WO2019085728A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2019085728A1
WO2019085728A1 PCT/CN2018/110139 CN2018110139W WO2019085728A1 WO 2019085728 A1 WO2019085728 A1 WO 2019085728A1 CN 2018110139 W CN2018110139 W CN 2018110139W WO 2019085728 A1 WO2019085728 A1 WO 2019085728A1
Authority
WO
WIPO (PCT)
Prior art keywords
data path
function network
network element
identifier
information
Prior art date
Application number
PCT/CN2018/110139
Other languages
English (en)
French (fr)
Inventor
杨娇
李岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019085728A1 publication Critical patent/WO2019085728A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • Multi-homed technology is an important network service method, which has the advantages of improving network reliability, achieving balanced load, reducing transmission delay, and increasing network bandwidth. With the development of next-generation Internet applications and technologies, the Internet Protocol Version 6, IPv6 multi-homed technology will have broad application prospects.
  • UE User equipment
  • UPF User Plane Function
  • DN data network
  • the radio access network recovers the multiple data paths at the same time, that is, the Multiple data paths respectively establish wireless resources, which is likely to cause waste of wireless resources.
  • the embodiment of the present application discloses a communication method and device, which can establish a wireless resource only for a data path in which data transmission needs exist, thereby avoiding waste of wireless resources.
  • the first aspect of the embodiment of the present application discloses a communication method, including: a session management function network element acquires identification information of a first data path, where the first data path is between a user equipment and a plurality of anchor point user plane function network elements. One of the data paths, the plurality of data paths belong to the same session, and the session management function network element obtains the quality of service QoS information of the first data path according to the identification information of the first data path, and sends the first data to the wireless access network.
  • QoS information of the path the QoS information is used to establish a radio resource for the first data path. In this way, wireless resources can be established only for the data path in which data transmission needs exist, that is, the first data path, to avoid waste of wireless resources.
  • the session management function network element may obtain the identifier information of the first data path by using the session management function network element to receive the identifier information from the user equipment or the branch node user plane function network element, or After receiving the notification message from the anchor user plane function network element corresponding to the first data path, the session management function network element determines the identifier information.
  • the method may further include: the session management function network element determining the first data path from the plurality of data paths according to the identification information.
  • the identification information may include at least one of an Internet Protocol IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path.
  • the session management function network element may specifically send the QoS information of the first data path to the radio access network by using the access and mobility management function network element.
  • the second aspect of the embodiment of the present application discloses a communication method, including: a branch node user plane function network element receives downlink data from an anchor user plane function network element through a first data path, and determines the anchor point user plane function network element. And corresponding identifier information of the first data path, and sending, to the session management function network element, identifier information of the first data path, where the identifier information is used for determining the QoS information of the first data path.
  • a branch node user plane function network element receives downlink data from an anchor user plane function network element through a first data path, and determines the anchor point user plane function network element. And corresponding identifier information of the first data path, and sending, to the session management function network element, identifier information of the first data path, where the identifier information is used for determining the QoS information of the first data path.
  • the identification information includes at least one of an Internet Protocol IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path.
  • a third aspect of the embodiments of the present disclosure discloses a communication method, including: acquiring, by a user equipment, identifier information of a first data path, where the first data path is multiple data between the user equipment and multiple anchor user plane function network elements One of the paths, the plurality of data paths belong to the same session, and the user equipment sends the identifier information to the access and mobility management function network element, where the identifier information is used for determining the QoS information of the first data path.
  • wireless resources can be established only for the data path in which data transmission needs exist, that is, the first data path, to avoid waste of wireless resources.
  • the identification information includes at least one of an Internet Protocol IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path.
  • the identifier information may be an identifier of an anchor user plane function network element corresponding to the first data path, and the user equipment acquires an IP prefix of the user equipment from the session management function network element and corresponds to the first data path.
  • the first correspondence between the identifiers of the anchor user plane function network elements is obtained, and the identifier of the anchor user plane function network element corresponding to the first data path is obtained according to the first correspondence relationship.
  • the identifier information may be a logical identifier of the first data path
  • the user equipment may obtain a second between the IP prefix of the user equipment and the logical identifier of the first data path from the session management function network element. Corresponding relationship, and acquiring a logical identifier of the first data path according to the second correspondence.
  • a fourth aspect of the embodiments of the present disclosure discloses a communication method, including: an access and mobility management function network element receives first identification information of a first data path from a session management function network element, where the first data path is the user equipment One of a plurality of data paths between the plurality of anchor user plane function network elements, the plurality of data paths belong to the same session, and the access and mobility management function network element receives the first identification information, and then the user
  • the device receives the second identifier information of the second data path of the multiple data paths, and if the second data path identified by the second identifier information is not the same data path as the first data path identified by the first identifier information, the session management is performed.
  • the function network element sends the second identifier information, and can predict whether the data path used for transmitting the uplink data and the downlink data is the same, and can improve the speed of establishing the radio resource for the data path in which the data transmission requirement exists.
  • a fifth aspect of the embodiment of the present application discloses a communication device, including:
  • the obtaining module is configured to obtain the identifier information, where the identifier information is used to identify the first data path among the multiple data paths between the user equipment and the plurality of anchor user plane function network elements, where the multiple data paths belong to the same session.
  • the sending module is configured to send the QoS information of the first data path to the radio access network, where the QoS information is used for establishing the radio resource, and the radio resource can be established only for the data path where the data transmission requirement exists, thereby avoiding waste of the radio resource.
  • the acquisition module is specifically used to:
  • the identification information is received from the user equipment or the branch node user plane function network element. or,
  • the identifier information is determined.
  • it also includes:
  • a determining module configured to determine the first data path according to the identification information.
  • the identification information includes at least one of an Internet Protocol IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path.
  • the sending module is specifically used to:
  • the QoS information of the first data path is sent to the radio access network by the access and mobility management function network element.
  • a sixth aspect of the embodiments of the present disclosure discloses a communications apparatus, including:
  • the receiving module is configured to receive downlink data from the anchor user plane function network element by using the first data path.
  • a sending module configured to send, to the session management function network element, identifier information of the first data path, where the identifier information is used for determining the quality of service QoS information of the first data path, and the wireless resource may be established only for the data path where the data transmission requirement exists. Avoid the waste of wireless resources.
  • the identification information includes at least one of an Internet Protocol IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path.
  • a seventh aspect of the embodiment of the present application discloses a communication device, including:
  • the obtaining module is configured to obtain the identifier information, where the identifier information is used to identify the first data path among the multiple data paths between the user equipment and the plurality of anchor user plane function network elements, where the multiple data paths belong to the same session.
  • a sending module configured to send identifier information to the access and mobility management function network element, where the identifier information is used for determining the quality of service QoS information of the first data path, and the radio resource may be established only for the data path where the data transmission requirement exists, to avoid Waste of wireless resources.
  • the identification information includes at least one of an Internet Protocol IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path.
  • the identifier information includes an identifier of the anchor user plane function network element corresponding to the first data path
  • the obtaining module is further configured to acquire the IP prefix and the first data path of the user equipment from the session management function network element. The first correspondence between the identifiers of the corresponding anchor user plane function network elements.
  • the obtaining module is further configured to obtain, according to the first correspondence, an identifier of an anchor user plane function network element corresponding to the first data path.
  • the identifier information includes a logical identifier of the first data path
  • the obtaining module is further configured to obtain, between the IP address prefix of the user equipment and the logical identifier of the first data path, from the session management function network element. Correspondence relationship.
  • the obtaining module is further configured to acquire a logical identifier of the first data path according to the second correspondence.
  • the eighth aspect of the embodiment of the present application discloses a communication device, including:
  • a receiving module configured to receive the first identifier information from the session management function network element, where the first identifier information is used to identify the first data path among the multiple data paths between the user equipment and the plurality of anchor user plane function network elements, where , the multiple data paths belong to the same session.
  • the receiving module is further configured to: after receiving the first identifier information, receive the second identifier information from the user equipment, where the second identifier information is used to identify the second data path in the multiple data paths.
  • the sending module is configured to send the second identifier information to the session management function network element, where the second data path identified by the second identifier information and the first data path identified by the first identifier information are not the same data path, The data and the downstream data are used in the same data path to predict.
  • a ninth aspect of the present application discloses a communication apparatus, including: a processor, a transceiver, and a memory, wherein the processor, the transceiver, and the memory are connected by a bus, and the memory stores an executable program code.
  • the transceiver is controlled by the processor for transmitting and receiving messages, and the processor is configured to invoke the executable program code to perform the first aspect, the second aspect, the third aspect, or the fourth aspect. Communication method.
  • a tenth aspect of the embodiments of the present application provides a computer readable storage medium, wherein the computer readable storage medium stores instructions that, when executed on a computer, cause the computer to perform the first aspect, the second aspect, and the first The communication method of the third aspect or the fourth aspect.
  • An eleventh aspect of the present application provides a computer program product comprising instructions for causing a computer to perform the communication of the first aspect, the second aspect, the third aspect or the fourth aspect when it is run on a computer method.
  • a twelfth aspect of the embodiments of the present application provides a chip system, including a processor, for supporting a data transceiving device to implement the functions involved in any one of the foregoing first to eleventh aspects, for example, Generate or process the information involved in the above methods.
  • the chip system also includes a memory for holding the necessary program instructions and data for the data transceiving device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the session management function network element obtains the identifier information, where the identifier information identifies the first data path among the multiple data paths between the user equipment and the plurality of anchor point user plane function network elements, and the multiple data paths. Having belong to the same session, the session management function network element sends the QoS information of the first data path to the radio access network, and based on the QoS information, the radio resource can be established for the first data path, which can be only the data path where the data transmission requirement exists. Establish wireless resources to avoid wasting wireless resources.
  • FIG. 1 is a schematic structural diagram of a communication system disclosed in an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a communication method disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of another communication method disclosed in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of still another communication method disclosed in an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of still another communication method disclosed in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of still another communication method disclosed in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another communication apparatus according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another communication apparatus disclosed in an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of still another communication apparatus disclosed in the embodiment of the present application.
  • the technical solutions of the embodiments of the present application may be specifically applied to various communication networks, for example, Global System of Mobile communication (GSM), Code Division Multiple Access (CDMA), and wideband code division. (Wideband Code Division Multiple Access (WCDMA), Time Division-Synchronous Code Division Multiple Access (TD-SCDMA), Universal Mobile Telecommunication System (UMTS), Long Term Evolution (Long Term) Evolution, LTE) network, etc., with the continuous development of the communication technology, the technical solution of the embodiment of the present application can also be used for future networks, such as the fifth generation mobile communication technology (5G) network, which can also be called For the New Radio (NR) network, or for the D2D (device to device) network, the M2M (machine to machine) network, etc., the application does not limit this, as long as the system has similar problems, The technical solution of the embodiment of the present application is adopted.
  • 5G fifth generation mobile communication technology
  • NR New Radio
  • D2D device to device
  • M2M machine to machine
  • the user equipment (UE) described in the embodiments of the present application may also be referred to as a terminal device, a mobile station (MS), a terminal, a mobile terminal, and a subscriber unit. , SU), Subscriber Station (SS), Mobile Station (MB), Remote Station (RS), Access Point (AP), Remote Terminal (RT), Access terminal (AT), user terminal (User Terminal, UT), user agent (User Agent, UA), terminal device (User Device, UD), computer built-in or mobile device, etc., this application does not Make a limit.
  • the terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or data connectivity to the user, which can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the RAN described in the embodiments of the present application may specifically refer to a base station in a communication system.
  • a base station may refer to a device in an access network that communicates with a UE over one or more sectors over an air interface, which may coordinate attribute management of the air interface.
  • the base station may be a base station such as GSM or CDMA, such as a Base Transceiver Station (BTS), or a base station in WCDMA, such as a NodeB, or an evolved base station in LTE, such as an eNB or e-NodeB (evolved Node B), which may also be a base station in a 5G system, such as NR (or gNB, or other name), or a base station in a future network, or an evolved base station upgrade in LTE.
  • the evolved base station can support both LTE and 5G services, and the like, which is not limited in this application.
  • the base station involved in the present application may also refer to a transmission point (TP), a transmission and receiver point (TRP), a relay device, or other network element device having a base station function.
  • TP transmission point
  • TRP transmission and receiver point
  • relay device or other network element device having a base station function.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present application.
  • Figure 1 is applicable to the multi-homed scenario of IPv6 in a 5G communication system.
  • the communication system described in this embodiment includes: a RAN, a Session Management Function (SMF), an Access and Mobility Management Function (AMF), and an UPF.
  • SMF Session Management Function
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • the SMF is used to be responsible for the establishment, modification, and release of the session; and the allocation of the Internet Protocol (IP) prefix of the UE.
  • IP Internet Protocol
  • the SMF can also be used to determine the service session continuous (SSC) mode of the session, the selection of the User Plane Function (UPF) of the anchor user plane, and the like.
  • SSC service session continuous
  • UPF User Plane Function
  • the AMF is responsible for the registration management and mobility management of the UE.
  • AMF can also be used for functions such as lawful interception.
  • the UPF includes a branch node user plane function network element (Branching Point UPF, BP UPF) and an anchor point UPF.
  • the UPF may be, for example, a Packet Data Network Gateway (PDN-GW), a Serving Gate Way (S-GW), a gateway GW forwarding plane, a Software Defined Network (SDN) switch, or the like. device.
  • PDN-GW Packet Data Network Gateway
  • S-GW Serving Gate Way
  • SDN Software Defined Network
  • the anchor point UPF is used to complete forwarding, statistics, and the like of the user packet, and one anchor point UPF corresponds to one data path.
  • the BP UPF is used to receive downlink data sent by the anchor UPF, and forward the downlink data to the UE through the RAN.
  • the BP UPF is further configured to receive uplink data sent by the UE from the RAN, and forward the uplink data to the corresponding anchor UPF.
  • FIG. 2 is a schematic flowchart diagram of a communication method according to an embodiment of the present application.
  • the communication method described in this embodiment is applied to a scenario in which downlink data needs to be sent to the UE when the UE is in an idle state.
  • FIG. 2 exemplifies two anchor points UPF (an anchor point UPF1 and an anchor point UPF2), and the communication method includes:
  • the anchor point UPF1 receives downlink data.
