WO2021083321A1 - 一种通信方法及设备 - Google Patents

一种通信方法及设备 Download PDF

Info

Publication number
WO2021083321A1
WO2021083321A1 PCT/CN2020/125195 CN2020125195W WO2021083321A1 WO 2021083321 A1 WO2021083321 A1 WO 2021083321A1 CN 2020125195 W CN2020125195 W CN 2020125195W WO 2021083321 A1 WO2021083321 A1 WO 2021083321A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos flow
pdb
network element
access network
ups
Prior art date
Application number
PCT/CN2020/125195
Other languages
English (en)
French (fr)
Inventor
余芳
李岩
倪慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20881717.1A priority Critical patent/EP4037373A4/en
Publication of WO2021083321A1 publication Critical patent/WO2021083321A1/zh
Priority to US17/732,148 priority patent/US20220256392A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0268Traffic management, e.g. flow control or congestion control using specific QoS parameters for wireless networks, e.g. QoS class identifier [QCI] or guaranteed bit rate [GBR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/80Ingress point selection by the source endpoint, e.g. selection of ISP or POP
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/086Load balancing or load distribution among access entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0958Management thereof based on metrics or performance parameters
    • H04W28/0967Quality of Service [QoS] parameters
    • H04W28/0975Quality of Service [QoS] parameters for reducing delays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the embodiments of the present invention relate to the field of communication technology, and in particular to a communication method and device.
  • the packet delay budget refers to the data packet at the user equipment (UE) and the user plane anchor point, that is, the protocol data unit (protocol data unit, PDU) session anchor (PDU) session anchor, PSA )
  • the radio access network (RAN) equipment includes a central unit (CU)-user plane (UP), or the UP of the CU and the control plane (CP) in the RAN equipment are different.
  • the core network (Core Netwrok, CN) PDB transmitted between the RAN device and the UPF network element is determined by the quality of service (QoS) flow (flow).
  • QoS quality of service
  • the CN PDB of the QoS flow transmitted between the RAN device and the UPF network element is the transmission delay between the PSA and the UPF network element and the CU-UP. Therefore, the SMF network element Before determining the CU-UP for the transmission of the QoS flow, the CN PDB cannot be determined and sent to the RAN device.
  • the embodiment of the present invention discloses a communication method and device, which are used to send the PDB corresponding to the CU-UP of the QoS flow to the RAN device when the RAN device supports at least two CU-UPs.
  • the first aspect discloses a communication method, determining the first CU-UP and UPF network element corresponding to the QoS flow, determining the first PDB transmitted between the first CU-UP and the UPF network element of the QoS flow, and sending it to the RAN device The first PDB.
  • the RAN device to which the first CU-UP belongs supports at least two CU-UPs, and the first PDB is used for the RAN device to schedule air interface resources.
  • the PDB corresponding to the CU-UP of the QoS flow can be sent to the RAN device, so that the RAN device can schedule the QoS flow according to the PDB Resources.
  • the RAN equipment in the present invention is the access network equipment.
  • first indication information used to indicate the identifier of the first CU-UP corresponding to the QoS flow is received, so that the CU-UP corresponding to the QoS flow can be determined according to the first indication information.
  • each of the at least two CU-UPs supported by the RAN device can be obtained to transmit the same type of data packet as the QoS flow between each CU-UP and the UPF network element.
  • the obtained PDB includes The first PDB. You can first obtain the PDB that transmits data packets of the same type as the QoS flow between each CU-UP and the UPF network element in at least two CU-UPs supported by the RAN device corresponding to the QoS flow, and then according to the obtained PDB The CU-UP corresponding to the QoS flow selects the PDB corresponding to the CU-UP corresponding to the QoS flow.
  • the session modification process can be initiated, and the first PDB is sent to the RAN device in the session modification process.
  • the session modification process can be initiated after the QoS flow is established.
  • the session modification process can be initiated after the QoS flow switching is completed.
  • the session modification process can be initiated after the activation of the QoS flow is completed, so that the PDB corresponding to the CU-UP corresponding to the QoS flow can be sent to the RAN device.
  • the session modification process is initiated only when it is determined that the QoS flow is a specific QoS flow, the PDB between the RAN device and the UPF network element has changed, or the PDB corresponding to the QoS flow is not sent to the RAN device. It can be guaranteed that the session modification process is necessary, instead of blindly initiating the session modification process, and unnecessary processes can be reduced.
  • the RAN device may be determined that the RAN device supports at least two CU-UPs before initiating the session modification procedure.
  • the RAN device includes a CU-UP, or the UP and CP of the CU in the RAN device are not separated, the PDB has been sent to the RAN device. Therefore, there is no need to initiate a session modification process. Only when the RAN device supports at least two CUs In the case of -UP, it is necessary to send the PDB to the RAN device through the session modification process, which can ensure that the session modification process is necessary instead of blindly initiating the session modification process, which can reduce unnecessary processes.
  • the second indication information used to instruct the RAN device to support at least two CU-UPs from the RAN device may be received, so that it can be determined according to the second indication information that the RAN device supports at least two CU-UPs.
  • the RAN device can be determined that multiple PDBs are configured for the same 5G quality of service (QoS) identifier (5G QoS identifier, 5QI) between the RAN device and the UPF network element, so that it can be determined that the RAN device supports At least two CU-UPs.
  • QoS 5G quality of service
  • the UPF network element corresponds to at least two CU-UP addresses of the RAN device, and the at least two CU-UP addresses of the same 5QI RAN device correspond to different PDBs, so that the RAN device can be determined Support at least two CU-UPs.
  • the second aspect discloses a communication method, which can determine the RAN device and UPF network element supporting at least two CU-UPs corresponding to the QoS flow, and determine each CU-UP and UPF network of the at least two CU-UPs supported by the RAN device.
  • the PDB of the same type of data packet as the QoS flow is transmitted between the elements, and the RAN equipment is then sent to the RAN equipment.
  • Each CU-UP and UPF of the at least two CU-UPs supported by the RAN equipment are transmitted between the network elements of the same type as the QoS flow.
  • the PDB of the package can determine the RAN device and UPF network element supporting at least two CU-UPs corresponding to the QoS flow, and determine each CU-UP and UPF network of the at least two CU-UPs supported by the RAN device.
  • each CU-UP and UPF network element of the at least two CU-UPs supported by the RAN device may transmit the same type of data as the QoS flow
  • the PDBs of the packets are all sent to the RAN device so that the RAN device can select the CU-UP used to transmit the QoS flow based on these PDBs.
  • the deployment location of each of the at least two CU-UPs supported by the RAN device and the PDB that transmits the same type of data packet as the QoS flow between the UPF network element can be determined first, and then The RAN device sends the deployment location of each CU-UP of the at least two CU-UPs supported by the RAN device and the PDB that transmits the same type of data packet as the QoS flow between the UPF network element, so that the RAN device can use these PDBs and CU-UPs.
  • the deployment location of the UP selects the CU-UP used to transmit the QoS flow from at least two supported CU-UPs.
  • At least two CU-UPs supported by the RAN device can be first obtained for each CU-UP and the UPF network element to transmit the same type of data packet as the QoS flow PDB and at least the PDB supported by the RAN device.
  • the location information of each CU-UP in the two CU-UPs, and then the location information of each CU-UP in the at least two CU-UPs supported by the RAN device and the corresponding PDB are sent to the RAN device, so that the RAN device can follow these
  • the location information of the PDB and the CU-UP selects the CU-UP used to transmit the QoS flow from at least two supported CU-UPs.
  • each of the at least two CU-UPs supported by the RAN device may be sent to the RAN device during the QoS flow establishment process, the QoS flow activation process, or the QoS flow switching process.
  • the PDB of the same type of data packet as the QoS flow is transmitted between the UPF network element and the UPF network element.
  • a third aspect discloses a communication method, which is applied to a RAN device that supports at least two CU-UPs, and receives at least two CU-UPs supported by the RAN device from a session management function (SMF) network element
  • SMF session management function
  • Each CU-UP and UPF network element transmits a PDB of the same type of data packet as the QoS flow, and then selects one CU-UP from at least two supported CU-UPs according to the received PDB to transmit the QoS flow.
  • the CU-UP with the smallest corresponding PDB can be selected from the at least two CU-UPs supported by the RAN device according to the received PDB to transmit the QoS flow, which can ensure that the selected CU-UP is time-bound CU-UP with the smallest extension.
  • a fourth aspect discloses a communication device that includes a unit for executing the communication method disclosed in the first aspect or any one of the implementations of the first aspect, or includes a unit for executing the second aspect or the second aspect
  • the unit of the communication method disclosed in any one of the embodiments may include a unit for executing the third aspect or the communication method disclosed in any of the embodiments of the third aspect.
  • a fifth aspect discloses a communication device, which may be an SMF network element or a module (for example, a chip) in the SMF network element.
  • the communication device includes a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to those other than the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor is caused to execute the communication method disclosed in the first aspect or any one of the embodiments of the first aspect.
  • a sixth aspect discloses a communication device, which may be an SMF network element or a module (for example, a chip) in the SMF network element.
  • the communication device includes a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to those other than the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor is caused to execute the communication method disclosed in the second aspect or any one of the second aspect.
  • a seventh aspect discloses a communication device, which may be a RAN device or a module (for example, a chip) in the RAN device.
  • the communication device includes a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to those other than the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor is caused to execute the communication method disclosed in the third aspect or any one of the embodiments of the third aspect.
  • An eighth aspect discloses a computer-readable storage medium having a computer program or computer instruction stored on the computer-readable storage medium, and when the computer program or computer instruction runs, it implements the first aspect or any implementation of the first aspect
  • a ninth aspect discloses a communication system, which includes the communication device of the above-mentioned sixth aspect and the communication device of the above-mentioned seventh aspect.
  • FIG. 1 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention
  • Figure 2 is an internal architecture diagram of a RAN device disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a scene of a RAN device disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a decomposition of a PDB disclosed in an embodiment of the present invention.
  • Figure 5 is a schematic diagram of a PDU session establishment process disclosed in an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of an N2 handover process disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of sending instruction information disclosed in an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 13 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 14 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • Fig. 15 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the embodiment of the present invention discloses a communication method and equipment, which are used to send the PDB corresponding to the CU-UP of the QoS flow to the RAN equipment. Detailed descriptions are given below.
  • FIG. 1 is a schematic diagram of a 5G network architecture disclosed in an embodiment of the present invention.
  • the 5G network architecture can include UE, RAN equipment, UPF network elements, data network (DN), (access and mobility management function, AMF) network elements, SMF network elements, and policy control functions ( Policy control function (PCF) network element, application function (AF) network element, and unified data management (UDM) network element.
  • DN data network
  • AMF access and mobility management function
  • PCF Policy control function
  • AF application function
  • UDM unified data management
  • UE refers to network terminal equipment, which can be handheld terminals, laptops, subscriber units, cellular phones, smart phones, wireless data cards, and personal digital assistants (PDAs) Computers, tablet computers, wireless modems, handheld devices, laptop computers, cordless phones or wireless local loops (wireless local loop, WLL), machine type communication (machine type communication, MTC) terminal or other devices that can access the network.
  • PDAs personal digital assistants
  • Computers tablet computers, wireless modems, handheld devices, laptop computers, cordless phones or wireless local loops (wireless local loop, WLL), machine type communication (machine type communication, MTC) terminal or other devices that can access the network.
  • WLL wireless local loop
  • MTC machine type communication
  • the RAN device is a device that provides wireless access for the UE, and is mainly responsible for functions such as radio resource management, QoS flow management, data compression, and encryption on the air interface side.
  • the RAN equipment may include various forms of base stations, such as: macro base stations, micro base stations (also referred to as small stations), relay stations, and access points.
  • the RAN equipment may also include a wireless fidelity (WiFi) access point (AP).
  • WiMax worldwide interoperability for microwave access
  • the UPF network element is mainly responsible for processing user messages, such as forwarding and charging.
  • User messages can be received from the DN and transmitted to the UE through the RAN equipment; user messages can also be received from the UE through the RAN equipment and forwarded to the DN.
  • the transmission resources and scheduling functions of the UPF network element to provide services for the UE are managed and controlled by the SMF network element.
  • DN is an operator network that provides users with data transmission services, such as Internet Protocol Multimedia Service (IMS), the Internet, and so on.
  • IMS Internet Protocol Multimedia Service
  • the AMF network element belongs to the core network network element and is mainly responsible for the signaling processing part, such as: access control, mobility management, registration, de-registration, attachment, detachment, and gateway selection functions.
  • the AMF network element provides services for the session in the terminal device, it will provide storage resources of the control plane for the session to store the session identifier, the SMF network element identifier associated with the session identifier, and so on.
  • the SMF network element is mainly responsible for session management in the mobile network, such as session establishment, modification, and release. Specific functions include assigning IP addresses to users and selecting UPF network elements that provide message forwarding functions.
  • the PCF network element mainly supports the provision of a unified policy framework to control network behavior, provides policy rules to the control layer network functions, and is responsible for obtaining user subscription information related to policy decisions.
  • AF network elements mainly support interaction with the 3rd generation partnership project (3rd generation partnership project, 3GPP) core network to provide services, such as influencing data routing decisions, interacting with PCF network elements for measurement control, and providing third-generation network elements to the network side.
  • 3rd generation partnership project 3rd generation partnership project, 3GPP
  • Some three-party services Some three-party services.
  • UDM network element is responsible for user key management, user identification processing, access authorization of subscription data, UE network function entity management, session and business continuity management, short message push, legal monitoring, subscription management, short message management, for management and control User data, such as management of contract information.
