSN网络透明时钟的示意图;
图5为本申请实施例提供的一种消息传输方法流程示意图;
图6a为本申请实施例提供的一种UE注册流程示意图;
图6b为本申请实施例提供的一种UE发起服务请求流程示意图;
图6c为本申请实施例提供的一种UE发起PDU会话建立流程示意图;
图7为本申请实施例提供的另一种消息传输方法的实施流程图;
图8为本申请实施例提供的又一种消息传输方法的实施流程图;
图9为本申请实施例提供的又一种消息传输方法的实施流程图;
图10为本申请实施例提供的又一种消息传输方法的实施流程图;
图11为本申请实施例提供的又一种消息传输方法的实施流程图;
图12为本申请实施例提供的一种消息传输装置结构示意图;
图13为本申请实施例提供的另一种消息传输装置结构示意图;
图14为本申请实施例提供的又一种消息传输装置结构示意图;
图15为本申请实施例提供的一种终端的结构示意图;
图16为本申请实施例提供的一种接入网设备的结构示意图;
图17为本申请实施例提供的一种核心网设备的结构示意图。
具体实施方式
首先,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是指向用户提供语音和/或数据连通性的设备。例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
2)网络设备,可以包括接入网(access network,AN)设备或核心网(core network,CN)设备。接入网设备,是指将终端接入到无线网络的无线接入网(radio access network,RAN)节点(或设备),又可以称为基站或接入点(access point,AP)。目前,一些接入网设备的举例为:继续演进的节点B(gNB)、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,接入网设备可以为包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。其中包括CU节点和DU节点的RAN设备将长期演进(long term evolution,LTE)系统中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。核心网设备,是指为终端提供业务支持的核心网中的设备。目前,一些核心网设备的举例为:移动管理实体(mobile management entity,MME)、网关(gateway)、接入和移动性管理功能(access and mobility management function,AMF)实体、会话管理功能(session management function,SMF)实体、用户面功能(user plane function,UPF)实体等等,此处不一一列举。其中,所述AMF实体可以负责终端的接入管理和移动性管理;所述SMF实体可以负责会话管理,如用户的会话建立等;所述UPF实体可以是用户面的功能实体,主要负责连接外部网络。需要说明的是,本申请中实体也可以称为网元或功能实体,例如,AMF实体也可以称为AMF网元或AMF功能实体,又例如,SMF实体也可以称为SMF网元或SMF功能实体等。
3)多播消息,可以是指采用多播方式发送的消息,可以携带多播地址,并允许一组希望接收来自该多播地址的数据的接收者进行接收并处理的消息。
4)授时消息,是多播消息的一种,用于对该授时消息所属的域或网络中的设备授时,或者,用于该授时消息所属的域或网络中的设备进行时间同步。可选的,授时消息中可以包括时间信息,该时间信息用于对该授时消息所属的域或所属的网络中的设备授时,或该时间信息用于该授时消息所属的域或所属的网络中的设备进行时间同步。授时消息中可以 包含多播地址,收到该授时消息的设备通过相应的端口向其他设备进行转发。
5)PDU会话,可以理解为是UE和UPF之间的专用数据通道,包括空口侧(UE到gNB)的数据无线承载(data radio bearer,DRB)和核心网侧(gNB到UPF)的隧道(GPRS tunneling protocol-U,GTP-U),一个PDU会话可以认为是UPF和UE之间的单播传输通道。目前,5GS内不支持多播/组播/广播数据传输,UE的用户面数据都是通过该UE和相应UPF之间建立的PDU会话进行传输的。
6)“多个”是指两个或两个以上,其它量词与之类似。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,对于单数形式“a”,“an”和“the”出现的元素(element),除非上下文另有明确规定,否则其不意味着“一个或仅一个”,而是意味着“一个或多于一个”。例如,“a device”意味着对一个或多个这样的device。再者,至少一个(at least one of).......”意味着后续关联对象中的一个或任意组合,例如“A,B和C中的至少一个”包括A,B,C,AB,AC,BC,或ABC。
需要说明的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。例如,第一TSN设备和第二TSN设备,只是为了区分不同的TSN设备,并不是表示这两个TSN设备的优先级或者重要程度等的不同。
下面结合说明书附图对本申请的技术方案作进一步地详细描述。
请参见图1,为本申请实施例所适用的一种网络架构示意图,图1中示出一种无线系统支持TSN的网络架构,该网络架构将无线网络与TSN网络融合,在该网络架构中,将无线网络虚拟成TSN网络中的一个逻辑交换节点(也可以称为虚拟交换节点),即,TSN网络可以将无线网络看成是一个TSN桥接设备(也可称为TSN交换设备)。在此,无线系统以5G系统(5G system,5GS)为例,TSN网络中的设备/网元,例如图1中的TSN交换设备(TSN bridge station)/TSN终端设备(TSN end station)以及TSN系统中的TSN设备,可通过该由5G网络虚拟的TSN桥接设备进行数据转发。为使5G网络很好的融合到TSN网络,在TSN网络与5G网络之间增加了网络侧和终端侧的适配功能,图1中以在应用功能(application function,AF)网元上增加网络侧TSN适配功能的控制面(control plane,CP),在用户面功能(user plane function,UPF)网元上增加网络侧TSN适配功能的用户面(user plane,UP),在用户设备(user equipment,UE)上增加终端侧TSN适配功能为例示意,这三者与5G网络一起组成逻辑交换节点,作为TSN中的交换节点。虽然图1中,UE与终端侧TSN适配功能是分开画的,但是终端侧TSN适配功能可以部署在UE上,例如,终端侧TSN适配功能可以是UE的内部功能模块。其中,网络侧TSN适配功能的CP、网络侧TSN适配功能的UP以及终端侧TSN适配功能用于将5G网络的特征和信息适配成TSN要求的信息,通过TSN定义的接口与TSN中的网元通信。基于图1所示的网络架构,在TSN网络通过5G网络传输消息的过程中,消息的下行传输路径可以为:TSN系统->UPF->RAN->UE->终端侧TSN适配功能->TSN交换设备/TSN终端设备,消息的上行传输路径可以为:TSN交换设备/TSN终端设备->终端侧TSN适配功能->UE->RAN->UPF->TSN系统。TSN适配功能又称为TSN适配单元或TSN适配实体或TSN适配器,其可以通过软件或硬件的形式实现无线网络到TSN网络的适配,或TSN网络到无线网络的适配。
可以理解,在图1所示的网络架构中,TSN交换设备/TSN终端设备以及TSN系统属于TSN网络,除此之外的节点均属于5G网络。
需要说明的是,图1中以将5G网络与TSN网络融合为例示意说明,图1中的5G网络还可以替换为其它无线网络,例如,可以替换为4.5G网络、4G网络、3G网络、2G网络或未来的无线网络等,本申请实施例提供的方法可适用于将任意无线网络与TSN网络融合的网络架构,本申请实施例提供的方法不限于用于图1所示的网络架构。
以下对图1所示的网络架构中涉及的网元的功能进行简单介绍。
UE可参见上述解释1)。
RAN可参见上述解释2)。
UPF网元是用户面的功能网元,主要负责连接外部网络,相对于LTE,其包括了类似LTE的服务网关(serving gateway,SGW)和公用数据网网关(public data network gateway,PDN-GW)的相关功能,主要负责分组数据包的转发、计费信息统计等。
AMF网元负责终端的接入管理和移动性管理,相对于LTE,其包括了类似LTE网络中移动性管理实体(mobile management entity,MME)的移动性管理功能,并加入了接入管理功能。
SMF网元负责会话管理,例如负责终端的PDU会话的建立、维护和删除等。
统一数据管理(unified data management,UDM)网元用于管理用户的签约信息,实现类似于LTE中的归属签约服务器(home subscriber server,HSS)的后端。
策略控制功能(policy control function,PCF)网元的主要功能是执行策略控制,类似于LTE中的策略与计费规则功能(policy and charging rules function,PCRF)网元,主要负责策略授权,服务质量以及计费规则的生成,并将相应规则通过SMF网元下发至UPF网元,完成相应策略及规则的安装。
网络开放功能(network exposure function,NEF)网元用于提供网络能力开放相关的框架、鉴权和接口,在5G系统网络功能和其他网络功能之间传递信息。
AF网元可以是第三方的应用控制平台,也可以是运营商自己的设备,所述AF网元可以为多个应用服务器提供服务,所述AF网元是可以提供各种业务服务的功能网元,能够通过NEF网元与核心网交互,以及能够和策略管理框架交互进行策略管理。
逻辑交换节点(即由5G网络虚拟得到的TSN桥接设备)主要用于进行数据或报文转发。
TSN交换设备主要用于进行数据或报文转发。还可以具备其他功能,例如具备拓扑发现功能,确定交换机标识及交换机端口标识,支持链路层发现协议(link layer discovery protocol,LLDP)等协议,又例如可以确定传输时延,并在检测到交换节点的内部传输时延后,向配置网元上报检测到的传输时延。
TSN终端设备类似于3GPP网络中的终端,可以接收并处理TSN系统向其发送的消息,也可以主动向TSN系统发送消息,例如发送请求消息等。
图1中未对TSN系统展开说明,在实际应用中TSN系统中可以包括配置网元,用于实现TSN配置,例如可以包括集中网络配置(centralized network configuration,CNC)网元和集中用户配置(centralized user configuration,CUC)网元等,此外,TSN系统中还可以包括TSN交换设备、TSN终端设备、TSN处理设备或TSN控制设备等。
其中,TSN网络为了支持基于时间的精确控制,需要TSN设备之间保持精确时间同 步。TSN网络中可以使用高精度时间同步协议(precision time protocol,PTP)协议进行TSN设备之间的精确时间同步,PTP协议中用于TSN设备间时间同步的授时信令或授时消息可称为PTP消息/PTP报文,PTP消息中可包含多播以太目的媒体访问控制(medium access control,MAC)地址,各TSN设备收到PTP消息后通过相应的端口向其他设备进行转发,以实现全部TSN设备的时间同步。
请参见图2,为本申请实施例提供的一种基于PTP协议的时钟节点关系示意图,如图2所示,在PTP协议中定义了如下三种时钟:普通时钟(ordinary clock,OC)、边界时钟(boundary clock,BC)以及透明时钟(transparent clock,TC),当在TSN网络使用PTP协议进行时间同步时,这些时钟可部署或承载在TSN网络中的TSN设备。图2中以4个普通时钟、2个边界时钟以及3个透明时钟为例示意。如图2所示,普通时钟只有一个时钟端口与网络通信,普通时钟可以为主时钟(grandmaster clock,GM),也可以作为从时钟(slave clock),当为主时钟时可以向下游设备发布时间信息,当为从时钟时可以从上游设备同步时间。边界时钟有多个时钟端口,其中一个时钟端口可从上游设备同步时间,其余时钟端口可向下游设备发布时间信息,当PTP消息到达边界时钟后,边界时钟可以基于该PTP消息进行时钟同步,但不转发该PTP消息,边界时钟执行时钟同步后可生成新的PTP消息,进而可通过图2所示的M时钟端口向下游设备发送该新的PTP消息以继续时间同步。普通时钟和边界时钟均需要与同一网络中的其它设备保持时间同步。而透明时钟不需要与网络中的其它设备保持时间同步,也就是说,透明时钟只需要转发接收到的PTP消息而无需根据该PTP消息进行时间同步,透明时钟可以有多个时钟端口,在这些时钟端口之间转发PTP消息,且可对该PTP消息进行转发时延校正。
本申请中主要涉及透明时钟,以下简单介绍透明时钟的工作原理。