  • the data path may be established between the UPF and the UE in each of the anchor points, and the data path between the anchor point UPF1 and the UE is recorded as the first data path, and the anchor point UPF2 is The data path between the UEs is recorded as a second data path, and the first data path and the second data path belong to the same session.
  • a data path can be called a session branch.
  • the anchor point UPF1 sends a notification message to the SMF.
  • the SMF receives the notification message.
  • the SMF acquires identification information and QoS information of the first data path corresponding to the anchor point UPF1.
  • the identifier information of the data path may include at least one of an IP prefix of the UE, an identifier of the anchor point UPF corresponding to the data path, or a logical identifier of the data path.
  • the SMF can allocate the IP prefix of the UE and the logical identifier of the data path during the establishment of the session.
  • the identifier of the anchor UPF may be the IP address of the anchor UPF or the anchor UPF identification ID.
  • the logical identifier of the data path may be a number, for example, 1, 2, 3, etc., or may be a character, such as a, b, c, etc., and may also be a string, such as path_a, path_b, path_c, and the like.
  • the N9 interface between the BP UPF and the anchor UPF is released, that is, the connection between the anchor UPF and the BP UPF is disconnected, and the anchor UPF1 is received from the data network (DN).
  • the notification message (such as Data Notification) can be directly sent to the SMF.
  • the SMF receives the notification message sent by the anchor UPF1, the SMF obtains the data path corresponding to the anchor point UPF1 (ie, the first data path). Identification information.
  • the SMF may send a response message (such as Data Notification Ack) of the notification message to the anchor point UPF1. Not shown in the figure.
  • a response message such as Data Notification Ack
  • the N9 interface between the BP UPF and the anchor UPF is not released, that is, the connection between the anchor UPF and the BP UPF is maintained, and the anchor UPF1 is received.
  • the downlink data is forwarded, the downlink data is forwarded to the BP UPF.
  • the BP UPF obtains the identification information of the data path (ie, the first data path) corresponding to the anchor point UPF1, and sends a notification message to the SMF, where the notification message is sent.
  • the identifier information of the first data path corresponding to the anchor point UPF1 is carried, that is, the identifier information of the first data path corresponding to the anchor point UPF1 acquired by the SMF is directly carried in the notification message sent by the BP UPF.
  • the SMF may send a response message of the notification message to the BP UPF. Not shown in the figure.
  • the SMF may determine, according to the identifier information of the first data path, that the first data path corresponding to the UPF1 is obtained from the first data path and the second data path, and obtain Quality of Service (QoS) information of the first data path.
  • QoS Quality of Service
  • the SMF locally stores the QoS information required for each data path, or the SMF interacts with other network elements (such as a Policy Control Function (PCF) network element) to obtain QoS information required for each data path.
  • PCF Policy Control Function
  • the SMF sends the identifier information and the QoS information of the first data path to the AMF.
  • the AMF receives the identification information and the QoS information of the first data path.
  • the SMF may send an N11 message to the AMF, and carry the identification information and the QoS information of the first data path in the N11 message.
  • the AMF may send a response message (eg, N11message Ack) of the N11 message to the SMF. Not shown in the figure.
  • a response message eg, N11message Ack
  • identifier information and the QoS information of the first data path may be carried in the same message, and may be carried in different messages, and are not limited in this embodiment.
  • the SMF can call the service that passes the information to the AMF.
  • the information to be delivered includes identification information and QoS information of the first data path.
  • the SMF may also send only the QoS information of the first data path to the AMF without transmitting the identification information of the first data path, that is, the AMF does not need to know the data path of the current wireless resource.
  • a data path such as the SMF, carries only the QoS information of the first data path and does not carry the identification information of the first data path in the N11 message sent to the AMF.
  • the RAN can still establish a radio resource for the first data path according to the QoS information of the first data path.
  • the AMF After the AMF receives the identification information of the first data path, the AMF performs paging on the UE through the RAN because the UE is in the idle state at this time.
  • the UE After receiving the paging message, the UE sends a service request (such as a NAS Service Request) to the RAN.
  • a service request such as a NAS Service Request
  • the RAN receives the service request and forwards the service request to the AMF.
  • the AMF sends the quality of service QoS information of the first data path to the RAN when receiving the service request forwarded by the RAN.
  • the RAN receives QoS information of the first data path.
  • the RAN when receiving the service request of the UE, the RAN forwards the service request to the AMF, and may send an N2 message to the AMF and carry the service request in the N2 message.
  • the RAN can call the service that passes the information to the AMF.
  • the information to be delivered includes the service request.
  • the AMF may send an N2 request (Request) or an N2 message to the RAN, and carry the QoS information of the first data path in the N2 request or the N2 message.
  • the AMF can call the service that passes the information to the RAN.
  • the information to be delivered includes QoS information of the first data path.
  • the RAN establishes a radio resource for the first data path according to the QoS information of the first data path.
  • the RAN After receiving the QoS information of the first data path, the RAN establishes, according to the QoS information, a radio resource required for the UE to communicate through the first data path.
  • the AMF receives the anchor sent by the SMF.
  • the AMF does not need to page the UE through the RAN and wait for the service request of the UE, but directly sends the second data path to the RAN.
  • the RAN receives the QoS information of the second data path, the RAN establishes a required radio resource for the UE to communicate through the second data path according to the QoS information.
  • the SMF determines the identifier information of the first data path after receiving the notification message sent by the anchor point UPF corresponding to the first data path, or is sent from the notification message sent by the BP UPF. Acquiring the identification information of the first data path, acquiring the QoS information of the first data path according to the identification information of the first data path, and transmitting the QoS information of the first data path to the RAN by using the AMF.
  • the RAN can establish a required radio resource for the first data path according to the QoS information.
  • the RAN may establish radio resources only for the data path in which the data transmission requirement exists, such as the foregoing first data path. Thereby avoiding the waste of wireless resources.
  • FIG. 3 is a schematic flowchart diagram of another communication method according to an embodiment of the present application.
  • the communication method described in this embodiment is applied to a scenario in which the UE needs to send uplink data when the UE is in the idle state.
  • FIG. 3 is exemplified by two anchor points UPF (an anchor point UPF1 and an anchor point UPF2), and the communication method includes:
  • the UE establishes a session by interacting with the RAN, the AMF, the SMF, and the anchor UPF.
  • the identification information of the data path may include at least one of an IP prefix of the UE, an identifier of an anchor UPF corresponding to the data path, or a logical identifier of the data path.
  • the SMF can allocate the IP prefix of the UE.
  • the SMF may set a first correspondence between the IP prefix and the identifier of the anchor UPF, and send the first correspondence to the UE.
  • the SMF may also allocate a logical identifier of the data path for each data path, and set a second correspondence between the IP prefix and the logical identifier of the data path, and send the second correspondence to the UE. For example, the SMF sends the first or second correspondence described above to the UE through the corresponding anchor UPF.
  • the SMF may send an Internet Protocol Version 6, IPv6 (Router Advertisement, RA) message to the UE through the corresponding anchor point UPF, and carry the IP prefix and the anchor UPF identifier in the IPv6 RA message.
  • IPv6 Recorder Advertisement
  • the UE establishes a data path (referred to as a first data path) between the UE and the anchor UPF1 by interacting with the RAN, the AMF, the SMF, and the anchor UPF1 to complete the establishment of the session.
  • the SMF sends the correspondence between the IP prefix and the identifier of the anchor point UPF1 to the UE through the anchor point UPF1, or the correspondence between the IP prefix and the logical identifier of the first data path. At least one of them.
  • the BP UPF should be added at this time, and the UE interacts with the RAN, the AMF, the SMF, the BP UPF, and the anchor point UPF2.
  • a data path (recorded as a second data path) between the UE and the anchor UPF2 is established to complete the modification of the session.
  • the SMF sends the correspondence between the IP prefix and the identifier of the anchor point UPF2 to the UE through the anchor point UPF2, or the correspondence between the IP prefix and the logical identifier of the second data path. At least one of them.
  • the UE acquires identifier information of the first data path.
  • the UE determines a data path for transmitting the uplink data (recorded as the first data path corresponding to the anchor point UPF1), and acquires the identifier information of the first data path.
  • the identifier information may specifically be an IP prefix corresponding to the first data path among the plurality of IP prefixes allocated to the UE.
  • the identifier information may specifically be an identifier of the anchor point UPF1 corresponding to the first data path.
  • the UE first determines the IP prefix corresponding to the first data path, and obtains the anchor point UPF1 corresponding to the first data path according to the correspondence between the IP prefix and the identifier of the anchor point UPF1 corresponding to the first data path. logo.
  • the identifier information may specifically be a logical identifier of the first data path.
  • the UE first determines the IP prefix corresponding to the first data path, and obtains the logical identifier of the first data path according to the correspondence between the IP prefix and the logical identifier of the first data path.
  • the UE sends the identifier information of the first data path to the RAN.
  • the RAN receives the identification information of the first data path.
  • the UE may send a service request (such as a NAS Service Request) to the RAN, and carry the identification information of the first data path in the service request.
  • a service request such as a NAS Service Request
  • the RAN sends the identifier information of the first data path to the AMF.
  • the AMF receives the identification information of the first data path.
  • the RAN after receiving the service request sent by the UE, the RAN sends an N2 message to the AMF, and carries the service request in the N2 message.
  • the RAN can call the service that passes the information to the AMF.
  • the information to be delivered includes the service request.
  • the AMF sends the identifier information of the first data path to the SMF.
  • the SMF receives the identification information of the first data path.
  • the AMF parses the N2 message to obtain the identification information of the first data path, sends an N11 message to the SMF, and carries the identification information of the first data path in the N11 message.
  • AMF can call the service that passes the information to the SMF.
  • the information to be delivered includes identification information of the first data path.
  • the purpose of transmitting the identification information of the data path to the SMF is to determine whether the radio resource is allowed to be established for the data path by the SMF.
  • the SMF acquires QoS information of the first data path.
  • the SMF determines the first data path corresponding to the anchor point UPF1 according to the identifier information of the first data path, and acquires QoS information of the first data path. For example, the SMF locally stores the QoS information required for each data path, or the SMF interacts with other network elements (such as PCF network elements) to obtain the QoS information required for each data path.
  • the SMF locally stores the QoS information required for each data path, or the SMF interacts with other network elements (such as PCF network elements) to obtain the QoS information required for each data path.
  • the SMF may determine, according to the identifier information of the first data path, whether to establish a radio resource for the first data path. If yes, the QoS information of the first data path is obtained, and step 307 is performed.
  • the SMF sends the identifier information and the QoS information of the first data path to the AMF.
  • the AMF receives the identification information and the QoS information of the first data path.
  • the SMF After receiving the N11 message sent by the AMF, if the SMF determines to allow the radio resource to be established for the first data path to recover the first data path, the SMF sends an N11 message to the AMF, and carries the first data path in the N11 message. Identification information and QoS information.
  • the SMF can call the service that passes the information to the AMF.
  • the information to be delivered includes identification information and QoS information of the first data path.
  • the AMF sends QoS information of the first data path to the RAN.
  • the RAN receives QoS information of the first data path.
  • the AMF receives the identification information and the QoS information of the first data path sent by the SMF through the N11 message, and may send an N2 request or an N2 message to the RAN, and carry the QoS of the first data path in the N2 request or the N2 message. information.
  • the AMF can call the service that passes the information to the RAN.
  • the information to be delivered includes QoS information of the first data path.
  • the RAN establishes a radio resource for the first data path according to the QoS information of the first data path.
  • the RAN After receiving the QoS information of the first data path, the RAN establishes, according to the QoS information, a radio resource required for the UE to communicate through the first data path.
  • the SMF may also send only the QoS information of the first data path to the AMF without transmitting the identifier information of the first data path, that is, the AMF does not need to know that the radio resource needs to be established currently.
  • the data path is specifically the one of the paths.
  • the SMF carries only the QoS information of the first data path and does not carry the identification information of the first data path in the N11 message sent to the AMF.
  • the RAN can still establish a radio resource for the first data path according to the QoS information of the first data path.
  • the UE when the UE needs to send the uplink data, the UE determines the identifier information of the first data path for sending the uplink data, and sends the identifier information of the first data path to the SMF by using the RAN and the AMF, and the SMF is according to the first
  • the identification information of the data path acquires the QoS information of the first data path. If the SMF determines that the radio resource is allowed to be established for the first data path, the SMF sends the QoS information of the first data path to the RAN through the AMF.
  • the RAN can establish a required radio resource for the first data path according to the QoS information.
  • the RAN may establish radio resources only for the data path in which the data transmission requirement exists, such as the foregoing first data path. Thereby avoiding the waste of wireless resources.
  • the UE when the UE can request to establish a radio resource for multiple data paths at the same time, the UE carries the identification information of the multiple data paths in the service request sent by the eNB, and after the SMF receives the identification information of the multiple data paths, Determining, according to the identification information, a data path that is allowed to establish a radio resource in the multiple data paths, acquiring QoS information of a data path that is allowed to establish a radio resource, and allowing identification information and QoS information of the data path of the radio resource to be established, or allowing establishment
  • the QoS information of the data path of the radio resource is returned to the AMF, and the AMF sends the QoS information of the data path allowing the establishment of the radio resource to the RAN, and the RAN establishes the radio resource for each data path that allows the establishment of the radio resource according to the respective QoS information.
  • FIG. 4 is a schematic flowchart diagram of still another communication method according to an embodiment of the present application.
  • the communication method described in this embodiment is applied to a scenario in which the downlink data needs to be sent to the UE when the UE is in the idle state, and the UE needs to send uplink data.
  • FIG. 4 exemplifies two anchor points UPF (anchor UPF1 and anchor point UPF2), and the communication method includes:
  • the UE establishes a data path (referred to as a first data path) between the UE and the anchor UPF1 by interacting with the RAN, the AMF, the SMF, and the anchor UPF1 to complete the establishment of the session.
  • the SMF sends the correspondence between the IP prefix and the identifier of the anchor point UPF1 to the UE through the anchor point UPF1, or the correspondence between the IP prefix and the logical identifier of the first data path. At least one of them.
  • the BP UPF should be added at this time, and the UE interacts with the RAN, the AMF, the SMF, the BP UPF, and the anchor point UPF2.