  • FIG. 2 is an internal architecture diagram of a RAN device disclosed in an embodiment of the present invention.
  • the RAN device may include a CU and a distributed unit (DU).
  • CU includes CP (that is, CU-CP) and UP (that is, CU-UP).
  • CU is a logical node used to carry the radio resource control (RRC) protocol, service data adaptation protocol (SDAP) and packet data convergence protocol (PDCP) of RAN equipment
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • the protocol can control the operation of one or more DUs.
  • the DU is a logical node used to carry the radio link control (RLC) layer, media access control (MAC) and physical layer of the RAN equipment, and its operation is controlled by the CU.
  • RLC radio link control
  • MAC media access control
  • the CU-CP is a logical node and is the control plane of the CU, which is used to carry the RRC protocol of the RAN equipment and the control plane part of the PDCP protocol in the CU.
  • the CU-UP is a logical node, which is the user plane of the CU, and is used to carry the user plane part of the PDCP protocol in the CU.
  • the CU-CP can connect to the AMF network element through the N2 interface, and the CU-UP can connect to the UPF network element through the N3 interface.
  • the CU-CP and CU-UP can be connected through the E1 interface, the CU-CP and the DU can be connected through the F1-C interface, and the DU and CU-UP can be connected through the F1-U interface.
  • FIG. 3 is a schematic diagram of a scene of a RAN device disclosed in an embodiment of the present invention.
  • one RAN device may include one CU-CP (ie, control center), multiple CU-UPs, and multiple DUs.
  • a DU can only be connected to one CU-CP, and a CU-UP can only be connected to one CU-CP.
  • a DU Under the control of the same CU-CP, a DU can be connected to multiple CU-UPs, and a CU-UP can be connected to multiple DUs, that is, DU and CU-UP are in an M-to-N relationship.
  • CU-CP is deployed in a centralized manner to coordinate the operation of multiple DUs; CU-UP is deployed in a distributed manner, and one CU-UP is deployed with one DU.
  • a UE can be connected to multiple CU-UPs at the same time, with a PDU session (session) as the granularity, one PDU session corresponds to one CU-UP.
  • FIG. 4 is a schematic diagram of a decomposition of a PDB disclosed in an embodiment of the present invention.
  • PDB refers to the packet delay budget from the UE to the PSA UPF network element.
  • the PDB can be decomposed into the packet delay budget from the UE to the RAN device, namely the access network (AN) PDB, and the packet delay from the RAN device to the user plane anchor point.
  • Budget namely core network (CN) PDB.
  • 5QI and PDB and static CN PDB in 5G can be shown in Table 1.
  • UPF network elements can be deployed at a higher position to allow UPF network elements to have a wider coverage area; UPF network elements It can also be deployed close to the RAN equipment to save CN PDB and increase AN PDB to facilitate the flexible scheduling of radio resources on the RAN equipment side. Therefore, the CN PDB cannot be a fixed value. Therefore, 3GPP proposes a dynamic PDB decomposition solution.
  • the SMF network element determines the CN PDB corresponding to the QoS flow according to the RAN equipment corresponding to the QoS flow and the PSA UPF network element, and sends it to the RAN equipment.
  • the RAN device can select different UP entities for different PDU sessions of the UE when the RAN device supports multiple CU-UPs, and the UE will be determined during the session establishment process.
  • the CU-UP corresponding to the PDU session establishes a user plane transmission tunnel between the UPF network element and the CU-UP.
  • FIG. 5 is a schematic diagram of a PDU session establishment process disclosed in an embodiment of the present invention.
  • the RAN device includes a CU-UP, or the UP and CP of the CU in the RAN device are not separated, the RAN device only corresponds to one N3 tunnel, and the terminal device may carry user location information in the PDU session establishment request in step 1.
  • the user location information includes the identification information of the RAN device.
  • the AMF network element can send the user location information including the RAN device identification information to the SMF network element in step 3.
  • the SMF network element can obtain the identification information of the RAN device in step 3. After the SMF network element completes the selection of the UPF network element in step 8, it can determine the UPF network element and RAN device corresponding to the QoS flow in the PDU session, so that the SMF network element can issue the PDB corresponding to the QoS flow in step 11.
  • the RAN equipment includes at least two CU-UPs
  • CN PDB is the transmission delay between PSA UPF network element and CU-UP
  • SMF network element can obtain the IP address of CU-UP in step 14. , So that the PDB value of the CU-UP corresponding to the QoS flow cannot be delivered to the RAN device in step 11.
  • FIG. 6 is a schematic diagram of an N2 handover process disclosed in an embodiment of the present invention.
  • the source RAN device can transfer the target RAN device to The identification information of is sent to the source AMF network element, so that the SMF network element can obtain the identification information of the target RAN device in step 4.
  • the SMF network element After the SMF network element completes the selection of the UPF network element in step 5, it can determine the UPF network element and RAN equipment corresponding to the QoS flow after the handover, so that the SMF network element can issue the PDB corresponding to the QoS flow in step 7.
  • CN PDB is the transmission delay between PSA UPF network elements and CU-UP, and SMF network elements can obtain the CU-UP IP in step 10. Address, so that the PDB value of the CU-UP corresponding to the QoS flow cannot be delivered to the target RAN device in step 7.
  • FIG. 7 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • the functions performed by the SMF network element in the present invention can also be performed by the module (for example, chip) in the SMF network element
  • the function performed by the RAN device in the present invention can also be performed by the module (for example, the chip) in the RAN device. )
  • the communication method may include the following steps.
  • the SMF network element determines the first CU-UP and UPF network element corresponding to the QoS flow.
  • the SMF network element can determine the first CU-UP and UPF network elements corresponding to the QoS flow corresponding to the data to be transmitted, and the RAN device to which the first CU-UP belongs supports at least two CU-UP.
  • the first CU-UP and UPF network element corresponding to the QoS flow, that is, the QoS flow is transmitted between the first CU-UP in the RAN device and the UPF network element.
  • the SMF network element may receive the first indication information used to indicate the first identifier of the first CU-UP corresponding to the QoS flow from the RAN device corresponding to the QoS flow, and then may determine the first identifier corresponding to the first identifier.
  • a CU-UP is the first CU-UP corresponding to the QoS flow.
  • the SMF network element may receive the first indication information from the RAN device corresponding to the QoS flow, and the first indication information may indicate whether the RAN device corresponding to the QoS flow supports at least two CU-UPs.
  • the SMF network element may receive first indication information from the RAN device corresponding to the QoS flow, where the first indication information is the downlink access network tunnel information of the PDU session in which the QoS flow is located, and the downlink access network tunnel The information carries a first identifier, and the first identifier is the identifier of the first CU-UP corresponding to the QoS flow in the RAN device.
  • the SMF network element may determine the first CU-UP corresponding to the first identifier as the first CU-UP corresponding to the QoS flow, and may determine the UPF network element corresponding to the PDU session as the UPF network element corresponding to the QoS flow.
  • the SMF network element determines the first PDB that the QoS flow is transmitted between the first CU-UP and the UPF network element.
  • the SMF network element After the SMF network element determines the first CU-UP and UPF network element corresponding to the QoS flow, it can determine the first PDB transmitted between the first CU-UP and the UPF network element for the QoS flow.
  • the PDB transmitted between the CU-UP and the UPF network element of the QoS flow can be pre-configured in the SMF network element, or it can be the SMF network element from the operation administration and maintenance (OAM) or network data analysis function ( network data analytics function (NWDAF) network element or network element discovery function device.
  • OAM operation administration and maintenance
  • NWDAAF network data analytics function
  • the PDB transmitted by the QoS flow between the CU-UP and the UPF network element is obtained by the SMF network element from the OAM or NWDAF network element or the network element discovery function device, at least two CU-UPs supported by the RAN device can be obtained The PDB that transmits data packets of the same type as the QoS flow between each CU-UP and UPF network element.
  • the OAM or NWDAF network element or the network element discovery function device can only send the first PDB to the SMF network element, or at least two CU-UPs supported by the RAN device
  • the PDB that transmits data packets of the same type as the QoS flow between each CU-UP and UPF network element is sent to the SMF network element.
  • the SMF network element can send only the first PDB to the RAN device, or it can transmit data packets of the same type as the QoS flow between each of the at least two CU-UPs supported by the RAN device and the UPF network element.
  • the PDB is sent to the RAN device.
  • the SMF network element sends the first PDB to the RAN device.
  • the SMF network element may send the first PDB to the RAN device.
  • the SMF network element may initiate a session modification process when the QoS flow is established, the QoS flow is activated, or the QoS flow is switched, and the first PDB is sent to the RAN device in the session modification process.
  • the RAN receives the first PDB from the SMF network element, it can obtain the corresponding AN PDB according to the first PDB, and schedule the air interface resources for the QoS flow according to the AN PDB, and use the scheduled air interface resources to transmit the data packets corresponding to the QoS flow. .
  • the SMF network element can initiate the PDU session modification process after the session is established; for the N2 handover process, the SMF network element can start a locally configured timer, and the SMF network element can start the timer immediately after the timer expires. Considering that the handover process has been completed, the SMF network element can initiate a PDU session modification process. For the service request process, the SMF network element can initiate a PDU session modification process after the service request process is completed.
  • FIG. 8 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • the functions performed by the SMF network element in the present invention can also be performed by the module (for example, chip) in the SMF network element
  • the function performed by the RAN device in the present invention can also be performed by the module (for example, the chip) in the RAN device. )
  • the communication method may include the following steps.
  • the SMF network element determines that the RAN device supports at least two CU-UPs.
  • the SMF network element may determine that the RAN device corresponding to the QoS flow corresponding to the data to be transmitted supports at least two CU-UPs.
  • the SMF network element may receive second indication information from the RAN device corresponding to the QoS flow that is used to indicate that the RAN device supports at least two CU-UPs.
  • FIG. 9 is a schematic diagram of sending instruction information disclosed in an embodiment of the present invention.
  • the RAN device can send instruction information to the AMF network element through a next generation (NG) setup request (NG setup request) message or a RAN configuration update (RAN configuration update) message.
  • NG setup request next generation
  • RAN configuration update RAN configuration update
  • the instruction information may be the first
  • the second indication information may also be indication information used to indicate whether the RAN device supports at least two CU-UPs.
  • the NG establishment request message is used by the RAN device to request the establishment of a device-level connection between the RAN device and the AMF network element, and the RAN configuration update message is used by the RAN device to request to update configuration information.
  • the indication information can be carried in the PDU session establishment context request (Nsmf_PDU_Session_Creat SM Request) message or the PDU session update context request (Nsmf_PDU_Session_Update SM Request) message
  • the Nsmf_PDU_Session_Create SM Request message or Nsmf_PDU_Session_Update SM Request message can also carry the UE's permanent identifier (SUPI) and PDU session identifier, which are used to indicate the SMF network element that the UE corresponds to the PDU session of the UE.
  • the RAN equipment supports at least two CU-UPs.
  • the SMF network element may also determine that multiple PDBs are configured for the same 5QI between the RAN device corresponding to the QoS flow and the UPF network element corresponding to the QoS flow.
  • SMF network elements can be pre-configured or obtained from OAM, NWDAF network elements, or network element discovery function devices for different 5QI, CN PDB between UPF network elements and different RAN devices, and between UPF network elements with different 5QIs and different RAN devices.
  • the CN PDB in between can be as shown in Table 2:
  • the RAN device identified by RAN1 corresponding to the 5QI_1 value of 5QI and the UPF network element identified by UPF1 are configured with CN PDB1, CN PDB2, and CN PDB3, which can determine the RAN device identified by RAN1 Supports three CU-UPs.
  • the RAN device identified by RAN2 corresponding to the value of 5QI_2 of 5QI has only one CN PDB, and it can be determined that the RAN device identified by RAN2 does not support multiple CU-UPs.
  • the SMF network element may also determine that the UPF network element corresponding to the QoS flow corresponds to at least two CU-UP addresses of the RAN device corresponding to the QoS flow, and for the same 5QI, the at least two CU-UP addresses correspond to different PDBs.
  • SMF network elements can be pre-configured for different 5QI, between UPF network elements and CU-UP addresses with different RAN IDs, CN PDB, between different 5QI UPF network elements and CU-UP addresses of different RAN devices
  • the CN PDB can be as shown in Table 3:
  • 5QI_1 when the value of 5QI is 5QI_1, there are three different CU-UP IP addresses corresponding to different CN PDBs between the RAN device identified by RAN1 and the UPF network element identified by UPF1. It is determined that the RAN device identified by RAN1 supports three CU-UPs. The RAN device identified by RAN2 has only one CN PDB, and it can be determined that the RAN device identified by RAN2 does not support multiple CU-UPs.
  • the CN PDB between different 5QI UPF network elements and different RAN equipment can be as shown in Table 4:
  • the three RAN IP addresses of IP1, IP2, and IP3 corresponding to the 5QI_1 value of 5QI are configured with CN PDB1, CN PDB2, and CN PDB3 respectively.
  • IP1, IP2, and IP3 are the same.
  • the IP address of one RAN device is still the IP address of different RAN devices. Therefore, it is impossible to determine whether the RAN device corresponding to 5QI_1 supports multiple CU-UPs according to Table 4.
  • the SMF network element can only determine the first CU-UP when it obtains the downlink access network tunnel information of the RAN device corresponding to the QoS flow and obtains the IP address of the first CU-UP from the downlink access network tunnel information.
  • the first PDB transmitted between UP and UPF network elements. Therefore, before the SMF network element obtains the downlink access network tunnel information, the first PDB transmitted between the first CU-UP and the UPF network element cannot be determined.
  • the SMF network element determines the first CU-UP and UPF network element corresponding to the QoS flow.
  • step 802 is the same as step 701.
  • step 701 which will not be repeated here.
  • the SMF network element determines the first PDB that the QoS flow is transmitted between the first CU-UP and the UPF network element.
  • step 803 is the same as step 702.
  • step 702 which will not be repeated here.
  • the SMF network element determines that the QoS flow is a specific QoS flow, the PDB between the RAN device and the UPF network element has changed, or the PDB corresponding to the QoS flow is not sent to the RAN device.
  • the SMF network element can determine whether the QoS flow is a specific QoS flow. In the case of determining that the QoS flow is a specific QoS flow, step 805 may be executed.
  • the specific QoS flow can be a QoS flow with PDB decomposition requirements, a GBR QoS flow with low latency requirements, or other special QoS flows.
  • the SMF network element makes a judgment after determining that the QoS flow is successfully established.
  • the SMF network element makes a judgment after the handover is successful.
  • the SMF network element judges after the activation is successful.
  • the SMF network element may also determine whether the PDB value between the RAN device and the UPF network element has changed. In the case where it is determined that the PDB value between the RAN device and the UPF network element has changed, step 805 may be executed. .