当PTP消息传输至透明时钟时,透明时钟转发该PTP消息会有一定的处理时延,透明时钟在转发该PTP消息时,会将该PTP消息在该透明时钟的逗留时间,也就是所述处理时延,添加至该PTP消息的校正字段(correctionField)字段。请参见图3,为本申请实施例提供的一种PTP消息格式,correctionField字段包含在PTP消息头部,以纳秒为单位的修正值乘以2 16,长度为8个字节,此外,PTP消息头部还包含domain number字段,该domain number字段指示该PTP消息所属的域或者指示发送该PTP消息的时钟所在节点所属的域,长度为1个字节,由图3可知PTP消息中还包括其它字段,例如预留字段、消息类型字段等。其它字段的内容与本申请不相关,此处不再详述。
基于图1所示的网络架构,由于无线系统被融合为TSN网络中的TSN交换设备,即,无线系统属于TSN网络中的设备,故,TSN网络为了支持PTP协议,需要无线系统也适配PTP协议,一种可能的适配方式是将无线系统作为其中的一个时钟节点,目前一种实现方式是将无线系统作为TSN网络中的一个透明时钟。
仍以5GS为例,请参见图4,为本申请实施例提供的一种5GS作为TSN网络透明时钟的示意图,由上述透明时钟的工作原理可知,5GS作为TSN网络的透明时钟,只需要转发TSN网络的授时消息,无需与TSN网络进行时间同步,5GS作为透明时钟在转发TSN网络的授时消息时,需要通知接收设备该授时消息在5GS的逗留时间,以使得接收设备可根据授时消息中的授时时间以及逗留时间确定准确的TSN时间,以授时消息为PTP消息为例,5GS在转发PTP消息时,可以对PTP消息的correctionField字段进行修正,将该PTP消息在5GS的逗留时间添加至该字段,以使得接收设备可根据该correctionField字段获知 PTP消息在5GS的逗留时间。5GS为了能够准确获得授时消息的逗留时间(是指从UPF侧进入直到从UE侧发出的时间间隔),需要保证UPF和UE之间的时间是同步的,图4中以UE和UPF从相同的同步源(5G GM)获取时间来保证时间同步为例示意,本申请中将5GS中各网元,例如UE和UPF,上的时间称为5G时间,为便于区分,将TSN网络的时间描述为TSN时间。图4中以授时消息为下行消息为例,当TSN网络的授时消息从UPF侧进入5GS后,UPF侧的TSN适配功能记录该授时消息进入5GS的5G时间,将该时间记为t in,并将t in发送给UE,UE侧的TSN适配功能记录发出该授时消息的5G时间,将该时间记为t out,进而UE侧的TSN适配功能可根据t in和t out确定出该授时消息在5GS的逗留时间,将该逗留时间记为△,△=t out-t in,进而可将该逗留时间与授时消息一同发送至TSN终端设备,以使TSN终端设备与TSN网络中的其它设备执行时间同步。其中,t in可以通过一条跟随授时消息的额外消息发送给UE,也可以在授时消息中一个现有字段或者额外的字段指示该时间信息。
由上述分析可知,5GS作为TSN网络的透明时钟,在接收到来自TSN网络的授时消息后,需要向其连接的TSN设备转发该授时消息。而由于授时消息属于多播消息,且5GS内不支持多播或组播或广播数据传输,该授时消息到达5GS后,5GS只能通过终端和相应的UPF之间建立的PDU会话转发该授时消息。以下行传输为例,当TSN网络中的授时消息到达5GS中的UPF网元时,UPF网元通过与每个终端建立的PDU会话向其连接的全部终端单播发送该授时消息,每个终端接收到该授时消息后,通过终端侧的TSN适配功能转发至所有连接的TSN设备,以实现对需要根据该授时消息执行时间同步的TSN设备进行授时。在该授时消息的转发过程中,核心网和空口侧资源被大量占用,当5GS同时支持多个TSN域时,授时消息的传输开销会成比例增加,导致无线资源开销较大,可用于5G网络中其它场景的无线资源减少,进而可能会影响其它场景的正常运行。需要说明的是,不仅在5GS转发授时消息时存在上述问题,只要是通过无线系统转发多播消息均存在上述问题。
鉴于上述存在的问题,本申请提供一种消息传输方法,在该方法中,无线系统在接收到来自TSN网络的多播消息后,可根据多播消息中包括的TSN域信息以及TSN域信息与目标设备信息的对应关系,确定与多播消息中包括的TSN域信息对应的目标设备信息,进而可向与该目标设备信息对应的目标设备发送该多播消息。这样,无线系统可以有选择性的向有需求的目标设备发送该多播消息,而无需向其连接的全部目标设备发送该多播消息,可减小无线资源开销,进而提升资源利用率和传输效率。
本申请实施例提供的方法可以应用于NR系统(包括NR车联网(vehicle to everything,V2X)系统,工业控制系统)、LTE系统(包括LTE车联网(vehicle to everything,V2X)系统,工业控制系统)、下一代无线局域网系统或统一接入回传(integrated access backhaul,IAB)系统,本申请对此不做限定。
请参考图5,其为本申请实施例提供的一种消息传输方法的实施流程图。该方法可应用于图1所示的网络架构。当将该方法应用于图1所示的网络架构时,该方法中所涉及的核心网设备可以为图1中的UPF,接入网设备可以为图1中的RAN,终端可以为图1中的UE。本申请提供的方法并不限定应用于图1所示的网络架构,也可以应用于其它网络架构。参阅图5所示,该方法包括:
步骤101:核心网设备获取第一对应关系,第一对应关系包括目标设备信息与第一TSN 域信息的对应关系,目标设备信息用于标识目标设备,第一TSN域信息用于标识第一TSN设备所属的TSN域。本申请中,目标设备与第一TSN设备可以具有连接关系。例如,当目标设备为终端时,终端与第一TSN设备具有连接关系是指,第一TSN设备为该终端连接的一个TSN设备。又例如,当目标设备为接入网设备时,接入网设备与第一TSN设备具有连接关系是指,第一TSN设备为该接入网设备连接的终端所连接的一个TSN设备,其中,接入网设备连接终端是指无线连接,该终端接入该接入网设备,或由该接入网设备为该终端提供服务。
需要说明的是,本申请中第一对应关系可以是目标设备信息与第一TSN域信息的一一对应关系,也可以是一个目标设备信息与多个第一TSN域信息的对应关系,当然也可以是其它对应关系,对此不做限定。
本申请中,目标设备信息用于标识目标设备,可以是指目标设备信息用于确定目标设备。其中,目标设备信息可以为目标设备的标识信息,也可以为与该目标设备相关的参数,目标设备的标识信息例如可以为目标设备的标识或地址或名称等,与目标设备相关的参数例如可以为与该目标设备对应的会话的会话信息或隧道的隧道信息等,会话信息例如可以为会话的标识或会话的隧道端点标识等,隧道信息例如可以为隧道的标识或隧道端点的标识等。
本申请中,第一TSN域信息可包括第一TSN设备所属的TSN域的域编号(domain number)或域标识(domain ID)或以太端口号(port number)或端口号等。其中,以太端口号可以为无线系统入口的TSN适配功能上的入口以太端口号,例如,以下行传输为例,以太端口号可以为UPF侧的TSN适配功能上的入口以太端口号,以上行传输为例,以太端口号可以为UE侧的TSN适配功能上的入口以太端口号。
本申请中,第一对应关系可以是列表的形式,也可以是其它形式,对此不做限定。此外,本申请对目标设备和第一TSN设备的数量不做限定,例如可以是一个,也可以是多个。示例性地,以目标设备和第一TSN设备的数量为3个,且,目标设备信息为目标设备的标识信息,第一TSN域信息为第一TSN设备所属的TSN域的域编号,以及,第一对应关系是列表形式为例,3个目标设备分别记为目标设备1、目标设备2以及目标设备3,目标设备1、目标设备2以及目标设备3的标识信息分别记为标识1、标识2、标识3,3个第一TSN设备分别记为第一TSN设备1、第一TSN设备2以及第一TSN设备3,第一TSN设备1、第一TSN设备2以及第一TSN设备3所属的TSN域的域编号分别记为域编号1、域编号2、域编号3,以三个目标设备与三个第一TSN设备一一对应为例,则第一对应关系可以如表1所示。
表1
目标设备信息 第一TSN域信息
标识1 域编号1
标识2 域编号2
标识3 域编号3
步骤102:核心网设备接收来自第二TSN设备的多播消息,多播消息中包括第二TSN域信息,第二TSN域信息用于标识第二TSN设备所属的TSN域。其中,多播消息可以包括但不限于授时消息。授时消息用于对该授时消息所属的域或网络中的设备授时,或者,授时消息用于该授时消息所属的域或网络中的设备进行时间同步。一个可能的示例中,授 时消息中包括时间信息,该时间信息用于对该授时消息所属的域或所属的网络中的设备授时,或该时间信息用于该授时消息所属的域或所属的网络中的设备进行时间同步。例如,以授时消息属于TSN域为例,则该授时消息可用于对该TSN域中的设备授时,或用于该TSN域中的设备进行时间同步。又例如,以授时消息属于TSN网络为例,则该授时消息可用于对该TSN网络中的设备授时,或用于该TSN网络中的设备进行时间同步。
本申请中,第二TSN域信息可包括第二TSN设备所属的TSN域的域编号或域标识或以太端口号或端口号等。第二TSN设备和第一TSN设备可以是相同类型的设备,例如可以都是TSN终端设备(TSN end station)或从站(slave),也可以是不同类型的设备,例如第二TSN设备和第一TSN设备中的一个可以是TSN操作节点/设备(station),另一个可以是TSN控制节点/主站(master)。
需要说明的是,第一TSN域信息和第二TSN域信息可以相同类型的信息,也可以是不同类型的信息。例如,第一TSN域信息和第二TSN域信息可以均为域编号。又例如,第一TSN域信息可以为域编号,第二TSN域信息可以为域标识。
步骤103:核心网设备根据第二TSN域信息和第一对应关系确定第二TSN设备和第一TSN设备属于相同的TSN域。第一个可能的示例中,核心网设备确定第二TSN域信息与第一对应关系中包括的某一第一TSN域信息相同时,可以确定第二TSN设备和该第一TSN域信息对应的第一TSN设备属于相同的TSN域。基于第一个可能的示例,例如,以第一对应关系为表1所示的对应关系、第二TSN域信息为域编号3为例,核心网设备在确定第二TSN域信息与第一对应关系中的域编号3相同时,可以确定第二TSN设备和第一TSN设备属于相同的TSN域。第二个可能的示例中,核心网设备确定第一对应关系中包括的第一TSN域信息所标识的TSN域,包括第二TSN域信息所标识的TSN域时,可以确定第二TSN设备和第一TSN设备属于相同的TSN域。基于第二个可能的示例,例如,以第一对应关系为表1所示的对应关系、第二TSN域信息为域标识3为例,核心网设备在确定域标识3与域编号3标识相同的TSN域时,可以确定第二TSN设备和第一TSN设备属于相同的TSN域。
步骤104:在确定第二TSN设备和第一TSN设备属于相同的TSN域时,核心网设备向目标设备发送多播消息。例如,继续步骤103中的举例,在核心网设备确定域标识3与域编号3标识相同的TSN域时,向目标设备3发送多播消息。
可以理解,核心网设备或目标设备可以执行上述实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
一种可能的实现方式中,在确定第二TSN设备和第一TSN设备不属于相同的TSN域时,核心网设备不向目标设备发送多播消息。这样,核心网设备仅需要向符合条件的目标设备发送多播消息,而无需向该核心网设备连接的全部目标设备发送多播消息,可减小无线资源开销。
采用本申请提供的上述方法,核心网设备在接收到来自第二TSN设备的多播消息后,可以根据多播消息中包括的第二TSN域信息以及第一TSN域信息与目标设备信息的第一对应关系,确定第二TSN设备和第一TSN设备是否属于相同的TSN域,若确定第二TSN设备和第一TSN设备属于相同的TSN域,则核心网设备向目标设备发送多播消息。这样, 核心网设备在接收到第二TSN设备所属的TSN域的多播消息时,只需要向属于该TSN域的第一TSN设备连接的目标设备发送该多播消息,而无需向全部目标设备发送该多播消息,可减小无线资源开销,进而提升资源利用率和传输效率。
本申请实施例中,对目标设备的类型不做限定,例如目标设备可以为终端,也可以为接入网设备,当然也可以为其它网络设备,无论本申请中目标设备是何种类型的设备,均与第一TSN设备具有连接关系,且该连接关系可以为无线连接或有线连接。