  • the SMF sends the correspondence between the IP prefix and the identifier of the anchor point UPF2 to the UE through the anchor point UPF2, or the data corresponding to the IP prefix and the anchor point UPF2. At least one of the correspondence between the logical identifiers of the paths.
  • the anchor point UPF1 receives downlink data.
  • the anchor point UPF1 sends a notification message to the SMF.
  • the SMF receives the notification message.
  • the SMF acquires first identification information and QoS information of the first data path corresponding to the anchor point UPF1.
  • the SMF sends first identifier information and QoS information of the first data path to the AMF.
  • the AMF receives first identification information and QoS information of the first data path.
  • steps 402 to 405 For the specific implementation of the steps 402 to 405, refer to the related descriptions in the steps 201 to 204 in the communication method flow shown in FIG. 2, and details are not described herein again.
  • the UE acquires second identifier information of the second data path.
  • the AMF pages the UE through the RAN because the UE is in the idle state.
  • the UE determines a data path (referred to as a second data path) for transmitting the uplink data, and acquires second identifier information of the second data path, when the uplink data needs to be sent.
  • the second identifier information may specifically be an IP prefix corresponding to the second data path among the plurality of IP prefixes allocated to the UE.
  • the second identifier information may specifically be an identifier of an anchor point UPF corresponding to the second data path.
  • the UE first determines an IP prefix corresponding to the second data path, and acquires an anchor point UPF corresponding to the second data path according to the correspondence between the IP prefix and the identifier of the anchor point UPF corresponding to the second data path.
  • logo the identifier of an anchor point UPF corresponding to the second data path.
  • the identifier information may specifically be a logical identifier of the second data path.
  • the UE first determines the IP prefix corresponding to the second data path, and obtains the logical identifier of the second data path according to the correspondence between the IP prefix and the logical identifier of the second data path.
  • the UE sends second identifier information of the second data path to the RAN.
  • the RAN receives the second identification information of the second data path.
  • the UE may send a service request to the RAN, and carry the second identification information of the second data path in the service request.
  • the RAN sends second identifier information of the second data path to the AMF.
  • the AMF receives the second identification information of the second data path.
  • the RAN after receiving the service request sent by the UE, the RAN sends an N2 message to the AMF, and carries the service request in the N2 message.
  • the RAN can call the service that passes the information to the AMF.
  • the information to be delivered includes the service request.
  • the AMF determines that the second data path that is identified by the second identifier information is not the same data path as the first data path that is identified by the first identifier information.
  • the AMF parses the N2 message to obtain the second identification information of the second data path.
  • the AMF compares the second identifier information with the first identifier information of the first data path received in step 405. If the second identifier information is different from the first identifier information or does not satisfy the preset correspondence, the determining The second data path is not the same data path as the first data path.
  • the second identifier information is different from the first identifier information or does not satisfy the preset correspondence relationship, where:
  • the second identification information is different from the first identification information.
  • the second identifier information and the first identifier information are both IP prefixes. If the IP prefix corresponding to the second identifier information is different from the first identifier, the second data path identified by the second identifier information is The first data path identified by the first identification information is not the same data path.
  • the second identifier information When the second identifier information is different from the first identifier information, the second identifier information and the first identifier information do not satisfy the preset correspondence.
  • the second identifier information is an IP prefix
  • the first identifier information is a logical identifier of the first data path. If the logical identifier of the IP prefix and the first data path does not satisfy the preset correspondence, the second identifier information is displayed.
  • the identified second data path is not the same data path as the first data path identified by the first identification information.
  • the second identifier information is the same as the first identifier information, and the second identifier information is the same as the first identifier information, or if the second identifier information is different from the first identifier information, for example,
  • the second identification information is an IP prefix
  • the first identification information is a logical identifier of the first data path, but the second identification information and the first identification information satisfy a preset correspondence, indicating that the second data path is the same as the first data path.
  • a data path is an IP prefix
  • step 405 the AMF has received the QoS information of the first data path acquired by the SMF, so that the second identification information of the second data path does not need to be sent to the SMF to obtain the QoS information of the second data path, so this time
  • the process no longer performs steps 410-412.
  • the AMF sends second identifier information of the second data path to the SMF.
  • the SMF receives the second identification information of the second data path.
  • the AMF when determining that the second data path is not the same data path as the first data path, the AMF sends an N11 message to the SMF, and carries the second identification information of the second data path in the N11 message.
  • AMF can call the service that passes the information to the SMF.
  • the information to be delivered includes second identification information of the second data path.
  • the SMF acquires QoS information of the second data path.
  • the SMF After the SMF receives the N11 message sent by the AMF, if it is determined that the radio resource is allowed to be established for the second data path, the QoS information of the second data path is obtained according to the second identifier information of the second data path.
  • the SMF sends second identifier information and QoS information of the second data path to the AMF.
  • the AMF receives the second identification information and the QoS information of the second data path.
  • the SMF sends an N11 message to the AMF, and carries the second identification information and the QoS information of the second data path in the N11 message.
  • the SMF can call the service that passes the information to the AMF.
  • the information to be delivered includes second identification information and QoS information of the second data path.
  • the SMF may also send only the QoS information of the second data path to the AMF without transmitting the identification information of the second data path, that is, the AMF does not need to know the data path of the current wireless resource needs to be established.
  • a path such as the SMF, carries only the QoS information of the second data path and does not carry the identification information of the second data path in the N11 message sent to the AMF.
  • the RAN can still establish a radio resource for the second data path according to the QoS information of the second data path.
  • the AMF sends QoS information of the first data path and/or QoS information of the second data path to the RAN.
  • the RAN receives QoS information of the first data path and/or QoS information of the second data path.
  • the AMF receives the second identification information and the QoS information of the second data path returned by the SMF, the AMF sends an N2 request or an N2 message to the RAN, and carries the QoS of the first data path in the N2 request or the N2 message. Information and QoS information of the second data path.
  • the AMF can call the service that passes the information to the RAN.
  • the information to be delivered includes QoS information of the first data path and QoS information of the second data path.
  • the AMF If the AMF does not receive the second identification information and the QoS information of the second data path returned by the SMF, the AMF sends an N2 request or an N2 message to the RAN, and only carries the first data path in the N2 request or the N2 message. QoS information.
  • the AMF can call the service that passes the information to the RAN.
  • the information to be delivered includes QoS information of the first data path.
  • the RAN establishes a radio resource for the first data path and/or the second data path according to the QoS information of the first data path and/or the QoS information of the second data path.
  • the RAN establishes a radio resource for the corresponding data path according to the received QoS information. If the received N2 request or the N2 message includes only the QoS information of the first data path, the QoS information according to the first data path is the first A data path establishes a radio resource, and if the received N2 request or the N2 message includes the QoS information of the first data path and the second data path, establishing a radio resource for the first data path according to the QoS information of the first data path, And establishing a radio resource for the second data path according to the QoS information of the second data path.
  • the SMF acquires the QoS information of the first data path according to the identifier information of the first data path for transmitting the downlink data, and sends the identifier information and the QoS information of the first data path to the AMF.
  • the AMF receives identification information of the second data path for transmitting uplink data from the UE through the RAN.
  • the AMF compares the identifier information of the second data path with the identifier information of the first data path, and determines the second if the identifier information of the second data path is different from the identifier information of the first data path or does not satisfy the preset correspondence.
  • the data path is not the same data path as the first data path, so that the identification information of the second data path is sent to the SMF to obtain the QoS information of the second data path, by using the QoS information of the first data path and the second data path.
  • the QoS information is sent to the RAN to establish a radio resource for the first data path for transmitting downlink data and the second data path for transmitting uplink data. If the AMF determines that the second data path is the same data path as the first data path, it is no longer necessary to send the identification information of the second data path to the SMF to obtain the QoS information of the second data path, by using the QoS of the first data path.
  • the information is sent to the RAN to establish a radio resource for the first data path for simultaneously transmitting downlink data and uplink data. Therefore, by predicting whether the data paths used for transmitting the uplink data and the downlink data are the same, it is possible to avoid acquiring the QoS information twice for the same data path, and the speed of establishing the wireless resource for the data path in which the data transmission needs are present, and Radio resources can be established only for data paths that have data transmission requirements to avoid waste of radio resources.
  • FIG. 5 is a schematic flowchart diagram of still another communication method according to an embodiment of the present application.
  • the communication method described in this embodiment includes:
  • the session management function network element obtains identification information.
  • the identifier information is used to identify a first data path among multiple data paths between the user equipment and multiple anchor user plane function network elements.
  • the multiple data paths belong to the same session.
  • the identifier information includes at least one of an IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path.
  • the specific implementation manner of the session management function network element acquiring the identifier information is:
  • the session management function network element receives the identification information from the user equipment or the branch node user plane function network element.
  • step 203 For the specific implementation manner of the session management function network element receiving the identification information from the user interface function network element of the branch node, refer to step 203 in the foregoing method embodiment, and details are not described herein again.
  • the specific implementation manner of the session management function network element acquiring the identifier information is: the session management function network element determines the identifier information after receiving the notification message from the anchor user plane function network element corresponding to the first data path. .
  • the session management function network element After the session management function network element receives the notification message from the anchor user plane function network element corresponding to the first data path, the specific implementation manner of determining the identifier information may be referred to steps 202 and 203 in the foregoing method embodiment. Narration.
  • the session management function network element sends the quality of service QoS information of the first data path to a radio access network.
  • the QoS information is used for establishing a radio resource.
  • the session management function network element determines the first data path according to the identification information.
  • the specific implementation manner in which the session management function network element sends the quality of service QoS information of the first data path to the radio access network is:
  • the session management function network element sends the QoS information of the first data path to the radio access network through the access and mobility management function network element.
  • the session management function network element obtains the identifier information, where the identifier information identifies the first data path among the multiple data paths between the user equipment and the plurality of anchor point user plane function network elements, and the multiple data paths.
  • the session management function network element sends the quality of service QoS information of the first data path to the wireless access network, and the wireless resource can be established for the first data path based on the QoS information.
  • the radio access network may only be a data path that has data transmission requirements according to the solution of the embodiment of the present application (for example, the foregoing A data path) establishes radio resources to avoid waste of radio resources.
  • FIG. 6 is a schematic flowchart diagram of still another communication method according to an embodiment of the present application.
  • the communication method described in this embodiment includes:
  • the branch node user plane function network element receives the downlink data from the anchor user plane function network element by using the first data path.
  • the identifier information includes at least one of an IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path.
  • the branch node user plane function network element sends the identifier information of the first data path to the session management function network element.
  • the identifier information is used for determining the quality of service QoS information of the first data path.
  • step 203 For a specific implementation manner of the information about the first data path being sent by the user node function network element of the branch node to the session management function network element, refer to step 203 in the foregoing method embodiment, and details are not described herein again.
  • the branch node user plane function network element receives the downlink data from the anchor user plane function network element through the first data path, and determines the identifier information of the first data path corresponding to the anchor user plane function network element. And sending, to the session management function network element, identifier information of the first data path, where the identifier information is used for determining the QoS information of the first data path.
  • the radio access network may only be a data path that has data transmission requirements according to the solution of the embodiment of the present application (for example, the foregoing A data path) establishes radio resources to avoid waste of radio resources.
  • FIG. 7 is a schematic flowchart diagram of still another communication method according to an embodiment of the present application.
  • the communication method described in this embodiment includes:
  • the user equipment acquires identifier information.
  • the identifier information is used to identify a first data path among multiple data paths between the user equipment and multiple anchor user plane function network elements.
  • the multiple data paths belong to the same session.
  • the identifier information includes at least one of an IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path.
  • the identifier information includes an identifier of an anchor user plane function network element corresponding to the first data path
  • the communication method further includes:
  • the user equipment acquires a first correspondence between the IP prefix of the user equipment and the identifier of the anchor user plane function network element corresponding to the first data path, and acquires the first data path according to the first correspondence relationship.
  • the identifier of the corresponding anchor user plane function network element is a first correspondence between the IP prefix of the user equipment and the identifier of the anchor user plane function network element corresponding to the first data path.
  • the identifier information includes a logical identifier of the first data path
  • the communication method further includes:
  • the user equipment acquires a second correspondence between the IP prefix of the user equipment and the logical identifier of the first data path from the session management function network element, and obtains the logical identifier of the first data path according to the second correspondence.
  • step 302 For the specific implementation manner of the user equipment to obtain the identifier information, refer to step 302 in the foregoing method embodiment, and details are not described herein again.
  • the user equipment sends the identifier information to an access and mobility management function network element.
  • the identifier information is used for determining the quality of service QoS information of the first data path.
  • the user equipment acquires the identifier information of the first data path, where the first data path is one of multiple data paths between the user equipment and multiple anchor user plane function network elements, and the multiple data The path belongs to the same session, and the user equipment sends the identifier information to the access and mobility management function network element, where the identifier information is used for determining the QoS information of the first data path.
  • the radio access network may only be a data path that has data transmission requirements according to the solution of the embodiment of the present application (for example, the foregoing A data path) establishes radio resources to avoid waste of radio resources.
  • FIG. 8 is a schematic flowchart diagram of still another communication method according to an embodiment of the present application.
  • the communication method described in this embodiment includes:
  • the access and mobility management function network element receives the first identification information from the session management function network element.
  • the first identifier information is used to identify a first data path among multiple data paths between the user equipment and multiple anchor user plane function network elements.
  • the multiple data paths belong to the same session.
  • step 204 For a specific implementation manner of the access and mobility management function network element receiving the first identification information from the session management function network element, refer to step 204 in the foregoing method embodiment, and details are not described herein again.
  • the access and mobility management function network element After receiving the first identifier information, the access and mobility management function network element receives second identifier information from the user equipment.
  • the second identifier information is used to identify a second data path of the multiple data paths.
  • the access and mobility management function network element Sending the second identification information to the session management function network element.
  • the access and mobility management function network element determines that the second data path identified by the second identifier information and the first data path that is identified by the first identifier information are not the same data path, and the session management function is For the specific implementation manner of the second identifier information sent by the network element, refer to steps 409 and 410 in the foregoing method embodiment, and details are not described herein again.
  • the access and mobility management function network element receives the first identification information of the first data path from the session management function network element, where the first data path is the user equipment and multiple anchor user plane function network elements.
  • the access and mobility management function network element receives the first identification information, and receives the second of the plurality of data paths from the user equipment.