  • the SMF network element may also determine whether to send the PDB corresponding to the QoS flow to the RAN device, and if it is determined that the PDB corresponding to the QoS flow is not sent to the RAN device, step 805 is executed.
  • the SMF network element sends the first PDB to the RAN device.
  • step 805 is the same as step 703.
  • step 703 please refer to step 703, which will not be repeated here.
  • FIG. 10 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • the functions performed by the SMF network element in the present invention can also be performed by the module (for example, chip) in the SMF network element
  • the function performed by the RAN device in the present invention can also be performed by the module (for example, the chip) in the RAN device. )
  • the communication method may include the following steps.
  • the SMF network element determines the RAN device and the UPF network element corresponding to the QoS flow.
  • the SMF network element can determine the RAN device and the UPF network element corresponding to the QoS flow corresponding to the data to be transmitted, and the RAN device supports at least two CU-UPs.
  • the RAN device and UPF network element corresponding to the QoS flow, that is, the QoS flow is transmitted between the RAN device and the UPF network element.
  • the SMF network element determines a PDB that transmits data packets of the same type as the QoS flow between each of the at least two CU-UPs supported by the RAN device and the UPF network element.
  • each CU-UP and UPF network element of the at least two CU-UPs supported by the RAN device transmits the same type of data as the QoS flow.
  • the PDB of the package The data packet of the same type as the QoS flow corresponds to the data packet of the same 5QI value.
  • the SMF network element can determine the deployment location of each CU-UP of the at least two CU-UPs supported by the RAN device and the PDB that transmits the same type of data packet as the QoS flow between the UPF network element, and can also obtain at least the PDB supported by the RAN device
  • the PDB of the same type of data packet as the QoS flow is transmitted between each CU-UP in the two CU-UPs and the UPF network element, and the location information of each CU-UP in at least two CU-UPs supported by the RAN device.
  • the CN PDB between the UPF network elements of different 5QIs and the deployment positions of the CU-UPs of different RAN devices can be as shown in Table 5:
  • CN PDB between UPF network elements with different 5QIs and CU-UP deployment positions of different RAN devices is shown in Table 5.
  • 5QI_1 the RAN device identified by RAN1 is identified by UPF1
  • the RAN device identified by RAN2 has only one CN PDB, and it can be determined that the RAN device identified by RAN2 does not support multiple CU-UPs.
  • step 1001 and step 1002 can be executed in parallel or serially, which is not limited here.
  • the deployment location information of the CU-UP may be the identification of the deployment location, and the specific deployment location and the corresponding CU-UP identification corresponding to the deployment location identification of the CU-UP that it supports may be pre-configured on the RAN device.
  • the SMF network element sends to the RAN device a PDB that transmits data packets of the same type as the QoS flow between each CU-UP and UPF network element.
  • each CU-UP can be sent to the RAN device
  • the PDB of the same type of data packet as the QoS flow is transmitted between the UPF network element and the UPF network element.
  • the SMF network element can send the message to the RAN device Send the PDB between the deployment location of each CU-UP of the at least two CU-UPs supported by the RAN device and the UPF network element to transmit data packets of the same type as the QoS flow.
  • the PDB of the same type of data packet as the QoS flow is transmitted between each CU-UP and UPF network element in the at least two CU-UPs supported by the RAN device, and each of the at least two CU-UPs supported by the RAN device
  • the SMF network element can send the location information of each CU-UP of the at least two CU-UPs supported by the RAN device and the corresponding PDB, that is, the location information of the CU-UP to the RAN device
  • the corresponding relationship with the PDB, the corresponding relationship may include the location information of the CU-UP and the PDB corresponding to the location information of each CU-UP, as shown in Table 4.
  • the SMF network element may be one of the at least two CU-UPs supported by the RAN to the RAN device during the QoS flow establishment process, the QoS flow activation process, or the QoS flow switching process.
  • the PDB that transmits the same type of data packet as the QoS flow. For example, when the QoS flow is established through the session establishment process, each CU-UP and UPF network element of the at least two CU-UPs supported by the RAN device can be sent to the RAN device through the SMF network element in step 11 of FIG.
  • the PDB of the same type of data packet as the QoS flow is transmitted between; in the QoS flow switching process, the SMF network element can be used to send at least two CU-UPs supported by the RAN device to the RAN device in step 7 of FIG. Each CU-UP and UPF network element transmits the PDB of the same type of data packet as the QoS flow.
  • the RAN device selects one CU-UP from at least two CU-UPs supported by the RAN device according to the received PDB to transmit the QoS flow.
  • the RAN device After the RAN device receives the PDB that transmits the same type of data packet as the QoS flow between each of the at least two CU-UPs supported by the RAN device from the SMF network element and the UPF network element, it can use the received PDB from One of the at least two CU-UPs supported by the RAN device is selected to transmit the QoS flow, and the corresponding CU-UP with the smallest PDB may be selected to transmit the QoS flow. Specifically, the CU-CP in the RAN device may select the CU-UP, so as to determine the PDB corresponding to the selected CU-UP. After the RAN device selects one CU-UP from at least two CU-UPs supported by the RAN device according to the received PDB to transmit the QoS flow, it may send the PDB corresponding to the selected CU-UP to the DU.
  • FIG. 11 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention. As shown in FIG. 11, the communication device may include:
  • the first determining unit 1101 is configured to determine the first CU-UP and UPF network elements corresponding to the QoS flow, and the access network device to which the first CU-UP belongs supports at least two CU-UPs;
  • the second determining unit 1102 is configured to determine the first PDB transmitted between the first CU-UP and the UPF network element of the QoS flow;
  • the sending unit 1103 is configured to send a first PDB to the access network device, where the first PDB is used for the access network device to schedule air interface resources.
  • the communication device may further include:
  • the receiving unit 1104 is configured to receive first indication information, where the first indication information is used to indicate the identifier of the first CU-UP corresponding to the QoS flow.
  • the communication device may further include:
  • the obtaining unit 1105 is configured to obtain a PDB for transmitting data packets of the same type as the QoS flow between each of the at least two CU-UPs supported by the access network device and the UPF network element, and the obtained PDB includes the first PDB.
  • the sending unit 1103 is specifically configured to:
  • the first PDB is sent to the access network device.
  • the communication device may further include:
  • the third determining unit 1106 is configured to determine that the QoS flow is a specific QoS flow, the PDB between the access network device and the UPF network element has changed, or the transmission unit 1103 does not send the QoS flow to the access network device before initiating the session modification process.
  • the PDB corresponding to the QoS flow.
  • the communication device may further include:
  • the fourth determining unit 1107 is configured to determine that the access network device supports at least two CU-UPs before the sending unit 1103 initiates the session modification process.
  • the fourth determining unit 1107 is specifically configured to receive second indication information from the access network device that is used to indicate that the access network device supports at least two CU-UPs.
  • the fourth determining unit 1107 is specifically configured to determine that multiple PDBs are configured for the same 5QI between the access network device and the UPF network element.
  • the fourth determining unit 1107 is specifically configured to determine at least two CU-UP addresses of the access network device corresponding to the UPF network element, and for at least two CU-UP addresses supported by the same 5QI access network device Correspond to different PDBs.
  • the first determining unit 1101, the second determining unit 1102, the sending unit 1103, the receiving unit 1104, the acquiring unit 1105, the third determining unit 1106, and the fourth determining unit 1107 you can directly refer to FIGS. 7 and 8 above.
  • the relevant description of the SMF network element in the method embodiment shown is directly obtained, and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention. As shown in FIG. 11, the communication device may include:
  • the first determining unit 1201 is configured to determine the access network device and the UPF network element corresponding to the QoS flow, and the access network device supports at least two CU-UPs;
  • the second determining unit 1202 is configured to determine a PDB that transmits data packets of the same type as the QoS flow between each CU-UP and UPF network element of the at least two CU-UPs supported by the access network device;
  • the sending unit 1203 is configured to send to the access network device a PDB that transmits data packets of the same type as the QoS flow between each of the at least two CU-UPs supported by the access network device and the UPF network element.
  • the second determining unit 1202 is specifically configured to determine the deployment position of each of the at least two CU-UPs supported by the access network device and the transmission between the UPF network element and the type of the QoS flow.
  • the sending unit 1203 is specifically configured to send to the access network device the deployment position of each CU-UP in the at least two CU-UPs supported by the access network device and the transmission of data packets of the same type as the QoS flow between UPF network elements PDB.
  • the second determining unit 1202 is specifically configured to obtain data packets of the same type as the QoS flow between each CU-UP and the UPF network element in the at least two CU-UPs supported by the access network device. PDB, and the location information of each of the at least two CU-UPs supported by the access network equipment;
  • the sending unit 1203 is specifically configured to send the location information of each of the at least two CU-UPs supported by the access network device and the corresponding PDB to the access network device.
  • the sending unit 1203 is specifically configured to send at least two CUs supported by the access network device to the access network device during the QoS flow establishment process, the QoS flow activation process, or the QoS flow switching process. -Each CU-UP and UPF network element in the UP transmits the PDB of the same type of data packet as the QoS flow.
  • FIG. 13 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device is set in the access network equipment, and the access network equipment supports at least two CU-UPs.
  • the communication device may include:
  • the receiving unit 1301 is configured to receive a PDB that transmits data packets of the same type as the QoS flow between each CU-UP and UPF network element of at least two CU-UPs supported by the access network device of the SMF network element;
  • the selecting unit 1302 is configured to select one CU-UP from at least two CU-UPs supported by the access network device according to the received PDB for transmitting the QoS flow.
  • the selecting unit 1302 is specifically configured to select, according to the received PDB, from at least two CU-UPs supported by the access network device, the CU-UP with the smallest corresponding PDB is used to transmit the QoS flow.
  • receiving unit 1301 and the selecting unit 1302 can be obtained directly by referring to the relevant description of the access network device in the method embodiment shown in FIG. 10, and will not be repeated here.
  • FIG. 14 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may include a processor 1401, a memory 1402, an input interface 1403, an output interface 1404, and a bus 1405.
  • the memory 1402 may exist independently, and may be connected to the processor 1401 through the bus 1405.
  • the memory 1402 may also be integrated with the processor 1401. Among them, the bus 1405 is used to realize the connection between these components.
  • the communication device may be an SMF network element or a module (for example, a chip) in the SMF network element.
  • the processor 1401 is used to control the sending unit 1103 and The receiving unit 1104 performs the operations performed in the foregoing embodiment, and the processor 1401 is further configured to perform the first determining unit 1101, the second determining unit 1102, the acquiring unit 1105, the third determining unit 1106, and the fourth determining unit 1107.
  • the input interface 1403 is used to perform the operations performed by the receiving unit 1104 in the foregoing embodiment, and the output interface 1404 is used to perform the operations performed by the sending unit 1103 in the foregoing embodiment.
  • the foregoing SMF network element or the modules in the SMF network element may also be used to execute various methods executed by the SMF network element in the foregoing method embodiments, and details are not described herein again.
  • the communication device may be an SMF network element or a module (for example, a chip) in the SMF network element.
  • the processor 1401 is used to control the sending unit 1203 to execute
  • the processor 1401 is further configured to perform the operations performed in the foregoing embodiment of the first determining unit 1201 and the second determining unit 1202, and the input interface 1403 is used to receive data from SMF network elements or SMF network elements.
  • the output interface 1404 is used to perform the operations performed by the sending unit 1203 in the above-mentioned embodiment.
  • the foregoing SMF network element or the modules in the SMF network element may also be used to execute various methods executed by the SMF network element in the foregoing method embodiments, and details are not described herein again.
  • the communication device may be an access network device or a module (for example, a chip) in the access network device.
  • the processor 1401 is used to control the receiving unit. 1301 performs the operations performed in the foregoing embodiment, the processor 1401 is also used to perform the operations performed in the foregoing embodiment of the selection unit 1302, the input interface 1403 is used to perform the operations performed by the receiving unit 1301 in the foregoing embodiment, and the output interface 1404 is used to Output information to access network equipment or other communication equipment other than modules in the access network equipment.
  • the foregoing access network equipment or modules in the access network equipment may also be used to execute various methods executed by the access network equipment in the foregoing method embodiments, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may include an input interface 1501, a logic circuit 1502, and an output interface 1503.
  • the input interface 1501 and the output interface 1503 are connected through a logic circuit 1502.
  • the input interface 1501 is used to receive information from other communication devices, and the output interface 1503 is used to output, schedule, or send information to other communication devices.
  • the logic circuit 1502 is used to perform operations other than the operations of the input interface 1501 and the output interface 1503, for example, to implement the functions implemented by the processor 1401 in the foregoing embodiment.
  • the communication device may be an access network device or an access network device, or may be an SMF network element or a module in the SMF network element.
  • the input interface 1501, the logic circuit 1502, and the output interface 1503 can be obtained directly by referring to the relevant description of the SMF network element or the access network device in the foregoing method embodiment, and will not be repeated here.
  • the embodiment of the present invention also discloses a computer-readable storage medium with an instruction stored thereon, and the method in the foregoing method embodiment is executed when the instruction is executed.
  • the embodiment of the present invention also discloses a computer program product containing instructions, which execute the method in the foregoing method embodiment when the instruction is executed.
  • the embodiment of the present invention also discloses a communication system.
  • the communication system includes an access network device and an SMF network element.
  • SMF network element For a specific description, reference may be made to the communication method shown in FIG. 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种通信方法及设备,包括:确定QoS流对应的第一CU-UP和UPF网元,第一CU-UP所属的接入网设备支持至少两个CU-UP;确定该QoS流在第一CU-UP和UPF网元之间传输的第一PDB;向接入网设备发送第一PDB,第一PDB用于接入网设备调度空口资源。本发明实施例,在确定QoS流对应的CU-UP之后,可以将QoS流对应CU-UP的PDB发送给RAN设备。