第一种可能的实现方式中,目标设备可以为连接第一TSN设备的终端,相应的,目标设备信息可以为用于标识该终端的第一终端信息。可选的,所述终端可以为与该核心网设备之间存在会话或隧道的终端。第一终端信息用于标识该终端可以是指第一终端信息用于确定该终端。第一终端信息可以为终端的标识信息,也可以为与该终端相关的参数,终端的标识信息例如可以为终端的标识或地址或名称等,终端的标识例如可以为终端的5G系统下的临时移动用户标识(5G-S-temporary mobile subscriber identity,5G-S-TMSI),或国际移动用户识别码(international mobile subscriber identification number,IMSI),或全球唯一的接入和移动管理功能(access and mobility management function,AMF)标识符(global unique AMF identity,GUAMI),与终端相关的参数例如可以为该终端与UPF已建立或即将建立的协议数据单元(protocol data unit,PDU)会话的会话信息或与该终端对应的隧道的隧道信息,所述PDU会话的会话信息例如可以包括PDU会话的标识或PDU会话所包括的隧道端点标识,所述隧道信息例如可以包括隧道的标识或隧道端点的标识等。
基于上述第一种可能的实现方式,核心网设备可以但不限于采用如下方式获取第一对应关系。
方式一:核心网设备从该终端获取第一对应关系。示例性地,核心网设备从该终端获取第一终端信息以及第一TSN域信息,核心网设备存储第一终端信息以及第一TSN域信息,即存储了第一对应关系,可以理解为核心网设备直接从该终端获取第一对应关系。
方式二:核心网设备从其它核心网设备获取第一对应关系。示例性地,核心网设备从其它核心网设备获取第一终端信息以及第一TSN域信息,核心网设备存储第一终端信息以及第一TSN域信息,即存储了第一对应关系,可以理解为核心网设备直接从其它核心网设备获取第一对应关系。值得注意的是,核心网设备可以从同一个其它核心网设备获取第一终端信息以及第一TSN域信息,也可以从不同的其它核心网设备获取第一终端信息以及第一TSN域信息。
基于方式二,第一个可能的示例中,以所述终端为UE、所述核心网设备为UPF、所述其它核心网设备为AMF为例,UE可以在注册流程/服务请求流程/PDU会话建立流程中,向AMF发送或指示UE连接的第一TSN设备所属的TSN域的第一TSN域信息,AMF可以在UE和UPF之间建立/更新PDU会话过程中或服务请求过程中,向UPF发送或指示第一TSN域信息和对应的第一终端信息。可选的,AMF可以通过SMF向UPF发送或指示第一TSN域信息和对应的第一终端信息。其中,第一TSN域信息可以为域编号/域标识/以太端口标识/端口标识的列表。
基于上述第一个可能的示例,UE可以通过如下方式向AMF发送或指示UE连接的第一TSN设备所属的TSN域的第一TSN域信息:
方式1,UE可以在注册流程中,向AMF发送或指示UE连接的第一TSN设备所属的TSN域的第一TSN域信息。例如,如图6a所示,在UE向网络发起注册流程以接入网络 时,UE可以在步骤1向RAN发送的注册请求(registration request)中携带第一TSN域信息,RAN可以将该registration request转发至AMF,以使AMF从UE获取到第一TSN域信息。又例如,如图6a所示,UE可以在步骤7向AMF发送的身份认证响应(identity response)或步骤11向AMF发送的identity response或步骤22向AMF发送的注册完成(registration complete)消息中携带第一TSN域信息。
方式2,UE可以在服务请求流程中,向AMF发送或指示UE连接的第一TSN设备所属的TSN域的第一TSN域信息。例如,如图6b所示,在UE向网络发起服务请求用于请求和AMF之间建立安全连接或激活已建立PDU会话的用户面连接时,UE可以在步骤1向RAN发送的服务请求(service request)中携带第一TSN域信息,RAN可以将该service request转发至AMF,以使AMF从UE获取到第一TSN域信息。
方式3,UE可以在PDU会话建立流程中,向AMF发送或指示UE连接的第一TSN设备所属的TSN域的第一TSN域信息。例如,如图6c所示,在UE发起的PDU会话建立过程中,UE可以在步骤1向AMF发送的PDU会话建立请求(PDU session establishment request)中携带第一TSN域信息。又例如,如图6c所示,UE可以在步骤13中向RAN发送的PDU会话建立接受(PDU session establishment accept)中携带第一TSN域信息,RAN可将第一TSN域信息携带在向AMF发送的PDU会话响应(PDU session response)消息中。
基于上述第一个可能的示例,AMF可以通过如下方式向UPF发送或指示第一TSN域信息和对应的第一终端信息:
方式a:AMF可以在PDU会话建立/更新过程中,通过向SMF发送的PDU会话建立/更新请求消息向SMF发送或指示第一TSN域信息和对应的第一终端信息,SMF可以通过向UPF发送的会话建立/修改请求(session establishment/modification request)消息,将第一TSN域信息和对应的第一终端信息转发给UPF。例如,以图6c所示的PDU会话建立过程为例,AMF可以在步骤3向SMF发送的SM上下文请求(Nsmf_PDUSession_CreateSMContext Request)中,携带第一TSN域信息和对应的第一终端信息,SMF可以在步骤10a向UPF发送的会话建立/修改请求(session establishment/modification request)消息中,携带第一TSN域信息和对应的第一终端信息,以使得SMF从AMF获取到第一TSN域信息和对应的第一终端信息。又例如,仍以图6c所示的PDU会话建立过程为例,AMF可以在步骤15向SMF发送的更新SM上下文请求(Nsmf_PDUSession_UpdateSMContext Request)消息中,携带第一TSN域信息和对应的第一终端信息,SMF可以在步骤16a向UPF发送的会话修改请求(session modification request)消息中,携带第一TSN域信息和对应的第一终端信息。
方式b:AMF可以在服务请求过程中,向UPF发送或指示第一TSN域信息和对应的第一终端信息。例如,以图6b所示的服务请求过程为例,AMF和SMF可以在步骤4和步骤6c的消息中携带第一TSN域信息和对应的第一终端信息,可以实现AMF通过SMF向UPF发送或指示第一TSN域信息和对应的第一终端信息,或者,AMF和SMF可以在步骤15和步骤17a的消息中携带第一TSN域信息和对应的第一终端信息,也可以实现AMF通过SMF向UPF发送或指示第一TSN域信息和对应的第一终端信息。
基于上述方式a或方式b,UPF接收到第一TSN域信息和对应的第一终端信息之后,可将第一TSN域信息和对应的第一终端信息存储为第一对应关系。
基于方式二,第二个可能的示例中,以所述终端为UE、所述核心网设备为UPF、第 一终端信息以及对应的第一TSN域信息存储在其它核心网设备为例,当所述其它核心网设备为AMF网元时,AMF可以在PDU会话建立过程中,将第一终端信息以及对应的第一TSN域信息直接发送给UPF,或通过SMF发送给UPF。例如,以AMF通过SMF发送给UPF,且以图6c所示的PDU会话建立过程为例,AMF可以在步骤3向SMF发送的PDU会话建立SM上下文请求(Nsmf_PDUSession_CreateSMContext Request)中携带第一终端信息以及对应的第一TSN域信息,SMF可以在步骤10a向UPF发送的会话建立或修改请求(session establishment/modification request)消息中携带第一终端信息以及对应的第一TSN域信息;或者,AMF可以在步骤15向SMF发送的PDU会话更新SM上下文请求(Nsmf_PDUSession_UpdateSMContext Request)中携带第一终端信息以及对应的第一TSN域信息,SMF可以在步骤16a向UPF发送的会话修改请求(session modification request)消息中携带第一终端信息以及对应的第一TSN域信息。或者,当所述其它核心网设备为SMF网元时,SMF可以在PDU会话建立过程中,将第一终端信息以及对应的第一TSN域信息发送给UPF。例如,以图6c所示的PDU会话建立过程为例,SMF可以在步骤10a向UPF发送的会话建立或修改请求(session establishment/modification request)消息中携带第一终端信息以及对应的第一TSN域信息;或者,SMF可以在步骤16a向UPF发送的会话修改请求(session modification request)消息中携带第一终端信息以及对应的第一TSN域信息。或者,当所述其它核心网设备为UDM或NEF或PCF等网元时,可以在PDU会话建立过程中,由AMF从UDM或NEF或PCF等网元中获取第一终端信息以及对应的第一TSN域信息,并发送给UPF或通过SMF转发给UPF;或者由SMF从UDM或NEF或PCF等网元中获取第一终端信息以及对应的第一TSN域信息,并发送给UPF;或者由UPF直接从UDM或NEF或PCF等网元中获取第一终端信息以及对应的第一TSN域信息。示例性地,以由AMF从UDM或NEF或PCF等网元中获取第一终端信息以及对应的第一TSN域信息为例,AMF可以向UDM或NEF或PCF等网元发送请求消息,请求消息中可以携带第一终端信息,发送请求消息后可接收相应网元反馈的响应消息,响应消息中可以仅携带第一TSN域信息或者携带第一TSN域信息和对应的第一终端信息。
方式三:核心网设备从该终端或其它核心网设备获取第二对应关系,第二对应关系包括第一TSN域信息与该终端的第二终端信息的对应关系,核心网设备确定第二终端信息与预存的第一终端信息存在对应关系时,根据第一终端信息以及第二对应关系,确定第一对应关系。其中,该终端的第二终端信息可以用于标识或确定该终端。第二终端信息可以为该终端的标识信息,也可以为与该终端相关的参数。第二终端信息与第一终端信息存在对应关系,可以是指第一终端信息与第二终端信息均与相同的终端存在对应关系,例如,第一终端信息与第二终端信息可以用于标识或确定相同的终端。示例性地,以第二终端信息为终端的标识、第一终端信息为终端的会话标识为例,核心网设备从终端或其它核心网设备获取到第二对应关系,第二对应关系包括终端的标识以及第一TSN域信息的对应关系,核心网设备可以在确定所述终端的标识与所述终端的会话标识存在对应关系时,根据所述终端的会话标识以及第二对应关系,确定第一对应关系,可以理解为,将第二对应关系中的终端的标识替换为终端的会话标识,即可得到第一对应关系。
方式四:核心网设备从本地获取第一对应关系。示例性地,核心网设备可将第一对应关系存储于本地存储单元,待需要使用时可从本地存储单元获取。
基于上述第一种可能的实现方式,核心网设备可以通过第一PDU会话向该终端发送 多播消息。例如,第一PDU会话可以为所述核心网设备与所述终端之间的PDU会话。采用该方法,核心网设备可以利用已有的传输通道向终端发送多播消息,无需建立新的传输通道,节省资源的同时提升传输效率。
下面以一个具体的实例对上述第一种可能的实现方式进行举例说明。
实例一:
请参见图7,其为本申请实施例提供的另一种消息传输方法的实施流程图。该方法中以终端包括UE1和UE2、接入网设备为gNB1、核心网设备为UPF、其它核心网设备为AMF以及多播消息为PTP消息为例示意。图7所示的方法中以UPF采用上述方式二获取第一对应关系示意。假设UE1所连接的一个或多个第一TSN设备属于TSN域1和TSN域2,UE2所连接的一个或多个第一TSN设备属于TSN域2和TSN域3。参阅图7所示,该方法包括:
步骤201a:UE1向AMF发送或指示第一TSN域信息1,该第一TSN域信息1包括TSN域1的域编号1和TSN域2的域编号2。
步骤201b:UE2向AMF发送或指示第一TSN域信息2,该第一TSN域信息2包括TSN域2的域编号2和TSN域3的域编号3。
步骤202a:AMF向UPF发送或指示UE1的信息和对应的第一TSN域信息1。UE1的信息可以为UE1的标识或UE1与UPF建立的PDU会话的标识。
步骤202b:AMF向UPF发送或指示UE2的信息和对应的第一TSN域信息2。UE2的信息可以为UE2的标识或UE2与UPF建立的PDU会话的标识。
步骤203a:UPF存储UE1的信息和对应的第一TSN域信息1,即存储了第一对应关系1,第一对应关系1可记为{UE1的信息,第一TSN域信息1}。
步骤203b:UPF存储UE2的信息和对应的第一TSN域信息2,即存储了第一对应关系2,第一对应关系2可记为{UE2的信息,第一TSN域信息2}。
本实例中第一对应关系1和第一对应关系2可以组成上文中的第一对应关系,即存储了第一对应关系1和第一对应关系2即存储了第一对应关系。如表2所示,为该实例中第一对应关系的一种可能的形式。
表2
Figure PCTCN2020117530-appb-000001
步骤204:UPF接收来自第二TSN设备的PTP消息,PTP消息中的domain number字段指示的域编号为1,指示该消息所属的TSN域为TSN域1,即该消息为来自TSN域1的消息。该实例中第二TSN设备可以是承载TSN主时钟的设备。
步骤205:UPF根据PTP消息中携带的domain number字段指示的域编号1以及存储的第一对应关系,确定第二TSN设备和UE1连接的第一TSN设备属于相同的TSN域。