  • the network element sends the second identifier information, and can predict whether the data path used for transmitting the uplink data and the downlink data is the same, and can improve the speed of establishing the radio resource for the data path where the data transmission requirement exists.
  • FIG. 9 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication device described in this embodiment is used to perform the corresponding method of the SMF implementation described above, and the communication device includes:
  • the obtaining module 901 is configured to obtain the identifier information, where the identifier information is used to identify a first data path of the plurality of data paths between the user equipment and the plurality of anchor user plane function network elements, where the multiple data paths Belong to the same session.
  • the sending module 902 is configured to send the quality of service QoS information of the first data path to the radio access network, where the QoS information is used for establishing the radio resource.
  • the obtaining module 901 is specifically configured to:
  • the communications apparatus further includes:
  • the determining module 903 is configured to determine the first data path according to the identifier information.
  • the identifier information includes an Internet Protocol IP prefix of the user equipment, an identifier of an anchor user plane function network element corresponding to the first data path, or a logic of the first data path. At least one of the identifiers.
  • the sending module 902 is specifically configured to:
  • FIG. 10 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • the communication device described in this embodiment is used to perform the corresponding method of the BP UPF implementation described above, and the communication device includes:
  • the receiving module 1001 is configured to receive downlink data from the anchor user plane function network element by using the first data path.
  • the sending module 1002 is configured to send, to the session management function network element, identifier information of the first data path, where the identifier information is used for determining the quality of service QoS information of the first data path.
  • the identifier information includes an Internet Protocol IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path. At least one of them.
  • FIG. 11 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • the communication device described in this embodiment is used to perform the corresponding method implemented by the UE described above, and the communication device includes:
  • the obtaining module 1101 is configured to obtain the identifier information, where the identifier information is used to identify the first data path of the multiple data paths between the user equipment and the plurality of anchor user plane function network elements, where the multiple The data path belongs to the same session.
  • the sending module 1102 is configured to send the identifier information to the access and mobility management function network element, where the identifier information is used for determining the quality of service QoS information of the first data path.
  • the identifier information includes an Internet Protocol IP prefix of the user equipment, an identifier of the anchor user plane function network element corresponding to the first data path, or a logical identifier of the first data path. At least one of them.
  • the identifier information includes an identifier of an anchor user plane function network element corresponding to the first data path
  • the acquiring module 1101 is further configured to acquire a user equipment from the session management function network element.
  • the acquiring module 1101 is further configured to acquire, according to the first correspondence, an identifier of an anchor user plane function network element corresponding to the first data path.
  • the identifier information includes a logical identifier of the first data path
  • the obtaining module 1101 is further configured to acquire an IP prefix of the user equipment and the first from the session management function network element. The second correspondence between the logical identifiers of the data paths.
  • the obtaining module 1101 is further configured to acquire a logical identifier of the first data path according to the second correspondence.
  • FIG. 12 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • the communication device described in this embodiment is used to perform the corresponding method of the AMF implementation described above, and the communication device includes:
  • the receiving module 1201 is configured to receive the first identifier information from the session management function network element, where the first identifier information is used to identify the first data in the multiple data paths between the user equipment and the plurality of anchor user plane function network elements. a path, wherein the plurality of data paths belong to the same session.
  • the receiving module 1201 is further configured to: after receiving the first identifier information, receive second identifier information from the user equipment, where the second identifier information is used to identify second data in the multiple data paths. path.
  • the sending module 1202 is configured to: if the second data path identified by the second identifier information and the first data path identified by the first identifier information are not the same data path, then the session management function network The element sends the second identification information.
  • FIG. 13 is a schematic structural diagram of still another communication apparatus according to an embodiment of the present application.
  • the communication device includes a processor 1301 and a transceiver 1302.
  • the communication device may further include a memory 1303 for storing an instruction, the instruction being executed to complete the step of the communication device.
  • the memory 1303 can also store other data information, which is not limited by the embodiment of the present application.
  • the function of the transceiver 1302 can be implemented by a dedicated chip through a transceiver circuit or a transceiver.
  • the processor 1301 can be implemented by a dedicated processing chip, a processing circuit, a processor, or a general purpose chip.
  • the communication device corresponds to the SMF described above for performing the corresponding method of the SMF implementation described above.
  • the processor 1301 is configured to execute the corresponding method implemented by the obtaining module 901 and the determining module 903 described above.
  • the transceiver 1302 is configured to perform a corresponding method implemented by the transmitting module 902 as described above.
  • the communication device corresponds to the BP UPF described above for performing the corresponding method of the BP UPF implementation described above.
  • the transceiver 1302 is configured to perform the corresponding methods implemented by the receiving module 1001 and the transmitting module 1002 described above.
  • the communication device corresponds to the UE described above, and is configured to perform a corresponding method implemented by the UE as described above.
  • the processor 1301 is configured to execute a corresponding method implemented by the obtaining module 1101 described above.
  • the transceiver 1302 is configured to perform a corresponding method implemented by the transmitting module 1102 as described above.
  • the communication device corresponds to the AMF described above for performing the corresponding method of the AMF implementation described above.