Description

一种通信方法及设备
本申请要求于2019年10月31日提交中国专利局、申请号为201911050880.2、申请名称为“一种通信方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明实施例涉及通信技术领域,尤其涉及一种通信方法及设备。
背景技术
包时延预算(packet delay budget,PDB)是指数据包在用户设备(user equipment,UE)和用户面锚点,即协议数据单元(protocol data unit,PDU)会话锚点(PDU session anchor,PSA)用户面功能(user plane function,UPF)网元之间的传输时延上限。在无线接入网(radio access network,RAN)设备包括一个中心单元(central unit,CU)-用户面(user plane,UP),或者RAN设备中CU的UP和控制面(control plane,CP)不分离的情况下,服务质量(quality of service,QoS)流(flow)在RAN设备和UPF网元之间传输的核心网(Core Netwrok,CN)PDB是确定的。在RAN设备支持至少两个CU-UP的情况下,QoS流在RAN设备和UPF网元之间传输的CN PDB是PSA UPF网元和CU-UP之间的传输时延,因此,SMF网元在确定传输QoS流的CU-UP之前,无法确定CN PDB并向RAN设备发送CN PDB。
发明内容
本发明实施例公开了一种通信方法及设备,用于在RAN设备支持至少两个CU-UP的情况下,将QoS流对应CU-UP的PDB发送给RAN设备。
第一方面公开一种通信方法,确定QoS流对应的第一CU-UP和UPF网元,确定该QoS流在第一CU-UP和UPF网元之间传输的第一PDB,向RAN设备发送第一PDB。其中,第一CU-UP所属的RAN设备支持至少两个CU-UP,第一PDB用于RAN设备调度空口资源。可以在确定QoS流对应CU-UP对应的PDB,即确定QoS流对应的CN PDB之后,可以将QoS流对应CU-UP的PDB发送给RAN设备,以便RAN设备可以根据该PDB为该QoS流调度资源。本发明中的RAN设备即接入网设备。
作为一种可能的实施方式,接收用于指示该QoS流对应的第一CU-UP的标识的第一指示信息,以便可以根据第一指示信息确定该QoS流对应的CU-UP。
作为一种可能的实施方式,可以获取该RAN设备支持的至少两个CU-UP中每个CU-UP与UPF网元之间传输与该QoS流相同类型的数据包的PDB,获取的PDB包括第一PDB。可以先获取到该QoS流对应RAN设备支持的至少两个CU-UP中每个CU-UP与UPF网元之间传输与该QoS流相同类型的数据包的PDB,之后从获取的PDB中根据该QoS流对应CU-UP选取出该QoS流对应CU-UP对应的PDB。
作为一种可能的实施方式,可以在该QoS流建立完成、该QoS流激活完成或者该QoS流 切换完成的情况下,发起会话修改流程,在该会话修改流程中向RAN设备发送第一PDB。可见,在PDU会话建立过程中,可以在该QoS流建立完成之后发起会话修改流程,在N2切换中,可以在该QoS流切换完成之后发起会话修改流程,在业务请求(service request)流程中,可以该QoS流激活完成之后发起会话修改流程,以便可以将该QoS流对应CU-UP对应的PDB发送给RAN设备。
作为一种可能的实施方式,在确定该QoS流为特定QoS流、RAN设备与UPF网元之间的PDB发生了变化或者未向RAN设备发送该QoS流对应的PDB,才发起会话修改流程,可以保证会话修改流程是有必要的,而不是盲目的发起会话修改流程,可以减少不必要的流程。
作为一种可能的实施方式,可以先确定RAN设备支持至少两个CU-UP,之后才发起会话修改流程。在RAN设备包括一个CU-UP,或者RAN设备中CU的UP和CP不分离的情况下,PDB已经发送给了RAN设备,因此,不需要发起会话修改流程,只有在RAN设备支持至少两个CU-UP的情况下,才需要通过会话修改流程向RAN设备发送PDB,可以保证会话修改流程是有必要的,而不是盲目的发起会话修改流程,可以减少不必要的流程。
作为一种可能的实施方式,可以接收来自RAN设备的用于指示RAN设备支持至少两个CU-UP的第二指示信息,以便可以根据第二指示信息确定RAN设备支持至少两个CU-UP。
作为一种可能的实施方式,可以确定RAN设备与UPF网元之间针对同一5G服务质量(quality of service,QoS)标识(5G QoS identifier,5QI)配置有多个PDB,以便可以确定RAN设备支持至少两个CU-UP。
作为一种可能的实施方式,可以确定UPF网元对应RAN设备的至少两个CU-UP地址,且针对同一5QI RAN设备的至少两个CU-UP地址分别对应不同的PDB,以便可以确定RAN设备支持至少两个CU-UP。
第二方面公开一种通信方法,可以确定QoS流对应的支持至少两个CU-UP的RAN设备和UPF网元,确定RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB,之后向RAN设备发送RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB。在QoS流对应的RAN设备支持至少两个CU-UP的情况下,可以将RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB都发送给RAN设备,以便RAN设备可以根据这些PDB选取用于传输该QoS流的CU-UP。
作为一种可能的实施方式,可以先确定RAN设备支持的至少两个CU-UP中每个CU-UP的部署位置和UPF网元之间传输与该QoS流相同类型数据包的PDB,之后向RAN设备发送RAN设备支持的至少两个CU-UP中每个CU-UP的部署位置和UPF网元之间传输与该QoS流相同类型数据包的PDB,以便RAN设备可以根据这些PDB和CU-UP的部署位置从支持的至少两个CU-UP中选取用于传输该QoS流的CU-UP。
作为一种可能的实施方式,可以先获取RAN设备支持的至少两个CU-UP中每个CU-UP与UPF网元之间传输与该QoS流相同类型数据包的PDB以及RAN设备支持的至少两个CU-UP中每个CU-UP的位置信息,之后向RAN设备发送RAN设备支持的至少两个CU-UP中每个CU-UP的位置信息以及对应的PDB,以便RAN设备可以根据这些PDB和CU-UP的位置 信息从支持的至少两个CU-UP中选取用于传输该QoS流的CU-UP。
作为一种可能的实施方式,可以在该QoS流建立过程中、该QoS流激活过程中或该QoS流切换过程中向RAN设备发送RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB。
第三方面公开一种通信方法,该方法应用于支持至少两个CU-UP的RAN设备,接收来自会话管理功能(session management function,SMF)网元的RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与QoS流相同类型数据包的PDB,之后根据接收的PDB从支持的至少两个CU-UP中选取一个CU-UP用于传输该QoS流。
作为一种可能的实施方式,可以根据接收的PDB从RAN设备支持的至少两个CU-UP中选取对应的PDB最小的CU-UP用于传输该QoS流,可以保证选取的CU-UP为时延最小的CU-UP。
第四方面公开一种通信装置,该通信装置包括用于执行第一方面或第一方面的任一种实施方式所公开的通信方法的单元,或者包括用于执行第二方面或第二方面的任一种实施方式所公开的通信方法的单元,或者包括用于执行第三方面或第三方面的任一种实施方式所公开的通信方法的单元。
第五方面公开一种通信装置,该通信装置可以为SMF网元或者SMF网元内的模块(例如,芯片)。该通信装置包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第一方面或第一方面的任一实施方式公开的通信方法。
第六方面公开一种通信装置,该通信装置可以为SMF网元或者SMF网元内的模块(例如,芯片)。该通信装置包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第二方面或第二方面的任一实施方式公开的通信方法。
第七方面公开一种通信装置,该通信装置可以为RAN设备或者RAN设备内的模块(例如,芯片)。该通信装置包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第三方面或第三方面的任一实施方式公开的通信方法。
第八方面公开一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令运行时,实现如第一方面或第一方面的任一实施方式公开的通信方法,或者第二方面或第二方面的任一实方式公开的通信方法,或者第三方面或第三方面的任一实施方式公开的通信方法。
第九方面公开一种通信系统,该通信系统包括上述第六方面的通信装置和上述第七方面的通信装置。
附图说明
图1是本发明实施例公开的一种网络架构示意图;
图2是本发明实施例公开的一种RAN设备的内部架构图;
图3是本发明实施例公开的一种RAN设备的场景示意图;
图4是本发明实施例公开的一种PDB分解示意图;
图5是本发明实施例公开的一种PDU会话建立过程示意图;
图6是本发明实施例公开的一种N2切换过程示意图;
图7是本发明实施例公开的一种通信方法的流程示意图;
图8是本发明实施例公开的另一种通信方法的流程示意图;
图9是本发明实施例公开的一种发送指示信息的示意图;
图10是本发明实施例公开的又一种通信方法的流程示意图;
图11是本发明实施例公开的一种通信装置的结构示意图;
图12是本发明实施例公开的另一种通信装置的结构示意图;
图13是本发明实施例公开的又一种通信装置的结构示意图;
图14是本发明实施例公开的又一种通信装置的结构示意图;
图15是本发明实施例公开的又一种通信装置的结构示意图。
具体实施方式
本发明实施例公开了一种通信方法及设备,用于将QoS流对应CU-UP的PDB发送给RAN设备。以下分别进行详细说明。
为了更好地理解本发明实施例公开的一种通信方法及设备,下面先对本发明实施例使用的网络架构进行描述。请参阅图1,图1是本发明实施例公开的一种5G网络架构示意图。如图1所示,该5G网络架构可以包括UE、RAN设备、UPF网元、数据网络(data network,DN)、(access and mobility management function,AMF)网元、SMF网元、策略控制功能(policy control function,PCF)网元、应用功能(application function,AF)网元和统一数据管理(unified data management,UDM)网元。UE与RAN设备之间可以直接进行通信;UE与AMF网元之间存在通信接口,该通信接口可以为N1接口;RAN设备与AMF网元之间存在通信接口,该通信接口可以为N2接口;RAN设备与UPF网元之间存在通信接口,该通信接口可以为N3接口;UPF网元与SMF网元之间存在通信接口,该通信接口可以为N4接口;UPF网元与DN之间存在通信接口,该通信接口可以为N6接口;AMF网元与SMF网元之间存在通信接口,该通信接口可以为N11接口;AMF网元与UDM网元之间存在通信接口,该通信接口可以为N8接口;SMF网元与UDM网元之间存在通信接口,该通信接口可以为N10接口;SMF网元与PCF网元之间存在通信接口,该通信接口可以为N7接口;PCF网元与UDM网元之间存在通信接口,该通信接口可以为N25接口;PCF网元与AF网元之间存在通信接口,该通信接口可以为N5接口。
UE是指网络终端设备,可以为手持终端、笔记本电脑、用户单元(subscriber unit)、 蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、无线调制解调器(modem)、手持设备(handheld)、膝上型电脑(laptop computer)、无绳电话(cordless phone)或者无线本地环路(wireless local loop,WLL)台、机器类型通信(machine type communication,MTC)终端或其他可以接入网络的设备。UE通过建立UE-RAN设备-UPF网元-DN之间的会话,即PDU会话,来访问DN。
RAN设备是为UE提供无线接入的设备,主要负责空口侧的无线资源管理、QoS流管理、数据压缩和加密等功能。RAN设备可以包括各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点等。RAN设备还可以包括无线上网(wireless fidelity,WiFi)接入节点(access point,AP)。RAN设备还可以包括全球微波互联接入(worldwide interoperability for microwave access,WiMax)基站(base station,BS)。
UPF网元主要负责对用户报文进行处理,如转发、计费等。可以从DN接收用户报文,并通过RAN设备传输给UE;也可以通过RAN设备从UE接收用户报文,并转发到DN。UPF网元为UE提供服务的传输资源和调度功能由SMF网元管理控制。
DN是为用户提供数据传输服务的运营商网络,如互联网协议多媒体服务(internet protocol multi media service,IMS),互联网等。
AMF网元属于核心网网元,主要负责信令处理部分,例如:接入控制、移动性管理、注册、去注册、附着、去附着以及网关选择等功能。AMF网元为终端设备中的会话提供服务的情况下,会为该会话提供控制面的存储资源,以存储会话标识、与会话标识关联的SMF网元标识等。
SMF网元主要负责移动网络中的会话管理,如会话的建立、修改、释放。具体功能如为用户分配IP地址、选择提供报文转发功能的UPF网元等。
PCF网元主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。
AF网元主要支持与第三代合作伙伴计划(3rd generation partnership project,3GPP)核心网交互来提供服务,例如影响数据路由决策,与PCF网元之间交互以进行测量控制、向网络侧提供第三方的一些服务。
UDM网元负责用户密钥管理、用户标识处理、订阅数据的访问授权、UE的网络功能实体管理、会话和业务连续性管理、短消息推送、合法监听、签约管理、短消息管理、用于管控用户数据,如签约信息的管理。