步骤206:UPF向UE1发送该PTP消息。示例性地,UPF可以通过与UE1之间建立的PDU会话发送该PTP消息。当通过PDU会话发送该PTP消息时,可以理解为该PTP消息在核心网侧(gNB<->UPF)以及RAN侧(UE<->gNB)均是采用单播方式进行发送 的。
此外,该实例中UPF还可以向UE1发送该PTP消息进入UPF的5G时间。可选的,UPF可通过同一消息向UE1发送该PTP消息以及该PTP消息进入UPF的5G时间。
可见,上述实例中,UPF在转发TSN网络的PTP消息之前,可先判断与该消息属于相同TSN域的TSN设备所连接的UE,仅向该部分UE单播发送该PTP消息,而非向所有UE发送该PTP消息,故采用该方法可节省核心网和空口的资源。
第二种可能的实现方式中,目标设备可以为接入网设备,该接入网设备连接的终端连接第一TSN设备,相应的,目标设备信息可以为与该接入网设备相关的接入网设备信息。
基于第二种可能的实现方式,核心网设备可以通过第二PDU会话向该接入网设备发送多播消息。可选的,第二PDU会话可以为该接入网设备所连接的终端中连接第一TSN设备的终端与所述核心网设备之间的PDU会话。采用该方法,核心网设备可以利用已有的传输通道向该接入网设备发送多播消息,无需建立新的传输通道,节省资源的同时提升传输效率。
基于第二种可能的实现方式,核心网设备还可以通过核心网设备与该接入网设备之间建立的专用隧道向该接入网设备发送多播消息。本申请中,该专用隧道可以是专用于特定TSN域的,也可以是专用于部分TSN域的,也可以是专用于所有TSN域的。可选的,所述隧道可以是双向隧道也可以是单向隧道。其中,隧道专用于TSN域,也可描述为隧道专用于传输属于TSN域的消息,这两种描述在本申请中表达相同的含义。采用该方法,核心网设备可以利用在该核心网设备与接入网设备之间建立的专用隧道,向该接入网设备发送一个或多个TSN域的多播消息,这样,当接入网设备连接的多个终端均连接第一TSN设备时,核心网设备不需要向连接该多个终端的接入网设备发送多次多播消息,仅需要向该接入网设备发送一次多播消息,可节省无线资源,并可提升传输效率。
一个可能的示例中,接入网设备信息可以为接入网设备标识信息或核心网设备与该接入网设备之间的隧道信息,接入网设备标识信息用于标识该接入网设备,所述隧道信息用于标识该核心网设备与该接入网设备之间的隧道,所述隧道的数量可以为一个也可以为多个。其中,隧道信息可以包括隧道标识或隧道的端点标识等。可选的,该隧道可专用于传输属于特定TSN域的消息,例如,所述隧道可专用于传输属于某一个TSN域的消息,也可以专用于传输属于多个TSN域的消息。
基于第二种可能的实现方式,第一个可能的示例中,当接入网设备信息为接入网设备标识信息时,第一对应关系可以包括接入网设备标识信息与第一TSN域信息的对应关系。例如,以接入网设备和第一TSN设备的数量为3个,且,第一TSN域信息为第一TSN设备所属的TSN域的域编号,以及,第一对应关系是列表形式为例,3个接入网设备分别记为接入网设备1、接入网设备2以及接入网设备3,接入网设备1、接入网设备2以及接入网设备3的标识信息分别记为标识11、标识22、标识33,3个第一TSN设备分别记为第一TSN设备a、第一TSN设备b以及第一TSN设备c,第一TSN设备a、第一TSN设备b以及第一TSN设备c所属的TSN域的域编号分别记为域编号a、域编号b、域编号c,假设接入网设备1所连接/服务的终端连接第一TSN设备a,接入网设备2所连接/服务的终端连接第一TSN设备b,接入网设备3所连接/服务的终端连接第一TSN设备c,则第一对应关系可以如表3所示。
表3
接入网设备标识信息 第一TSN域信息
标识11 域编号a
标识22 域编号b
标识33 域编号c
基于第二种可能的实现方式,第二个可能的示例中,当接入网设备信息为所述隧道信息时,第一对应关系可以包括所述隧道信息与所述第一TSN域信息的一一对应关系,或者,包括所述隧道信息与多个所述第一TSN域信息的对应关系。例如,以接入网设备的数量为一个,该接入网设备连接的终端所连接的第一TSN设备的数量为3个,且,接入网设备信息为所述隧道信息,隧道信息为隧道的标识,第一TSN域信息为第一TSN设备所属的TSN域的域编号,以及,第一对应关系是列表形式为例,将该接入网设备记为接入网设备1,3个第一TSN设备分别记为第一TSN设备a、第一TSN设备b以及第一TSN设备c,第一TSN设备a、第一TSN设备b以及第一TSN设备c所属的TSN域a、TSN域b以及TSN域c的域编号分别记为域编号a、域编号b、域编号c,一种情况中,所述隧道信息与第一TSN域信息的对应关系为一一对应关系,接入网设备1与核心网设备之间专用于TSN域a的隧道记为隧道1,隧道1的标识记为隧道ID1,接入网设备1与核心网设备之间专用于TSN域b的的隧道记为隧道2,隧道2的标识记为隧道ID2,接入网设备1与核心网设备之间专用于TSN域c的的隧道记为隧道3,隧道3的标识记为隧道ID3,该种情况下第一对应关系可以如表4所示;另一种情况中,所述隧道信息与第一TSN域信息的对应关系为一个隧道信息与多个第一TSN域信息的对应关系,接入网设备1与核心网设备之间专用于TSN域a、TSN域b以及TSN域c的的隧道记为隧道x,隧道x的标识记为隧道IDx,该种情况下第一对应关系可以如表5所示。
表4
隧道信息 第一TSN域信息
隧道ID1 域编号a
隧道ID2 域编号b
隧道ID3 域编号c
表5
Figure PCTCN2020117530-appb-000002
基于第二种可能的实现方式,核心网设备可以但不限于采用如下方式获取第一对应关系。
方式1:核心网设备获取接入所述接入网设备的终端的终端信息与第一TSN域信息之间的对应关系,并获取所述终端信息与所述接入网设备信息之间的对应关系,进而核心网设备可根据所述终端信息与第一TSN域信息之间的对应关系以及所述终端信息与所述接入网设备信息之间的对应关系,确定第一对应关系。
其中,核心网设备获取终端信息与第一TSN域信息之间的对应关系的方式,可参见上文第一种可能的实现方式中核心网设备获取第一对应关系的方式。例如,以接入网设备为 gNB、该接入网设备连接的终端包括UE1以及UE2、UE1连接的第一TSN设备包括TSN设备1和TSN设备2、UE2连接的第一TSN设备包括TSN设备2和TSN设备3、终端信息为终端标识、第一TSN域信息为域编号、接入网设备信息为该接入网设备与核心网设备之间的隧道信息、隧道信息为隧道标识、第一对应关系为列表的形式为例,将gNB与核心网设备之间的隧道记为隧道y,隧道y的标识记为隧道IDy,UE1、UE2的标识分别记为UE ID1、UE ID2,将TSN设备1、TSN设备2以及TSN设备3对应的第一TSN域信息分别记为TSN域编号1、TSN域编号2以及TSN域编号3,则核心网设备获取到的接入gNB的终端的终端信息与第一TSN域信息之间的对应关系可以为表6所示,终端信息与接入网设备信息之间的对应关系可以为表7所示,进而核心网设备可根据表6所示的对应关系以及表7所示的对应关系,确定出表8所示的第一对应关系。
表6
Figure PCTCN2020117530-appb-000003
表7
Figure PCTCN2020117530-appb-000004
表8
Figure PCTCN2020117530-appb-000005
其中,核心网设备可以通过接收PDU会话建立请求/注册请求/服务请求等消息中携带的接入网设备信息和终端信息,获得所述终端信息与所述接入网设备信息之间的对应关系。
方式2:核心网设备从接入网设备接收第一对应关系。示例性地,核心网设备从该接入网设备获取接入网设备信息以及第一TSN域信息,核心网设备存储接入网设备信息以及第一TSN域信息,即存储了第一对应关系,可以理解为核心网设备直接从该接入网设备获取第一对应关系。
基于第二种可能的实现方式,核心网设备在通过与接入网设备之间的专用隧道向该接入网设备发送多播消息之前,可以先建立所述专用隧道。该隧道可以是预先建立好的,也可以是在发送多播消息之前实时建立的,本申请对此不做限定。以下详细描述隧道的建立过程。
在一种可能的设计中,当隧道为双向隧道时,可以采用如下方式建立所述隧道。
方式a:核心网设备为所述隧道分配第一端点标识,并向接入网设备发送第一端点标识,核心网设备接收来自接入网设备的第二端点标识,第二端点标识为接入网设备为所述隧道分配的。
方式b:核心网设备接收来自接入网设备的第一端点标识,第一端点标识为接入网设 备为所述隧道分配的,核心网设备为所述隧道分配第二端点标识,并向接入网设备发送第二端点标识。
针对方式a和方式b,当核心网设备与接入网设备成功为一隧道分配了隧道的端点标识并将分配的端点标识发送至对端后,即可认为该双向隧道已建立完成。
在另一种可能的设计中,当隧道为单向隧道时,可以采用如下方式建立所述隧道。
方式1:核心网设备接收来自接入网设备的端点标识,该端点标识为接入网设备为隧道分配的。可以理解为,当接入网设备成功为一隧道分配了隧道的端点标识并将分配的端点标识发送至核心网设备后,即可认为该单向隧道已建立完成。
方式2:核心网设备为隧道分配端点标识,并向接入网设备发送该端点标识。可以理解为,当核心网设备成功为一隧道分配了隧道的端点标识并将分配的端点标识发送至接入网设备后,即可认为该单向隧道已建立完成。
基于第二种可能的实现方式,接入网设备接收到来自核心网设备的多播消息后,可以采用如下方式向终端发送所述多播消息。
方式1:接入网设备以广播的方式向所述终端发送所述多播消息,相应的,终端从接入网设备接收通过广播方式发送的所述多播消息。
方式2:接入网设备以组播的方式向所述终端发送所述多播消息,相应的,终端从接入网设备接收通过组播方式发送的所述多播消息。
方式3:接入网设备以单播的方式向所述终端发送所述多播消息,相应的,终端从接入网设备接收通过单播方式发送的所述多播消息。
一个可能的示例中,接入网设备以组播或广播的方式向终端发送多播消息时,还可以为终端配置用于多播消息的无线网络临时标识(radio network temporary identifier,RNTI)和/或时频资源,基于该种设计,终端从接入网设备接收通过广播或组播方式发送的多播消息,包括:终端根据用于多播消息的RNTI和/或时频资源,从接入网设备接收通过广播或组播方式发送的多播消息。其中,RNTI可以为预定义的或接入网设备分配的,时频资源可以为接入网设备预分配的时频资源或动态调度的时频资源。
一个可能的示例中,接入网设备以组播或单播的方式向终端发送多播消息之前,还可以获取终端与TSN域之间的对应关系,并可根据所述对应关系以及第二TSN设备所属的域,确定与所述第二TSN设备所属的域对应的终端,进而接入网设备向与所述第二TSN设备所属的域对应的终端发送多播消息。例如终端与TSN域之间的对应关系可以为终端信息与TSN域信息之间的对应关系,所述终端信息例如可以为终端的标识信息或与终端相关的可以确定出该终端的参数等,所述TSN域信息可以为TSN域的编号或标识等。
需要说明的是,上述第一种可能的实现方式与第二种可能的实现方式可以结合实施,也可以单独实施,对此不做限定。
下面以两个具体的实例对上述第二种可能的实现方式进行举例说明。
实例1:
请参见图8,其为本申请实施例提供的又一种消息传输方法的实施流程图。该方法中以终端包括UE1和UE2、接入网设备为gNB1、核心网设备为UPF、其它核心网设备为AMF、接入网设备信息为gNB1与UPF之间建立的隧道的标识以及多播消息为PTP消息为例示意。图8所示的方法中以UPF通过专用隧道向gNB1发送PTP消息,且以gNB1与 UPF之间建立的隧道1专用于TSN域1以及隧道1的标识为隧道IDz1,以gNB1与UPF之间建立的隧道2专用于TSN域2以及隧道2的标识为隧道IDz2,以gNB1与UPF之间建立的隧道3专用于TSN域3以及隧道3的标识为隧道IDz3,为例示意。假设UE1所连接的一个或多个第一TSN设备属于TSN域1和TSN域2,UE2所连接的一个或多个第一TSN设备属于TSN域2和TSN域3,TSN域1、TSN域2以及TSN域3对应的域编号分别记为域编号1、域编号2以及域编号3。参阅图8所示,该方法包括:
其中,步骤301a-步骤303a与步骤201a-步骤203a相同,步骤301b-步骤303b与步骤201b-步骤203b相同,重复之处不再赘述,详见上文中描述。
执行步骤301a-步骤303a以及步骤301b-步骤303b之后,UPF获得如表2所示的第一对应关系,即获得终端信息与第一TSN域信息之间的对应关系。
步骤304:UPF获取终端信息与gNB1信息之间的对应关系,该对应关系可以如表9所示。
表9
Figure PCTCN2020117530-appb-000006
步骤305:UPF根据表2所示的终端信息与第一TSN域信息之间的对应关系,以及,表9所示的终端信息与gNB1信息之间的对应关系,确定gNB1信息与第一TSN域信息之间的对应关系,该对应关系如表10所示。
表10
Figure PCTCN2020117530-appb-000007