  • the transceiver 1302 is configured to perform the corresponding methods implemented by the receiving module 1201 and the transmitting module 1202 described above.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center by wire (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as a Solid State Disk (SSD)) or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信方法及装置,其中一种通信方法包括:会话管理功能网元获取标识信息,所述标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,所述多条数据路径属于同一会话;所述会话管理功能网元向无线接入网络发送所述第一数据路径的服务质量QoS信息,所述QoS信息用于无线资源的建立。采用本申请实施例可以只为存在数据传输需求的数据路径建立无线资源,从而避免无线资源的浪费。

Description

通信方法及装置 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
多宿主(multi-homed)技术是一种重要的网络服务方式,具有提高网络可靠性、实现均衡负载、减少传输延迟、增加网络带宽等优点。随着下一代互联网应用和技术的发展,互联网协议第六版(Internet Protocol Version 6,IPv6)multi-homed技术将有广泛的应用前景。支持multi-homed技术的用户设备(User Equipment,UE)可以通过多个锚点用户面功能网元(User Plane Function,UPF)与数据网络(Data Network,DN)建立多条数据路径,一个锚点UPF对应一条数据路径。目前,在UE处于空闲(idle)态时,如果下行数据需要发送至UE或者UE需要发送上行数据,则无线接入网络(Radio Access Network,RAN)会同时恢复该多条数据路径,即为该多条数据路径分别建立无线资源,这很可能会导致无线资源的浪费。
发明内容
本申请实施例公开了一种通信方法及装置,可以只为存在数据传输需求的数据路径建立无线资源,从而避免无线资源的浪费。
本申请实施例第一方面公开了一种通信方法,包括:会话管理功能网元获取第一数据路径的标识信息,第一数据路径为用户设备与多个锚点用户面功能网元之间多条数据路径中的其中一条,该多条数据路径属于同一会话,会话管理功能网元根据第一数据路径的标识信息获取第一数据路径的服务质量QoS信息,向无线接入网络发送第一数据路径的QoS信息,该QoS信息用于为第一数据路径建立无线资源。这样,从而可以只为存在数据传输需求的数据路径,即,第一数据路径,建立无线资源,避免无线资源的浪费。
在一种可能的设计中,会话管理功能网元获取第一数据路径的标识信息的具体方式可以是:会话管理功能网元从用户设备或者分支节点用户面功能网元接收该标识信息,或者,会话管理功能网元从第一数据路径对应的锚点用户面功能网元接收通知消息后,确定该标识信息。
在一种可能的设计中,该方法还可以包括:会话管理功能网元根据标识信息从该多条数据路径中确定出第一数据路径。
在一种可能的设计中,该标识信息可以包括用户设备的互联网协议IP前缀、第一数据路径对应的锚点用户面功能网元的标识或第一数据路径的逻辑标识中的至少一项。
在一种可能的设计中,会话管理功能网元具体可以通过接入和移动性管理功能网元向无线接入网络发送第一数据路径的QoS信息。
本申请实施例第二方面公开了一种通信方法,包括:分支节点用户面功能网元通过第一数据路径,从锚点用户面功能网元接收下行数据,确定该锚点用户面功能网元对应的第一数据路径的标识信息,并向会话管理功能网元发送第一数据路径的标识信息,该标识信 息用于第一数据路径的QoS信息的确定。这样,从而可以只为存在数据传输需求的数据路径,即,第一数据路径,建立无线资源,避免无线资源的浪费。
在一种可能的设计中,该标识信息包括用户设备的互联网协议IP前缀、第一数据路径对应的锚点用户面功能网元的标识或第一数据路径的逻辑标识中的至少一项。
本申请实施例第三方面公开了一种通信方法,包括:用户设备获取第一数据路径的标识信息,第一数据路径为该用户设备与多个锚点用户面功能网元之间多条数据路径中的其中一条,该多条数据路径属于同一会话,该用户设备向接入和移动性管理功能网元发送该标识信息,该标识信息用于第一数据路径的QoS信息的确定。这样,从而可以只为存在数据传输需求的数据路径,即,第一数据路径,建立无线资源,避免无线资源的浪费。
在一种可能的设计中,该标识信息包括用户设备的互联网协议IP前缀、第一数据路径对应的锚点用户面功能网元的标识或第一数据路径的逻辑标识中的至少一项。
在一种可能的设计中,该标识信息可以为第一数据路径对应的锚点用户面功能网元的标识,用户设备从会话管理功能网元获取用户设备的IP前缀和该第一数据路径对应的锚点用户面功能网元的标识之间的第一对应关系,并根据该第一对应关系,获取第一数据路径对应的锚点用户面功能网元的标识。
在一种可能的设计中,该标识信息可以为第一数据路径的逻辑标识,用户设备可以从会话管理功能网元获取用户设备的IP前缀和该第一数据路径的逻辑标识之间的第二对应关系,并根据该第二对应关系,获取第一数据路径的逻辑标识。
本申请实施例第四方面公开了一种通信方法,包括:接入和移动性管理功能网元从会话管理功能网元接收第一数据路径的第一标识信息,第一数据路径为该用户设备与多个锚点用户面功能网元之间多条数据路径中的其中一条,该多条数据路径属于同一会话,接入和移动性管理功能网元收到该第一标识信息后,从用户设备接收该多条数据路径中第二数据路径的第二标识信息,若第二标识信息标识的第二数据路径与第一标识信息标识的第一数据路径不是同一条数据路径,则向会话管理功能网元发送第二标识信息,可以对传输上行数据和下行数据使用的数据路径是否相同进行预判,可以提高为存在数据传输需求的数据路径建立无线资源的速度。
本申请实施例第五方面公开了一种通信装置,包括:
获取模块,用于获取标识信息,标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,该多条数据路径属于同一会话。
发送模块,用于向无线接入网络发送第一数据路径的服务质量QoS信息,QoS信息用于无线资源的建立,可以只为存在数据传输需求的数据路径建立无线资源,避免无线资源的浪费。
在一种可能的设计中,获取模块,具体用于:
从用户设备或者分支节点用户面功能网元接收标识信息。或者,
从第一数据路径对应的锚点用户面功能网元接收通知消息后,确定标识信息。
在一种可能的设计中,还包括:
确定模块,用于根据标识信息确定第一数据路径。
在一种可能的设计中,标识信息包括用户设备的互联网协议IP前缀、第一数据路径对 应的锚点用户面功能网元的标识或第一数据路径的逻辑标识中的至少一项。
在一种可能的设计中,发送模块,具体用于:
通过接入和移动性管理功能网元向无线接入网络发送第一数据路径的QoS信息。
本申请实施例第六方面公开了一种通信装置,包括:
接收模块,用于通过第一数据路径,从锚点用户面功能网元接收下行数据。
发送模块,用于向会话管理功能网元发送第一数据路径的标识信息,标识信息用于第一数据路径的服务质量QoS信息的确定,可以只为存在数据传输需求的数据路径建立无线资源,避免无线资源的浪费。
在一种可能的设计中,标识信息包括用户设备的互联网协议IP前缀、第一数据路径对应的锚点用户面功能网元的标识或第一数据路径的逻辑标识中的至少一项。
本申请实施例第七方面公开了一种通信装置,包括:
获取模块,用于获取标识信息,标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,该多条数据路径属于同一会话。
发送模块,用于向接入和移动性管理功能网元发送标识信息,标识信息用于第一数据路径的服务质量QoS信息的确定,可以只为存在数据传输需求的数据路径建立无线资源,避免无线资源的浪费。
在一种可能的设计中,标识信息包括用户设备的互联网协议IP前缀、第一数据路径对应的锚点用户面功能网元的标识或第一数据路径的逻辑标识中的至少一项。
在一种可能的设计中,标识信息包括第一数据路径对应的锚点用户面功能网元的标识,获取模块,还用于从会话管理功能网元获取用户设备的IP前缀和第一数据路径对应的锚点用户面功能网元的标识之间的第一对应关系。
获取模块,还用于根据第一对应关系,获取第一数据路径对应的锚点用户面功能网元的标识。
在一种可能的设计中,标识信息包括第一数据路径的逻辑标识,获取模块,还用于从会话管理功能网元获取用户设备的IP前缀和第一数据路径的逻辑标识之间的第二对应关系。
获取模块,还用于根据第二对应关系,获取第一数据路径的逻辑标识。
本申请实施例第八方面公开了一种通信装置,包括:
接收模块,用于从会话管理功能网元接收第一标识信息,第一标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,该多条数据路径属于同一会话。
接收模块,还用于收到第一标识信息后,从用户设备接收第二标识信息,第二标识信息用于标识该多条数据路径中的第二数据路径。
发送模块,用于若第二标识信息标识的第二数据路径与第一标识信息标识的第一数据路径不是同一条数据路径,则向会话管理功能网元发送第二标识信息,可以对传输上行数据和下行数据使用的数据路径是否相同进行预判。
本申请实施例第九方面公开了一种通信装置,包括:处理器、收发器和存储器,所述处理器、所述收发器和所述存储器通过总线连接,所述存储器存储有可执行程序代码,所 述收发器受所述处理器的控制用于收发消息,所述处理器用于调用所述可执行程序代码,执行上述第一方面、第二方面、第三方面或第四方面所述的通信方法。
本申请实施例第十方面提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面、第三方面或第四方面所述的通信方法。
本申请实施例第十一方面提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面、第三方面或第四方面所述的通信方法。
本申请实施例第十二方面提供了一种芯片系统,该芯片系统包括处理器,用于支持数据收发设备实现上述第一方面至第十一方面中任一方面中所涉及的功能,例如,生成或处理上述方法中所涉及的信息。
在一种可能的设计中,该芯片系统还包括存储器,用于保存数据收发设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例中,会话管理功能网元获取标识信息,该标识信息标识了用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,该多条数据路径属于同一会话,会话管理功能网元向无线接入网络发送第一数据路径的服务质量QoS信息,基于该QoS信息可以为该第一数据路径建立无线资源,可以只为存在数据传输需求的数据路径建立无线资源,从而避免无线资源的浪费。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例公开的一种通信系统的架构示意图;
图2是本申请实施例公开的一种通信方法的流程示意图;
图3是本申请实施例公开的另一种通信方法的流程示意图;
图4是本申请实施例公开的又一种通信方法的流程示意图;
图5是本申请实施例公开的又一种通信方法的流程示意图;
图6是本申请实施例公开的又一种通信方法的流程示意图;
图7是本申请实施例公开的又一种通信方法的流程示意图;
图8是本申请实施例公开的又一种通信方法的流程示意图;
图9是本申请实施例公开的一种通信装置的结构示意图;
图10是本申请实施例公开的另一种通信装置的结构示意图;
图11是本申请实施例公开的又一种通信装置的结构示意图;
图12是本申请实施例公开的又一种通信装置的结构示意图;
图13是本申请实施例公开的又一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请实施例的技术方案可具体应用于各种通信网络中,例如:全球移动通讯系统 (Global System of Mobile communication,GSM)、码分多址(Code Division Multiple Access,CDMA)、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)、时分同步码分多址(Time Division-Synchronous Code Division Multiple Access,TD-SCDMA)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、长期演进(Long Term Evolution,LTE)网络等,随着通信技术的不断发展,本申请实施例的技术方案还可用于未来网络,如第五代移动通信技术(The Fifth Generation Mobile Communication Technology,5G)网络,也可以称为新空口(New Radio,NR)网络,或者可用于D2D(device to device)网络,M2M(machine to machine)网络等等,本申请对此不做限定,只要是存在类似问题的系统,都可以采用本申请实施例的技术方案。
本申请实施例中所描述的用户设备(User Equipment,UE)还可称之为终端设备、移动台(Mobile Station,MS)、终端(terminal)、移动终端(mobile terminal)、订户单元(Subscriber Unit,SU)、订户站(Subscriber Station,SS)、移动站(Mobile Station,MB)、远程站(Remote Station,RS)、接入点(Access Point,AP)、远程终端(Remote Terminal,RT)、接入终端(Access Terminal,AT)、用户终端(User Terminal,UT)、用户代理(User Agent,UA)、终端设备(User Device,UD)、计算机内置的或者车载的移动装置等,本申请不做限定。该终端可以是指无线终端、有线终端。该无线终端可以是指向用户提供语音和/或数据连通性的设备,其可以经无线接入网络(Radio Access Network,RAN)与一个或多个核心网进行通信。
本申请实施例中所描述的RAN具体可以是指通信系统中的基站。基站可以是指接入网中在空中接口上通过一个或多个扇区与UE通信的设备,其可协调对空中接口的属性管理。例如,该基站可以是如GSM或CDMA中的基站,如基站收发台(Base Transceiver Station,BTS),也可以是WCDMA中的基站,如NodeB,还可以是LTE中的演进型基站,如eNB或e-NodeB(evolved Node B),还可以是5G系统中的基站,如NR(或者称为gNB,或者称为其他名称),或未来网络中的基站,还可以是LTE中的演进型基站升级之后可以既可以支持LTE又可以支持5G业务的演进型基站,等等,本申请不做限定。本申请涉及的基站还可以是指传输点(Transmission point,TP)、收发点(transmission and receiver point,TRP)、中继设备,或者具备基站功能的其他网元设备等等。
请参阅图1,为本申请实施例提供的一种通信系统的架构示意图。图1适用于5G通信系统下IPv6的multi-homed场景。本实施例中所描述的通信系统,包括:RAN、会话管理功能网元(Session Management Function,SMF)、接入和移动性管理功能网元(Access and Mobility Management Function,AMF)和UPF。
其中,SMF用于负责会话的建立、修改、释放;以及UE的互联网协议(Internet Protocol,IP)前缀的分配。此外,SMF还可用于确定会话的服务会话连续(service session continuous,SSC)模式,锚点用户面功能网元(User Plane Function,UPF)的选择等。
AMF用于负责UE的注册管理,移动性管理。此外,AMF还可用于合法监听等功能。
在图1的例子中,UPF包括分支节点用户面功能网元(Branching Point UPF,BP UPF)和锚点UPF。UPF例如可以是分组数据网关(Packet Data Network Gateway,PDN-GW)、 服务网关(Serving Gate Way,S-GW)、网关GW转发面、软件定义网络(Software Defined Network,SDN)交换机(Switch)等设备。
其中,锚点UPF用于完成用户报文的转发、统计等,一个锚点UPF对应一条数据路径。
BP UPF用于接收锚点UPF发送的下行数据,并通过RAN向UE转发该下行数据。此外,BP UPF还用于从RAN接收UE发送的上行数据,并向对应的锚点UPF转发该上行数据。UE进入idle态后,若BP UPF与锚点UPF之间的N9接口被释放,则锚点UPF与BP UPF之间断开连接;若BP UPF与锚点UPF之间的N9接口未被释放,则锚点UPF与BP UPF之间保持连接。
请参阅图2,为本申请实施例提供的一种通信方法的流程示意图。本实施例中所描述的通信方法,应用于UE处于空闲(idle)态时下行数据需要发送至UE的场景。图2以两个锚点UPF(锚点UPF1和锚点UPF2)为例,所述通信方法包括:
201、锚点UPF1接收下行数据。
其中,可以为UE在同一会话下建立多条数据路径,每一个锚点UPF与UE之间存在一条数据路径,锚点UPF1与UE之间的数据路径记为第一数据路径,锚点UPF2与UE之间的数据路径记为第二数据路径,第一数据路径和第二数据路径属于同一会话。数据路径可以称为会话分支。
202、所述锚点UPF1向SMF发送通知消息。
相应的,所述SMF接收所述通知消息。
203、所述SMF获取所述锚点UPF1对应的第一数据路径的标识信息和QoS信息。