请参阅图2,图2是本发明实施例公开的一种RAN设备的内部架构图。如图2所示,RAN设备可以包括CU和分布单元(distributed unit,DU)。CU包括CP(即CU-CP)和UP(即CU-UP)。CU为一个逻辑节点,用于承载RAN设备的无线资源控制(radio resource control,RRC)协议、服务数据适配协议(service data adaptation protocol,SDAP)和分组数据汇聚协议(packet data convergence protocol,PDCP)协议,可以控制一个或多个DU的操作。DU为一个逻辑节点,用于承载RAN设备的无线链路控制(radio link control,RLC)层、媒体访问控制(media access control,MAC)和物理层,其运行由CU控制。一个DU可以支持一个 或多个小区(cell)。一个小区只由一个DU支持。CU-CP为一个逻辑节点,是CU的控制面,用于承载RAN设备的RRC协议以及CU中PDCP协议的控制面部分。CU-UP为一个逻辑节点,是CU的用户面,用于承载CU中PDCP协议的用户面部分。CU-CP可以通过N2接口连接AMF网元,CU-UP可以通过N3接口连接UPF网元。CU-CP与CU-UP之间可以通过E1接口连接,CU-CP与DU之间可以通过F1-C接口连接,DU与CU-UP之间可以通过F1-U接口连接。请参阅图3,图3是本发明实施例公开的一种RAN设备的场景示意图。如图3所示,一个RAN设备可以包括一个CU-CP(即控制中心)、多个CU-UP和多个DU。一个DU只能连接一个CU-CP,一个CU-UP也只能连接一个CU-CP。同一个CU-CP控制下,一个DU可以连接多个CU-UP,一个CU-UP可以连接多个DU,即DU与CU-UP是M对N的关系。CU-CP集中部署,协调操作多个DU;CU-UP分布式部署,一个CU-UP与一个DU共部署。一个UE可以同时连接多个CU-UP,以PDU会话(session)为粒度,一个PDU会话对应一个CU-UP。
为了更好地理解本发明实施例公开的一种通信方法及设备,下面先对本发明实施例中的一些描述进行解释。请参阅图4,图4是本发明实施例公开的一种PDB分解示意图。PDB是指从UE到PSA UPF网元之间的包时延预算。如图4所示,PDB可以分解为从UE到RAN设备之间的包时延预算,即接入网(access network,AN)PDB,以及从RAN设备到用户面锚点之间的包时延预算,即核心网(core network,CN)PDB。5G中5QI与PDB以及静态CN PDB的对应关系可以如表1所示。
Figure PCTCN2020125195-appb-000001
表1 5QI与PDB的对应关系
在实际部署中,出于不同业务的需求,运营商会选择不同的UPF网元部署位置,如UPF网元可以部署在比较高的位置,以使UPF网元有更广的覆盖区域;UPF网元也可以部署在离RAN设备很近的位置来节省CN PDB,增大AN PDB,便于RAN设备侧灵活调度无线资源。因此,导致CN PDB不可能为一个固定值。因此,3GPP提出一种动态PDB分解方案,由SMF网元在QoS流建立时,根据QoS流对应的RAN设备和PSA UPF网元确定QoS流对应的CN PDB,并发送给RAN设备。
为了更好地理解本发明实施例公开的一种通信方法及设备,下面先对本发明实施例的应用场景进行描述。RAN设备在CU作了CP和UP分离后,即在RAN设备支持多个CU-UP的情况下,RAN设备可以为UE的不同PDU会话选择不同的UP实体,在会话建立过程中才会确定UE的PDU会话对应的CU-UP,建立UPF网元与CU-UP之间的用户面传输隧道。
请参阅图5,图5是本发明实施例公开的一种PDU会话建立过程示意图。如图5所示,在PDU会话建立过程中,需要为新建立的QoS流确定AN PDB和CN PDB。在RAN设备包括一个CU-UP,或者RAN设备中CU的UP和CP不分离的情况下,RAN设备只对应一个N3隧道, 终端设备可以在第1步PDU会话建立请求中会携带用户位置信息,用户位置信息中包括RAN设备的标识信息。AMF网元可以在第3步将包括RAN设备标识信息的用户位置信息发送给SMF网元,即SMF网元可以在第3步获取RAN设备的标识信息。SMF网元在第8步完成UPF网元的选择后,可以确定PDU会话中QoS流对应的UPF网元和RAN设备,从而SMF网元可以在第11步下发QoS流对应的PDB。然而,在RAN设备包括至少两个CU-UP的情况下,CN PDB是PSA UPF网元和CU-UP之间的传输时延,SMF网元在第14步才能获取到CU-UP的IP地址,以致无法在第11步给RAN设备下发QoS流对应CU-UP的PDB的值。
请参阅图6,图6是本发明实施例公开的一种N2切换过程示意图。如图6所示,在N2切换过程中,在目标RAN设备包括一个CU-UP,或者目标RAN设备中CU的UP和CP不分离的情况下,源RAN设备可以在第1步将目标RAN设备的标识信息发送给源AMF网元,以使得SMF网元可以在4步获取目标RAN设备的标识信息。SMF网元在第5步完成UPF网元的选择后,可以确定切换后QoS流对应的UPF网元和RAN设备,从而SMF网元可以在第7步下发QoS流对应的PDB。然而,在目标RAN设备包括至少两个CU-UP的情况下,CN PDB是PSA UPF网元和CU-UP之间的传输时延,SMF网元在第10步才能获取到CU-UP的IP地址,以致无法在第7步给目标RAN设备下发QoS流对应CU-UP的PDB的值。
此外,针对业务请求流程,也存在上述问题,在此不加赘述。
基于图1所示的网络架构,请参阅图7,图7是本发明实施例公开的一种通信方法的流程示意图。其中,本发明中由SMF网元执行的功能也可以由SMF网元中的模块(例如,芯片)来执行,本发明中由RAN设备执行的功能也可以由RAN设备中的模块(例如,芯片)来执行。如图7所示,该通信方法可以包括以下步骤。
701、SMF网元确定QoS流对应的第一CU-UP和UPF网元。
在UE与DN之间存在待传输数据的情况下,SMF网元可以确定该待传输数据对应QoS流对应的第一CU-UP和UPF网元,第一CU-UP所属的RAN设备支持至少两个CU-UP。QoS流对应的第一CU-UP和UPF网元,即该QoS流是在该RAN设备中的第一CU-UP与该UPF网元之间进行传输的。
可选地,SMF网元可以接收来自该QoS流对应的RAN设备的用于指示该QoS流对应的第一CU-UP的第一标识的第一指示信息,之后可以确定第一标识对应的第一CU-UP为该QoS流对应的第一CU-UP。
可选地,SMF网元可以接收来自该QoS流对应的RAN设备的第一指示信息,第一指示信息可以指示该QoS流对应的RAN设备是否支持至少两个CU-UP。
可选地,SMF网元可以接收来自该QoS流对应的RAN设备的第一指示信息,该第一指示信息即为该QoS流所在的PDU会话的下行接入网络隧道信息,下行接入网络隧道信息携带第一标识,第一标识为RAN设备中该QoS流对应的第一CU-UP的标识。SMF网元接收到下行接入网络隧道信息之后,可以将第一标识对应的第一CU-UP确定为该QoS流对应的第一CU-UP,可以将PDU会话对应的UPF网元确定为该QoS流对应的UPF网元。
702、SMF网元确定该QoS流在第一CU-UP和UPF网元之间传输的第一PDB。
SMF网元确定出该QoS流对应的第一CU-UP和UPF网元之后,可以确定该QoS流在第一 CU-UP和UPF网元之间传输的第一PDB。QoS流在CU-UP与UPF网元之间传输的PDB可以是预先配置在SMF网元中的,也可以是SMF网元从操作维护管理(operation administration and maintenance,OAM)或网络数据分析功能(network data analytics function,NWDAF)网元或网元发现功能设备获取的。在QoS流在CU-UP与UPF网元之间传输的PDB是SMF网元从OAM或NWDAF网元或网元发现功能设备获取的情况下,可以获取该RAN设备支持的至少两个CU-UP中每个CU-UP与UPF网元之间传输与该QoS流相同类型的数据包的PDB。在SMF网元只获取第一PDB的情况下,OAM或NWDAF网元或网元发现功能设备可以只将第一PDB发送给SMF网元,也可以将该RAN设备支持的至少两个CU-UP中每个CU-UP与UPF网元之间传输与该QoS流相同类型的数据包的PDB发送给SMF网元。SMF网元可以只将第一PDB发送给RAN设备,也可以将该RAN设备支持的至少两个CU-UP中每个CU-UP与UPF网元之间传输与该QoS流相同类型的数据包的PDB发送给RAN设备。
703、SMF网元向RAN设备发送第一PDB。
SMF网元确定出该QoS流在第一CU-UP和UPF网元之间传输的第一PDB之后,可以向RAN设备发送第一PDB。SMF网元可以在该QoS流建立完成、该QoS流激活完成或者该QoS流切换完成的情况下,发起会话修改流程,在会话修改流程中向RAN设备发送第一PDB。RAN接收到来自SMF网元的第一PDB之后,可以根据第一PDB获取对应的AN PDB,并根据AN PDB为该QoS流调度空口资源,以及使用调度的空口资源传输该QoS流对应的数据包。对于PDU会话建立流程,SMF网元可以在会话建立完成后发起PDU会话修改流程;对于N2切换流程,SMF网元中可以启动一个本地配置的计时器,SMF网元可以在计时器到期后即认为切换流程已经完成,SMF网元可以发起PDU会话修改流程。对于业务请求流程,SMF网元可以在业务请求流程完成后发起PDU会话修改流程。
基于图1所示的网络架构,请参阅图8,图8是本发明实施例公开的另一种通信方法的流程示意图。其中,本发明中由SMF网元执行的功能也可以由SMF网元中的模块(例如,芯片)来执行,本发明中由RAN设备执行的功能也可以由RAN设备中的模块(例如,芯片)来执行。如图8所示,该通信方法可以包括以下步骤。
801、SMF网元确定RAN设备支持至少两个CU-UP。
在UE与DN之间存在待传输数据的情况下,SMF网元可以确定该待传输数据对应QoS流对应的RAN设备支持至少两个CU-UP。SMF网元可以接收来自该QoS流对应的RAN设备的用于指示该RAN设备支持至少两个CU-UP的第二指示信息。请参阅图9,图9是本发明实施例公开的一种发送指示信息的示意图。如图9所示,RAN设备可以通过下一代(next generation,NG)建立请求(NG setup request)消息或者RAN配置更新(RAN configuration update)消息给AMF网元发送指示信息,该指示信息可以为第二指示信息,也可以为用于指示该RAN设备是否支持至少两个CU-UP的指示信息。其中,NG建立请求消息用于RAN设备请求RAN设备和AMF网元之间的设备级连接建立,RAN配置更新消息用于RAN设备请求更新配置信息。AMF网元接收到来自RAN设备的NG setup request消息或者RAN configuration update消息之后,可以将该指示信息携带在PDU会话建立上下文请求(Nsmf_PDU_Session_Creat SM Request)消息或者PDU会话更新上下文请求 (Nsmf_PDU_Session_Update SM Request)消息中发送给SMF网元,该Nsmf_PDU_Session_Creat SM Request消息或Nsmf_PDU_Session_Update SM Request消息还可以携带UE的用户永久标识(subscription permanent identifier,SUPI)和PDU会话标识,用于指示SMF网元该UE的该PDU会话对应的RAN设备支持至少两个CU-UP。
SMF网元也可以确定该QoS流对应的RAN设备与该QoS流对应的UPF网元之间针对同一5QI配置有多个PDB。例如,SMF网元可以预配置或从OAM、NWDAF网元或网元发现功能设备获取针对不同5QI,UPF网元与不同RAN设备之间的CN PDB,不同5QI的UPF网元与不同RAN设备之间的CN PDB可以如表2所示:
Figure PCTCN2020125195-appb-000002
表2不同5QI的UPF网元与不同RAN设备之间的CN PDB
如表2所示,5QI的5QI_1值对应的RAN1标识的RAN设备与对应的UPF1标识的UPF网元之间配置有CN PDB1、CN PDB2和CN PDB3三个CN PDB,可以确定RAN1标识的RAN设备支持三个CU-UP。5QI的5QI_2值对应的RAN2标识的RAN设备只有一个CN PDB,可以确定RAN2标识的RAN设备不支持多个CU-UP。
SMF网元还可以确定该QoS流对应的UPF网元对应该QoS流对应的RAN设备的至少两个CU-UP地址,且针对同一5QI这至少两个CU-UP地址分别对应不同的PDB。例如,SMF网元可以预配置针对不同5QI,UPF网元与不同RAN的标识的CU-UP的地址之间的CN PDB,不同5QI的UPF网元与不同RAN设备的CU-UP的地址之间的CN PDB可以如表3所示:
Figure PCTCN2020125195-appb-000003
表3不同5QI的UPF网元与不同RAN设备的CU-UP的地址之间的CN PDB
如表3所示,在5QI的值为5QI_1的情况下,RAN1所标识的RAN设备与UPF1所标识的UPF网元之间存在CU-UP的三个不同IP地址分别对应不同的CN PDB,可以确定RAN1标识的RAN设备支持三个CU-UP。RAN2标识的RAN设备只有一个CN PDB,可以确定RAN2标识的RAN设备不支持多个CU-UP。不同5QI的UPF网元与不同RAN设备之间的CN PDB可以如表4所示:
Figure PCTCN2020125195-appb-000004
Figure PCTCN2020125195-appb-000005
表4不同5QI的UPF网元与不同RAN设备之间的CN PDB
如表4所示,5QI的5QI_1值对应的IP1、IP2和IP3三个RAN的IP地址分别配置有CN PDB1、CN PDB2和CN PDB3三个CN PDB,但由于无法确定IP1、IP2和IP3是同一个RAN设备的IP地址,还是不同RAN设备的IP地址,因此,无法根据表4确定5QI_1对应的RAN设备是否支持多个CU-UP。此时,SMF网元只有在获取该QoS流对应的RAN设备的下行接入网络隧道信息并从下行接入网络隧道信息中获取到第一CU-UP的IP地址时,才能确定第一CU-UP和UPF网元之间传输的第一PDB。因此,在SMF网元获取到下行接入网隧道信息之前,无法确定第一CU-UP和UPF网元之间传输的第一PDB。
802、SMF网元确定QoS流对应的第一CU-UP和UPF网元。
其中,步骤802与步骤701相同,详细描述请参考步骤701,在此不加赘述。
803、SMF网元确定该QoS流在第一CU-UP和UPF网元之间传输的第一PDB。
其中,步骤803与步骤702相同,详细描述请参考步骤702,在此不加赘述。
804、SMF网元确定该QoS流为特定QoS流、该RAN设备与该UPF网元之间的PDB发生了变化或者未向该RAN设备发送该QoS流对应的PDB。