步骤306:UPF接收来自第二TSN设备的PTP消息,PTP消息中的domain number字段指示的域编号为1。该实例中第二TSN设备可以是承载TSN主时钟的设备。
步骤307:UPF根据PTP消息中的域编号1以及表9所示的gNB1信息与第一TSN域信息之间的对应关系,确定第二TSN设备和gNB1连接的第一TSN设备属于相同的TSN域或者UPF确定出针对TSN域1维护的专用隧道1。其中,gNB1连接第一TSN设备可以是指gNB1连接的UE连接第一TSN设备,可以理解为gNB1与第一TSN设备间接连接。
步骤308:UPF通过与gNB1之间建立的专用于TSN域1的隧道1向gNB1发送该PTP消息。此外,该实例中UPF还可以向gNB1发送该PTP消息进入UPF的5G时间。可选的,该PTP消息以及该PTP消息进入UPF的5G时间可通过同一消息或不同的消息发送。
本例中,以所述专用隧道为双向隧道为例,所述隧道可以采用如下方式建立。
a)gNB1为各个TSN域关联的专用隧道分配的隧道端点标识(tunnel end identifier,TEID),值可以是协议预定义好的,例如,协议可以预定义专用于TSN域1的隧道对应的TEID=y,专用于TSN域2的隧道对应的TEID=y+1,专用于TSN域3的隧道对应的TEID=y+2,依次类推,当gNB1连接多个TSN域的TSN设备时,gNB1为各个TSN域的专用隧道分配的TEID可以在该域的前一个域的专用隧道的TEID的基础上加1;UPF为各个TSN域关联的专用隧道分配的TEID值也可以是协议预定义好的,例如,专用于TSN 域1的隧道对应的TEID=x,专用于TSN域2的隧道对应的TEID=x+1,专用于TSN域3的隧道对应的TEID=x+2,依次类推,当gNB1连接多个TSN域的TSN设备时,UPF为各个TSN域的专用隧道分配的TEID可以在该域的前一个域的专用隧道的TEID的基础上加1。这样,UPF和gNB1之间默认存在多条专用隧道。
b)gNB1侧TEID可以是gNB1自己分配的,UPF侧的TEID可以是UPF自己分配的。UPF在通过隧道向gNB1发送PTP消息之前,可判断是否和该gNB1之间已经建立了TSN域1的专用隧道,若已经预先建立隧道则直接使用该隧道传输PTP消息,若没有建立TSN域1的专用隧道,则可由UPF触发与gNB1之间建立专用于TSN域1的隧道,用于在UPF和gNB1之间传输TSN域1的PTP消息。一个可能的示例中,UPF和gNB1建立专用隧道的流程可包括,UPF可以为该专用隧道分配一个TEID x,并通过SMF和AMF将该TEID转发给相应的gNB1,可选的,UPF还可以将该专用隧道与TSN域1的对应关系指示给gNB1;gNB1在收到TEID后为该专用隧道分配一个TEID y,并通过AMF和SMF转发给相应的UPF。另一个可能的示例中,UPF和gNB1建立专用隧道的流程可包括,gNB1可以向AMF指示自身为专用隧道分配的TEID值y,进一步的AMF可以直接向UPF或通过SMF向UPF指示gNB1为专用隧道分配的TEID值y,例如,AMF可在UE和UPF之间建立/更新PDU会话时,通过SMF向UPF指示gNB1为专用隧道分配的TEID值y,UPF接收到gNB1为专用隧道分配的TEID值y后,可为该专用隧道分配一个TEID x,并可通过SMF和AMF将该TEID x转发至该gNB1。
需要说明的是,本例中由于只存在UPF向gNB1方向发送的下行PTP消息,故可以在UPF与gNB1之间建立单向隧道,只需要gNB1为隧道分配一个TEID,UPF不需要分配TEID。上述以双向隧道的建立流程为例对隧道的建立过程进行说明,单向隧道的建立流程与之类似。
方式一,gNB1为各个隧道分配的TEID值可以是协议预定义好的,参考上述方式a)。方式二,gNB1为各个隧道分配的TEID值也可以是该gNB自己分配的,此时隧道的建立流程可参考上述方式b)。基于方式二,由于该单向隧道不需要UPF分配TEID,故若由UPF通过指示消息指示gNB1建立该单向隧道,则在该指示消息中不需要携带UPF为该隧道分配的TEID。
步骤309:gNB1从该隧道接收到UPF发送的该PTP消息后,可通过如下任意一种方式发送给UE。
1)在空口单播向gNB1连接的所有UE发送该PTP消息。
2)根据预先存储的终端与TSN域之间的对应关系以及TSN域1,确定出与TSN域1对应的UE1,并采用单播方式向UE1发送该PTP消息。
3)在空口通过广播方式向gNB1连接的所有UE发送该PTP消息,所有UE都可以接收并解析该PTP消息。可选的,该UE用于接收PTP消息的RNTI和/或时频域资源,可以是协议预定义的或网络设备通过系统消息/专用RRC消息向UE指示的。
4)在空口通过组播方式向gNB1连接的一组UE发送该PTP消息,该组UE是与TSN域1对应的UE,即该组UE连接的TSN设备属于TSN域1。一个可能的示例中,gNB1连接的各个UE可在注册流程/业务请求流程/PDU会话建立流程中,向gNB1指示自身所连接的TSN设备所属的TSN域的TSN域信息,gNB1将连接属于相同TSN域的TSN设备的UE分配到一个组播组中,并为该组播组分配专用的RNTI和/或时频资源,该组播组 内UE利用分配的RNTI和/或时频资源接收并解析PTP消息。
一种可能的实现中,由于gNB1和UPF之间的一条专用隧道只用于传输一个特定TSN域的PTP消息,一种情况下,gNB1从专用隧道中收到一条PTP消息,但由于空口资源受限,当该PTP消息未来得及发送给某个或某些UE时,下一个PTP消息就已经到达gNB1,此时gNB1可以取消前一个PTP消息的发送,而只发送后接收到的PTP消息。
可见,上述实例中,当一个gNB连接的N个UE所连接的TSN设备属于同一TSN域时,现有技术中UPF收到属于该TSN域的PTP消息后,需要向这N个UE分别发送该PTP消息,相当于UPF向该gNB发送了N次,空口侧也发送了N次,而采用本实施例方案,UPF通过专用隧道向gNB发送该TSN域的PTP消息,UPF只需向gNB发送1次,如果gNB通过组播/广播方式向这些UE发送PTP消息,则在空口也只需发送1次。因此本申请方案可极大节省核心网和空口侧发送PTP消息的资源占用,尤其是在UE数量较多、TSN域较多,且一个UE连接的TSN设备可能属于多个TSN域的场景下,可以极大提高资源利用率。
上述实例1中,gNB1和UPF之间建立的专用隧道是专用于特定TSN域的,当gNB1连接的UE所连接的TSN设备属于多个TSN域时,为传输多个TSN域的消息,gNB1与UPF之间需要建立多条专用隧道。为节省传输资源,本申请提供实例2的方案,以实现gNB1和UPF之间只建立一条专用隧道,用于传输全部TSN域的消息。
实例2:
请参见图9,其为本申请实施例提供的又一种消息传输方法的实施流程图。该方法中以终端包括UE1和UE2、接入网设备为gNB1、核心网设备为UPF、其它核心网设备为AMF、接入网设备信息为gNB1与UPF之间建立的隧道的标识以及多播消息为PTP消息为例示意。图9所示的方法中以UPF通过专用隧道向gNB1发送PTP消息,且以gNB1与UPF之间建立的专用隧道专用于gNB1连接的UE所连接的TSN设备所属的各个TSN域为例示意。假设UE1所连接的一个或多个第一TSN设备属于TSN域1和TSN域2,UE2所连接的一个或多个第一TSN设备属于TSN域2和TSN域3,TSN域1、TSN域2以及TSN域3对应的域编号分别记为域编号1、域编号2以及域编号3。参阅图9所示,该方法包括:
其中,步骤401a-步骤403a与步骤201a-步骤203a相同,步骤401b-步骤403b与步骤201b-步骤203b相同,重复之处不再赘述,详见上文中描述。
步骤404-步骤405与步骤304-步骤305相同,重复之处不再赘述,详见上文中描述。
步骤406a:UPF接收来自第二TSN设备的PTP消息1,PTP消息1中的domain number字段指示的域编号为1。该实例中第二TSN设备可以是承载TSN主时钟的设备。
步骤407a:UPF根据PTP消息1中的域编号1以及gNB1信息与第一TSN域信息之间的对应关系,确定第二TSN设备和gNB1连接的第一TSN设备属于相同的TSN域。
步骤408a:UPF通过与gNB1之间建立的专用隧道向gNB1发送该PTP消息1。此外,该实例中UPF还可以向gNB1发送该PTP消息1进入UPF的5G时间。可选的,该PTP消息1以及该PTP消息1进入UPF的5G时间可通过同一消息或不同的消息发送。
本例中,专用隧道可以是双向隧道或单向隧道,该专用隧道的建立方式与实例1类似,可参见实例1中建立一条隧道的方式。
步骤409a:gNB1从该隧道接收到UPF发送的该PTP消息1后,可通过实例1中1)至4)任意一种方式发送给UE1。此外,该实例中gNB1还可以向UE1发送PTP消息1进入UPF的5G时间。
步骤406b:UPF接收来自第二TSN设备的PTP消息2,PTP消息2中的dombin number字段指示的域编号为2。
步骤407b:UPF根据PTP消息2中的域编号1以及gNB1信息与第一TSN域信息之间的对应关系,确定第二TSN设备和gNB1连接的第一TSN设备属于相同的TSN域。
步骤408b:UPF通过与gNB1之间建立的专用隧道向gNB1发送该PTP消息2。此外,该实例中UPF还可以向gNB1发送该PTP消息2进入UPF的5G时间。可选的,该PTP消息2以及该PTP消息2进入UPF的5G时间可通过同一消息或不同的消息发送。
步骤409b:gNB1从该隧道接收到UPF发送的该PTP消息2后,可通过实例1中1)至4)任意一种方式发送给UE1和UE2。此外,该实例中gNB1还可以向UE发送该PTP消息2进入UPF的5G时间。
一种可能的实现中,当gNB1从专用隧道中收到一条PTP消息,但由于空口资源受限,该PTP消息未来得及发送给某个或某些UE时,下一个PTP消息就已经到达gNB1,若gNB1确定这两个PTP消息来自相同TSN域,则gNB1可以取消前一个PTP消息的发送,而只发送后接收到的PTP消息。
本例中,由于gNB1和UPF之间的专用隧道可用于传输多个TSN域的PTP消息,故gNB1无法通过隧道信息确定两个PTP消息是否来自相同TSN域。可选的,gNB1可以通过对每条PTP消息进行解析,例如可采用深度包检测(deep packet inspection,DPI)通过检测PTP消息中的domain number字段,确定每个PTP消息所属的TSN域,进而可确定两个PTP消息是否属于相同的TSN域。
可见,上述实例中,gNB1和UPF之间建立和维护一个专用双向/单向隧道,用于传输该gNB1连接的UE所连接的TSN设备所属的TSN域的PTP消息,gNB1在空口侧可通过广播或单播或组播等方式发送PTP消息,可极大节省核心网和空口侧发送PTP消息的资源占用,且相比于实例1,UPF和gNB1之间不需要维护每个TSN域的专用隧道,只需建立和维护一条隧道即可,可节省传输资源。
上述实例1和实例2中,UPF接收到来自第二TSN设备的PTP消息后,除可通过专用隧道向gNB1发送PTP消息之外,还可通过PDU会话向gNB1发送PTP消息,其中,该PDU会话可以为gNB1所连接的UE中其中一个连接第一TSN设备的UE与UPF之间的PDU会话,第一TSN设备与第二TSN设备属于相同的TSN域。可选的,所述其中一个连接第一TSN设备的UE可以是随机选取的,也可以是基于一定的条件选取的,本申请不做限定。
在部分应用场景中,如工厂部署私网场景下,第二TSN设备和接入网设备之间可以由直接的以太网连接,对于这些场景,第二TSN设备可以直接将多播消息发送至接入网设备,接入网设备收到该多播消息后,可通过实例1中方式2)至4)中的一种发送给UE。这样,可避免接入网设备在空口向每个终端都发送一次多播消息,从而节省空口资源开销。
下面以一个实例对上述方法进行举例说明。
实例a:
请参见图10,其为本申请实施例提供的又一种消息传输方法的实施流程图。该方法中以终端包括UE1、UE2以及UE3为例、接入网设备为gNB以及多播消息为PTP消息为例示意。假设UE1所连接的一个或多个第一TSN设备属于TSN域1,TSN域1的编号记为域编号1,UE2所连接的一个或多个第一TSN设备属于TSN域1和TSN域2,TSN域2的编号记为域编号2,UE3所连接的一个或多个第一TSN设备属于TSN域3,TSN域3的编号记为域编号3。参阅图10所示,该方法包括:
步骤501a:UE1向gNB发送UE1信息与对应的域编号1。
步骤501b:UE2向gNB发送UE2信息与对应的域编号1和域编号2。
步骤501c:UE3向gNB发送UE3信息与对应的域编号3。
步骤502:gNB存储多个UE信息与多个域编号的对应关系,该实例中对应关系可以为表11所示。该实例中UE信息可以为UE的标识,或与UE相关的参数等。
表11
UE信息 域编号
UE1信息 域编号1
UE2信息 域编号1和域编号2
UE3信息 域编号3
步骤503:gNB接收来自第二TSN设备的PTP消息,该PTP消息中的domain number字段指示的域编号为1。