其中,一条数据路径的标识信息可以包括UE的IP前缀、该数据路径对应的锚点UPF的标识或该数据路径的逻辑标识中的至少一项。例如,SMF可以在建立会话过程中分配UE的IP前缀、数据路径的逻辑标识。锚点UPF的标识可以是锚点UPF的IP地址或者锚点UPF标识ID。数据路径的逻辑标识具体可以是数字,例如1,2,3等,也可以是字符,例如a,b,c等,还可以是字符串,例如path_a,path_b,path_c等。
例如,对于UE进入idle态后,BP UPF与锚点UPF之间的N9接口被释放,即锚点UPF与BP UPF之间断开连接的情况,锚点UPF1从数据网络(Data Network,DN)接收到下行数据(Downlink Data)时,可以直接向SMF发送通知消息(如Data Notification),SMF接收到锚点UPF1发送的通知消息时,获取锚点UPF1对应的数据路径(即第一数据路径)的标识信息。
可选的,SMF可以向锚点UPF1发送该通知消息的响应消息(如Data Notification Ack)。图中未示出。
在一种可能的实现方式中,对于UE进入idle态后,BP UPF与锚点UPF之间的N9接口未被释放,即锚点UPF与BP UPF之间保持连接的情况,锚点UPF1接收到下行数据后,向BP UPF转发该下行数据,BP UPF接收到该下行数据时,获取锚点UPF1对应的数据路径(即第一数据路径)的标识信息,并向SMF发送通知消息,该通知消息中携带有锚点UPF1对应的第一数据路径的标识信息,即SMF获取的锚点UPF1对应的第一数据路径的标识信息是在BP UPF发送的通知消息中直接携带的。
可选的,SMF可以向BP UPF发送该通知消息的响应消息。图中未示出。
在通过上述任一方式获得第一数据路径的标识信息后,SMF可以根据该第一数据路径的标识信息,从第一数据路径和第二数据路径中确定出UPF1对应第一数据路径,并获取该第一数据路径的服务质量(Quality of Service,QoS)信息。例如,SMF本地存储有各条数据路径所需的QoS信息,或者,SMF与其他网元(如策略控制功能(Policy Control Function,PCF)网元)交互获取各条数据路径所需的QoS信息。
204、所述SMF向AMF发送所述第一数据路径的标识信息和QoS信息。
相应的,所述AMF接收所述第一数据路径的标识信息和QoS信息。
例如,SMF可以向AMF发送N11消息(message),并在N11消息中携带第一数据路径的标识信息和QoS信息。
可选的,AMF可以向SMF发送该N11消息的响应消息(如N11message Ack)。图中未示出。
需要说明的是,第一数据路径的标识信息和QoS信息可以携带在同一条消息中发送,也可以携带在不同的消息中分开发送,本申请实施例不做限定。
或者,SMF可以向AMF调用传递信息的服务。待传递的信息包括第一数据路径的标识信息和QoS信息。
在一种可能的实现方式中,SMF也可以向AMF只发送第一数据路径的QoS信息而不发送第一数据路径的标识信息,即AMF不需要知道当前需要建立无线资源的数据路径具体是哪一条数据路径,如SMF在向AMF发送的N11消息中只携带第一数据路径的QoS信息而不携带第一数据路径的标识信息。AMF向RAN发送第一数据路径的QoS信息后,RAN依然可以根据第一数据路径的QoS信息为该第一数据路径建立无线资源。
AMF接收到第一数据路径的标识信息后,由于此时UE处于idle态,AMF通过RAN对UE进行寻呼(paging)。
205、UE接收到寻呼消息后,向RAN发送服务请求(如NAS Service Request)。
相应的,所述RAN接收所述服务请求,将该服务请求转发至AMF。
206、所述AMF在接收到所述RAN转发的所述服务请求时,向所述RAN发送所述第一数据路径的服务质量QoS信息。
相应的,所述RAN接收所述第一数据路径的QoS信息。
例如,RAN接收到UE的服务请求时,向AMF转发该服务请求,可以是向AMF发送N2消息,并在N2消息中携带该服务请求。
或者,RAN可以向AMF调用传递信息的服务。待传递的信息包括该服务请求。
AMF接收到RAN转发的该服务请求时,可以向RAN发送N2请求(Request)或者N2消息,并在该N2请求或者N2消息中携带该第一数据路径的QoS信息。
或者,AMF可以向RAN调用传递信息的服务。待传递的信息包括该第一数据路径的QoS信息。
207、所述RAN根据所述第一数据路径的QoS信息,为所述第一数据路径建立无线资源。
例如,RAN接收到该第一数据路径的QoS信息后,根据该QoS信息,为UE通过该 第一数据路径进行通信建立所需的无线资源。
在一种可能的实现方式中,UE由idle态切换为激活(active)态后,当锚点UPF接收到下行数据时,假设是锚点UPF2接收到下行数据,则AMF接收到SMF发送的锚点UPF2对应的第二数据路径的标识信息和QoS信息后,由于UE为active态,AMF不用再通过RAN对UE进行寻呼并等待UE的服务请求,而是直接向RAN发送该第二数据路径的QoS信息,从而RAN接收到该第二数据路径的QoS信息后,根据该QoS信息,为UE通过该第二数据路径进行通信建立所需的无线资源。
本申请实施例中,下行数据需要发送至UE时,SMF在接收到第一数据路径对应的锚点UPF发送的通知消息后确定第一数据路径的标识信息,或者从BP UPF发送的通知消息中获取第一数据路径的标识信息,根据第一数据路径的标识信息获取该第一数据路径的QoS信息,并通过AMF向RAN发送该第一数据路径的QoS信息。RAN根据该QoS信息即可为该第一数据路径建立所需的无线资源。虽然UE和多个锚点UPF之间可能存在多条数据路径,但是,根据本申请实施例的方案,RAN可以只为存在数据传输需求的数据路径(例如上述第一数据路径)建立无线资源,从而避免无线资源的浪费。
请参阅图3,为本申请实施例提供的另一种通信方法的流程示意图。本实施例中所描述的通信方法,应用于UE处于idle态时UE需发送上行数据的场景。图3以两个锚点UPF(锚点UPF1和锚点UPF2)为例,所述通信方法包括:
301、建立会话。
其中,UE经过与RAN、AMF、SMF、锚点UPF交互建立会话。在此过程中,可以在同一会话下建立多条数据路径。数据路径的标识信息可以包括UE的IP前缀、该数据路径对应的锚点UPF的标识或该数据路径的逻辑标识中的至少一项。
在建立会话的过程中,SMF可以分配UE的IP前缀。可选的,SMF可设置IP前缀与锚点UPF的标识之间的第一对应关系,向UE发送该第一对应关系。可选的,SMF还可为各条数据路径分配数据路径的逻辑标识,并设置IP前缀与数据路径的逻辑标识之间的第二对应关系,向UE发送该第二对应关系。例如,SMF通过相应的锚点UPF向UE发送上述第一或第二对应关系。例如,SMF可以通过相应的锚点UPF向UE发送互联网协议第六版(Internet Protocol Version 6,IPv6)路由通告(Router Advertisement,RA)消息,并在IPv6RA消息中携带IP前缀与锚点UPF的标识之间的第一对应关系,或者IP前缀与数据路径的逻辑标识之间的第二对应关系。
举例来说,UE通过与RAN、AMF、SMF、锚点UPF1交互,建立UE与锚点UPF1之间的数据路径(记为第一数据路径),以完成会话的建立。可选的,在建立第一数据路径后,SMF通过锚点UPF1向UE发送IP前缀与锚点UPF1的标识之间的对应关系,或者IP前缀与第一数据路径的逻辑标识之间的对应关系中的至少一项。如果需要再建立UE与锚点UPF2之间的数据路径,则由于总共要建立一条以上的数据路径,此时应加入BP UPF,UE通过与RAN、AMF、SMF、BP UPF、锚点UPF2交互,建立UE与锚点UPF2之间的数据路径(记为第二数据路径),以完成会话的修改。可选的,在建立第二数据路径后,SMF通过锚点UPF2向UE发送IP前缀与锚点UPF2的标识之间的对应关系,或者IP前缀与第 二数据路径的逻辑标识之间的对应关系中的至少一项。
302、所述UE获取第一数据路径的标识信息。
例如,UE在需要发送上行数据时,确定用于发送该上行数据的数据路径(记为锚点UPF1对应的第一数据路径),并获取该第一数据路径的标识信息。该标识信息具体可以是为UE分配的多个IP前缀中,与该第一数据路径对应的IP前缀。
在一种可能的实现方式中,该标识信息具体可以是第一数据路径对应的锚点UPF1的标识。例如,UE先确定该第一数据路径对应的IP前缀,并根据该IP前缀与第一数据路径对应的锚点UPF1的标识之间的对应关系,获取该第一数据路径对应的锚点UPF1的标识。
在一种可能的实现方式中,该标识信息具体可以是第一数据路径的逻辑标识。例如,UE先确定该第一数据路径对应的IP前缀,并根据该IP前缀与第一数据路径的逻辑标识之间的对应关系,获取该第一数据路径的逻辑标识。
303、所述UE向RAN发送所述第一数据路径的标识信息。
相应的,所述RAN接收所述第一数据路径的标识信息。
例如,UE可以向RAN发送服务请求(如NAS Service Request),并在服务请求中携带该第一数据路径的标识信息。
304、所述RAN向AMF发送所述第一数据路径的标识信息。
相应的,所述AMF接收所述第一数据路径的标识信息。
例如,RAN接收到UE发送的服务请求后,向AMF发送N2消息,并在N2消息中携带该服务请求。
或者,RAN可以向AMF调用传递信息的服务。待传递的信息包括该服务请求。
305、所述AMF向所述SMF发送所述第一数据路径的标识信息。
相应的,所述SMF接收所述第一数据路径的标识信息。
例如,AMF接收到RAN发送的N2消息后,对N2消息解析得到该第一数据路径的标识信息,向SMF发送N11消息,并在N11消息中携带该第一数据路径的标识信息。
或者,AMF可以向SMF调用传递信息的服务。待传递的信息包括该第一数据路径的标识信息。
需要说明的是,AMF解析得到数据路径的标识信息后,向SMF发送该数据路径的标识信息的目的在于由SMF判定是否允许对该数据路径建立无线资源。
306、所述SMF获取所述第一数据路径的QoS信息。
例如,SMF根据第一数据路径的标识信息确定出锚点UPF1对应的该第一数据路径,获取该第一数据路径的QoS信息。例如,SMF本地存储有各条数据路径所需的QoS信息,或者,SMF与其他网元(如PCF网元)交互获取各条数据路径所需的QoS信息。
可选的,SMF可以根据第一数据路径的标识信息判断是否允许对该第一数据路径建立无线资源。若允许,则获取第一数据路径的QoS信息,并执行步骤307。
307、所述SMF向所述AMF发送所述第一数据路径的标识信息和QoS信息。
相应的,所述AMF接收所述第一数据路径的标识信息和QoS信息。
例如,SMF接收到AMF发送的N11消息后,如果确定允许为第一数据路径建立无线资源以恢复该第一数据路径,则向AMF发送N11消息,并在N11消息中携带该第一数据 路径的标识信息和QoS信息。
或者,SMF可以向AMF调用传递信息的服务。待传递的信息包括该第一数据路径的标识信息和QoS信息。
308、所述AMF向所述RAN发送所述第一数据路径的QoS信息。
相应的,所述RAN接收所述第一数据路径的QoS信息。
例如,AMF接收到SMF通过N11消息发送的该第一数据路径的标识信息和QoS信息,可以向RAN发送N2请求或者N2消息,并在该N2请求或者N2消息中携带该第一数据路径的QoS信息。
或者,AMF可以向RAN调用传递信息的服务。待传递的信息包括该第一数据路径的QoS信息。
309、所述RAN根据所述第一数据路径的QoS信息,为所述第一数据路径建立无线资源。
例如,RAN接收到该第一数据路径的QoS信息后,根据该QoS信息,为UE通过该第一数据路径进行通信建立所需的无线资源。
在一种可能的实现方式中,在上述步骤307中,SMF也可以向AMF只发送第一数据路径的QoS信息而不发送第一数据路径的标识信息,即AMF不需要知道当前需要建立无线资源的数据路径具体是哪一条路径,如SMF在向AMF发送的N11消息中只携带第一数据路径的QoS信息而不携带第一数据路径的标识信息。AMF向RAN发送第一数据路径的QoS信息后,RAN依然可以根据第一数据路径的QoS信息为该第一数据路径建立无线资源。
本申请实施例中,UE需发送上行数据时,UE确定用于发送该上行数据的第一数据路径的标识信息,通过RAN和AMF向SMF发送该第一数据路径的标识信息,SMF根据第一数据路径的标识信息获取该第一数据路径的QoS信息,如果SMF确定允许为该第一数据路径建立无线资源,则SMF通过AMF向RAN发送该第一数据路径的QoS信息。RAN根据该QoS信息即可为该第一数据路径建立所需的无线资源。虽然UE和多个锚点UPF之间可能存在多条数据路径,但是,根据本申请实施例的方案,RAN可以只为存在数据传输需求的数据路径(例如上述第一数据路径)建立无线资源,从而避免无线资源的浪费。
需要说明的是,UE可以同时请求为多条数据路径建立无线资源,则UE在向RAN发送的服务请求中携带多条数据路径的标识信息,SMF接收到该多条数据路径的标识信息后,根据标识信息确定该多条数据路径中允许建立无线资源的数据路径,获取允许建立无线资源的数据路径的QoS信息,并将允许建立无线资源的数据路径的标识信息和QoS信息,或者,允许建立无线资源的数据路径的QoS信息返回给AMF,AMF向RAN发送允许建立无线资源的数据路径的QoS信息,RAN根据各自的QoS信息为允许建立无线资源的各条数据路径建立无线资源。
请参阅图4,为本申请实施例提供的又一种通信方法的流程示意图。本实施例中所描述的通信方法,应用于UE处于idle态时下行数据需要发送至UE,且UE需发送上行数据的场景。图4以两个锚点UPF(锚点UPF1和锚点UPF2)为例,所述通信方法包括:
401、建立会话。
举例来说,UE通过与RAN、AMF、SMF、锚点UPF1交互,建立UE与锚点UPF1之间的数据路径(记为第一数据路径),以完成会话的建立。可选的,在建立第一数据路径后,SMF通过锚点UPF1向UE发送IP前缀与锚点UPF1的标识之间的对应关系,或者IP前缀与第一数据路径的逻辑标识之间的对应关系中的至少一项。如果需要再建立UE与锚点UPF2之间的数据路径,则由于总共要建立一条以上的数据路径,此时应加入BP UPF,UE通过与RAN、AMF、SMF、BP UPF、锚点UPF2交互,建立UE与锚点UPF2之间的数据路径,以完成会话的修改。可选的,在建立UE与锚点UPF2之间的数据路径后,SMF通过锚点UPF2向UE发送IP前缀与锚点UPF2的标识之间的对应关系,或者IP前缀与锚点UPF2对应的数据路径的逻辑标识之间的对应关系中的至少一项。
402、锚点UPF1接收下行数据。
403、所述锚点UPF1向所述SMF发送通知消息。
相应的,所述SMF接收所述通知消息。
404、所述SMF获取所述锚点UPF1对应的第一数据路径的第一标识信息和QoS信息。
405、所述SMF向AMF发送所述第一数据路径的第一标识信息和QoS信息。
相应的,所述AMF接收所述第一数据路径的第一标识信息和QoS信息。
其中,步骤402~405的具体实现方式可以参见图2所示的通信方法流程中步骤201~204中的相关描述,此处不再赘述。
406、所述UE获取第二数据路径的第二标识信息。
例如,AMF接收到第一数据路径的第一标识信息后,由于此时UE处于idle态,AMF通过RAN对UE进行寻呼。UE接收到寻呼消息后,在需要发送上行数据时,确定用于发送该上行数据的数据路径(记为第二数据路径),并获取该第二数据路径的第二标识信息。该第二标识信息具体可以是为UE分配的多个IP前缀中,与该第二数据路径对应的IP前缀。
在一种可能的实现方式中,该第二标识信息具体可以是第二数据路径对应的锚点UPF的标识。例如,UE先确定该第二数据路径对应的IP前缀,并根据该IP前缀与第二数据路径对应的锚点UPF的标识之间的对应关系,获取该第二数据路径对应的锚点UPF的标识。
在一种可能的实现方式中,该标识信息具体可以是第二数据路径的逻辑标识。例如,UE先确定该第二数据路径对应的IP前缀,并根据该IP前缀与第二数据路径的逻辑标识之间的对应关系,获取该第二数据路径的逻辑标识。
407、所述UE向RAN发送所述第二数据路径的第二标识信息。
相应的,所述RAN接收所述第二数据路径的第二标识信息。
例如,UE可以向RAN发送服务请求,并在服务请求中携带该第二数据路径的第二标识信息。
408、所述RAN向所述AMF发送所述第二数据路径的第二标识信息。
相应的,所述AMF接收所述第二数据路径的第二标识信息。
例如,RAN接收到UE发送的服务请求后,向AMF发送N2消息,并在N2消息中携带该服务请求。
或者,RAN可以向AMF调用传递信息的服务。待传递的信息包括该服务请求。
409、所述AMF确定所述第二标识信息标识的所述第二数据路径与所述第一标识信息 标识的所述第一数据路径不是同一条数据路径。
例如,AMF接收到RAN发送的N2消息后,对N2消息解析得到该第二数据路径的第二标识信息。AMF将该第二标识信息与在步骤405中接收到的第一数据路径的第一标识信息进行比较,如果第二标识信息与第一标识信息不同或者不满足预设的对应关系,则确定第二数据路径与第一数据路径不是同一条数据路径。
其中,第二标识信息与第一标识信息不同或者不满足预设的对应关系是指:
第二标识信息与第一标识信息的类型相同时,第二标识信息与第一标识信息不同。例如,第二标识信息与第一标识信息均为IP前缀,若第二标识信息对应的IP前缀与第一标识信息对应的IP前缀不同,则表明第二标识信息所标识的第二数据路径与第一标识信息所标识的第一数据路径不是同一条数据路径。
第二标识信息与第一标识信息的类型不同时,第二标识信息与第一标识信息不满足预设的对应关系。例如,第二标识信息为IP前缀,第一标识信息为第一数据路径的逻辑标识,若该IP前缀与该第一数据路径的逻辑标识不满足预设的对应关系,则表明第二标识信息所标识的第二数据路径与第一标识信息所标识的第一数据路径不是同一条数据路径。
需要说明的是,如果第二标识信息与第一标识信息的类型相同,且第二标识信息与第一标识信息相同,或者,如果第二标识信息与第一标识信息的类型不同,例如,第二标识信息为IP前缀,第一标识信息为第一数据路径的逻辑标识,但第二标识信息与第一标识信息满足预设的对应关系,则表明第二数据路径与第一数据路径是同一条数据路径。由于在步骤405中,AMF已接收到SMF获取的第一数据路径的QoS信息,从而不必再将第二数据路径的第二标识信息发送给SMF以获取第二数据路径的QoS信息,故本次流程不再执行步骤410~412。
410、所述AMF向所述SMF发送所述第二数据路径的第二标识信息。
相应的,所述SMF接收所述第二数据路径的第二标识信息。