SMF网元在PDU会话建立过程、N2切换或业务请求流程中,可以判断该QoS流是否为特定QoS流,在判断出该QoS流为特定QoS流的情况下,可以执行步骤805。特定QoS流可以为有PDB分解需求的QoS流,也可以为有低时延需求的GBR QoS流,还可以为其它特殊的QoS流。在PDU会话建立过程中,SMF网元是在确定QoS流建立成功之后进行判断的。在N2切换中,SMF网元是在切换成功之后进行判断的。在业务请求流程中,SMF网元是在激活成功之后进行判断的。
SMF网元也可以判断该RAN设备与该UPF网元之间的PDB值是否发生变化,在判断出该RAN设备与该UPF网元之间的PDB值发生了变化的情况下,可以执行步骤805。
SMF网元还可以判断是否向该RAN设备发送该QoS流对应的PDB,在判断出未向该RAN设备发送该QoS流对应的PDB的情况下,执行步骤805。
805、SMF网元向RAN设备发送第一PDB。
其中,步骤805与步骤703相同,详细描述请参考步骤703,在此不加赘述。
基于图1所示的网络架构,请参阅图10,图10是本发明实施例公开的又一种通信方法的流程示意图。其中,本发明中由SMF网元执行的功能也可以由SMF网元中的模块(例如,芯片)来执行,本发明中由RAN设备执行的功能也可以由RAN设备中的模块(例如,芯片)来执行。如图10所示,该通信方法可以包括以下步骤。
1001、SMF网元确定QoS流对应的RAN设备和UPF网元。
在UE与DN之间存在待传输数据的情况下,SMF网元可以确定该待传输数据对应QoS流对应的RAN设备和UPF网元,该RAN设备支持至少两个CU-UP。该QoS流对应的RAN设 备和UPF网元,即该QoS流是在该RAN设备与该UPF网元之间进行传输的。
1002、SMF网元确定RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB。
SMF网元确定出该QoS流对应的RAN设备和UPF网元之后,可以确定RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB。与该QoS流相同类型数据包即对应同一5QI的值的数据包。SMF网元可以确定RAN设备支持的至少两个CU-UP中每个CU-UP的部署位置和UPF网元之间传输与该QoS流相同类型数据包的PDB,也可以获取RAN设备支持的至少两个CU-UP中每个CU-UP与UPF网元之间传输与该QoS流相同类型数据包的PDB,以及RAN设备支持的至少两个CU-UP中每个CU-UP的位置信息。不同5QI的UPF网元与不同RAN设备的CU-UP的部署位置之间的CN PDB可以如表5所示:
Figure PCTCN2020125195-appb-000006
表5不同5QI的UPF网元与不同RAN设备的CU-UP的部署位置之间的CN PDB如表5所示,在5QI的值为5QI_1的情况下,RAN1所标识的RAN设备与UPF1所标识的UPF网元之间存在CU-UP的三个不同部署位置分别对应不同的CN PDB,可以确定RAN1标识的RAN设备支持三个CU-UP。RAN2标识的RAN设备只有一个CN PDB,可以确定RAN2标识的RAN设备不支持多个CU-UP。其中,步骤1001与步骤1002可以是并行执行的也可以是串行执行的,在此不加限定。表5中,CU-UP的部署位置信息可以是部署位置的标识,RAN设备上可以预配置其支持的CU-UP的部署位置标识对应的具体的部署位置和对应的CU-UP标识。
1003、SMF网元向RAN设备发送每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB。
SMF网元确定出RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB之后,可以向RAN设备发送每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB。
在确定出RAN设备支持的至少两个CU-UP中每个CU-UP的部署位置和UPF网元之间传输与该QoS流相同类型数据包的PDB的情况下,SMF网元可以向RAN设备发送RAN设备支持的至少两个CU-UP中每个CU-UP的部署位置和UPF网元之间传输与该QoS流相同类型数据包的PDB。
在获取到RAN设备支持的至少两个CU-UP中每个CU-UP与UPF网元之间传输与该QoS流相同类型数据包的PDB,以及RAN设备支持的至少两个CU-UP中每个CU-UP的位置信息的情况下,SMF网元可以向RAN设备发送RAN设备支持的至少两个CU-UP中每个CU-UP的位置信息以及对应的PDB,即CU-UP的位置信息与PDB的对应关系,该对应关系可以包括CU-UP的位置信息以及每个CU-UP的位置信息对应的PDB,可以如表4所示。
SMF网元可以是在该QoS流建立过程中、该QoS流激活过程中或该QoS流切换过程中向RAN设备发送RAN支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB。例如,当通过会话建立流程建立该QoS流时,可以在图5的第11步中通过SMF网元向RAN设备发送RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB;在该QoS流切换过程中,可以在图6的第7步中通过SMF网元向RAN设备发送RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB。
1004、RAN设备根据接收的PDB从RAN设备支持的至少两个CU-UP中选取一个CU-UP用于传输该QoS流。
RAN设备接收到来自SMF网元的RAN设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB之后,可以根据接收的PDB从RAN设备支持的至少两个CU-UP中选取一个CU-UP用于传输该QoS流,可以选择对应的PDB最小的CU-UP用于传输该QoS流。具体地,可以是RAN设备中的CU-CP选择CU-UP的,从而确定选择的CU-UP对应的PDB。RAN设备根据接收的PDB从RAN设备支持的至少两个CU-UP中选取出一个CU-UP用于传输该QoS流之后,可以将选取的CU-UP对应的PDB发送给DU。
基于图1所示的网络架构,请参阅图11,图11是本发明实施例公开的一种通信装置的结构示意图。如图11所示,该通信装置可以包括:
第一确定单元1101,用于确定QoS流对应的第一CU-UP和UPF网元,第一CU-UP所属的接入网设备支持至少两个CU-UP;
第二确定单元1102,用于确定该QoS流在第一CU-UP和UPF网元之间传输的第一PDB;
发送单元1103,用于向接入网设备发送第一PDB,第一PDB用于接入网设备调度空口资源。
在一个实施例中,该通信装置还可以包括:
接收单元1104,用于接收第一指示信息,第一指示信息用于指示该QoS流对应的第一CU-UP的标识。
在一个实施例中,该通信装置还可以包括:
获取单元1105,用于获取接入网设备支持的至少两个CU-UP中每个CU-UP与UPF网元之间传输与该QoS流相同类型的数据包的PDB,获取的PDB包括第一PDB。
在一个实施例中,发送单元1103具体用于:
在该QoS流建立完成、该QoS流激活完成或者该QoS流切换完成的情况下,发起会话修改流程;
在会话修改流程中向接入网设备发送第一PDB。
在一个实施例中,该通信装置还可以包括:
第三确定单元1106,用于发送单元1103发起会话修改流程之前,确定该QoS流为特定QoS流、接入网设备与UPF网元之间的PDB发生了变化或者未向接入网设备发送该QoS流对应的PDB。
在一个实施例中,该通信装置还可以包括:
第四确定单元1107,用于发送单元1103发起会话修改流程之前,确定接入网设备支持至少两个CU-UP。
在一个实施例中,第四确定单元1107,具体用于接收来自接入网设备的用于指示接入网设备支持至少两个CU-UP的第二指示信息。
在一个实施例中,第四确定单元1107,具体用于确定接入网设备与UPF网元之间针对同一5QI配置有多个PDB。
在一个实施例中,第四确定单元1107,具体用于确定UPF网元对应接入网设备的至少两个CU-UP地址,且针对同一5QI接入网设备支持的至少两个CU-UP地址分别对应不同的PDB。
有关上述第一确定单元1101、第二确定单元1102、发送单元1103、接收单元1104、获取单元1105、第三确定单元1106和第四确定单元1107更详细的描述可以直接参考上述图7和图8所示的方法实施例中SMF网元的相关描述直接得到,这里不加赘述。
基于图1所示的网络架构,请参阅图12,图12是本发明实施例公开的另一种通信装置的结构示意图。如图11所示,该通信装置可以包括:
第一确定单元1201,用于确定QoS流对应的接入网设备和UPF网元,接入网设备支持至少两个CU-UP;
第二确定单元1202,用于确定接入网设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB;
发送单元1203,用于向接入网设备发送接入网设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB。
在一个实施例中,第二确定单元1202,具体用于确定接入网设备支持的至少两个CU-UP中每个CU-UP的部署位置和UPF网元之间传输与该QoS流相同类型数据包的PDB;
发送单元1203,具体用于向接入网设备发送接入网设备支持的至少两个CU-UP中每个CU-UP的部署位置和UPF网元之间传输与该QoS流相同类型数据包的PDB。
在一个实施例中,第二确定单元1202,具体用于获取接入网设备支持的至少两个CU-UP中每个CU-UP与UPF网元之间传输与该QoS流相同类型数据包的PDB,以及接入网设备支持的至少两个CU-UP中每个CU-UP的位置信息;
发送单元1203,具体用于向接入网设备发送接入网设备支持的至少两个CU-UP中每个CU-UP的位置信息以及对应的PDB。
在一个实施例中,发送单元1203,具体用于在该QoS流建立过程中、该QoS流激活过程中或该QoS流切换过程中向接入网设备发送接入网设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与该QoS流相同类型数据包的PDB。
有关上述第一确定单元1201、第二确定单元1202和发送单元1203更详细的描述可以直接参考上述图10所示的方法实施例中SMF网元的相关描述直接得到,这里不加赘述。
基于图1所示的网络架构,请参阅图13,图13是本发明实施例公开的又一种通信装置的结构示意图。其中,该通信装置设置在接入网设备中,接入网设备支持至少两个CU-UP。 如图13所示,该通信装置可以包括:
接收单元1301,用于接收来自SMF网元的接入网设备支持的至少两个CU-UP中每个CU-UP和UPF网元之间传输与QoS流相同类型数据包的PDB;
选取单元1302,用于根据接收的PDB从接入网设备支持的至少两个CU-UP中选取一个CU-UP用于传输该QoS流。
在一个实施例中,选取单元1302,具体用于根据接收的PDB从接入网设备支持的至少两个CU-UP中选取对应的PDB最小的CU-UP用于传输该QoS流。
有关上述接收单元1301和选取单元1302更详细的描述可以直接参考上述图10所示的方法实施例中接入网设备的相关描述直接得到,这里不加赘述。
基于图1所示的网络架构,请参阅图14,图14是本发明实施例公开的又一种通信装置的结构示意图。如图14所示,该通信装置可以包括处理器1401、存储器1402、输入接口1403、输出接口1404和总线1405。存储器1402可以是独立存在的,可以通过总线1405与处理器1401相连接。存储器1402也可以和处理器1401集成在一起。其中,总线1405用于实现这些组件之间的连接。
在一个实施例中,该通信装置可以为SMF网元或者SMF网元内的模块(例如,芯片),存储器1402中存储的计算机程序指令被执行时,该处理器1401用于控制发送单元1103和接收单元1104执行上述实施例中执行的操作,该处理器1401还用于执行第一确定单元1101、第二确定单元1102、获取单元1105、第三确定单元1106和第四确定单元1107上述实施例中执行的操作,输入接口1403用于执行上述实施例中接收单元1104执行的操作,输出接口1404用于执行上述实施例中发送单元1103执行的操作。上述SMF网元或者SMF网元内的模块还可以用于执行前述方法实施例中SMF网元执行的各种方法,不再赘述。
在一个实施例中,该通信装置可以为SMF网元或者SMF网元内的模块(例如,芯片),存储器1402中存储的计算机程序指令被执行时,该处理器1401用于控制发送单元1203执行上述实施例中执行的操作,该处理器1401还用于执行第一确定单元1201和第二确定单元1202上述实施例中执行的操作,输入接口1403用于接收来自SMF网元或者SMF网元内的模块之外的其它通信装置的信息,输出接口1404用于执行上述实施例中发送单元1203执行的操作。上述SMF网元或者SMF网元内的模块还可以用于执行前述方法实施例中SMF网元执行的各种方法,不再赘述。
在一个实施例中,该通信装置可以为接入网设备或者接入网设备内的模块(例如,芯片),存储器1402中存储的计算机程序指令被执行时,该处理器1401用于控制接收单元1301执行上述实施例中执行的操作,该处理器1401还用于执行选取单元1302上述实施例中执行的操作,输入接口1403用于执行上述实施例中接收单元1301执行的操作输出接口1404用于向接入网设备或者接入网设备内的模块之外的其它通信设备输出信息。上述接入网设备或者接入网设备内的模块还可以用于执行前述方法实施例中接入网设备执行的各种方法,不再赘述。
基于图1所示的网络架构,请参阅图15,图15是本发明实施例公开的又一种通信装置的 结构示意图。如图15所示,该通信装置可以包括输入接口1501、逻辑电路1502和输出接口1503。输入接口1501与输出接口1503通过逻辑电路1502相连接。其中,输入接口1501用于接收来自其它通信装置的信息,输出接口1503用于向其它通信装置输出、调度或者发送信息。逻辑电路1502用于执行除输入接口1501与输出接口1503的操作之外的操作,例如实现上述实施例中处理器1401实现的功能。其中,该通信装置可以为接入网设备或者接入网设备,也可以为SMF网元或者SMF网元内的模块。其中,有关输入接口1501、逻辑电路1502和输出接口1503更详细的描述可以直接参考上述方法实施例中SMF网元或接入网设备的相关描述直接得到,这里不加赘述。
本发明实施例还公开一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种通信系统,该通信系统包括接入网设备和SMF网元,具体描述可以参考图10所示的通信方法。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (31)