步骤504:gNB根据该PTP消息中的域编号1以及表11所示的对应关系,可确定第二TSN设备与UE1和UE2连接的第一TSN设备属于相同的TSN域。
步骤505a:gNB可采用实例1中方式2)至4)中的一种向UE1发送该PTP消息。
步骤505b:gNB可采用实例1中方式2)至4)中的一种向UE2发送该PTP消息。
上文中以传输下行多播消息为例进行说明,本申请实施例提供的方法也可用于传输上行多播消息的场景。下面以多播消息为授时消息为例,对传输上行授时消息的流程进行说明。
在一种可能的上行授时场景中,UE连接的一个TSN设备作为一个TSN域的主时钟,由该主时钟向其他TSN设备进行授时。请参见图11所示,其为本申请实施例提供的又一种消息传输方法的实施流程图,图11中以TSN设备1作为一个TSN域的主时钟、TSN设备1与TSN设备2属于相同的TSN域为例示意,上行授时的流程如下:
步骤601:TSN设备1向UE发送PTP消息,该PTP消息中的domain number字段指示的域编号为1。
步骤602:UE收到该PTP消息后,将该PTP消息以及该PTP消息的入口5G时间,通过与UPF之间的PDU会话发送给UPF。其中,入口5G时间可记为t in,可通过一条单独消息发送,也可以携带在PTP消息的一个字段中发送。
步骤603a:UPF收到该PTP消息以及入口5G时间(t in)后,经过适配功能处理后通过以太多播方式向5GS之外的TSN网络中的TSN设备2发送该PTP消息。适配功能可以对该PTP消息中的correctionField字段进行修正,修正方式详见上文。
步骤603b:UPF收到PTP消息以及入口5G时间(t in)后,可直接将该PTP消息和入口5G时间(t in)进行下行发送,发送到各个连接TSN设备1的UE处,或者,也可以通 过UPF的适配功能对该PTP消息进行处理后进行下行发送,例如,UPF的适配功能可以记录当前时间(t out),并可根据当前时间(t out)对该PTP消息中的correctionField字段进行修正,并将修正后的PTP消息以及新的入口5G时间(t out)发送到各个连接TSN设备1的UE处,具体的发送方式可以采用上述实例一以及实例1-实例2提供的方法,也可以向所有UE的PDU会话发送该PTP消息和入口5G时间(t in)。其中,入口5G时间(t in)可以是指该PTP消息从UE的适配功能进入5GS的时间。
步骤604:UE收到PTP消息后,经UE的适配功能处理后通过以太多播方式向5GS之外的TSN网络中的TSN设备发送PTP消息,UE的适配功能可以对该PTP消息中的correctionField字段进行修正。
可见,上述实例中,可以支持连接到UE的一个TSN设备,例如TSN end station作为TSN GM,使得TSN网络的部署可以更灵活,不必限制TSN GM一定部署在UPF侧。
上述主要从核心网设备、终端以及接入网设备三者之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,核心网设备、终端以及接入网设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对核心网设备、终端以及接入网设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
基于相同的发明构思,本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中核心网设备所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中终端所执行的各个步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中接入网设备所执行的各个步骤的单元(或手段)。
一种可能的实施方式中,本申请实施例提供一种装置100。该装置100可以应用于核心网设备。图12所示为本申请实施例提供的一种装置100的结构示意图,参阅图12所示,该装置100可包括处理单元110、接收单元120以及发送单元130。其中,处理单元110可用于获取第一对应关系,所述第一对应关系包括目标设备信息与第一时延敏感网络TSN域信息的对应关系,所述目标设备信息用于标识目标设备,所述第一TSN域信息用于标识第一TSN设备所属的TSN域;接收单元120可用于接收来自第二TSN设备的多播消息,所述多播消息中包括第二TSN域信息,所述第二TSN域信息用于标识所述第二TSN设备所属的TSN域;发送单元130可用于当处理单元110根据所述第二TSN域信息和所述第一对应关系确定所述第二TSN设备和所述第一TSN设备属于相同的TSN域时,向所述目标设备发送所述多播消息。
另一种可能的实施方式中,本申请实施例提供一种装置200。该装置200可以应用于终端。图13所示为本申请实施例提供的一种装置200的结构示意图,参阅图13所示,该 装置200可包括发送单元210、接收单元220和处理单元230。其中,发送单元210可用于发送TSN域信息,所述TSN域信息用于标识装置200所连接的第一TSN设备所属的TSN域;接收单元220可用于接收多播消息,所述多播消息来自第二TSN设备所属的TSN域,所述TSN域信息用于确定所述第一TSN设备和所述第二TSN设备是否属于相同的TSN域,且在属于相同的TSN域时,所述多播消息被传输给所述装置200,其中所述处理单元230用于生成包括TSN域信息的数据包,并控制发送单元210的发送。
又一种可能的实施方式中,本申请实施例提供一种装置300。该装置300可以应用于接入网设备。图14所示为本申请实施例提供的一种装置300的结构示意图,参阅图14所示,该装置300可包括接收单元310和发送单元320。在实施中,装置300还可包括处理单元330。其中,接收单元310可用于通过与核心网设备之间的隧道接收来自所述核心网设备的多播消息,所述隧道专用于所述多播消息,所述多播消息属于时延敏感网络TSN域;发送单元320可用于向终端发送所述多播消息,所述终端连接所述TSN域中的TSN设备。
当装置100应用于核心网设备,装置200应用于终端,且,装置300应用于接入网设备时,还可执行如下操作:
一种可能的实施方式中,所述多播消息包括授时消息。
一种可能的实施方式中,所述目标设备包括终端,所述目标设备信息包括第一终端信息,所述第一终端信息用于标识所述终端,所述终端连接所述第一TSN设备。
一种可能的实施方式中,所述处理单元110可采用如下方式获取第一对应关系:从所述终端和/或其它核心网设备获取所述第一对应关系。
一种可能的实施方式中,所述处理单元110可采用如下方式获取第一对应关系:从所述终端或其它核心网设备获取第二对应关系,所述第二对应关系包括所述第一TSN域信息与所述终端的第二终端信息的对应关系;确定所述第二终端信息与预存的所述第一终端信息存在对应关系,根据所述第一终端信息以及所述第二对应关系,确定所述第一对应关系。
一种可能的实施方式中,所述发送单元130可用于通过第一PDU会话向所述终端发送所述多播消息。
一种可能的实施方式中,所述目标设备包括接入网设备,所述目标设备信息包括接入网设备信息,所述接入网设备信息与所述接入网设备相关。
一种可能的实施方式中,所述发送单元130可用于通过第二PDU会话向所述接入网设备发送所述多播消息。
一种可能的实施方式中,所述发送单元130可用于通过隧道向所述接入网设备发送所述多播消息,所述隧道为所述核心网设备与所述接入网设备之间的隧道。
一种可能的实施方式中,所述接入网设备信息包括接入网设备标识信息或隧道信息,所述接入网设备标识信息用于标识所述接入网设备,所述隧道信息用于标识所述核心网设备与所述接入网设备之间的隧道。
一种可能的实施方式中,所述第一对应关系包括所述隧道信息与所述第一TSN域信息的一一对应关系,或者,所述隧道信息与多个所述第一TSN域信息的对应关系。
一种可能的实施方式中,所述处理单元110可采用如下方式获取第一对应关系:获取接入所述接入网设备的终端的终端信息与所述第一TSN域信息之间的对应关系;获取所述终端信息与所述接入网设备信息之间的对应关系;根据所述终端信息与所述第一TSN域信息之间的对应关系以及所述终端信息与所述接入网设备信息之间的对应关系,确定所述第 一对应关系。
一种可能的实施方式中,所述接收单元120还可用于从所述接入网设备接收所述第一对应关系。
一种可能的实施方式中,所述处理单元110还可用于建立所述隧道。
一种可能的实施方式中,所述隧道为双向隧道,所述处理单元110可采用如下方式建立所述隧道:为所述隧道分配第一端点标识,并通过所述发送单元130向所述接入网设备发送所述第一端点标识;通过所述接收单元120接收来自所述接入网设备的第二端点标识,所述第二端点标识为所述接入网设备为所述隧道分配的。
一种可能的实施方式中,所述隧道为双向隧道,所述处理单元110可采用如下方式建立所述隧道:通过所述接收单元120接收来自所述接入网设备的第一端点标识,所述第一端点标识为所述接入网设备为所述隧道分配的;为所述隧道分配第二端点标识,并通过所述发送单元130向所述接入网设备发送所述第二端点标识。
一种可能的实施方式中,所述隧道为单向隧道,所述处理单元110可采用如下方式建立所述隧道:通过所述接收单元120接收来自所述接入网设备的第一端点标识,所述第一端点标识为所述接入网设备为所述隧道分配的。
一种可能的实施方式中,所述发送单元320可采用如下方式向终端发送所述多播消息:以广播的方式向所述终端发送所述多播消息;或,以组播的方式向所述终端发送所述多播消息;或,以单播的方式向所述终端发送所述多播消息;相应的,所述接收单元220还可用于从接入网设备接收通过广播、组播或单播方式发送的所述多播消息。
一种可能的实施方式中,所述处理单元330还可用于为所述终端配置用于所述多播消息的无线网络临时标识RNTI和/或时频资源。
一种可能的实施方式中,所述接收单元220还可用于根据用于所述多播消息的无线网络临时标识RNTI和/或时频资源,从所述接入网设备接收通过广播或组播方式发送的所述多播消息。
一种可能的实施方式中,所述发送单元320以组播或单播的方式向终端发送多播消息之前,所述处理单元330还可用于:获取终端与TSN域之间的对应关系,并可根据所述对应关系以及第二TSN设备所属的域,确定与所述第二TSN设备所属的域对应的终端。
应理解以上装置中单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且装置中的单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,各个单元可以为单独设立的处理元件,也可以集成在装置的某一个芯片中实现,此外,也可以以程序的形式存储于存储器中,由装置的某一个处理元件调用并执行该单元的功能。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里的处理元件又可以成为处理器,可以是一种具有信号的处理能力的集成电路。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路实现或者以软件通过处理元件调用的形式实现。
在一个例子中,以上任一装置中的单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程 门阵列(field programmable gate array,FPGA),或这些集成电路形式中至少两种的组合。再如,当装置中的单元可以通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
以上用于接收的单元是一种该装置的接口电路,用于从其它装置接收信号。例如,当该装置以芯片的方式实现时,该接收单元是该芯片用于从其它芯片或装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其它装置发送信号。例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其它芯片或装置发送信号的接口电路。
核心网设备通过与终端或接入网设备之间的接口协议与终端或接入网设备交互信息,例如,发送所述多播消息;核心网设备通过与终端或接入网设备之间通过无线连接,核心网设备通过无线接口与终端或接入网设备交互信息,例如发送所述多播消息。
请参考图15,其为本申请实施例提供的一种终端的结构示意图。其可以为以上实施例中的终端,用于实现以上实施例中终端的操作。如图15所示,该终端包括:天线1501、射频部分1502、信号处理部分1503。天线1501与射频部分1502连接。在下行方向上,射频部分1502通过天线1501接收网络设备发送的信息,将网络设备发送的信息发送给信号处理部分1503进行处理。在上行方向上,信号处理部分1503对终端的信息进行处理,并发送给射频部分1502,射频部分1502对终端的信息进行处理后经过天线1501发送给网络设备。