例如,AMF在确定第二数据路径与第一数据路径不是同一条数据路径时,向SMF发送N11消息,并在N11消息中携带该第二数据路径的第二标识信息。
或者,AMF可以向SMF调用传递信息的服务。待传递的信息包括第二数据路径的第二标识信息。
411、所述SMF获取所述第二数据路径的QoS信息。
例如,SMF接收到AMF发送的N11消息后,如果确定允许为第二数据路径建立无线资源,则根据第二数据路径的第二标识信息获取该第二数据路径的QoS信息。
412、所述SMF向所述AMF发送所述第二数据路径的第二标识信息和QoS信息。
相应的,所述AMF接收所述第二数据路径的第二标识信息和QoS信息。
例如,SMF向AMF发送N11消息,并在N11消息中携带该第二数据路径的第二标识信息和QoS信息。
或者,SMF可以向AMF调用传递信息的服务。待传递的信息包括第二数据路径的第二标识信息和QoS信息。
在一种可能的实现方式中,SMF也可以向AMF只发送第二数据路径的QoS信息而不发送第二数据路径的标识信息,即AMF不需要知道当前需要建立无线资源的数据路径具体 是哪一条路径,如SMF在向AMF发送的N11消息中只携带第二数据路径的QoS信息而不携带第二数据路径的标识信息。AMF向RAN发送第二数据路径的QoS信息后,RAN依然可以根据第二数据路径的QoS信息为该第二数据路径建立无线资源。
413、所述AMF向所述RAN发送所述第一数据路径的QoS信息和/或所述第二数据路径的QoS信息。
相应的,所述RAN接收所述第一数据路径的QoS信息和/或所述第二数据路径的QoS信息。
例如,如果AMF接收到SMF返回的该第二数据路径的第二标识信息和QoS信息,则AMF向RAN发送N2请求或者N2消息,并在该N2请求或者N2消息中携带第一数据路径的QoS信息和第二数据路径的QoS信息。
或者,AMF可以向RAN调用传递信息的服务。待传递的信息包括第一数据路径的QoS信息和第二数据路径的QoS信息。
如果AMF未接收到SMF返回的该第二数据路径的第二标识信息和QoS信息,则AMF向RAN发送N2请求或者N2消息,并在该N2请求或者N2消息中只携带该第一数据路径的QoS信息。
或者,AMF可以向RAN调用传递信息的服务。待传递的信息包括第一数据路径的QoS信息。
414、所述RAN根据所述第一数据路径的QoS信息和/或所述第二数据路径的QoS信息,为所述第一数据路径和/或所述第二数据路径建立无线资源。
例如,RAN根据接收到的QoS信息为相应的数据路径建立无线资源,如果接收到的N2请求或者N2消息中只包括第一数据路径的QoS信息,则根据第一数据路径的QoS信息为该第一数据路径建立无线资源,如果接收到的N2请求或者N2消息中包括第一数据路径和第二数据路径的QoS信息,则根据第一数据路径的QoS信息为该第一数据路径建立无线资源,并根据第二数据路径的QoS信息为该第二数据路径建立无线资源。
本申请实施例中,SMF根据用于传输下行数据的第一数据路径的标识信息,获取该第一数据路径的QoS信息,并向AMF发送第一数据路径的标识信息和QoS信息。AMF通过RAN从UE接收用于传输上行数据的第二数据路径的标识信息。AMF将第二数据路径的标识信息与第一数据路径的标识信息进行比较,如果第二数据路径的标识信息与第一数据路径的标识信息不同或者不满足预设的对应关系,则确定第二数据路径与第一数据路径不是同一条数据路径,从而将第二数据路径的标识信息发送给SMF,以获取第二数据路径的QoS信息,通过将第一数据路径的QoS信息和第二数据路径的QoS信息发送给RAN实现为用于传输下行数据的第一数据路径和用于传输上行数据的第二数据路径分别建立无线资源。AMF如果确定第二数据路径与第一数据路径是同一条数据路径,则不必再将第二数据路径的标识信息发送给SMF以获取第二数据路径的QoS信息,通过将第一数据路径的QoS信息发送给RAN实现为同时用于传输下行数据和上行数据的第一数据路径建立无线资源。从而,通过对传输上行数据和下行数据使用的数据路径是否相同进行预判,可以避免对同一条数据路径获取两次QoS信息,可以提高为存在数据传输需求的数据路径建立无线资源的速度,并可以只为存在数据传输需求的数据路径建立无线资源,以避免无线资源的浪费。
请参阅图5,为本申请实施例提供的又一种通信方法的流程示意图。本实施例中所描述的通信方法,包括:
501、会话管理功能网元获取标识信息。
其中,该标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径。该多条数据路径属于同一会话。
在一种可能的实现方式中,标识信息包括用户设备的IP前缀、第一数据路径对应的锚点用户面功能网元的标识或第一数据路径的逻辑标识中的至少一项。
在一种可能的实现方式中,会话管理功能网元获取标识信息的具体实现方式为:
会话管理功能网元从用户设备或者分支节点用户面功能网元接收标识信息。
其中,会话管理功能网元从用户设备接收标识信息的具体实现方式可以参见上述方法实施例中的步骤303~305,此处不再赘述。
其中,会话管理功能网元从分支节点用户面功能网元接收标识信息的具体实现方式可以参见上述方法实施例中的步骤203,此处不再赘述。
在一种可能的实现方式中,会话管理功能网元获取标识信息的具体实现方式为:会话管理功能网元从第一数据路径对应的锚点用户面功能网元接收通知消息后,确定标识信息。
其中,会话管理功能网元从第一数据路径对应的锚点用户面功能网元接收通知消息后,确定标识信息的具体实现方式可以参见上述方法实施例中的步骤202和203,此处不再赘述。
502、所述会话管理功能网元向无线接入网络发送所述第一数据路径的服务质量QoS信息。
其中,该QoS信息用于无线资源的建立。
在一种可能的实现方式中,会话管理功能网元根据标识信息确定第一数据路径。
在一种可能的实现方式中,会话管理功能网元向无线接入网络发送第一数据路径的服务质量QoS信息的具体实现方式为:
会话管理功能网元通过接入和移动性管理功能网元向无线接入网络发送第一数据路径的QoS信息。
其中,会话管理功能网元向无线接入网络发送第一数据路径的QoS信息的具体实现方式可以参见上述方法实施例中的步骤204和206,此处不再赘述。
本申请实施例中,会话管理功能网元获取标识信息,该标识信息标识了用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,该多条数据路径属于同一会话,会话管理功能网元向无线接入网络发送第一数据路径的服务质量QoS信息,基于该QoS信息可以为该第一数据路径建立无线资源。虽然用户设备和多个锚点用户面功能网元之间可能存在多条数据路径,但是,根据本申请实施例的方案,无线接入网络可以只为存在数据传输需求的数据路径(例如上述第一数据路径)建立无线资源,从而避免无线资源的浪费。
请参阅图6,为本申请实施例提供的又一种通信方法的流程示意图。本实施例中所描 述的通信方法,包括:
601、分支节点用户面功能网元通过第一数据路径,从锚点用户面功能网元接收下行数据。
在一种可能的实现方式中,标识信息包括用户设备的IP前缀、第一数据路径对应的锚点用户面功能网元的标识或第一数据路径的逻辑标识中的至少一项。
602、所述分支节点用户面功能网元向会话管理功能网元发送所述第一数据路径的标识信息。
其中,该标识信息用于第一数据路径的服务质量QoS信息的确定。
其中,分支节点用户面功能网元向会话管理功能网元发送第一数据路径的标识信息的具体实现方式可以参见上述方法实施例中的步骤203,此处不再赘述。
本申请实施例中,分支节点用户面功能网元通过第一数据路径,从锚点用户面功能网元接收下行数据,确定该锚点用户面功能网元对应的第一数据路径的标识信息,并向会话管理功能网元发送第一数据路径的标识信息,该标识信息用于第一数据路径的QoS信息的确定。虽然用户设备和多个锚点用户面功能网元之间可能存在多条数据路径,但是,根据本申请实施例的方案,无线接入网络可以只为存在数据传输需求的数据路径(例如上述第一数据路径)建立无线资源,从而避免无线资源的浪费。
请参阅图7,为本申请实施例提供的又一种通信方法的流程示意图。本实施例中所描述的通信方法,包括:
701、用户设备获取标识信息。
其中,该标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径。该多条数据路径属于同一会话。
在一种可能的实现方式中,标识信息包括用户设备的IP前缀、第一数据路径对应的锚点用户面功能网元的标识或第一数据路径的逻辑标识中的至少一项。
在一种可能的实现方式中,标识信息包括第一数据路径对应的锚点用户面功能网元的标识,该通信方法还包括:
用户设备从会话管理功能网元获取用户设备的IP前缀和第一数据路径对应的锚点用户面功能网元的标识之间的第一对应关系,并根据第一对应关系,获取第一数据路径对应的锚点用户面功能网元的标识。
在一种可能的实现方式中,标识信息包括第一数据路径的逻辑标识,该通信方法还包括:
用户设备从会话管理功能网元获取用户设备的IP前缀和第一数据路径的逻辑标识之间的第二对应关系,并根据第二对应关系,获取第一数据路径的逻辑标识。
其中,用户设备获取标识信息的具体实现方式可以参见上述方法实施例中的步骤302,此处不再赘述。
702、所述用户设备向接入和移动性管理功能网元发送所述标识信息。
其中,该标识信息用于第一数据路径的服务质量QoS信息的确定。
其中,用户设备向接入和移动性管理功能网元发送标识信息的具体实现方式可以参见 上述方法实施例中的步骤303和304,此处不再赘述。
本申请实施例中,用户设备获取第一数据路径的标识信息,第一数据路径为该用户设备与多个锚点用户面功能网元之间多条数据路径中的其中一条,该多条数据路径属于同一会话,该用户设备向接入和移动性管理功能网元发送该标识信息,该标识信息用于第一数据路径的QoS信息的确定。虽然用户设备和多个锚点用户面功能网元之间可能存在多条数据路径,但是,根据本申请实施例的方案,无线接入网络可以只为存在数据传输需求的数据路径(例如上述第一数据路径)建立无线资源,从而避免无线资源的浪费。
请参阅图8,为本申请实施例提供的又一种通信方法的流程示意图。本实施例中所描述的通信方法,包括:
801、接入和移动性管理功能网元从会话管理功能网元接收第一标识信息。
其中,该第一标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径。该多条数据路径属于同一会话。
其中,接入和移动性管理功能网元从会话管理功能网元接收第一标识信息的具体实现方式可以参见上述方法实施例中的步骤204,此处不再赘述。
802、收到所述第一标识信息后,所述接入和移动性管理功能网元从所述用户设备接收第二标识信息。
其中,该第二标识信息用于标识该多条数据路径中的第二数据路径。
其中,接入和移动性管理功能网元从用户设备接收第二标识信息的具体实现方式可以参见上述方法实施例中的步骤407和408,此处不再赘述。
803、若所述第二标识信息标识的所述第二数据路径与所述第一标识信息标识的所述第一数据路径不是同一条数据路径,则所述接入和移动性管理功能网元向所述会话管理功能网元发送所述第二标识信息。
其中,接入和移动性管理功能网元确定第二标识信息标识的所述第二数据路径与所述第一标识信息标识的所述第一数据路径不是同一条数据路径,并向会话管理功能网元发送第二标识信息的具体实现方式可以参见上述方法实施例中的步骤409和410,此处不再赘述。
本申请实施例中,接入和移动性管理功能网元从会话管理功能网元接收第一数据路径的第一标识信息,第一数据路径为该用户设备与多个锚点用户面功能网元之间多条数据路径中的其中一条,该多条数据路径属于同一会话,接入和移动性管理功能网元收到该第一标识信息后,从用户设备接收该多条数据路径中第二数据路径的第二标识信息,若第二标识信息与第一标识信息不同或者不满足预设的对应关系,则确定第二数据路径与第一数据路径不是同一条数据路径,从而向会话管理功能网元发送第二标识信息,可以对传输上行数据和下行数据使用的数据路径是否相同进行预判,可以提高为存在数据传输需求的数据路径建立无线资源的速度。
请参阅图9,为本申请实施例提供的一种通信装置的结构示意图。本实施例中所描述的通信装置,用于执行前文所述的SMF实现的相应方法,所述通信装置包括:
获取模块901,用于获取标识信息,所述标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,所述多条数据路径属于同一会话。
发送模块902,用于向无线接入网络发送所述第一数据路径的服务质量QoS信息,所述QoS信息用于无线资源的建立。
在一种可能的实现方式中,所述获取模块901,具体用于:
从所述用户设备或者分支节点用户面功能网元接收所述标识信息。或者,
从所述第一数据路径对应的锚点用户面功能网元接收通知消息后,确定所述标识信息。
在一种可能的实现方式中,所述通信装置还包括:
确定模块903,用于根据所述标识信息确定所述第一数据路径。
在一种可能的实现方式中,所述标识信息包括所述用户设备的互联网协议IP前缀、所述第一数据路径对应的锚点用户面功能网元的标识或所述第一数据路径的逻辑标识中的至少一项。
在一种可能的实现方式中,所述发送模块902,具体用于:
通过接入和移动性管理功能网元向所述无线接入网络发送所述第一数据路径的QoS信息。
可以理解的是,本实施例的通信装置的各功能模块的功能可根据上述方法实施例中SMF侧的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
请参阅图10,为本申请实施例提供的另一种通信装置的结构示意图。本实施例中所描述的通信装置,用于执行前文所述的BP UPF实现的相应方法,所述通信装置包括:
接收模块1001,用于通过第一数据路径,从锚点用户面功能网元接收下行数据。
发送模块1002,用于向会话管理功能网元发送所述第一数据路径的标识信息,所述标识信息用于所述第一数据路径的服务质量QoS信息的确定。
在一种可能的实现方式中,所述标识信息包括用户设备的互联网协议IP前缀、所述第一数据路径对应的锚点用户面功能网元的标识或所述第一数据路径的逻辑标识中的至少一项。
可以理解的是,本实施例的通信装置的各功能模块的功能可根据上述方法实施例中BP UPF侧的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
请参阅图11,为本申请实施例提供的又一种通信装置的结构示意图。本实施例中所描述的通信装置,用于执行前文所述的UE实现的相应方法,所述通信装置包括:
获取模块1101,用于获取标识信息,所述标识信息用于标识所述用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,所述多条数据路径属于同一会话。
发送模块1102,用于向接入和移动性管理功能网元发送所述标识信息,所述标识信息用于所述第一数据路径的服务质量QoS信息的确定。
在一种可能的实现方式中,所述标识信息包括用户设备的互联网协议IP前缀、所述第一数据路径对应的锚点用户面功能网元的标识或所述第一数据路径的逻辑标识中的至少一项。
在一种可能的实现方式中,所述标识信息包括所述第一数据路径对应的锚点用户面功能网元的标识,所述获取模块1101,还用于从会话管理功能网元获取用户设备的IP前缀和所述第一数据路径对应的锚点用户面功能网元的标识之间的第一对应关系。
所述获取模块1101,还用于根据所述第一对应关系,获取所述第一数据路径对应的锚点用户面功能网元的标识。
在一种可能的实现方式中,所述标识信息包括所述第一数据路径的逻辑标识,所述获取模块1101,还用于从会话管理功能网元获取用户设备的IP前缀和所述第一数据路径的逻辑标识之间的第二对应关系。
所述获取模块1101,还用于根据所述第二对应关系,获取所述第一数据路径的逻辑标识。
可以理解的是,本实施例的通信装置的各功能模块的功能可根据上述方法实施例中UE侧的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
请参阅图12,为本申请实施例提供的又一种通信装置的结构示意图。本实施例中所描述的通信装置,用于执行前文所述的AMF实现的相应方法,所述通信装置包括:
接收模块1201,用于从会话管理功能网元接收第一标识信息,所述第一标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,所述多条数据路径属于同一会话。
所述接收模块1201,还用于收到所述第一标识信息后,从所述用户设备接收第二标识信息,所述第二标识信息用于标识所述多条数据路径中的第二数据路径。
发送模块1202,用于若所述第二标识信息标识的所述第二数据路径与所述第一标识信息标识的所述第一数据路径不是同一条数据路径,则向所述会话管理功能网元发送所述第二标识信息。
可以理解的是,本实施例的通信装置的各功能模块的功能可根据上述方法实施例中AMF侧的方法具体实现,其具体实现过程可以参照上述方法实施例的相关描述,此处不再赘述。
请参阅图13,为本申请实施例提供的又一种通信装置的结构示意图。该通信装置包括:处理器1301和收发器1302。
可选的,该通信装置还可以包括存储器1303,该存储器1303用于存储指令,该指令被执行,以完成该通信装置的步骤。进一步的,该存储器1303还可以存储其他数据信息,本申请实施例对此不做限定。
可选的,收发器1302的功能可以考虑通过收发电路或者收发的专用芯片实现。处理器1301可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
该通信装置所涉及的与本申请实施例提供的技术方案相关的概念,解释和详细说明及 其他步骤请参见前述方法或其他实施例中关于这些内容的描述,此处不做赘述。
在一个实施例中,该通信装置对应前文所述的SMF,用于执行前文所述的SMF实现的相应方法。例如,所述处理器1301用于执行前文所述的获取模块901和确定模块903实现的相应方法。所述收发器1302用于执行前文所述的发送模块902实现的相应方法。
在另一个实施例中,该通信装置对应前文所述的BP UPF,用于执行前文所述的BP UPF实现的相应方法。例如,所述收发器1302用于执行前文所述的接收模块1001和发送模块1002实现的相应方法。
在又一个实施例中,该通信装置对应前文所述的UE,用于执行前文所述的UE实现的相应方法。例如,所述处理器1301用于执行前文所述的获取模块1101实现的相应方法。所述收发器1302用于执行前文所述的发送模块1102实现的相应方法。