  1. 一种通信方法,其特征在于,包括:
    确定服务质量QoS流对应的第一中心单元用户面CU-UP和用户面功能UPF网元,所述第一CU-UP所属的接入网设备支持至少两个CU-UP;
    确定所述QoS流在所述第一CU-UP和所述UPF网元之间传输的第一包时延预算PDB;
    向所述接入网设备发送所述第一PDB,所述第一PDB用于所述接入网设备调度空口资源。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    接收第一指示信息,所述第一指示信息用于指示所述QoS流对应的第一CU-UP的标识。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    获取所述至少两个CU-UP中每个CU-UP与所述UPF网元之间传输与所述QoS流相同类型的数据包的PDB,获取的PDB包括所述第一PDB。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述向所述接入网设备发送所述第一PDB包括:
    在所述QoS流建立完成、所述QoS流激活完成或者所述QoS流切换完成的情况下,发起会话修改流程;
    在所述会话修改流程中向所述接入网设备发送所述第一PDB。
  5. 根据权利要求4所述的方法,其特征在于,所述发起会话修改流程之前,所述方法还包括:
    确定所述QoS流为特定QoS流、所述接入网设备与所述UPF网元之间的PDB发生了变化或者未向所述接入网设备发送所述QoS流对应的PDB。
  6. 根据权利要求4或5所述的方法,其特征在于,所述发起会话修改流程之前,所述方法还包括:
    确定所述接入网设备支持至少两个CU-UP。
  7. 根据权利要求6所述的方法,其特征在于,所述确定所述接入网设备支持至少两个CU-UP包括:
    接收来自所述接入网设备的用于指示所述接入网设备支持至少两个CU-UP的第二指示信息。
  8. 根据权利要求6所述的方法,其特征在于,所述确定所述接入网设备支持至少两个CU-UP包括:
    确定所述接入网设备与所述UPF网元之间针对同一5G QoS标识5QI配置有多个PDB。
  9. 根据权利要求6所述的方法,其特征在于,所述确定所述接入网设备支持至少两个CU-UP包括:
    确定所述UPF网元对应所述接入网设备的至少两个CU-UP地址,且针对同一5QI所述至少两个CU-UP地址分别对应不同的PDB。
  10. 一种通信方法,其特征在于,包括:
    确定服务质量QoS流对应的接入网设备和用户面功能UPF网元,所述接入网设备支持至少两个中心单元用户面CU-UP;
    确定所述至少两个CU-UP中每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的包时延预算PDB;
    向所述接入网设备发送所述每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB。
  11. 根据权利要求10所述的方法,其特征在于,所述确定所述至少两个CU-UP中每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB包括:
    确定所述至少两个CU-UP中每个CU-UP的部署位置和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB;
    所述向所述接入网设备发送所述每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB包括:
    向所述接入网设备发送所述每个CU-UP的部署位置和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB。
  12. 根据权利要求10所述的方法,其特征在于,所述确定所述至少两个CU-UP中每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB包括:
    获取所述至少两个CU-UP中每个CU-UP与所述UPF网元之间传输与所述QoS流相同类型数据包的PDB,以及所述至少两个CU-UP中每个CU-UP的位置信息;
    所述向所述接入网设备发送所述每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB包括:
    向所述接入网设备发送所述至少两个CU-UP中每个CU-UP的位置信息以及对应的PDB。
  13. 根据权利要求10所述的方法,其特征在于,所述向所述接入网设备发送所述每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB包括:
    在所述QoS流建立过程中、所述QoS流激活过程中或所述QoS流切换过程中向所述接入网设备发送所述每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB。
  14. 一种通信方法,其特征在于,所述方法应用于接入网设备,所述接入网设备支持至少两个中心单元用户面CU-UP,包括:
    接收来自会话管理功能SMF网元的所述至少两个CU-UP中每个CU-UP和用户面功能UPF网元之间传输与QoS流相同类型数据包的PDB;
    根据所述PDB从所述至少两个CU-UP中选取一个CU-UP用于传输所述QoS流。
  15. 一种通信装置,其特征在于,包括:
    第一确定单元,用于确定服务质量QoS流对应的第一中心单元用户面CU-UP和用户面功能UPF网元,所述第一CU-UP所属的接入网设备支持至少两个CU-UP;
    第二确定单元,用于确定所述QoS流在所述第一CU-UP和所述UPF网元之间传输的第一包时延预算PDB;
    发送单元,用于向所述接入网设备发送所述第一PDB,所述第一PDB用于所述接入网 设备调度空口资源。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括:
    接收单元,用于接收第一指示信息,所述第一指示信息用于指示所述QoS流对应的第一CU-UP的标识。
  17. 根据权利要求16所述的装置,其特征在于,所述装置还包括:
    获取单元,用于获取所述至少两个CU-UP中每个CU-UP与所述UPF网元之间传输与所述QoS流相同类型的数据包的PDB,获取的PDB包括所述第一PDB。
  18. 根据权利要求15-17任一项所述的装置,其特征在于,所述发送单元具体用于:
    在所述QoS流建立完成、所述QoS流激活完成或者所述QoS流切换完成的情况下,发起会话修改流程;
    在所述会话修改流程中向所述接入网设备发送所述第一PDB。
  19. 根据权利要求18所述的装置,其特征在于,所述装置还包括:
    第三确定单元,用于所述发送单元发起会话修改流程之前,确定所述QoS流为特定QoS流、所述接入网设备与所述UPF网元之间的PDB发生了变化或者未向所述接入网设备发送所述QoS流对应的PDB。
  20. 根据权利要求18或19所述的装置,其特征在于,所述装置还包括:
    第四确定单元,用于所述发送单元发起会话修改流程之前,确定所述接入网设备支持至少两个CU-UP。
  21. 根据权利要求20所述的装置,其特征在于,所述第四确定单元,具体用于接收来自所述接入网设备的用于指示所述接入网设备支持至少两个CU-UP的第二指示信息。
  22. 根据权利要求20所述的装置,其特征在于,所述第四确定单元,具体用于确定所述接入网设备与所述UPF网元之间针对同一5G QoS标识5QI配置有多个PDB。
  23. 根据权利要求20所述的装置,其特征在于,所述第四确定单元,具体用于确定所述UPF网元对应所述接入网设备的至少两个CU-UP地址,且针对同一5QI所述至少两个CU-UP地址分别对应不同的PDB。
  24. 一种通信装置,其特征在于,包括:
    第一确定单元,用于确定服务质量QoS流对应的接入网设备和用户面功能UPF网元,所述接入网设备支持至少两个中心单元用户面CU-UP;
    第二确定单元,用于确定所述至少两个CU-UP中每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的包时延预算PDB;
    发送单元,用于向所述接入网设备发送所述每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB。
  25. 根据权利要求24所述的装置,其特征在于,所述第二确定单元,具体用于确定所述至少两个CU-UP中每个CU-UP的部署位置和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB;
    所述发送单元,具体用于向所述接入网设备发送所述每个CU-UP的部署位置和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB。
  26. 根据权利要求24所述的装置,其特征在于,所述第二确定单元,具体用于获取所述至少两个CU-UP中每个CU-UP与所述UPF网元之间传输与所述QoS流相同类型数据包的PDB,以及所述至少两个CU-UP中每个CU-UP的位置信息;
    所述发送单元,具体用于向所述接入网设备发送所述至少两个CU-UP中每个CU-UP的位置信息以及对应的PDB。
  27. 根据权利要求24所述的装置,其特征在于,所述发送单元,具体用于在所述QoS流建立过程中、所述QoS流激活过程中或所述QoS流切换过程中向所述接入网设备发送所述每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB。
  28. 一种通信装置,其特征在于,所述装置设置在接入网设备中,所述接入网设备支持至少两个中心单元用户面CU-UP,包括:
    接收单元,用于接收来自会话管理功能SMF网元的所述至少两个CU-UP中每个CU-UP和用户面功能UPF网元之间传输与QoS流相同类型数据包的PDB;
    选取单元,用于根据所述PDB从所述至少两个CU-UP中选取一个CU-UP用于传输所述QoS流。
  29. 一种通信装置,其特征在于,包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程序实现如权利要求1-14任一项所述的方法。
  30. 一种通信系统,其特征在于,包括:
    会话管理功能SMF网元,用于确定服务质量QoS流对应的支持至少两个中心单元用户面CU-UP的接入网设备和用户面功能UPF网元,确定所述至少两个CU-UP中每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的包时延预算PDB,以及向所述接入网设备发送所述每个CU-UP和所述UPF网元之间传输与所述QoS流相同类型数据包的PDB;
    所述接入网设备,用于接收所述PDB,根据所述PDB从所述至少两个CU-UP中选取一个CU-UP用于传输所述QoS流。
  31. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1-14任一项所述的方法。
PCT/CN2020/125195 2019-10-31 2020-10-30 一种通信方法及设备 WO2021083321A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20881717.1A EP4037373A4 (en) 2019-10-31 2020-10-30 COMMUNICATION METHOD AND DEVICE
US17/732,148 US20220256392A1 (en) 2019-10-31 2022-04-28 Communication method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911050880.2 2019-10-31
CN201911050880.2A CN112752297B (zh) 2019-10-31 2019-10-31 一种通信方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/732,148 Continuation US20220256392A1 (en) 2019-10-31 2022-04-28 Communication method and device