信号处理部分1503可以包括调制解调子系统,用于实现对数据各通信协议层的处理;还可以包括中央处理子系统,用于实现对终端操作系统以及应用层的处理;此外,还可以包括其它子系统,例如多媒体子系统,周边子系统等,其中多媒体子系统用于实现对终端相机,屏幕显示等的控制,周边子系统用于实现与其它设备的连接。调制解调子系统可以为单独设置的芯片。可选地,以上用于终端的装置可以位于该调制解调子系统。
调制解调子系统可以包括一个或多个处理元件15031,例如,包括一个主控CPU和其它集成电路。此外,该调制解调子系统还可以包括存储元件15032和接口电路15033。存储元件15032用于存储数据和程序,但用于执行以上方法中终端所执行的方法的程序可能不存储于该存储元件15032中,而是存储于调制解调子系统之外的存储器中,使用时调制解调子系统加载使用。接口电路15033用于与其它子系统通信。以上用于终端的装置可以位于调制解调子系统,该调制解调子系统可以通过芯片实现,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上终端执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,终端实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如应用于终端的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中终端执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件。
在另一种实现中,用于执行以上方法中终端所执行的方法的程序可以在与处理元件处于不同芯片上的存储元件,即片外存储元件。此时,处理元件从片外存储元件调用或加载程序于片内存储元件上,以调用并执行以上方法实施例中终端执行的方法。
在又一种实现中,应用于终端的装置实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于调制解调子系统上,这里的处理元件可以为集 成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
终端实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上终端执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上终端执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上应用于终端的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种终端执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行终端执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行终端执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行终端执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图16,其为本申请实施例提供的一种接入网设备的结构示意图。用于实现以上实施例中接入网设备的操作。如图16所示,该接入网设备包括:天线1601、射频装置1602、基带装置1603。天线1601与射频装置1602连接。在上行方向上,射频装置1602通过天线1601接收终端发送的信息,将终端发送的信息发送给基带装置1603进行处理。在下行方向上,基带装置1603对终端的信息进行处理,并发送给射频装置1602,射频装置1602对终端的信息进行处理后经过天线1601发送给终端。
基带装置1603可以包括一个或多个处理元件16031,例如,包括一个主控CPU和其它集成电路。此外,该基带装置1603还可以包括存储元件16032和接口电路16033,存储元件16032用于存储程序和数据;接口电路16033用于与射频装置1602交互信息,该接口电路例如为通用公共无线接口(common public radio interface,CPRI)。以上应用于接入网设备的装置可以位于基带装置1603,例如,以上应用于接入网设备的装置可以为基带装置1603上的芯片,该芯片包括至少一个处理元件和接口电路,其中处理元件用于执行以上接入网设备执行的任一种方法的各个步骤,接口电路用于与其它装置通信。在一种实现中,接入网设备实现以上方法中各个步骤的单元可以通过处理元件调度程序的形式实现,例如应用于接入网设备的装置包括处理元件和存储元件,处理元件调用存储元件存储的程序,以执行以上方法实施例中接入网设备执行的方法。存储元件可以为处理元件处于同一芯片上的存储元件,即片内存储元件,也可以为与处理元件处于不同芯片上的存储元件,即片外存储元件。
在另一种实现中,应用于接入网设备的装置实现以上方法中各个步骤的单元可以是被配置成一个或多个处理元件,这些处理元件设置于基带装置上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA,或者这些类集成电路的组合。这些集成电路可以集成在一起,构成芯片。
接入网设备实现以上方法中各个步骤的单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置包括该SOC芯片,用于实现以上方法。该芯片内可以集成至少一个处理元件和存储元件,由处理元件调用存储元件的存储的程序的形式实现以上接入网设备执行的方法;或者,该芯片内可以集成至少一个集成电路,用于实现以上接入网设备执行的方法;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
可见,以上应用于接入网设备的装置可以包括至少一个处理元件和接口电路,其中至少一个处理元件用于执行以上方法实施例所提供的任一种接入网设备执行的方法。处理元件可以以第一种方式:即调用存储元件存储的程序的方式执行接入网设备执行的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行接入网设备执行的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上接入网设备执行的部分或全部步骤。
这里的处理元件同以上描述,可以是通用处理器,例如CPU,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参考图17,其为本申请实施例提供的一种核心网设备的结构示意图。其可以为以上实施例中的核心网设备,用于实现以上实施例中核心网设备的操作。如图17所示,该核心网设备包括:处理器1710,存储器1720,和接口1730,处理器1710、存储器1720和接口1730信号连接。
以上装置位于该核心网设备中,且各个单元的功能可以通过处理器1710调用存储器1720中存储的程序来实现。即,以上装置包括存储器和处理器,存储器用于存储程序,该程序被处理器调用,以执行以上方法实施例中的方法。这里的处理器可以是一种具有信号的处理能力的集成电路,例如CPU。或者以上各个单元的功能可以通过配置成实施以上方法的一个或多个集成电路来实现。例如:一个或多个ASIC,或,一个或多个微处理器DSP,或,一个或者多个FPGA等,或这些集成电路形式中至少两种的组合。或者,可以结合以上实现方式。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (30)

  1. 一种消息传输方法,其特征在于,包括:
    核心网设备获取第一对应关系,所述第一对应关系包括目标设备信息与第一时延敏感网络TSN域信息的对应关系,所述目标设备信息用于标识目标设备,所述第一TSN域信息用于标识第一TSN设备所属的TSN域;
    所述核心网设备接收来自第二TSN设备的多播消息,所述多播消息中包括第二TSN域信息,所述第二TSN域信息用于标识所述第二TSN设备所属的TSN域;
    当根据所述第二TSN域信息和所述第一对应关系确定所述第二TSN设备和所述第一TSN设备属于相同的TSN域时,所述核心网设备向所述目标设备发送所述多播消息。
  2. 如权利要求1所述的方法,其特征在于,所述多播消息包括授时消息。
  3. 如权利要求1或2所述的方法,其特征在于,所述目标设备包括终端,所述目标设备信息包括第一终端信息,所述第一终端信息用于标识所述终端,所述终端连接所述第一TSN设备。
  4. 如权利要求3所述的方法,其特征在于,所述核心网设备获取第一对应关系,包括:
    所述核心网设备从所述终端和/或其它核心网设备获取所述第一对应关系。
  5. 如权利要求3所述的方法,其特征在于,所述核心网设备获取第一对应关系,包括:
    所述核心网设备从所述终端或其它核心网设备获取第二对应关系,所述第二对应关系包括所述第一TSN域信息与所述终端的第二终端信息的对应关系;
    所述核心网设备确定所述第二终端信息与预存的所述第一终端信息存在对应关系,根据所述第一终端信息以及所述第二对应关系,确定所述第一对应关系。
  6. 如权利要求3~5任一项所述的方法,其特征在于,所述核心网设备向所述目标设备发送所述多播消息,包括:
    所述核心网设备通过第一协议数据单元PDU会话向所述终端发送所述多播消息。
  7. 如权利要求1或2所述的方法,其特征在于,所述目标设备包括接入网设备,所述目标设备信息包括接入网设备信息,所述接入网设备信息与所述接入网设备相关。
  8. 如权利要求7所述的方法,其特征在于,所述核心网设备向所述目标设备发送所述多播消息,包括:
    所述核心网设备通过第二PDU会话向所述接入网设备发送所述多播消息。
  9. 如权利要求7所述的方法,其特征在于,其特征在于,所述核心网设备向所述目标设备发送所述多播消息,包括:
    所述核心网设备通过隧道向所述接入网设备发送所述多播消息,所述隧道为所述核心网设备与所述接入网设备之间的隧道。
  10. 如权利要求7~9任一项所述的方法,其特征在于,所述接入网设备信息包括接入网设备标识信息或隧道信息,所述接入网设备标识信息用于标识所述接入网设备,所述隧道信息用于标识所述核心网设备与所述接入网设备之间的隧道。
  11. 如权利要求10所述的方法,其特征在于,所述第一对应关系包括所述隧道信息与所述第一TSN域信息的一一对应关系,或者,所述隧道信息与多个所述第一TSN域信息 的对应关系。
  12. 如权利要求7~11任一项所述的方法,其特征在于,所述核心网设备获取第一对应关系,包括:
    所述核心网设备获取接入所述接入网设备的终端的终端信息与所述第一TSN域信息之间的对应关系;
    所述核心网设备获取所述终端信息与所述接入网设备信息之间的对应关系;
    所述核心网设备根据所述终端信息与所述第一TSN域信息之间的对应关系以及所述终端信息与所述接入网设备信息之间的对应关系,确定所述第一对应关系;
    或,
    所述核心网设备从所述接入网设备接收所述第一对应关系。
  13. 如权利要求9~12任一项所述的方法,其特征在于,还包括:
    所述核心网设备建立所述隧道。
  14. 如权利要求13所述的方法,其特征在于,所述隧道为双向隧道;
    所述核心网设备建立所述隧道,包括:
    所述核心网设备为所述隧道分配第一端点标识,并向所述接入网设备发送所述第一端点标识;
    所述核心网设备接收来自所述接入网设备的第二端点标识,所述第二端点标识为所述接入网设备为所述隧道分配的;
    或者,
    所述核心网设备建立所述隧道,包括:
    所述核心网设备接收来自所述接入网设备的第一端点标识,所述第一端点标识为所述接入网设备为所述隧道分配的;
    所述核心网设备为所述隧道分配第二端点标识,并向所述接入网设备发送所述第二端点标识。
  15. 如权利要求13所述的方法,其特征在于,所述隧道为单向隧道;
    所述核心网设备建立所述隧道,包括:
    所述核心网设备接收来自所述接入网设备的第一端点标识,所述第一端点标识为所述接入网设备为所述隧道分配的。
  16. 一种消息传输方法,其特征在于,包括:
    终端发送时延敏感网络TSN域信息,所述TSN域信息用于标识所述终端所连接的第一TSN设备所属的TSN域;
    所述终端接收多播消息,所述多播消息来自第二TSN设备所属的TSN域,所述TSN域信息用于确定所述第一TSN设备和所述第二TSN设备是否属于相同的TSN域,且在属于相同的TSN域时,所述多播消息被传输给所述终端。
  17. 如权利要求16所述的方法,其特征在于,所述多播消息包括授时消息。
  18. 如权利要求16或17所述的方法,其特征在于,所述终端接收多播消息,包括:
    所述终端从接入网设备接收通过广播、组播或单播方式发送的所述多播消息。
  19. 如权利要求18所述的方法,其特征在于,所述终端从接入网设备接收通过广播或组播方式发送的所述多播消息,包括:
    所述终端根据用于所述多播消息的无线网络临时标识RNTI和/或时频资源,从所述接 入网设备接收通过广播或组播方式发送的所述多播消息。
  20. 一种消息传输方法,其特征在于,包括:
    接入网设备通过与核心网设备之间的隧道接收来自所述核心网设备的多播消息,所述隧道专用于所述多播消息,所述多播消息属于时延敏感网络TSN域;
    所述接入网设备向终端发送所述多播消息,所述终端连接所述TSN域中的TSN设备。
  21. 如权利要求20所述的方法,其特征在于,所述多播消息包括授时消息。
  22. 如权利要求20或21所述的方法,其特征在于,所述接入网设备向终端发送所述多播消息,包括:
    所述接入网设备以广播的方式向所述终端发送所述多播消息;或,
    所述接入网设备以组播的方式向所述终端发送所述多播消息;或,
    所述接入网设备以单播的方式向所述终端发送所述多播消息。
  23. 如权利要求22所述的方法,其特征在于,所述接入网设备以组播或广播的方式向所述终端发送所述多播消息,还包括:
    所述接入网设备为所述终端配置用于所述多播消息的无线网络临时标识RNTI和/或时频资源。
  24. 一种消息传输装置,用于核心网设备,其特征在于,包括:用于执行如权利要求1~15任一项中各步骤的单元或手段。
  25. 一种消息传输装置,用于终端,其特征在于,包括:用于执行如权利要求16~19任一项中各步骤的单元或手段。
  26. 一种消息传输装置,用于接入网设备,其特征在于,包括:用于执行如权利要求20~23任一项中各步骤的单元或手段。
  27. 一种消息传输装置,其特征在于,包括至少一个处理器,用于调用存储器中存储的程序,以执行如权利要求1~15任一项所述的方法。
  28. 一种消息传输装置,其特征在于,包括至少一个处理器,用于调用存储器中存储的程序,以执行如权利要求16~19任一项所述的方法。
  29. 一种消息传输装置,其特征在于,包括至少一个处理器,用于调用存储器中存储的程序,以执行如权利要求20~23任一项所述的方法。
  30. 一种存储介质,其特征在于,包括程序,当所述程序被处理器运行时,如权利要求1~23中任一项所述的方法被执行。
PCT/CN2020/117530 2019-09-24 2020-09-24 一种消息传输方法和装置 WO2021057864A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20869761.5A EP4044485A4 (en) 2019-09-24 2020-09-24 MESSAGE TRANSMISSION METHOD AND APPARATUS
US17/702,229 US20220217505A1 (en) 2019-09-24 2022-03-23 Message transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910906646.9A CN112636884B (zh) 2019-09-24 2019-09-24 一种消息传输方法和装置
CN201910906646.9 2019-09-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/702,229 Continuation US20220217505A1 (en) 2019-09-24 2022-03-23 Message transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2021057864A1 true WO2021057864A1 (zh) 2021-04-01

Family

ID=75165107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117530 WO2021057864A1 (zh) 2019-09-24 2020-09-24 一种消息传输方法和装置

Country Status (4)

Country Link
US (1) US20220217505A1 (zh)
EP (1) EP4044485A4 (zh)
CN (1) CN112636884B (zh)
WO (1) WO2021057864A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113328820B (zh) * 2016-12-30 2022-09-16 华为技术有限公司 交互时间同步报文的方法以及网络装置
EP4044699B1 (en) * 2020-01-06 2023-12-06 Samsung Electronics Co., Ltd. Method and device for delivering time-sensitive networking synchronization information in mobile communication system
US11973855B2 (en) * 2021-08-25 2024-04-30 Siemens Canada Limited PTP transparent clock with inter-VLAN forwarding
JP7195495B1 (ja) 2022-06-07 2022-12-23 三菱電機株式会社 管理コントローラ、機器通信システム、通信方法及びプログラム
CN115801544B (zh) * 2023-01-29 2023-05-23 北京智芯微电子科技有限公司 网络监测方法、设备、系统及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110072258A (zh) * 2018-01-22 2019-07-30 华为技术有限公司 用于确定性传输的通信方法和相关装置
CN110267312A (zh) * 2019-06-17 2019-09-20 腾讯科技(深圳)有限公司 数据传输的方法、管理服务质量流的方法、设备及介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10911262B2 (en) * 2017-10-31 2021-02-02 Cisco Technology, Inc. Deterministic forwarding across L2 and L3 networks
TWI735052B (zh) * 2018-11-27 2021-08-01 瑞典商Lm艾瑞克生(Publ)電話公司 處理精確時序協定框之裝置及方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110072258A (zh) * 2018-01-22 2019-07-30 华为技术有限公司 用于确定性传输的通信方法和相关装置
CN110267312A (zh) * 2019-06-17 2019-09-20 腾讯科技(深圳)有限公司 数据传输的方法、管理服务质量流的方法、设备及介质

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on enhancement of 5G System (5GS) for vertical and Local Area Network (LAN) services (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.734, no. V16.1.0, 25 March 2019 (2019-03-25), pages 1 - 111, XP051722871 *
ERICSSON, HUAWEI, ZTE, SAMSUNG: "Merger of soln11.3 and Soln 28", 3GPP DRAFT; S2-1904617_4566_23734-G10_CR_TIMESYNC_REV3_AP10_R3_NEWSOLN, vol. SA WG2, 11 April 2019 (2019-04-11), Xi’an, China, pages 1 - 13, XP051703781 *
ERICSSON, HUAWEI, ZTE, SAMSUNG: "Merger of soln11.3 and Soln 28", 3GPP DRAFT; S2-1904716_4617_4566_23734-G10_CR_TIMESYNC_REV3_AP10_R3_NEWSOLN, vol. SA WG2, 11 April 2019 (2019-04-11), Xi/an China, pages 1 - 13, XP051703856 *
ERICSSON: "5G system support for multiple external time domains: Option 3", 3GPP DRAFT; S2-1902927_E-MAIL_REV1_S2-1902851_SYNC FOR SEPERATE TIME DOMAINS, vol. SA WG2, 12 March 2019 (2019-03-12), Santa Cruz - Tenerife, pages 1 - 6, XP051697464 *
See also references of EP4044485A4 *

Also Published As

Publication number Publication date
CN112636884B (zh) 2022-11-18
US20220217505A1 (en) 2022-07-07
CN112636884A (zh) 2021-04-09
EP4044485A1 (en) 2022-08-17
EP4044485A4 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
WO2021057864A1 (zh) 一种消息传输方法和装置
US10973000B2 (en) Message sending method and apparatus
WO2020103842A1 (zh) 一种通信方法及装置
US20220216932A1 (en) 5g system signaling methods to convey tsn synchronization information
WO2019214653A1 (zh) 通信方法、设备和系统
WO2022033558A1 (zh) 一种中继管理方法及通信装置
US20230019215A1 (en) TSC-5G QoS MAPPING WITH CONSIDERATION OF ASSISTANCE TRAFFIC INFORMATION AND PCC RULES FOR TSC TRAFFIC MAPPING AND 5G QoS FLOWS BINDING
WO2020098747A1 (zh) 传输路径的配置方法及装置
WO2019085728A1 (zh) 通信方法及装置
WO2018137364A1 (zh) 数据发送方法、数据发送终端以及基站
WO2019029568A1 (zh) 通信方法、终端设备和网络设备
WO2021238882A1 (zh) 一种实现业务连续性的方法及装置
WO2021097858A1 (zh) 一种通信方法及装置
WO2022082518A1 (zh) 信号的接收和发送方法、装置和通信系统
WO2020199923A1 (zh) 一种通信方法及装置
US20220408317A1 (en) Handover method and communication apparatus
US20220182910A1 (en) Data Processing Method, Apparatus, And System
WO2022033543A1 (zh) 一种中继通信方法及通信装置
WO2021189269A1 (zh) 一种实现业务连续性的方法及装置
WO2021114115A1 (zh) 通信方法及装置
WO2023197105A1 (zh) 配置信息的方法、装置和通信系统
US11997538B2 (en) Communication method and communications apparatus
WO2023020046A1 (zh) 一种通信方法及通信装置
WO2022205485A1 (zh) 信息收发方法以及装置
WO2023061207A1 (zh) 一种通信方法、通信装置及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20869761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020869761

Country of ref document: EP

Effective date: 20220401