在又一个实施例中,该通信装置对应前文所述的AMF,用于执行前文所述的AMF实现的相应方法。例如,所述收发器1302用于执行前文所述的接收模块1201和发送模块1202实现的相应方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
综上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (26)

  1. 一种通信方法,其特征在于,包括:
    会话管理功能网元获取标识信息,所述标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,所述多条数据路径属于同一会话;
    所述会话管理功能网元向无线接入网络发送所述第一数据路径的服务质量QoS信息,所述QoS信息用于无线资源的建立。
  2. 根据权利要求1所述的方法,其特征在于,所述会话管理功能网元获取标识信息,包括:
    所述会话管理功能网元从所述用户设备或者分支节点用户面功能网元接收所述标识信息;或者,
    所述会话管理功能网元从所述第一数据路径对应的锚点用户面功能网元接收通知消息后,确定所述标识信息。
  3. 根据权利要求1或2所述的方法,其特征在于,还包括:
    所述会话管理功能网元根据所述标识信息确定所述第一数据路径。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述标识信息包括所述用户设备的互联网协议IP前缀、所述第一数据路径对应的锚点用户面功能网元的标识或所述第一数据路径的逻辑标识中的至少一项。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述会话管理功能网元向无线接入网络发送所述第一数据路径的服务质量QoS信息,包括:
    所述会话管理功能网元通过接入和移动性管理功能网元向所述无线接入网络发送所述第一数据路径的QoS信息。
  6. 一种通信方法,其特征在于,包括:
    分支节点用户面功能网元通过第一数据路径,从锚点用户面功能网元接收下行数据;
    所述分支节点用户面功能网元向会话管理功能网元发送所述第一数据路径的标识信息,所述标识信息用于所述第一数据路径的服务质量QoS信息的确定。
  7. 根据权利要求6所述的方法,其特征在于,所述标识信息包括用户设备的互联网协议IP前缀、所述第一数据路径对应的锚点用户面功能网元的标识或所述第一数据路径的逻辑标识中的至少一项。
  8. 一种通信方法,其特征在于,包括:
    用户设备获取标识信息,所述标识信息用于标识所述用户设备与多个锚点用户面功能 网元之间多条数据路径中的第一数据路径,其中,所述多条数据路径属于同一会话;
    所述用户设备向接入和移动性管理功能网元发送所述标识信息,所述标识信息用于所述第一数据路径的服务质量QoS信息的确定。
  9. 根据权利要求8所述的方法,其特征在于,所述标识信息包括用户设备的互联网协议IP前缀、所述第一数据路径对应的锚点用户面功能网元的标识或所述第一数据路径的逻辑标识中的至少一项。
  10. 根据权利要求8或9所述的方法,其特征在于,所述标识信息包括所述第一数据路径对应的锚点用户面功能网元的标识,所述方法还包括:
    所述用户设备从会话管理功能网元获取所述用户设备的IP前缀和所述第一数据路径对应的锚点用户面功能网元的标识之间的第一对应关系;
    所述用户设备根据所述第一对应关系,获取所述第一数据路径对应的锚点用户面功能网元的标识。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述标识信息包括所述第一数据路径的逻辑标识,所述方法还包括:
    所述用户设备从会话管理功能网元获取所述用户设备的IP前缀和所述第一数据路径的逻辑标识之间的第二对应关系;
    所述用户设备根据所述第二对应关系,获取所述第一数据路径的逻辑标识。
  12. 一种通信方法,其特征在于,包括:
    接入和移动性管理功能网元从会话管理功能网元接收第一标识信息,所述第一标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,所述多条数据路径属于同一会话;
    收到所述第一标识信息后,所述接入和移动性管理功能网元从所述用户设备接收第二标识信息,所述第二标识信息用于标识所述多条数据路径中的第二数据路径;
    若所述第二标识信息标识的所述第二数据路径与所述第一标识信息标识的所述第一数据路径不是同一条数据路径,则所述接入和移动性管理功能网元向所述会话管理功能网元发送所述第二标识信息。
  13. 一种通信装置,其特征在于,包括:
    获取模块,用于获取标识信息,所述标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,所述多条数据路径属于同一会话;
    发送模块,用于向无线接入网络发送所述第一数据路径的服务质量QoS信息,所述QoS信息用于无线资源的建立。
  14. 根据权利要求13所述的装置,其特征在于,所述获取模块,具体用于:
    从所述用户设备或者分支节点用户面功能网元接收所述标识信息;或者,
    从所述第一数据路径对应的锚点用户面功能网元接收通知消息后,确定所述标识信息。
  15. 根据权利要求13或14所述的装置,其特征在于,还包括:
    确定模块,用于根据所述标识信息确定所述第一数据路径。
  16. 根据权利要求13至15中任一项所述的装置,其特征在于,所述标识信息包括所述用户设备的互联网协议IP前缀、所述第一数据路径对应的锚点用户面功能网元的标识或所述第一数据路径的逻辑标识中的至少一项。
  17. 根据权利要求13至16中任一项所述的装置,其特征在于,所述发送模块,具体用于:
    通过接入和移动性管理功能网元向所述无线接入网络发送所述第一数据路径的QoS信息。
  18. 一种通信装置,其特征在于,包括:
    接收模块,用于通过第一数据路径,从锚点用户面功能网元接收下行数据;
    发送模块,用于向会话管理功能网元发送所述第一数据路径的标识信息,所述标识信息用于所述第一数据路径的服务质量QoS信息的确定。
  19. 根据权利要求18所述的装置,其特征在于,所述标识信息包括用户设备的互联网协议IP前缀、所述第一数据路径对应的锚点用户面功能网元的标识或所述第一数据路径的逻辑标识中的至少一项。
  20. 一种通信装置,其特征在于,包括:
    获取模块,用于获取标识信息,所述标识信息用于标识所述用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,所述多条数据路径属于同一会话;
    发送模块,用于向接入和移动性管理功能网元发送所述标识信息,所述标识信息用于所述第一数据路径的服务质量QoS信息的确定。
  21. 根据权利要求20所述的装置,其特征在于,所述标识信息包括用户设备的互联网协议IP前缀、所述第一数据路径对应的锚点用户面功能网元的标识或所述第一数据路径的逻辑标识中的至少一项。
  22. 根据权利要求20或21所述的装置,其特征在于,所述标识信息包括所述第一数据路径对应的锚点用户面功能网元的标识,所述获取模块,还用于从会话管理功能网元获取所述用户设备的IP前缀和所述第一数据路径对应的锚点用户面功能网元的标识之间的第一对应关系;
    所述获取模块,还用于根据所述第一对应关系,获取所述第一数据路径对应的锚点用户面功能网元的标识。
  23. 根据权利要求20至22中任一项所述的装置,其特征在于,所述标识信息包括所述第一数据路径的逻辑标识,所述获取模块,还用于从会话管理功能网元获取所述用户设备的IP前缀和所述第一数据路径的逻辑标识之间的第二对应关系;
    所述获取模块,还用于根据所述第二对应关系,获取所述第一数据路径的逻辑标识。
  24. 一种通信装置,其特征在于,包括:
    接收模块,用于从会话管理功能网元接收第一标识信息,所述第一标识信息用于标识用户设备与多个锚点用户面功能网元之间多条数据路径中的第一数据路径,其中,所述多条数据路径属于同一会话;
    所述接收模块,还用于收到所述第一标识信息后,从所述用户设备接收第二标识信息,所述第二标识信息用于标识所述多条数据路径中的第二数据路径;
    发送模块,用于若所述第二标识信息标识的所述第二数据路径与所述第一标识信息标识的所述第一数据路径不是同一条数据路径,则向所述会话管理功能网元发送所述第二标识信息。
  25. 一种通信装置,其特征在于,包括:处理器、收发器和存储器,所述处理器、所述收发器和所述存储器通过总线连接,所述存储器存储有可执行程序代码,所述收发器受所述处理器的控制用于收发消息,所述处理器用于调用所述可执行程序代码,执行如权利要求1~5中任一项中会话管理功能网元执行的所述的通信方法、或执行如权利要求6或7中分支节点用户面功能网元执行的所述的通信方法、或执行如权利要求8~11中任一项中用户设备执行的所述的通信方法、或执行如权利要求12中接入和移动性管理功能网元执行的所述的通信方法。
  26. 一种计算机可读存储介质,其特征在于,所述存储介质存储指令,当其在计算机上运行时,使得计算机实现如权利要求1~12中任一项所述的通信方法。
PCT/CN2018/110139 2017-10-30 2018-10-12 通信方法及装置 WO2019085728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711034017.9 2017-10-30
CN201711034017.9A CN109729549B (zh) 2017-10-30 2017-10-30 通信方法及装置

Publications (1)

Publication Number Publication Date
WO2019085728A1 true WO2019085728A1 (zh) 2019-05-09

Family

ID=66291818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110139 WO2019085728A1 (zh) 2017-10-30 2018-10-12 通信方法及装置

Country Status (2)

Country Link
CN (1) CN109729549B (zh)
WO (1) WO2019085728A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162788A (zh) * 2020-01-23 2021-07-23 华为技术有限公司 报告信息的发送方法和通信装置以及通信系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112073997B (zh) * 2019-06-11 2021-09-14 华为技术有限公司 通信方法及装置
CN112217716A (zh) * 2019-07-10 2021-01-12 北京三星通信技术研究有限公司 数据包路由的方法及设备、数据包传输的控制方法及设备
CN114710975B (zh) * 2019-07-31 2023-07-28 华为技术有限公司 一种用于多域间传输多传输网络上下文标识的方法、基站、网元及装置
CN112584327B (zh) * 2019-09-30 2022-04-05 华为技术有限公司 一种更新用户面路径的方法、装置及系统
CN112291792B (zh) * 2020-11-02 2023-07-04 中国联合网络通信集团有限公司 无线资源的获取方法和会话管理功能实体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056314A (zh) * 2009-11-10 2011-05-11 华为技术有限公司 多接入网资源控制的方法、装置及系统
CN104023376A (zh) * 2010-07-26 2014-09-03 华为技术有限公司 多个无线接入网聚合系统及其实现方法和接入网网元
US20150333930A1 (en) * 2014-05-15 2015-11-19 Akamai Technologies, Inc. Dynamic service function chaining
CN106851856A (zh) * 2016-12-23 2017-06-13 电信科学技术研究院 一种基于移动中继的无线通信建立方法及网络设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101437268B (zh) * 2007-11-14 2013-04-17 华为技术有限公司 WiMAX中QoS业务流的建立方法、装置及系统
KR102060806B1 (ko) * 2015-11-05 2019-12-30 엘지전자 주식회사 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056314A (zh) * 2009-11-10 2011-05-11 华为技术有限公司 多接入网资源控制的方法、装置及系统
CN104023376A (zh) * 2010-07-26 2014-09-03 华为技术有限公司 多个无线接入网聚合系统及其实现方法和接入网网元
US20150333930A1 (en) * 2014-05-15 2015-11-19 Akamai Technologies, Inc. Dynamic service function chaining
CN106851856A (zh) * 2016-12-23 2017-06-13 电信科学技术研究院 一种基于移动中继的无线通信建立方法及网络设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113162788A (zh) * 2020-01-23 2021-07-23 华为技术有限公司 报告信息的发送方法和通信装置以及通信系统
CN113162788B (zh) * 2020-01-23 2022-12-27 华为技术有限公司 报告信息的发送方法和通信装置以及通信系统

Also Published As

Publication number Publication date
CN109729549B (zh) 2021-05-18
CN109729549A (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
WO2019085728A1 (zh) 通信方法及装置
JP6945659B2 (ja) 情報処理方法および関連装置
US11937128B2 (en) Communication method and communications apparatus for determining latency of transmission between network elements
US9942748B2 (en) Service provisioning system and method, and mobile edge application server and support node
US11381961B2 (en) Method, apparatus, network device, and system for releasing IP address
CN109246778B (zh) 功能网元的选择方法及相关设备
US20180317218A1 (en) Data scheduling method, base station, and system
US20200287975A1 (en) Session Processing Method, Apparatus, And System
US11395256B2 (en) Communication method, device, and system
US11729686B2 (en) Transmission control method, apparatus, and system
US20210120620A1 (en) Communication Method and Apparatus
CN107079372B (zh) 一种网络终端设备进行通信的方法及装置
WO2019185062A1 (zh) 一种通信方法及装置
KR102484223B1 (ko) Pdu 세션 활성화 방법, 페이징 방법 및 그의 장치
US11419027B2 (en) User plane link establishment method, base station, and mobility management device
CN105873241B (zh) 建立通话连接的方法及装置
WO2021083321A1 (zh) 一种通信方法及设备
CN110831257A (zh) 一种发起语音业务的方法、终端及基站
WO2017166978A1 (zh) 一种数据传输方法及装置以及会话管理设备
US11910488B2 (en) Enhancement of feature support after interworking
KR20110121044A (ko) 무선 통신 시스템에서 통신 시스템 노드와 데이터 서비스 망 노드 간 연결 설정 방법
WO2015103780A1 (zh) 一种承载电路语音业务的方法及装置
US11246064B2 (en) PDN connection supports interworking to 5GS
WO2021249477A1 (zh) 切换多播业务的方法及设备
WO2017166291A1 (zh) 一种通信方法、终端、基站和移动性管理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18872137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18872137

Country of ref document: EP

Kind code of ref document: A1