Publications (1)

Publication Number Publication Date
WO2021083321A1 true WO2021083321A1 (zh) 2021-05-06

Family

ID=75641252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125195 WO2021083321A1 (zh) 2019-10-31 2020-10-30 一种通信方法及设备

Country Status (4)

Country Link
US (1) US20220256392A1 (zh)
EP (1) EP4037373A4 (zh)
CN (1) CN112752297B (zh)
WO (1) WO2021083321A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11895528B2 (en) * 2020-09-23 2024-02-06 Electronics And Telecommunications Research Institute Method of creating QoS flow for time synchronization protocol in wireless communication network
CN113473371B (zh) * 2021-08-31 2022-01-25 阿里巴巴达摩院(杭州)科技有限公司 无线通信方法、直播数据的处理方法、amf及ran
CN115967954A (zh) * 2021-10-09 2023-04-14 华为技术有限公司 时延预算的确定方法及装置
WO2023109743A1 (zh) * 2021-12-17 2023-06-22 华为技术有限公司 传输数据的方法和通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190253917A1 (en) * 2018-02-15 2019-08-15 Huawei Technologies Co., Ltd. Tracking qos violated events
CN110166377A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种资源分配方法和装置
CN110267312A (zh) * 2019-06-17 2019-09-20 腾讯科技(深圳)有限公司 数据传输的方法、管理服务质量流的方法、设备及介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107371192A (zh) * 2016-05-12 2017-11-21 中兴通讯股份有限公司 用户面和控制面的处理方法及装置
CN108632904B (zh) * 2017-03-24 2019-09-17 电信科学技术研究院 一种通信方法及设备
WO2018177656A1 (en) * 2017-03-31 2018-10-04 Telefonaktiebolaget Lm Ericsson (Publ) Application topology aware user plane selection in nr and 5gc
EP3602978B1 (en) * 2017-03-31 2022-10-19 Telefonaktiebolaget LM Ericsson (publ) Coordinated selection of user plane functions in core and radio access networks
CN117676719A (zh) * 2017-08-10 2024-03-08 北京三星通信技术研究有限公司 一种数据流的操作控制的方法及设备
CN110167068A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种处理服务质量QoS参数的方法、网元、系统及存储介质
US11419161B2 (en) * 2018-02-15 2022-08-16 Nokia Solutions And Networks Oy Methods, apparatuses and computer-readable storage mediums for coordinated selection of RAN and core user plane components in a wireless communications network
US10932322B2 (en) * 2018-02-23 2021-02-23 Cisco Technology, Inc. Policy mapping methods and apparatus for use in interconnecting software-defined wide area network (SD-WAN) fabrics with mobile networks for communications with UEs
CN110351043A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 通信方法和装置
WO2020085964A1 (en) * 2018-10-26 2020-04-30 Telefonaktiebolaget Lm Ericsson (Publ) Solutions for enabling low overhead data transmission for cellular devices
CN111770475B (zh) * 2019-03-31 2022-04-22 华为技术有限公司 时延获取方法及装置、优化方法及装置
US20230224792A1 (en) * 2019-10-04 2023-07-13 Telefonaktiebolaget Lm Ericsson (Publ) Dynamic activation of local breakout with coordination between application domain and mobile network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110166377A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种资源分配方法和装置
US20190253917A1 (en) * 2018-02-15 2019-08-15 Huawei Technologies Co., Ltd. Tracking qos violated events
CN110267312A (zh) * 2019-06-17 2019-09-20 腾讯科技(深圳)有限公司 数据传输的方法、管理服务质量流的方法、设备及介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "QoS parameter-Packet Delay Budget", 3GPP DRAFT; S2-163602 QOS PARAMETER PACKET DELAY BUDGET, vol. SA WG2, 5 July 2016 (2016-07-05), Vienna, Austria, pages 1 - 9, XP051121287 *
See also references of EP4037373A4

Also Published As

Publication number Publication date
EP4037373A1 (en) 2022-08-03
EP4037373A4 (en) 2022-11-16
CN112752297A (zh) 2021-05-04
CN112752297B (zh) 2022-11-22
US20220256392A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2021083321A1 (zh) 一种通信方法及设备
TWI733216B (zh) 無效協定資料單元會話之處理方法及其使用者設備
TW201944840A (zh) 處理qos 流的方法及使用者設備
WO2020168840A1 (zh) 网络节点选择方法及装置
US11395256B2 (en) Communication method, device, and system
WO2020103807A1 (zh) 一种通信方法及装置
WO2021179174A1 (zh) 一种数据传输方法及装置、网络设备、终端设备
TWI792590B (zh) 協定資料單元會話建立接受處理方法及使用者設備
TWI792415B (zh) Ue和網路之間的多存取pdu會話狀態同步
WO2019085728A1 (zh) 通信方法及装置
WO2016145575A1 (zh) 一种业务处理方法、相关装置及系统
US20230254922A1 (en) Multipath transmission method and communication apparatus
CA3186084A1 (en) Communication method and communication apparatus
WO2018014154A1 (zh) 一种rrc连接重建方法和装置
US12015954B2 (en) Method and apparatus for handover
WO2021139441A1 (zh) 用于语音业务的通信方法、装置和系统
US11246064B2 (en) PDN connection supports interworking to 5GS
CN112399634B (zh) 定义注意命令以支持5g pdu会话操作的ssc的方法及移动终端
TW201902257A (zh) 用戶設備及位置更新方法
TW202044874A (zh) 協作後之特性支援增強技術
WO2020173146A1 (zh) 一种切换处理的方法、相关设备、程序产品以及存储介质
WO2022170798A1 (zh) 确定策略的方法和通信装置
TWI783731B (zh) Ma pdu會話和使用者平面資源建立方法及使用者設備
TW202243530A (zh) Ma pdu會話之處理方法及其使用者設備
TW202101948A (zh) 支援網際網路協定多媒體子系統信令之方法及使用者設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881717

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020881717

Country of ref document: EP

Effective date: 20220429

NENP Non-entry into the national phase

Ref country code: DE